(新)高数竞赛试题集
数学竞赛高数试题及答案
数学竞赛高数试题及答案试题一:极限的计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
解答:根据洛必达法则,我们可以将原式转换为 \(\lim_{x \to 0} \frac{\cos x}{1}\),由于 \(\cos 0 = 1\),所以极限的值为 1。
试题二:导数的应用问题:若函数 \( f(x) = 3x^2 - 2x + 1 \),求其在 \( x = 1 \) 处的导数值。
解答:首先求导数 \( f'(x) = 6x - 2 \),然后将 \( x = 1 \) 代入得到 \( f'(1) = 6 \times 1 - 2 = 4 \)。
试题三:不定积分的求解问题:求不定积分 \(\int \frac{1}{x^2 + 1} dx\)。
解答:这是一个基本的积分形式,可以直接应用反正切函数的积分公式,得到 \(\int \frac{1}{x^2 + 1} dx = \arctan(x) + C\),其中\( C \) 是积分常数。
试题四:级数的收敛性判断问题:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。
解答:根据比值测试,我们有 \(\lim_{n \to \infty}\frac{1}{(n+1)^2} / \frac{1}{n^2} = \lim_{n \to \infty}\frac{n^2}{(n+1)^2} = 1\),由于极限值为 1,小于 1,所以级数收敛。
试题五:多元函数的偏导数问题:设函数 \( z = f(x, y) = x^2y + y^3 \),求 \( f \) 关于\( x \) 和 \( y \) 的偏导数。
解答:对 \( x \) 求偏导,保持 \( y \) 为常数,得到 \( f_x =2xy \)。
对 \( y \) 求偏导,保持 \( x \) 为常数,得到 \( f_y = x^2 + 3y^2 \)。
2023高中数学竞赛决赛试题
2023高中数学竞赛决赛试题2023高中数学竞赛决赛试题一、选择题设集合A = {x | x = 3k + 1, k Z}∈,B = {x | x = 3k + 2, k Z}∈,则集合A 和B 的关系是:A. A B ⊆B. B A ⊆C. A = B D. A ∩ B = ∅已知 x > 1,则函数 y = x + (1/x) 的最小值为:A. 2√2B. √2C. 4D. 不存在若函数 f(x) = (x - a)/(x^2 + 1) 在区间 (-2,2) 上是奇函数,则 a 的取值范围是:A. a = ±√2B. a = -√2C. a = ±1D. a = -1下列各组中的两个函数是同一函数的是:A. f(x) = x^2 和 g(x) = (√x)^2B. f(x) = x 和 g(x) = √x^2C. f(x) = |x| 和 g(x) = (√(x^2))D. f(x) = x 和 g(x) = (√(x))^2在等差数列 {an} 中,a3 + a8 > 0,则有:A. a1 + a10 > 0B. a2 + a9 > 0C. a4 + a7 > 0D. a5 + a6 > 0若实数 x, y 满足 x^2 + y^2 = 1,则 (x + 2)^2 + (y + 2)^2 的最小值为:A. 4√5/5B. √5 - 1C. √5 + 1D. 5/4下列各式中正确的是:A. lim(x→∞) (sin x/x) = 0B .lim(x→∞) (x·sin x/x) = 1C .lim(x→∞) (sin x/x^2) = 0D .lim(x→∞) ((sin x)/x)^x = e^(-1)下列说法中正确的是:A. “直线 l 在平面 α 内”等价于“直线 l 与平面 α 有公共点”B. “直线 l 与直线 l' 在平面 α 内相交”等价于“直线 l 与直线 l' 有公共点”C. “直线 l 与平面 α 的平行”等价于“直线 l 与平面 α 没有公共点”D. “直线 l 与直线 l' 在平面 α 内平行”等价于“直线 l 与直线 l' 没有公共点”一个袋子中有大小形状相同的红、黄、蓝三种颜色的球各一个,现有放回地依次取出三个球,则取到红、黄、蓝三种颜色的球各一个的概率为:A. 1/8B. 1/6C. 1/4D. 1/3在等比数列 {an} 中,a7 · a11 = 6,a3 + a13 = 5,则 a23 + a27 的值为:A. -5/6 B. -1 C. -6 D. -5/4二、填空题11. 若 f(n) = (n - a)/(n + a),则 f(4) + f(9) + ... + f(99) + f(104) 的值为 _______。
高等数学竞赛试题含答案
I 4zx dydz 2z dzdx (1 z 2) dxdy
S
[解 1]S 的方程为 z e x2 y2 (1 x 2 y 2 4)
补两平面 S1 : z e(x2 y 2 1, 下侧) S2 : z e2 (x2 y 2 4, 上侧)
2
e2
zdV 2 zdz
3. 设 为 f (x) arctan x 在 [ 0, b] 上应用 拉格朗日 中值定理的 “中值”,则
lim
b0
2 b2
…………
(C )
(A) 1; (B) 1 ; (C) 1 ; (D) 1 .
2
3
4
4.
设
f
(x)
,
g(x)
连续,当
x
0 时,
f
(x)
与
g(x)
为等价无穷小,令
F(x)
x 0
0
2a
(2) F (x) 1 [G '(x a) G '(x a)] 1 [ f (x a) f (x a)]
2a
2a
(3) lim F(x) lim G(x a) G(x a) lim [G(x a) G(x)] [G(x) G(x a)]
a0
a0
2a
a0
2a
1 [G '(x) G '(x)] G '(x) f (x) 2
解
lim
f
(0,
y
1 n
)
n
lim 1
f (0, y 1) n
f
(0,
y
)
n
f (0, y 1) f (0, y)
lim
n
n 1 f (0, y)
高等数学竞赛试题(完整资料).doc
【最新整理,下载后即可编辑】第二十届高等数学竞赛试卷一、填空题(每小题5分,本题共50分): 1. 若0→x 时,1)1(412--ax与x x sin 是等价无穷小,则=a .2.=+→)1ln(12)(cos lim x x x .3. 设函数2301sin d ,0,(),0,x t t x f x xa x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =.4. =∂∂+∂∂=yz y x z x x y xy z 则设,sin.5.的解为:满足微分方程91)1(ln 2-==+'y x x y y x ._______)()( ,,)()(,.=-=⎩⎨⎧≤≤==>⎰⎰Ddxdy x y g x f I D x a x g x f a 则表示全平面,而其他若设010067..d tan )cos (22222005=+⎰-x x x x ππ8. .sin 2sin sin 1lim=⎪⎭⎫⎝⎛+++∞→n n n n n n πππ9..,1222=≤++Ω⎰⎰⎰Ωdv e z y x z计算所界定由设空间区域10. 设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则..),(),(=-⎰dy y x f x x d y x f y L二、计算题(每小题6分,本题共42分):.,)()(cos .的解,并求满足化简微分方程:用变量代换21010102='==+'-''-<<===x x y yy y x y x t t x π解题过程是:2. 设∑是锥面1)z z =≤≤的下侧,计算曲面积分d d 2d d 3(1)d d x y z y z x z x y ∑++-⎰⎰..解题过程是:.,),(.的值和数图形有拐点,试确定常处函数的,且在点处有极小值在设函数c b a x cx bx ax y 20012323=+++=解题过程是:.)(d d )()()(),()(.x f t y x y x f y x t f t x f t y x 求函数满足下式:上连续,且对任意的在设函数4222222224+++=∞-∞⎰⎰≤+解题过程是:..之间的最短距离.与平面求旋转抛物面22522=-++=z y x y x z解题过程是:要多少时间?厘米的雪堆全部融化需问高为)系数侧面积成正比,(比例已知体积减少的速率与,小时设长度为厘米,时间为其侧面满足方程的雪堆在融化过程中,为时间设有一高为130,9.0)()()(2)())((.622t h y x t h z t t h +-=解题过程是:.86,)1,1,1(632.722222处的梯度的方向导数和在点处沿方向在点计算函数处指向外侧的法向量在点是曲面设P n P zy x u P z y x n+==++解题过程是:三、证明题(本题8分):.)()(022)(0)(22)()(4242的表达式求函数;,有简单闭曲线内的任意分段光滑证明:对右半平面的值恒为同一常数,曲线积分上,单闭曲线原点的任意分段光滑简有连续的导数,在围绕设函数y II yx xydydx y C x I yx xydydx y L y C L ϕϕϕϕ=++>++⎰⎰第二十届高等数学竞赛试卷参考答案一、填空题(每小题5分,本题共50分):1. 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则=a ..解当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.2.=+→)1ln(12)(cos lim x x x .解)1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而212cos sin lim cos ln lim )1ln(cos ln lim 02020-=-==+→→→x x xx x x x x x x ,故 原式=.121e e=-3. 设函数2301sin d ,0(),0x t t x f x xa x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =.解 由题设知,函数()f x 在 0x =处连续,则lim ()(0)x f x f a→==,又因为 2203200sin d sin 1lim ()limlim 33x x x x t t x f x x x →→→===⎰.所以13a =.4.='+'⎪⎭⎫⎝⎛=y x z y z x u f x y xyf z 则可导函数设,)(,..20sin 202,1,:22z x y xy x y xyf z y z x x y f y x y xf x x y f xy x y xf y z x y f x y x y yf x y x y f xy x y yf x z y x =+=+⎪⎭⎫⎝⎛='+'∴⎪⎭⎫ ⎝⎛'+⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂解5.的解为:满足微分方程91)1(ln 2-==+'y x x y y x ...91ln 31091)1(191ln 31]ln [1]ln [ln 222222x x x y C y x C x x x C xdx x x C dx ex e y x y xy dxx dx x -==-=+-=+⋅=+⎰⋅⎰==+'⎰⎰-,故所求通解为:得,由,于是通解为:解:原方程等价为:._______)()( ,,)()(,.=-=⎩⎨⎧≤≤==>⎰⎰Ddxdy x y g x f I D x a x g x f a 则表示全平面,而其他若设01006解:本题积分区域为全平面,但只有当 10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可 .⎩⎨⎧+≤≤=-⇒⎩⎨⎧≤-≤=-,,0;1)(,,0;10)(其他若其他若x y x a x y g x y a x y g⎪⎩⎪⎨⎧+≤≤≤≤=-其他,0,1,10)()(2x y x x a x y g x f.])1[(0)()(2121012221a dx x x a dydx a dxdy dxdy a dxdyx y g x f I x xD D D=-+==+=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰+7..d tan )cos (22222005=+⎰-x x x x ππ.22212d sin 20d tan cos d d tan d tan )cos (2022222222200522222005πππππππππ=⋅⋅=+=+==+⎰⎰⎰⎰---x x xx x x x x x x x x x 解:8..sin 2sin sin 1lim =⎪⎭⎫ ⎝⎛++∞→n n n n n n πππ⎰∑∑=∆=⋅=⎪⎭⎫⎝⎛-+++=→∞=→∞→∞1011d sin )(lim 1sin lim )1(sin 2sin sin 1limx x x f n n i n n n n n i ni i n ni n n πξππππ 解:ni n x n n n i n n n x x f i i ==∆<<<<<<=ξπ,1 ,210]10[, sin )(取等份,分点为分为,把区间看作 ().20cos cos 101cos d sin 1`0ππππππ=+-=-==∴⎰x x x 原式9..,1222=≤++Ω⎰⎰⎰Ωdv e z y x z计算所界定由设空间区域.2)1(22211210222ππ=-===-≤+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩdz e z dxdy dz e dv e dv ez y x D z z D z z zz z上法.,故采用"先二后一"为圆域的函数,截面被积函数仅为解:10. 设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则..),(),(=-⎰dy y x f x x d y x f y L解 2(,)(,)f tx ty t f x y -=两边对t 求导得3(,)(,)2(,)x y xf tx ty yf tx ty t f x y -''+=-.令1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=-,. 即11(,)(,)(,)22x y f x y xf x y yf x y ''=-- ①设(,)(,),(,)(,)P x y yf x y Q x y xf x y ==-,则(,)(,),(,)(,)x y Q Pf x y xf x y f x y yf x y x y ∂∂''=--=+∂∂.则由①可得11(,)(,)22y x Q Pyf x y xf x y x y∂∂⎛⎫''==- ⎪∂∂⎝⎭.故由曲线积分与路径无关的定理可知,对D 内的任意分段光滑的有向简单闭曲线L ,都有.0),(),(=-⎰dy y x xf x d y x yf L二、计算题(每小题6分,本题共42分):.,)()(cos .的解,并求满足化简微分方程:用变量代换21010102='==+'-''-<<===x x y yy y x y x t t x π,解:dt dyt dx dt dt dy y sin 1-=⋅=',代入原方程得0),sin 1(]sin 1sin cos [22222=+-⋅-=⋅'=''y dty d t dt y d t dt dy t t dx dt dt y d y 。
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。
A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。
A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。
7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。
8. 一个正六边形的内角为______度。
9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。
10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。
三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。
14. 求函数y = x^3 - 3x^2 + 2x的极值点。
15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。
四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。
答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。
当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
A. 0B. 4C. -4D. 8答案:A3. 一个等差数列的前三项分别为1, 4, 7,求第四项的值。
A. 10B. 11C. 13D. 15答案:A4. 计算复数z = 1 + i的模。
A. √2B. 2C. 1D. √3答案:A二、填空题(每题5分,共20分)5. 已知等比数列的公比为2,首项为1,求第5项的值。
答案:326. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。
答案:-67. 计算函数y = x^3 - 6x^2 + 11x - 6在x = 2处的导数值。
答案:18. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
答案:(2, 3)三、解答题(每题10分,共60分)9. 求证:对于任意正整数n,n^2 + 3n + 2总是能被3整除。
证明:设n = 3k, 3k + 1, 3k + 2,其中k为整数。
当n = 3k时,n^2 + 3n + 2 = 9k^2 + 9k + 2 = 3(3k^2 + 3k + 1),能被3整除。
当n = 3k + 1时,n^2 + 3n + 2 = 9k^2 + 6k + 1 + 9k + 3 + 2 =3(3k^2 + 5k + 2),能被3整除。
当n = 3k + 2时,n^2 + 3n + 2 = 9k^2 + 12k + 4 + 9k + 6 + 2 = 3(3k^2 + 7k + 4),能被3整除。
因此,对于任意正整数n,n^2 + 3n + 2总是能被3整除。
10. 已知函数f(x) = x^3 - 3x^2 + 2x,求f(x)的单调区间。
解:首先求导数f'(x) = 3x^2 - 6x + 2。
高等数学竞赛选拔考核试卷
A.定积分的换元法可以简化被积函数
B.定积分的换元法需要引入雅可比行列式
C.定积分的换元法只能用于线性换元
D.定积分的换元法可以推广到多变量函数的积分
17.关于向量场的散度和旋度,以下说法正确的是()
A.散度描述了向量场源和汇的性质
B.旋度描述了向量场的旋转性质
A. f(x)在[0,1]上的平均值
B. f(x)在[0,1]上的定积分
C. f(x)在[0,1]上的变上限积分
D. f(x)在[0,1]上的原函数
17.三阶行列式的值为0,则()
A.行列式的三行(或三列)线性相关
B.行列式的三行(或三列)线性无关
C.行列式至少有一行(或一列)为零向量
D.行列式的元素至少有一个为零
A. 1/3
B. 1/6
C. 1/12
D. 1/24
5.设f(x) = x^3 - 6x^2 + 9x + 1,则f(x)的极大值为()
A. 1
B. 3
C. 5
D. 7
6.矩阵A的行列式为0,则()
A. A一定是奇异矩阵
B. A一定可逆
C. A的列向量线性无关
D. A的行向量线性相关
7.若f(x) = (sin x)/x,则f'(π/2)等于()
A.必有极大值
B.必有极小值
C.必有拐点
D.以上都不一定
3.若级数∑(n=1 to ∞) a_n的收敛半径为R,则级数∑(n=1 to ∞) a_n^2的收敛半径是()
A. R
B. R/2
C. 2R
D. √R
4.二重积分∬_D f(x,y) dσ中,区域D为y=x^2,x属于[0,1],则该二重积分的值为()
高等数学竞赛最新试题及答案
高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。
2023数学竞赛试题及参考答案
2023数学竞赛试题及参考答案试题一:代数问题题目:解下列方程组:\[ \begin{cases}x + y = 5 \\2x - y = 1\end{cases} \]参考答案:首先,我们使用加减消元法来解这个方程组。
将第一个方程乘以2得到 \(2x + 2y = 10\),然后将这个结果与第二个方程相加,得到 \(3x = 11\)。
解得 \(x = \frac{11}{3}\)。
将 \(x\) 的值代入第一个方程,得到 \(y = 5 - \frac{11}{3} = \frac{4}{3}\)。
所以,方程组的解为 \(x = \frac{11}{3}, y = \frac{4}{3}\)。
试题二:几何问题题目:在直角三角形ABC中,∠C是直角,AC = 6,BC = 8。
求斜边AB的长度。
参考答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ AB = \sqrt{AC^2 + BC^2} \]将给定的值代入公式中,得到:\[ AB = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \] 所以,斜边AB的长度是10。
试题三:概率问题题目:一个袋子里有5个红球和3个蓝球,随机抽取2个球,求至少抽到一个蓝球的概率。
参考答案:首先,我们计算总的可能情况,即从8个球中抽取2个球的组合数,使用组合公式 \(C(n, k) = \frac{n!}{k!(n-k)!}\),得到:\[ C(8, 2) = \frac{8!}{2!(8-2)!} = 28 \]接下来,计算没有抽到蓝球的情况,即只抽到红球的组合数:\[ C(5, 2) = \frac{5!}{2!(5-2)!} = 10 \]至少抽到一个蓝球的概率是1减去没有抽到蓝球的概率,即:\[ P(至少一个蓝球) = 1 - \frac{C(5, 2)}{C(8, 2)} = 1 -\frac{10}{28} = \frac{18}{28} = \frac{9}{14} \]试题四:数列问题题目:数列1, 3, 6, 10, ...,求第10项的值。
最新高中数学趣味竞赛题集锦
最新高中数学趣味竞赛题集锦最新高中数学趣味竞赛题集锦一1 、撒谎的有几人5个高中生有,她们面对学校的新闻采访说了如下的话:爱:“我还没有谈过恋爱。
” 静香:“爱撒谎了。
”玛丽:“我曾经去过昆明。
” 惠美:“玛丽在撒谎。
”千叶子:“玛丽和惠美都在撒谎。
” 那么,这5个人之中到底有几个人在撒谎呢?2、她们到底是谁有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
穿黑色衣服的女子说:“我不是天使。
” 穿蓝色衣服的女子说:“我不是人。
” 穿白色衣服的女子说:“我不是恶魔。
”那么,这三人到底分别是谁呢?3、半只小猫听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。
可是,只剩下1只小猫了。
“一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。
附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。
” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。
这就是只剩下1只小猫的原因。
那么你想想看,一共生了几只小猫呢?4、被虫子吃掉的算式一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。
当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?5巧动火柴用16根火柴摆成5个正方形。
请移动2根火柴,使正形变成4。
6、折过来的角把正三角形的纸如图那样折过来时,角?的度数是多少度?7、星形角之和求星形尖端的角度之和。
8、啊!双胞胎?丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。
这可难坏了妻子,3个人怎么分财产好呢?9、赠送和降价哪个更好?1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?10、折成15度用折纸做成45度很简单是吧。
高中数学趣味知识竞赛题库
高中数学趣味知识竞赛题库一、选择题(1 - 10题)1. 设集合A={xx^2-3x + 2=0},B={xax - 2=0},若B⊆ A,则a所有可能的值构成的集合为()- A. {1,2}- B. {1,(2)/(3)}- C. {0,1,2}- D. {0,1,(2)/(3)}- 解析:- 先求解集合A,对于方程x^2-3x + 2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。
- 因为B⊆ A,当B=varnothing时,ax-2 = 0无解,此时a = 0;当B≠varnothing时,若x=(2)/(a)=1,则a = 2;若x=(2)/(a)=2,则a = 1。
所以a所有可能的值构成的集合为{0,1,2},答案是C。
2. 函数y=log_a(x + 3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny + 1 = 0上,其中mn>0,则(1)/(m)+(2)/(n)的最小值为()- A. 8- B. 6- C. 4- D. 10- 解析:- 对于函数y=log_a(x + 3)-1,令x+3 = 1,即x=-2,此时y=-1,所以定点A(-2,-1)。
- 因为点A在直线mx + ny+1 = 0上,所以-2m - n+1 = 0,即2m + n = 1。
- 又因为mn>0,所以m>0,n>0。
- 则(1)/(m)+(2)/(n)=(2m +n)((1)/(m)+(2)/(n))=2+(4m)/(n)+(n)/(m)+2=(4m)/(n)+(n)/(m)+4。
- 根据基本不等式(4m)/(n)+(n)/(m)≥slant2√(frac{4m){n}×(n)/(m)} = 4,当且仅当(4m)/(n)=(n)/(m)时等号成立。
- 所以(1)/(m)+(2)/(n)≥slant4 + 4=8,答案是A。
高等数学竞赛练习题(含答案)
高等数学竞赛练习题1、单项选择题(1)已知()f x 在区间(,)-∞+∞上单调递减,则2(4)f x +的单调递减区间是( C ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在(2)设函数(),0,x a x f x x ⎧=⎨⎩是有理数是无理数,10<<a ,则 ( B )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 (3)设函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=和()()()x g x f x G -=在0x 处 ( D )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数(4) 若ln x 是()f x 的一个原函数,则()f x 的另一个原函数是( A )A. ln axB. 1ln ax aC. ln x a +D. 21(ln )2x(5) 设()f x 连续,则[]sin ()()aax f x f x dx -+-⎰等于 ( A )A.0B.aC.a -D. 2a(6) 下列命题中正确的命题有几个? ( A )(1)无界变量必为无穷大量; (2) 有限多个无穷大量之和仍为无穷大量; (3)无穷大量必为无界变量; (4) 无穷大量与有界变量之积仍为无穷大量. (A) 1个; (B) 2个; (C) 3个; (D) 4个. (7). 设1, 0()0, 0x f x x ≠⎧=⎨=⎩,1sin , 0() 1 , 0x x g x x x ⎧≠⎪=⎨⎪=⎩ 则0x =是间断点的函数是 ( B )(A) ()()f x g x +; (B) ()()f x g x -; (C) {}max (), ()f x g x ; (D) {}min (), ()f x g x .. (8) 设ξ为()arctan f x x=在[ 0, ]b 上应用拉格朗日中值定理的“中值”,则 22limb b ξ→=( C )(A) 1; (B) 12; (C) 13; (D) 14.(9) 设() , ()f x g x 连续,当0→x 时,()f x 与()g x 为等价无穷小,令0()()xF x f x t dt=-⎰,1() () G x x g xt dt =⎰, 则当0→x 时,() ()F x G x 是的 ( D )(A) 高阶无穷小; (B) 低阶无穷小; (C) 同阶无穷小但非等价无穷小; (D) 等价无穷小.(10) 设),(y x f 在点)0,0(的某邻域内连续,且满足 220(,)(0,0)lim31sin cos x y f x y f x x y y→→-=-+--,则),(y x f 在点)0,0(处 ( A )(A) 取极大值;(B) 取极小值; (C) 无极值; (D) 不能确定是否有极值. (11)设f 有连续的一阶导数,则 (1,2)(0,0)()d ()d f x y x f x y y +++=⎰( B )(A) 102() d f x x⎰; (B) 3() d f x x ⎰; (C) (3)(0)f f -; (D) 0 .(12) 设任意项级数 1n n a ∞=∑条件收敛,将其中的正项保留负项改为0所组成的级数记为1n n b ∞=∑, 将其中的负项保留正项改为0所组成的级数记为1n n c ∞=∑,则1nn b ∞=∑与1n n c ∞=∑( B )(A) 两者都收敛; (B) 两者都发散; (C)一个收敛一个发散; (D) 以上三种情况都可能发生.(13)设0()f x '存在,则下列四个极限中等于0()f x '的是( B ) (A )000()()lim x f x x f x x →-- ; (B )000()()lim h f x f x h h →--;(C )000()()limx x f x f x x x →--; (D )000()()lim h f x h f x h h →+--.(14)0()0f x ''=是曲线()y f x =有拐点00(,())x f x 的( D )(A )充分而非必要条件; (B )必要而非充分条件;(C )充分必要条件; (D )既非充分又非必要条件.(15)设2222{(,,),0},0x y z x y z R z a Ω=++≤≥≠,则I axdV Ω==⎰⎰⎰( C )( A )0I >; ( B )0I <; ( C )0I =; ( D ) I 的符号与a 有关.2、求极限201sin lim ln x xx x →答案: 22001sin 1sin limln lim ln 1(1)x x x x x x x x →→⎛⎫=+- ⎪⎝⎭ 32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=-3、设220()()()xF x x t f t dt '=-⎰,若0x →时,()F x '与2x 为等价无穷小,求(0)f '答案:220()()()xxF x xf t dt t f t dt ''=-⎰⎰,220()2()()()2()x x F x x f t dt x f x x f x x f t dt '''''=+-=⎰⎰, 由020002()()1limlim lim 2()2(0)xx x x f t dtF x f x f xx→→→''''====⎰,解得1(0)2f '=4、求220081(tan )dxx π+⎰ 答案:令2x t π=-,则2200801tan dx x π+⎰2008022008200802tan 1cot 1tan dt tdt t tππ-==++⎰⎰ 22200820080021tan 21tan dt dx t xππππ=-=-++⎰⎰所以220081tan 4dx x ππ=+⎰ 5、设函数()()10f x t t x dt =-⎰,01x <<,求()f x 的极值和单调区间. 答案: 11220()()()()()xxxxf x t x t dt t t x dt tx t dt t tx dt =-+-=-+-⎰⎰⎰⎰31323x x =-+ 21()2f x x '=-,令()0f x '=,得2x =.由()20(01)f x x x ''=><<知1(263f =-+为极小值,由21()2f x x '=-知,()f x的单调减区间是(0,2,单调增区间是 6、说明级数nn ∞=(1)(1)](1)1(1)11111n n n n n n n ----===----,而交错级数2(1)1nn ∞=-∑收敛,调和级数211n n ∞=-∑发散,故原级数发散 7、已知20()()8f x f x dx '=⎰,且(0)0f =,求2()f x dx ⎰及()f x答案:已知2()f x dx ⎰为一常数,由28()()f x f x dx'=⎰,积分得28()()f x x f x dx=⎰, 再积分得2()4f x dx =±⎰,所以()2f x x =±8、求内接于椭圆12222=+by a x ,而面积最大的矩形的边长答案:设内接矩形的边长分别为2,2u v ,则(,)u v 在椭圆上,所以22221u v a b+=,矩形面积()44S u uv u u a ==<<,222()S u '==,令()0S u '=,得唯一驻点u =,从而v =,由实际问题知,当u =时,有最大面积2S ab =,这时矩形边长分别为a 29、设函数()f x 在[0,1]上连续,在(0,1)内可导,且1233()(0)f x dx f =⎰,求证在(0,1)内至少存在一点c ,使()0f c '=答案:由定积分中值定理得1232(0)3()3()(1)()3f f x dx f f ξξ==-=⎰,其中213ξ≤≤, 在[0,]ξ上应用罗尔定理,至少存在一点(0,)(0,1)c ξ∈⊂,使()0f c '=10、设{}n a 是单调不减的数列,令12nn a a a b n+++=,若lim n n b a →∞=,试证lim n n a a →∞=.若去掉“单调不减”这个条件,试问这个结论是否成立?(要求说明理由)证:因对任意1,n n n a a +≤,故12n nn n a a a na b a n n+++=≤= .(夹逼)固定n ,并令m n >,则1111nk n mk m k k n k k n a m n b a a a m m m ===+-⎛⎫=+≥+ ⎪⎝⎭∑∑∑ 令m →∞,得lim m n m a b a →∞=≥,从而n n a a b ≥≥,令n →∞,得lim n n a a →∞=若去掉“单调不减”这个条件,则结论不一定成立.例如,取1(1),1,2,n n a n -=-= ,则12lim lim 0nn n n a a a b n→∞→∞+++== ,但数列{}n a 发散. 11、设在[0,](0)a a >上|()|f x M ''≤,且()f x 在(0,)a 内取得最大值,试证|(0)||()|f f a Ma ''+≤证:因()f x 在(0,)a 内取得最大值,由费马定理得存在(0,)b a ∈使()0f b '=.对()f x '使用拉格朗日中值定理得,111(0)()()(),(0,)f f b f b bf b ξξξ''''''=-=-∈222()()()()()(),(,)f a f b f a b a b f b a ξξξ''''''=+-=-∈ 从而(0)()()f f a Mb M a b Ma ''+≤+-=.12、设()f x 在[0,]n 上连续(n 为自然数,2n ≥),(0)()f f n =,试证存在,1[0,]n ξξ+∈,使()(1)f f ξξ=+证:令()(1)()g x f x f x =+-,则()g x 在[0,1]n -上连续 令[0,1][0,1]min (),max ()x n x n m g x M g x ∈-∈-==,则11(),0,1,2,,1,()n i m g i M i n m g i M n -=≤≤=-≤≤∑ ,1()()(0)0n i g i f n f -==-=∑,对函数()g x 应用介值定理得,存在[0,1]n ξ∈-,使11()()0n i g g i n ξ-===∑,即存在,1[0,]n ξξ+∈,使()(1)f f ξξ=+.13、设函数()f x 在[,]a b 上可积,且()0baf x dx >⎰,试证存在区间[,][,]a b αβ⊂使()0,[,]f x x αβ>∈.证:反证法. 若不然,则对于[,]a b 的任何子区间[,]αβ上都有点ξ,使()0f ξ≤,从而对于[,]a b 的任何分划T :012n a x x x x b =<<<<= ,在每个子区间1[,]i i x x -上都有点i ξ,使()0i f ξ≤.那么由()f x 在[,]a b 上的可积性知,max 01()lim()0i nbiiax i f x dx f xξ∆→==∆≤∑⎰,矛盾.14、设()f x 在点0x =二阶可导,且0()lim 11cos x f x x→=-,求(0),(0)f f '和(0)f ''的值解:0()lim11cos x f x x→=- 0(0)lim ()0x f f x →∴==又00()()1lim lim 1cos sin x x f x f x x x→→'==- 0(0)lim ()0x f f x →''∴==000()(0)()()sin (0)lim lim lim .10sin x x x f x f f x f x xf x x x x→→→''''-''====-15、设(,)()z f x y x y g x ky =-+++,,f g 具有二阶连续偏导数,且0g ''≠,如果222222224z z z f x x y y ∂∂∂''++=∂∂∂∂,求常数k 的值 解:设,,x y u x y x ky w ν-=+=+=,则1212,z zf fg f f kg x y ∂∂''''''=++=-++∂∂ 2111221222zf f f fg x∂''''''''''=++++∂ 211122122zf f f f kg x y∂''''''''''=-+-++∂∂ 22111221222z f f f f k g y∂''''''''''=--++∂ ∴由222222224z z zf x x y y ∂∂∂''++=∂∂∂∂得2(1)0kg ''+=,故1k =-.16、设()f x 在[0,1]上可积,证明22()()01f x f y x y e dxdy π-≤+≤≥⎰⎰证: 2112!xe e x x x ξ=++≥+ ()()1()()f x f y e f x f y -∴≥+-[]2222()()01011()()f x f y x y x y e dxdy f x f y dxdy -≤+≤≤+≤≥+-⎰⎰⎰⎰ 22220101()()x y x y f x dxdy f y dxdy ππ≤+≤≤+≤=+-=⎰⎰⎰⎰17、设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,起点为(,)a b ,终点为(,)c d ,令21[()][()]L xI yf xy dx xf xy dy y y=++-⎰.要求:(1)证明曲线积分I 与路径L 无关;(2)当ab cd =时,求I 的值. 证明(1) 因为211[()]()()yf xy f xy xyf xy y y y ∂'+=-+∂2[()]xxf xy x y∂=-∂在上半平面内处处成立,所以曲线积分I 与上半平面内路径L 无关.解(2) 由于曲线积分I 与路径无关,所以可取积分路径L 为由点(,)a b 到点(,)c b ,再到点(,)c d 的折线段,从而2221[1()][()1]cd ab c I b f bx dx y f cy dyby =++-⎰⎰()()c d a b c a c cbf bx dx cf cy dy b d b -=+++-⎰⎰()()bc cd ab bc c a f t dt f t dt d b =-++⎰⎰ ()cd abc af t dt d b =-+⎰所以,当ab cd =时,c aI d b=-.18、设()f x 在区间(,)-∞+∞连续,01()() d (>0), ()() d 2x ax x aF x f t t aG x f t t a +-==⎰⎰, 试求下列问题:(1)用()G x 表示()F x ;(2)求()F x ';(3)求证:0lim ()()a F x f x →==; (4)设()f x 在[],x a x a -+内的最大值和最小值分别是M m、,求证:()()F x f x M m -≤-.解(1)00111()()[()()][()()]222x a x a x a x a F x f t dt f t dt f t dt G x a G x a a a a ++--==-=+--⎰⎰⎰ (2)11()['()'()][()()]22F x G x a G x a f x a f x a a a'=+--=+--(3)000()()[()()][()()]lim ()lim lim22a a a G x a G x a G x a G x G x G x a F x a a→→→+--+-+--== 1['()'()]'()()2G x G x G x f x =+== (4)11|()()||()()||[()()]()()|22x a x a F x f x f t dt f x x a x a f f x a aξ+--=-=+---⎰|()()|()f f x M m x a x a ξξ=-≤--≤≤+19、求曲线 ln ln 1x y += 所围成的平面图形的面积.[解1]去掉绝对值曲线为:,11,1,101,0111,0101xy e x y y x x y ey ex x y xy x y e =≥≥⎧⎪⎪=≥<<⎪⎨=<<≥⎪⎪=<<<<⎪⎩且且且且11111()()e ee x A ex dx dx e ex x e e =-+-=-⎰⎰ [解2]令ln ,ln ,,,:||||1,uv x u y v x e y e D u v '====+≤则00uuv u v v uv x x e J e e y y e===⋅. ||DD dxdy J dudv '==⎰⎰⎰⎰u vD e e dudv '⋅=⎰⎰01111111u uu v u v u u e du e dv e du e dv e e+-----+=-⎰⎰⎰⎰. 20、设曲面S 为曲线 e 0yz x ⎧=⎨=⎩ (12y ≤≤) 绕z 轴旋转一周所成曲面的下侧,计算曲面积分 24 d d 2 d d (1) d d SI zx y z z z x z x y =-+-⎰⎰[解1]S的方程为22(14)z x y =≤+≤补两平面2222212:(1,):(4,)S z e x y S z e x y =+≤=+≤下侧上侧122S S S VzdV ++=⎰⎰⎰⎰⎰ 2()2e eD z zdz d σ=⎰⎰⎰224252ln 22e ez zdz e e πππ==-⎰1222242(1)(1)(1)(1)xyS D zxdydz zdzdx z dxdy e dxdy e eππ-+-=--=--⋅=-⎰⎰⎰⎰;2121244225(1)4(1);(1)4(1)22xyS D S S S S S e dxdy e I e e e e πππππ44++=-=-=--=-----⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 42332e e πππ13=--2 [解2]2(4,2,1)(,,1)x y DI zx z z z z dxdy =--⋅-⎰⎰222220142221(4cos 2sin 1)(41)1333(:14)22DD r edxdy dxdyd e r rdr e e D x y πθθθππππ⎡⎤⎥=+-⎥⎦=-+--=--≤+≤⎰⎰⎰⎰⎰⎰21、设幂级数 0n n n a x ∞=∑, 当1n >时2 (1) n n a n n a -=-,且014, 1a a ==; (1)求幂级数0n n n a x ∞=∑的和函数()S x ;(2)求和函数()S x 的极值..解(1)令101(),()nn n n n n S x a x S x na x ∞∞-=='==∑∑则22222()(1)()n n n n n n n n n S x n n a x a x a x S x ∞∞∞---===''=-===∑∑∑,()()0S x S x ''-=1201()(0)4,(0)1x x S x c e c e S a S a -'=+====由,求得125353,,()2222x x c c S x e e -===+(2)由000531313()0ln ,()0,()(ln )222525x x S x e e x S x S x S -'''=-==>∴得又为极小值.22、设函数),(y x f 可微,(,), 0,12ff x y f x π∂⎛⎫=-= ⎪∂⎝⎭, 且满足()c o t y 1 ( 0, )lim e 0,nn f y n f y →∞⎛⎫+ ⎪= ⎪ ⎪ ⎪⎝⎭求 (,)f x y .解 1(0,)(0,)lim (0,)11(0,)(0,)(0,)lim lim 1(0,)(0,)n nnf y f y n f y nn n f y f y f y n n e f y f y →∞+-→∞→∞⎡⎤⎡⎤++-⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(0,)(0,)y f y f y e = (0,)ln (0,)cot (0,)y f y d f y y f y dy==,对y 积分得ln (0,)lnsin ln (0,)sin f y y c f y c y =+= 代入(0,)112f c π==得,(0,)sin ff y y f x∂==-∂又已知(,)()x f x y c y e -⇒=,(0,)sin f y y = ,()sin (,)sin .x c y y f x y e y -∴==故23、如图所示,设河宽为a ,一条船从岸边一点O 出发驶向对岸,船头总是指向对岸与点O 相对的一点B 。
全国高中数学竞赛试题及答案
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
高等数学竞赛试题及参考答案
九江职业大学第一届“数学建模”选拔赛暨《高等数学》竞赛试题院系 班级 学号 姓名一、单项选择题(每小题3分,共30分)1 设函数f(x)=⎪⎩⎪⎨⎧≥++<0x ,K x 2x 40x ,xx3sin 2在x=0处连续,则K=( )。
A. 3 B. 2 C. 1 D. 312 ⎰-=+116dx x sin 1xcos x ( )A.2π B.π C.1D.03 设f (x )=⎩⎨⎧<≥0x ,x sin 0x ,x ,则)0(f '=( )A.-1B.1C.0D.不存在 4 下列极限中不能应用洛必达法则的是( ) A.x xx ln lim +∞→B.xxx 2cos lim∞→C.xxx -→1ln lim1D.x e x x ln lim -+∞→5 设f (x)是连续函数,且⎰=x x x dt t f 0cos )(,则f (x)=( ) A.cos x-xsin xB.cos x+xsin xC.sin x-xcos xD.sin x+xcos x6 设函数f(x)满足)x (f 0'=0, )x (f 1'不存在, 则( ) A.x=x 0及x=x 1都是极值点 B.只有x=x 0是极值点C.只有x=x 1是极值点D.x=x 0与x=x 1都有可能不是极值点7 设f(x)在[-a,a](a>0)上连续, 则⎰-=a adx )x (f ( )A. 0B. 2⎰adx )x (fC.⎰-+a0dx )]x (f )x (f [D. ⎰--adx )]x (f )x (f [8 设函数y=f(x)在点x 0的邻域V(x 0)内可导,如果∀x ∈V(x 0)有f(x)≥f(x 0), 有( ) A .)(')('0x f x f ≥ B .)()('0x f x f ≥ C .0)('0=x fD .0)('0>x f9 设f(x)=x 15+3x 3-x+1,则f (16)(1)=( ) A .16!B .15!C .14!D .010=⎰])arctan ([673dx x x dx d ( ) A. 5 B. 3 C. 7 D. 0 二、填空题(每空4分,共32分)1 当x →0时,sin(2x 2)与ax 2是等价无究小,则a=___________ .2 设函数f(x)=⎪⎩⎪⎨⎧=≠+000)1ln(2x x xx ,则f '(0)=___________. 3 曲线y =x 3+3x 2-1的拐点为___________. 4 n31sin n 1lim22n ∞→= ___________.5 设1)1(f =' 则⎥⎦⎤⎢⎣⎡--∞→)1(f )x11(f x lim x =___________.6 曲线x 2+y 5-2xy=0在点(1、1)处的切线方程为 .7 dx xx x ⎰++221)(arctan = .8 曲线y =1222-+-x x x 的垂直渐近线的方程是 .三、计算题 (每题8分,共16分) 1. 计算⎰10dx ex2. 设f(x)的一个原函数为x e x 2,计算dx x x f)(/⎰四、解答题(第1题10分,第2题12分)1. 设曲线xy=1与直线y=2,x=3所围成的平面区域为D (如图所示).求D 的面积.2. 计算定积分⎰-+12.)2()1ln(dx x x九江职业大学第一届“数学建模”选拔赛暨《高等数学》竞赛试题参考答案一、单项选择题(每小题3分,共30分)1 设函数f(x)=⎪⎩⎪⎨⎧≥++<0x ,K x 2x 40x ,xx3sin 2在x=0处连续,则K=( A )。
全国大学生高等数学竞赛真题及答案(非数学类)无答案
2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe .五、(10分)已知x x e xe y 21+=,xx exe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞⎛⎫+ ⎪⎝⎭。
大学数学竞赛题库及答案
大学数学竞赛题库及答案大学数学竞赛通常涵盖了高等数学、线性代数、概率论与数理统计、数学分析等多个领域。
以下是一些典型的大学数学竞赛题目及其答案。
# 题目一:高等数学题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在区间 \( [1, 2] \)上的最大值和最小值。
答案:首先,我们找到函数的导数 \( f'(x) = 6x - 2 \)。
令导数等于零,解得 \( x = \frac{1}{3} \)。
这个点不在给定区间内,所以我们需要检查区间端点的函数值。
在 \( x = 1 \) 时,\( f(1) = 3(1)^2 - 2(1) + 1 = 2 \)。
在 \( x = 2 \) 时,\( f(2) = 3(2)^2 - 2(2) + 1 = 9 \)。
因此,函数在区间 \( [1, 2] \) 上的最大值为 9,最小值为 2。
# 题目二:线性代数题目:求解线性方程组:\[ \begin{cases}x + y + z = 6 \\2x - y + z = 1 \\3x + y + 2z = 8\end{cases} \]答案:我们可以使用高斯消元法来解这个方程组。
首先将方程组写成增广矩阵的形式,然后进行行操作:\[ \left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\2 & -1 & 1 & 1 \\3 & 1 & 2 & 8\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\0 & -3 & -1 & -11 \\0 & 1 & 1 & 2\end{array}\right] \]继续行操作,得到:\[ \left[\begin{array}{ccc|c}1 & 0 & -2 & -5 \\0 & 1 & 1 & 2 \\0 & 0 & 3 & 13\end{array}\right] \]最后,我们得到解为 \( x = 1, y = 2, z = 3 \)。
高等数学竞赛试题(打印版)
1竞赛试题1 一、填空:1.若()⎪⎩⎪⎨⎧≤->-=,x ,a x ,x f x xx01e 0,arctan e 122sin 是()+∞∞-,上的连续函数,则a = 。
2.函数x x y 2sin +=在区间⎥⎦⎤⎢⎣⎡ππ,2上的最大值为 。
3.()=+⎰--22d ex x x x4.由曲线⎩⎨⎧==+0122322z y x 绕y 轴旋转一周得到的旋转面在点()230,,处的指向外侧的单位法向量为5.设函数()x,y z z =由方程2e =+----x y z x x y z 所确定,则=z d 二、选择题:1. 设函数f (x )可导,并且()50='x f ,则当0→∆x 时,该函数在点0x 处微分d y 是y ∆的( ) (A )等价无穷小; (B )同阶但不等价的无穷小; (C )高阶无穷小; (D )低阶无穷小。
2. 设函数f (x )在点x = a 处可导,则()x f 在点x = a 处不可导的充要条件是( ) (A )f (a ) = 0,且()0='a f ; (B )f (a )≠0,但()0='a f ; (C )f (a ) = 0,且()0≠'a f ; (D )f (a )≠0,且()0≠'a f 。
3. 曲线12+-+=x x x y ( )(A )没有渐近线; (B )有一条水平渐近线和一条斜渐近线; (C )有一条铅直渐近线; (D )有两条水平渐近线。
4.设()()x,y x,y f ϕ与均为可微函数,且()0≠'x,y y ϕ。
已知()00,y x 是()x,y f 在约束条件()0=x,y ϕ下的一个极值点,下列选项中的正确者为( )(A )若()000=',y x f x ,则()000=',y x f y ; (B )若()000=',y x f x ,则()000≠',y x f y ; (C )若()000≠',y x f x ,则()000=',y x f y ; (D )若()000≠',y x f x ,则()000≠',y x f y 。
高等数学竞赛试题含答案
高等数学竞赛试题一、计算题 1.求9解 原积分=55551155==3522(1)15x c + 2.求1120(1)(12)limsin xxx x x x→+-+解 由洛比塔法则,原极限=112220(1)ln(1)12(12)ln(12)lim (1)(12)(1)2(12)x xx x x x x x x x x x x x x →⎡⎤-++-+++-+⎢⎥++⎣⎦而20(1)ln(1)1lim(1)2x x x x x x →-++=-+2012(12)ln(12)lim 12(12)x x x x x x →-++=-+ 2e∴原极限=3.求p 的值,使22007() ()0bx p ax p e dx ++=⎰解:当取p 满足()a p b p +=-+即2b ap +=-时 积分2222007()2007200722()0b a bb px p x x b a aa px p edx xe dx x e dx -++-+-+===⎰⎰⎰4.设(,)x ∀∈-∞+∞,''()0f x ≥,且20()1x f x e -≤≤-,求()f x 的表达式 解:由条件'()f x 单调增。
且(0)0f =易知'()0f x ≡,若不然,不妨设0x ∃ 0'()0f x >则当0x x >时0000()()'()'()()'()x xx x f x f x f x dx f x dx x x f x -=≥=-→+∞⎰⎰矛盾'()0f x ∴≤ 同理可让'()0'()0f x f x ≥⇒≡()(0)0f x f ∴≡='A'B 5.计算2()sx y dS+⎰⎰,其中S为圆柱面224x y+=,(0≤z≤1)解:S圆柱面关于y对称,且y是奇函数∴原积分=22221()2482s s sx ds y ds x y dsππ==+=⨯=⎰⎰⎰⎰⎰⎰二、设1211211212345632313nun n n=+-++-+++---111123nvn n n=+++++求(1)1010uv(2)limnnu→∞解:111121113()(32313323133n nnk kUk k k k k k k===+-=++-----∑∑111111111()32313123n nn k kVk k k k n n n===++-=+++=--++∑∑(1)10101UV=(2)22111111n nnk kUkn k nn====++∑∑21lim ln31nxU dxx→∞∴==+⎰三、有一张边长为4π的正方形纸(如图),C、D分别为'AA、'BB的中点,E为'DB的中点,现将纸卷成圆柱形,使A与'A重合,B与'B重合,并将圆柱垂直放在xoy平面上,且B与原点O重合,D落在Y轴正向上,此时,求:(1)通过C,E两点的直线绕Z轴旋转所得的旋转曲面方程;(2)此旋转曲面、xoy平面和过A点垂直于Z轴的平面所围成的立体体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学竞赛一、 填空题⒈ 若5)(cos sin lim0=--→b x ae xx x ,则a = ,b = .⒉ 设2(1)()lim 1n n xf x nx →∞-=+, 则()f x 的间断点为x = .⒊ 曲线y=lnx 上与直线1=+y x 垂直的切线方程为.⒋ 已知xx xe e f -=')(,且f (1) = 0, 则f (x ) = .⒌ 设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值 范围为 . ⒍ 设1ln arctan 22+-=xxxe e e y ,则==1x dx dy.⒎若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .⒏ 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则=-⎰221)1(dx x f .⒐ 由定积分的定义知,和式极限=+∑=∞→nk n kn n122lim . ⒑1+∞=⎰ . 二、 单项选择题11.把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===032sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是 【 】(A)γβα,,. (B)βγα,,. (C) γαβ,,. (D) αγβ,,.12.设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得 【 】 (A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C )对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .13 . 设()(1)f x x x =-, 则 【 】(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.14 .lim (1)n n→∞+等于 【 】(A )221ln xdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰15 . 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. 【】(A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3).16 . 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 【 】(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点. (D) g (x )在点x = 0处的连续性与a 的取值有关. 17 . 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是【 】(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.18 . 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则【 】(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导.(C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.三、解答题19.求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.20.设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式;(Ⅱ)问k 为何值时, ()f x 在0x =处可导.21.设 f (x ),g (x )均在[a , b ]上连续,证明柯西不等式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡≤⎥⎦⎤⎢⎣⎡⎰⎰⎰ba b a b a dx x g dx x f dxx g x f )()()()(22222.设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.23曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ) ()lim ()t S t F t →+∞.24.设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤ba b a dx x xg dx x xf )()(.25. 某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h表示千米/小时.高等数学竞赛试卷一、单项选择题1、若2lim()01x x ax b x →∞--=+,则 (A ) 1,1a b == (B )1,1a b =-= (C ) 1,1a b ==- (D )1,1a b =-=-2、设(),0()(0),0f x x F x x f x ⎧≠⎪=⎨⎪=⎩ ,其中()f x 在0x =处可导且'(0)0f ≠,(0)0f =,则0x =是()F x 的(A ) 连续点 (B ) 第一类间断点 (C ) 第二类间断点 (D )以上都不是 3、设常数0k >,函数()ln xf x x k e =-+在(0,)+∞内零点的个数为 (A ) 0 (B ) 1 (C ) 2 (D ) 34、若在[0,1]上有(0)(0)0,(1)(1)0f g f g a ====>,且''()0f x >,''()0g x <,则110()I f x dx=⎰,120()I g x dx =⎰,130I ax dx =⎰的大小关系为(A ) 123I I I ≥≥ (B ) 231I I I ≥≥ (C ) 321I I I ≥≥ (D ) 213I I I ≥≥5、由平面图形0,0()a x b y f x ≤≤≤≤≤绕y 轴旋转所成的旋转体的体积为(A )2()b aV xf x dx π=⎰ (B ) 2()b aV f x dx π=⎰(C ) 2()b aV f x dx π=⎰ (D ) ()baV f x dx π=⎰6、(1,3,4)P -关于平面320x y z +-=的对称点是 (A )(5,1,0)- (B )(5,1,0) (C )(5,1,0)-- (D )(5,1,0)- 7、设D 为222x y R +≤,1D 是D 位于第一象限的部分,()f x 连续,则22()Df x y d σ+⎰⎰=(A )128()D f x d σ⎰⎰ (B )0 (C )22()R R RRdx f x y dy --+⎰⎰(D )1224()D f x y d σ+⎰⎰8、a为常数,则级数21sin()n na n ∞=⎡⎢⎣∑ (A ) 绝对收敛(B )发散C ) 条件收敛(D ) 收敛性与a 的取值有关二、填空题1、340tan 2lim (1)1x x x xx e →-=- 。
2、具有n 个不相等实根的n 次多项式,其一阶导数的不相等实根至少有 个。
3、对数螺线eθρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为 。
4、设()f x 是x 的二次多项式,且(1)'()2()0x f x f x -+=,(0)1f =,则()f x = 。
5、设2sin y x =,则dy = 3()d x 。
6、7432222842311x x x x x dx x -+++-+=+⎰ 。
7、若级数1(1)n n an +∞=-+∑收敛,则常数a = 。
8、三重积分2222222221ln(1)1x y z z x y z dxdydz x y z ++≤+++=+++⎰⎰⎰ 。
8*、已知曲线323y x a x b =-+与x 轴相切,则2b 可以通过a 表示为2b = 。
9、设∑为上半椭球面2221,(0)94x y z z ++=≥,已知∑的面积为S ,则曲面积分222(4936)x y z dS ∑++=⎰⎰ 。
9*、级数2113n nn x ++∞=∑的收敛区间为 。
10、三元函数2zu z e xy =-+在点(1,1,1)处沿该点的向径方向的方向导数为 。
10*、设1()1xf x x=+,且()f x 可微,则'()f x = 。
11、设sin x y t dt =⎰(0)x π≤≤,则曲线()y y x =的长度为 。
11*、若()x f x dx xe C =+⎰,则()f x = 。
12、设,,a b c 都是单位向量,且满足0a b c ++=,则a b b c c a ⋅+⋅+⋅= 。
12*、函数3y x =的拐点为 。
三、按要求做下列各题。
1、求极限32lim (221)x x x x x →+∞+-++。
2、已知函数()y f x =对一切x满足2''()3['()]1x xf x x f x e -+=-且在点00x ≠处取得极值,问0()f x 是极大值还是极小值,并证明你的结论。