圆的切线性质和判定教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线的判定和性质教学设计

【教学目标】

一、知识与技能:1.理解切线的判定定理和性质定理,并能灵活运用。

2.会过圆上一点画圆的切线。

二、过程与方法:以圆心到直线的距离和圆的半径之间的数

量关系为依据,探究切线的判定定理和性

质定理,领会知识的延续性,层次性。

三、情感态度与价值观:让学生感受到实际生活中存在的相

切关系,有利于学生把实际的问题抽象成

数学模型。

【教学重点】探索切线的判定定理和性质定理,并运用。

【教学难点】探索切线的判定方法。

【教学方法】自主探索,合作交流

【教学准备】尺规

【教学过程】

一、导语:通过上节课的学习,我们知道,直线和圆的位置

关系有三种:相离、相切、相交。而相切最特殊,

这节课我们专门来研究切线。

师生行为:教师联系近期所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫。

二、探究新知

(一)切线的判定定理

1.推导定理:根据“直线l和⊙O相切d=r”,如图所示,

因为d=r直线l和⊙O相切,这里的d是圆心O到直线l 的距离,即垂直,并由d=r就可得到l经过半径r的外端,即半径OA的端点A,可得切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.

分析: 1、垂直于一条半径的直线有几条?

2、经过半径的外端可以做出半径的几条垂线?

3、去掉定理中的“经过半径的外端”会怎样?去掉“垂直于半径”呢?

师生行为:学生画一个圆,半径OA,过半径外端点A的切线l,然后将“d=r直线l和⊙O相切”尝试改写为:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

设计意图:过学生亲自动手画图,进行探究,得出结论。

思考1:根据上面的判定定理,要证明一条直线是⊙O的切线,需要满足什么条件?

总结:①这条直线与⊙O有公共点;②过这点的半径垂直于这条直线。

思考2:现在可以用几种方法证明一条直线是圆的切线?

①圆只有一个公共点的直线是圆的切线

②到圆心的距离等于半径的直线是圆的切线

③切线的判定定理.

师生行为:教师引导学生汇总切线的几种判定方法

思考3:已知一个圆和圆上的一点,如何过这个点画出圆的切线?

2. 定理应用

①完成课本例1

分析:已知点C是直线AB和圆的公共点,只要证明OC⊥AB 即可,所以需要连接OC,作出半径。

知道一条直线经过圆上某一点,则连接这点和圆心,证明该直线与所作半径垂直即可 .

②如图,O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,以OD为半径作⊙O.

求证:⊙O与AC相切

分析:题中没有给出直线AC与⊙O的公共点,过点O作直线AC的垂线OE,证明垂线段OE等于半径OD即可。不知道直线和圆有无公共点,则过圆心作已知直线的垂线,证明垂线段等于半径,从而证明直线是圆的切线.

③.如图,已知Rt△ABC的斜边AB=8cm,AC=4cm.

(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为什么?

(2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?

分析:(1)根据切线的判定定理可知,要使直线AB与⊙C 相切,那么这条半径应垂直于直线AB,并且C点到垂足的距离等于半径,所以只要求出如图所示的CD即可.

(2)用d和r的关系进行判定,或借助图形进行判定.师生行为:学生独立思考,然后小组交流,教师及时引导点拨画出辅助线,并规范解题步骤。学生审题,由本节课知识思考解决方法。结合题目特点,选择合适的判定方法和性质解决问题,感知作辅助线的必要性。

(二)切线的性质定理

1.阅读课本96页思考

2.如图,CD是切线,A是切点,连结AO与⊙ O交于B,那

么AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此,∠BAC=∠BAD=90°因此,可得:

切线的性质定理:圆的切线垂直于过切点的半径.

3.切线的性质归纳:①切线和圆只有一个公共点。

②切线和圆心的距离等于圆的半径。

③切线的性质定理。

④经过圆心且垂直于切线的直线必过切点。

⑤经过切点垂直于切线的直线必过圆心。

(三)综合应用拓展

如图,AB为⊙O直径,C是⊙O上一点,D在AB的延长线上,∠ DCB=∠A.

(1)CD与⊙O相

(2)切吗?若相切,请证明,若不相切,请说明理由.

(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.

师生行为:学生阅读课本内容,尝试说明为什么圆的切线垂直于过切点的半径。教师引导学生汇总切线的性质,全面深化理解切线的性质。

学生尝试综合应用切线的判定和性质,解决问题。学生进行练习,教师巡回检查,指导学生写出解答过程,体会方法。

设计意图:综合应用切线的判定和性质解题,培养学生的分析能力和解题能力让学生通过练习进一理解,培养学生的应用意识和能力。

三、课堂训练:完成课本96页练习

四、小结归纳

1.切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.

2.切线的性质:圆的切线垂直于过切点的半径.

3.常见作辅助线方法

师生行为:让学生尝试归纳,总结,发言,体会,反思,

教师点评汇总。

设计意图:归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯。

课后反思

相关文档
最新文档