表面工程学化学转化膜技术

合集下载

铝及铝合金的化学转化膜处理

铝及铝合金的化学转化膜处理

铝及铝合金的化学转化膜处理
铝及铝合金的化学转化膜处理是一种表面处理技术,主要通过化学反应在铝及铝合金表面形成一层转化膜。

这层膜的外观和性质类似于金属的氧化物或氢氧化物,可以显著提高金属的耐腐蚀性和耐磨性,同时还可以赋予金属其他特殊性能,如绝缘性、导热性、美观性等。

化学转化膜处理的过程通常包括以下几个步骤:
前处理:这一步主要是清洁金属表面,去除油污、锈迹、杂质等,以保证转化膜的附着力和均匀性。

常用的清洁方法有机械法、化学法和电化学法等。

转化处理:在清洁的金属表面放入特定的化学溶液中,通过化学反应在表面形成一层转化膜。

这个过程通常需要一定的温度和时间,以促进化学反应的进行。

后处理:转化处理完成后,需要对金属表面进行清洗和干燥,以保证转化膜的质量和稳定性。

铝及铝合金的化学转化膜处理有多种类型,其中最为常见的是阳极氧化和化学氧化。

阳极氧化是一种通过外加电流使铝或铝合金表面的氧化膜增厚的方法,生成的氧化膜厚度可达数十至数百微米。

化学氧化则是通过化学反应在铝或铝合金表面形成一层氧化膜,通常生成的氧化膜较薄,约为0.5至4微米。

总之,铝及铝合金的化学转化膜处理是一种有效的表面处理技术,可以显著提高金属的耐腐蚀性和耐磨性,同时还可以赋予金属其他特殊性能。

这种处理方法广泛应用于航空、汽车、建筑、家电等领域。

表面工程复习题答案

表面工程复习题答案

表⾯⼯程复习题答案⼀、名词解释表⾯⼯程技术:为满⾜特定的⼯程需求,使材料或零部件表⾯具有特殊的成分、结构和性能(或功能)的化学、物理⽅法与⼯艺。

表⾯能:严格意义上指材料表⾯的内能,包括原⼦的动能、原⼦间的势能以及原⼦中原⼦核和电⼦的动能和势能等。

洁净表⾯:材料表层原⼦结构的周期性不同于体内,但其化学成分仍与体内相同的表⾯。

清洁表⾯:⼀般指零件经过清洗(脱脂、浸蚀等)以后的表⾯。

区别:洁净表⾯允许有吸附物,但其覆盖的⼏率应该⾮常低。

洁净表⾯只有⽤特殊的⽅法才能得到。

清洁表⾯易于实现,只要经过常规的清洗过程即可。

洁净表⾯的“清洁程度”⽐清洁表⾯⾼。

吸附作⽤:物体表⾯上的原⼦或分⼦⼒场不饱和,有吸引周围其它物质(主要是⽓体、液体)分⼦的能⼒。

磨损:相对运动的物质摩擦过程中不断产⽣损失或残余变形的现象。

腐蚀:材料与环境介质作⽤⽽引起的恶化变质或破坏。

极化:腐蚀电池⼯作时,阴、阳极之间有电流通过,使阴、阳极之间的电位差(实际电极电位)⽐初始电位差要⼩得多的现象。

钝化:由于⾦属表⾯状态的改变引起⾦属表⾯活性的突然变化,使表⾯反应速度急剧降低的现象。

(阳极反应受阻的现象)表⾯淬⽕:⽤特定热源将钢铁材料表⾯快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上(奥⽒体化),然后使其快速冷却并发⽣马⽒体相变,形成表⾯强化层的⼯艺过程。

喷丸强化:利⽤⾼速喷射的细⼩弹丸在室温下撞击受喷⼯件的表⾯,使表层材料在再结晶温度之下产⽣弹、塑性变形,并呈现较⼤的残余压应⼒,从⽽提⾼⼯件表⾯强度、疲劳强度和抗应⼒腐蚀能⼒的表⾯⼯程技术。

(喷丸强化技术)热喷涂:采⽤各种热源使涂层材料加热熔化或半熔化,然后⽤⾼速⽓体使涂层材料分散细化并⾼速撞击到基体表⾯形成涂层的⼯艺过程。

电镀:在含有欲镀⾦属的盐类溶液中,在直流电的作⽤下,以被镀基体⾦属为阴极,以欲镀⾦属或其它惰性导体为阳极,通过电解作⽤,在基体表⾯上获得结合牢固的⾦属膜的表⾯⼯程技术。

化学转化膜

化学转化膜
生成的H3PO4与Fe发生如下反应而形成氢: 2H3PO4 + Fe Fe(H2PO4)2 + H2
(9-5) (9-4)
使反应(9-5)向右移动,并且使Fe的界面处pH值不断上升,溶液中所 生成的不溶性磷酸锌浓度不断增加,最后终于超越了它的溶度积。
由于Fe离子从基体进入溶液中的扩散速率一般比反应的速率低,因 此磷酸锌能够迅速而整齐地沉积在金属表面上,成为致密的膜层。
(3) 钝化的影响:在稀铬酸或铬酸盐溶液(0.01%)里进行后处理,可以 减小磷化膜自由孔隙面积,不仅可提高抗蚀性,还 可改善用漆层的性能。
(4) 温度的影响: 磷酸锌膜晶体结构相当于-磷锌矿[Zn3(PO4)24H2O], 在105C,140C,163C分别可形成-磷锌矿(斜方晶 系片状体)、-磷锌矿(斜方晶系)以及-磷锌矿(单斜晶 系)结晶。
使用的处理剂称为成膜型处理剂,其使用实例是磷酸锌、 磷酸锰等。
转化膜的基本用途:
①防锈:转化膜作为底层很薄时即可应用;对部件有较高的 防锈要求时,转化膜需均匀致密,且以厚者为佳。
②耐磨:磷酸盐膜层具有很小的摩擦系数和良好的吸油作用。 在金属接触面间产生了一缓冲层,从而减小磨损。
③涂装底层:作为涂装底层的化学膜要求膜层致密、质地 均匀、薄厚适宜、晶粒细小。
(9-3)
锰盐主要按(9-1)式电离,锌盐几乎全按(9-3)式电离。
锰系磷酸盐膜生成机理
Mn(H2PO4)22H2O 30g
H2O
1L
在97~99C下加热1h,溶液发生如下电离反应: Mn(H2PO4)2 MnHPO4 + H3PO4
(9-1)
反应平衡之后,溶液中存在着一定数量的磷酸分子,未电离的 Mn(H2PO4)2分子以及不溶性的MnHPO4沉淀。 把净化的钢铁件浸入此溶液之中,发生以下反应:

金属表面的化学转化膜

金属表面的化学转化膜

1.防锈功能
转化膜一方面降低金属本身的化学活性,提高了在环境介质 转化膜一方面降低金属本身的化学活性, 中的热力学稳定性,另一方面对环境介质的隔离作用。 中的热力学稳定性,另一方面对环境介质的隔离作用。作防 锈用的化学转化膜主要用于以下二种情况: 锈用的化学转化膜主要用于以下二种情况: ①对部件有一般的防锈要求:如涂防锈油等,转化膜作为 对部件有一般的防锈要求:如涂防锈油等, 底层很薄时即可应用。 底层很薄时即可应用。 对部件有较高的防锈要求,部件减少冲击等外力作用: ②对部件有较高的防锈要求,部件减少冲击等外力作用: 转化膜要求均匀致密,且以厚者为佳. 转化膜要求均匀致密,且以厚者为佳
2.耐磨 耐磨
耐磨用化学转化膜广泛用于金属与金属面互相摩擦 的部位。 主要作用是: ①提高硬度; ②减少摩擦阻力(如表面上的磷酸盐膜层具有很小 的摩擦系数); ③吸油:如磷酸盐膜层具有良好的吸油能力,在金 属接触面间产生了一缓冲层,从化学和机械两方面 保护了基体,有各种色彩,如锌镀层 经过铬酸盐处理可以得到彩虹色、军绿色、 亮白色、黑色等不同外观。有的化学转化 膜由于多孔,可以进行染色,如铝及其合 金制品经过阳极化处理后可以染上各种色 彩。
金属表面的化学转化膜能起到防护作用的原因: 金属表面的化学转化膜能起到防护作用的原因:
降低了金属本身的化学活性, (1).降低了金属本身的化学活性,使金属的 ) 降低了金属本身的化学活性 热力学稳定性提高 将金属与环境介质隔离开。 (2).将金属与环境介质隔离开。 ) 将金属与环境介质隔离开 因此,按用途分为防护性转化膜、 因此,按用途分为防护性转化膜、减摩或 耐磨转化膜、装饰性转化膜、绝缘性转化膜、 耐磨转化膜、装饰性转化膜、绝缘性转化膜、 涂装底层转化膜、塑性加工用转化膜。 涂装底层转化膜、塑性加工用转化膜。

铝合金表面化学转化膜制备技术的研究进展为的课题介绍

铝合金表面化学转化膜制备技术的研究进展为的课题介绍

铝合金表面化学转化膜制备技术的研究进展为的课题介绍摘要本文对铝合金表面化学转化膜制备技术的研究进展进行了综述。

首先介绍了铝合金的应用领域和表面处理的重要性,然后详细讨论了不同制备方法对表面化学转化膜的形成和性能的影响,并总结了其特点和优势。

接着,重点介绍了几种常用的表面化学转化膜制备技术,包括阳极氧化、化学转化法、浸渍法和溶胶-凝胶法,并对它们的原理、工艺条件和应用进行了详细描述。

最后,展望了未来铝合金表面化学转化膜制备技术的发展方向和应用前景。

1.引言铝合金是一种重要的结构材料,广泛应用于航空、汽车、电子等领域。

然而,由于其本身的易氧化性和低耐蚀性,铝合金在使用过程中容易受到氧化、腐蚀等损害,降低了其性能和寿命。

为了增强铝合金的耐蚀性和耐磨性,改善其表面性能成为了一个重要的研究方向。

化学转化膜作为一种有效的表面处理方法,可以形成均匀、致密、具有一定厚度的膜层,能够提高铝合金的耐蚀性、耐磨性和附着力。

2.表面化学转化膜的形成和性能影响因素表面化学转化膜的形成和性能受多种因素影响,包括铝合金种类、表面处理方法、处理液组成、处理参数等。

不同的因素会对膜层的形貌、成分、厚度和性能产生不同的影响。

在制备工艺上,需要考虑溶液浓度、处理时间、温度等因素。

通过优化制备工艺条件,可以得到具有良好性能的表面化学转化膜。

3.阳极氧化法阳极氧化是一种常用的表面化学转化膜制备技术。

它通过电解处理,在阳极上形成氧化膜。

这种方法制备的膜层致密、均匀,可以提高铝合金表面的耐蚀性和耐磨性。

本节主要介绍了阳极氧化的原理、工艺步骤、工艺参数和应用。

4.化学转化法化学转化法是一种在化学反应条件下形成膜层的表面处理方法。

通过在特定的处理液中浸泡铝合金,可以使其产生化学反应,形成具有一定厚度的膜层。

本节介绍了几种常用的化学转化法,包括硫酸法、硫酸铝法和磷酸法,并分析了它们的原理、工艺条件和应用。

5.浸渍法浸渍法是一种简单、易行的表面化学转化膜制备技术。

转化膜

转化膜
mM nA Z M mA n nze
其中:M—表面金属,AZ- —介质中价态为z的阴离

注 :上述反应式是化学转化膜反应的基本形式,具体的转
化膜形成过程要复杂的多,一般都包含多步化学反应和电 化学反应,也包含多种物理化学变化过程。其反应产物也 不像式中那样单一,而是要复杂的多。
1. 2转化膜的分类
按用途分为: 功能性膜(耐磨、减摩、润滑、电绝缘、冷成型加工、涂层基底) 防护性 装饰性
1. 3转化膜的基本用途
<1>防锈:转化膜一方面降低金属本身的化学活性, 提高了在环境介质中的热力学稳定性,另一方面 对环境介质的隔离作用。作防锈用的化学转化膜 主要用于以下二种情况:
①对部件有一般的防锈要求:如涂防锈油等,转化 膜作为底层很薄时即可应用。
转化膜技术
汇报人:张慧桥 指导老师:刘小萍 教授
1 概述
1.1定义及基本原理
定义: 转化膜技术是通过化学或电化学手段,使金属表
面形成稳定的化合物膜层的方法。
机理: 使金属与特定的腐蚀液相接触,在一定条件下
发生化学反应,在金属表面形成一层附着力良好的难 溶的生成物膜层。
特点:
由于化学转化膜是金属基体直接参与成膜 反应而成的,因而膜与基体的结合力比电镀和化 学镀膜层大的多。
◇ 钢铁常温发黑机理:钢铁表面的发黑处理,可
得到均匀的黑色或蓝黑色外观,其表面膜的主要 成分是CuSe,功能与Fe3O4相似。
◇ 目前,常温发黑溶液在市场有商品供应,品种型
号甚多,其主要成分是CuSO4,二氧化硒,还含有 各种催化剂,缓冲剂,络合剂与辅助材料。
化学反应机理:
①SeO2溶于水中生成亚硒酸(H2SeO3):
SeO2 + H2O ---> H2SeO3 ②钢铁工件浸入发黑液中时,溶液中的游离Cu与Fe发生置换

第二节 表面技术的分类

第二节  表面技术的分类

表面技术Matton分类法
按照作用原理,表面技术可以分为以下四种 基本类型(Matton分类法):
1) 原子沉积:沉积物以原子、离子、分子和粒子 集团等原子尺度的粒子形态在材料表面上形成覆盖 层, 2) 颗粒沉积:沉积物以宏观尺度的颗粒形态在材 料表面上形成覆盖层, 3) 整体覆盖:将涂覆材料于同一时间施加于材料 表面 4)表面改性:用机械、物理、化学等方法,改变 材料表面的形貌、化学成分、相组成、微观结构、 缺陷状态或应力状态。
材料表面工程 技术按工艺特 点分
电镀、化学镀、热渗镀、 热喷涂、堆焊、化学转 化膜、涂装、表面彩色、 气相沉积、“三束”改 性以及表面热处理、形 变强化和衬里等13类
表面技术的广泛的涵义,包括:
1) 表面技术的基础和应用理论。 2) 表面处理技术。它又包括表面覆盖技 术、表面改性技术和复合表面处理技术 三部分。 3) 表面加工技术。 4) 表面分析和测试技术 5) 表面工程技术设计。
三、表面改性技术
定义:采用某种工艺手段使材料表面获得与其基体材料的 组织结构,性能不同的一种技术。 作用:既能发挥基体材料的力学性能,又能使材料表面获得 各种特殊性能。(耐磨,耐腐蚀,耐高温,超导,润 湿,绝缘,储氢等。) 掩盖基体材料表面的缺陷,延长材料和构件的使用寿 命。 节约稀、贵金属。节约能源,改善环境。
三、表面改性技术
1.喷丸强化: 冷加工方法
2.表面热处理:淬火
3.化学热处理:渗氮,碳,硼,金属 4.等离子扩渗处理:离子渗氮,碳,碳氮共渗
5.激光表面处理:高亮度,高方向性,高单色性
6.电子束表面处理: 7.高密度太阳能表面处理:聚焦
8.离子注入表面改性:电离
四、 复合表面处理技术
离子喷涂与激光辐照复合 热喷涂与喷丸复合 化学热处理与电镀复合 激光淬火与化学热处理复合 化学热处理与气相沉积复合

表面转化膜技术

表面转化膜技术

表面转化膜技术
表面转化膜技术是指通过化学或电化学的方法,使材料表面的性质发生变化,以达到防腐、耐磨、装饰等目的的一种技术。

具体来说,通过表面转化膜技术可以形成一层具有特殊性质的薄膜,这层薄膜可以改变材料表面的物理、化学和机械性能,从而提高材料的耐腐蚀性、耐磨性和装饰性等。

表面转化膜技术有很多种,其中比较常用的有化学氧化法、电化学氧化法、阳极氧化法等。

这些技术可以根据材料的不同性质和需要进行选择和应用,以达到最佳的处理效果。

表面转化膜技术的应用范围非常广泛,可以应用于金属、非金属等各种材料表面处理。

在金属材料方面,表面转化膜技术可以用于提高金属的耐腐蚀性和耐磨性,例如在钢铁、铝、铜等金属表面形成一层氧化膜或镀膜;在非金属材料方面,表面转化膜技术可以用于提高材料的硬度和耐磨性,例如在玻璃、陶瓷、宝石等材料表面形成一层硬化膜或镀膜。

总之,表面转化膜技术是一种重要的材料表面处理技术,通过它可以实现对材料表面的性质进行改变和优化,从而提高材料的综合性能和延长使用寿命。

表面工程 考点汇总

表面工程 考点汇总

表面工程葵花宝典第一章:表面工程技术概论考点1:表面工程的概念:从材料的表面特性出发,利用表面改性技术、涂镀层技术和薄膜技术,使材料表面获得原来没有的新性能的系统工程。

考点2:润湿:固体表面与液体接触时原来的固相-气相界面消失,形成新的固相-液相界面的现象。

润湿是液体与固体表面接触时产生的一种表面现象,液体对固体表面的润湿程度可以用液滴在固体表面的散开程度来说明考点3:表面技术按作用原理分类:原子沉积、颗粒沉积、整体覆盖、表面改性。

第二章:材料表面工程技术基本理论考点4:在几个原子范围内的清洁表面其偏离三维周期性结构的主要特征是表面弛豫、表面重构和表面台阶结构、表面偏析、化合物、化学吸附考点5:表面粗糙度是指加工表面上具有的较小间距的峰和谷所组成的微观几何形状误差,也称微观粗糙度考点6:吸附、吸收和化学反应是固体与气体发生作用的三种表现考点7:按几何特征,晶体表面缺陷分为点缺陷、线缺陷和面缺陷三类考点8:表面平整一般采用磨光、滚光、抛光及刷光和振动磨光(1)磨光是借助粘有磨料的特制磨光轮(或带)的旋转,以磨削金属零件表面的过程(2)滚光是将成批零件与磨削介质一起在滚筒中作低速旋转,靠零件和磨料的相对运动进行光饰处理的过程(3)抛光是用抛光轮和抛光膏或抛光液对零件表面进一步轻微磨削以降低粗糙度,也可用于镀后的精加工(4)刷光是把刷光轮装在抛光机上,用刷光轮上的金属丝(钢丝、黄铜丝等)刷,同时用水或含某种盐类,表面活性剂的水溶液连续冲洗去除零件表面锈斑、毛刺、氧化皮及其他杂物(5)振动磨光是将零件与大量磨料和适量抛磨液置入容器中,在容器振动过程中使零件表面平整光洁考点9:基体表面清洁的目的是:(1)作为前序处理工艺的一部分,为下一涂装或其他表面加工(如电镀、热喷涂等)打基础(2)作为一项单独表面处理技术,可提高工件寿命或恢复工件原状态或节能需要(锅炉清除水垢,提高热效率);(3)消除工件(设备)隐患,提高安全性(如传热设备局部过热可通过清洗来解决),消毒、灭菌,除放射性污染,有利于人体健康考点10:喷砂是用机械或净化的压缩空气,将砂流强烈地喷向金属制品表面,利用磨料强力的撞击作用,打掉其上的污垢物,达到清理或修饰目的的过程考点11:喷丸的原理和设备与喷砂相似,只是采用的磨料不同。

化学转化膜技术

化学转化膜技术

化学转化膜处理工艺特别是无铬化学转 化膜工艺具有设备小、占地少、操作简 单、能耗低、成本低廉等优点而倍受青 睐。
主要工艺
铬酸盐转化膜 磷酸盐转化膜 磷酸盐−高锰酸盐转化膜 锡酸盐转化膜 稀土转化膜 植酸转化膜
铬酸盐转化膜
铬酸盐转化膜的防蚀机理为铬酸盐转化涂层在 湿气和空气中起惰性的屏障作用,阻止了镁的 腐蚀。 尽管铬酸盐转化处理工艺成熟,性能稳定,转 化膜具有很好的防护作用,但该方法的致命弱 点是处理液中含有毒性高且易致癌的六价铬, 对人体健康有害,且污染环境,环保法规严格 限制其应用,铬酸盐处理工艺逐步被取缔。 因此,开发无铬化学转化膜工艺成为镁合金化 学转化膜的发展方向和研究热点。
稀土转化膜
目前,稀土转化处理是镁合金无铬转化处理中 倍受关注的一种新方法,通过调节适当的浓度、 温度和成膜时间,可直接在镁合金表面得到性 能良好的化学转化膜层,能一定程度地提高镁 合金的耐蚀性,而且其转化膜毒性低,对环境 及人体危害较小。 当前的研究工作集中在含铈的稀土转化膜。
植酸转化膜
植酸(肌醇六磷酸酯)是从粮食等作物中提取的 天然无毒有机磷酸化合物,它是一种少见的金 属多齿螯合物。当其与金属络合时,易形成多 个螯合环,且所形成的络合物稳定性极强。 同时,该膜表面富含羟基和磷酸基等有机官能 团,这对提高镁合金表面涂装的附着力进而提 高其耐蚀性具有非常重要的意义。
金属的化学处理
化学转化膜技术
工业催化 宋书冬 2013571
主要内容
概念及机理
分类 基本方式 基本用途
镁合金表面化学转化膜的研究 转化膜技术的发展动向
1 概念及机理
金属的化学处理法是通过化学或电化学手段, 使金属表面形成稳定的化合物膜层的方法。 这种经过化学处理生成的膜层称之为化学转化 膜,又称金属转化膜。 化学成膜处理的机理是金属与特定的腐蚀 液接触而在一定条件下发生化学反应,由于浓 差极化作用和阴极极化作用等,使金属表面生 成一层附着力良好的,能保护金属不易受水和 其他腐蚀介质影响的化合物膜。

化学转化膜

化学转化膜

化学转化膜
【原创版】
目录
1.化学转化膜的定义与分类
2.化学转化膜的形成原理
3.化学转化膜的应用领域
4.化学转化膜的优势与局限性
正文
化学转化膜是一种通过化学反应在材料表面形成的薄膜,它具有特定的物理、化学和生物学性能。

根据膜的成分和结构,化学转化膜可分为无机膜、有机膜和复合膜等。

化学转化膜的形成原理主要是通过表面化学反应,如吸附、化学键合、共价键合等。

这些反应使得膜材料表面的化学性质发生变化,从而形成具有特定功能的膜。

化学转化膜在许多领域都有广泛的应用,如环境保护、生物医学、能源等。

在环境保护方面,化学转化膜可用于水处理、废气处理等;在生物医学领域,化学转化膜可用于药物载体、组织工程等;在能源领域,化学转化膜可用于太阳能电池、燃料电池等。

化学转化膜具有许多优势,如良好的稳定性、可控的结构和性能、低成本等。

然而,化学转化膜也存在一些局限性,如膜的制备过程相对复杂、膜的耐久性有待提高等。

第1页共1页。

材料表面工程技术-8转化膜与着色技术

材料表面工程技术-8转化膜与着色技术

成膜过程及加速所用
磷化过程不仅是化学过程,而且还有电化学过程。难溶性 磷化过程不仅是化学过程,而且还有电化学过程。 磷酸盐的沉积发生在微阴极区, 磷酸盐的沉积发生在微阴极区,而阳极极化处理效果却相 反。 随着温度的上升,速率亦相应增大,最后达到最大值。表 随着温度的上升,速率亦相应增大,最后达到最大值。 面越粗糙,晶核数就越多,成膜速度也越快。 面越粗糙,晶核数就越多,成膜速度也越快。溶液性质不 其相界面的扩散系数、 同,其相界面的扩散系数、溶液成分进入晶格时结晶的排 列情况以及催化作用和抑制作用也不同。 列情况以及催化作用和抑制作用也不同。 磷化处理到一定时间以后,成膜速度降低到零, 磷化处理到一定时间以后,成膜速度降低到零,膜的形成 和溶解达到平衡。 和溶解达到平衡。磷化膜的形成并不是在停止放氢时就停 止了,而是在细孔中进一步形成。在停止放氢的一瞬间, 止了,而是在细孔中进一步形成。在停止放氢的一瞬间, 膜的孔隙率仍占金属总面积的3 ~20%, %,只有在某一时间 膜的孔隙率仍占金属总面积的3%~20%,只有在某一时间 以后(大约10min) 孔隙率才达到0.5 的恒定值。 10min), 0.5% 以后(大约10min),孔隙率才达到0.5%的恒定值。
特点: 特点
由于化学转化膜是金属基体直接参与成膜反应而成 的,因而膜与基体的结合力比电镀和化学镀膜层大的多。
mM + nA Z − → M m A n + nze
其中: 表面金属 表面金属, 介质中价态为z 其中:M—表面金属,AZ- —介质中价态为z的阴离子
注 :上述反应式是化学转化膜反应的基本形式,具体的
转化膜形成过程要复杂的多,一般都包含多步化学反应和电 化学反应,也包含多种物理化学变化过程。其反应产物也不 像式中那样单一,而是要复杂的多。

化学转化膜和阳极氧化

化学转化膜和阳极氧化

化学转化膜和阳极氧化
化学转化膜和阳极氧化是两种表面处理技术,广泛应用于金属材料的保护和装饰。

以下是它们各自的特点和工作原理:
一、化学转化膜
化学转化膜是通过化学反应在金属表面形成一层固态薄膜,这层膜具有防腐、耐磨、装饰等作用。

转化膜的形成通常是通过将金属浸入含有氧化剂的溶液中,在一定温度和压力下进行反应而形成的。

转化膜的厚度通常在微米级,常见的化学转化膜有氧化铁膜、磷酸盐膜、铬酸盐膜等。

化学转化膜技术具有操作简单、成本低、环保等优点,广泛应用于钢铁、铝、镁等金属的防腐和装饰。

同时,化学转化膜也具有一定的局限性,例如对一些高耐蚀要求的场合可能无法满足要求,需要在转化膜表面再进行涂装等处理。

二、阳极氧化
阳极氧化是一种利用电化学方法在金属表面形成氧化膜的过程。

在该过程中,金属作为阳极在电解液中被氧化,生成一层固态氧化物薄膜。

这层氧化膜具有防腐、耐磨、绝缘等性能,同时还可以赋予金属表面独特的外观和质感。

阳极氧化的方法有多种,如硫酸阳极氧化、铬酸阳极氧化、磷酸阳极氧化等。

阳极氧化的膜层厚度可以根据需要进行调整,通常在微米至几十微米的范围内。

阳极氧化技术广泛应用于铝、镁、钛等轻金属的防腐和装饰,尤其在航空航天、汽车、建筑等领域得到广泛应用。

综上所述,化学转化膜和阳极氧化都是重要的表面处理技术,具有各自的特点和应用范围。

在实际应用中,应根据具体需求选择合适的表面处理技术,以达到最佳的保护和装饰效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

No3. 膜层电阻小,导电性好,耐蚀性好, 膜层薄,硬度低,不耐磨;
No4. 膜层薄,韧性好耐蚀性好。
2020/1/16
13
二、非铁金属的化学氧化
2 、镁合金的化学 氧化
δ 0.5~3 μm,膜
层薄、软,作为 底层
§1 氧化处理
2020/1/16
14
§1 氧化处理
为了提高膜层的耐蚀性,凡经1-3号处理的 膜层都要进行封闭处理:
还原反应:FeOOH+e → HFeO2- 生成Fe3O4:2FeOOH+HFeO2-→ Fe3O4+11OH-+H2O *Fe3O4的生成速度:
? ? 晶核数多(过饱和度大)、晶粒细、膜层薄 ? ? 晶核数少(过饱和度小)、晶粒粗、膜层厚
2020/1/16
6
2)钢铁高温氧化工艺
§1 氧化处理
单槽法:操作简单、使用广泛
用途:精密仪器、光学仪器、武器、机械设备
2020/1/16
4
§1 氧化处理
钢铁的化学氧化:
1 )高温氧化机理(化学+电化学过程)
①化学反应机理(三个阶段)
生成亚铁酸钠: 3Fe+NaNO2+5NaOH=3Na2FeO2+H2O+NH3? 生成铁酸钠:
6Na2FeO2+NaNO2+H2O=3Na2Fe2O4+7NaOH+NH3 ?
生成磁性氧化物: Na2Fe2O4+Na2FeO2+2H2O=Fe3O4+4NaOH 从溶液中经形核长大,形成致密的黑色氧化膜 。
2020/1/16
5
钢铁的化学氧化:
§1 氧化处理
1)高温氧化机理 (化学+电化学过程)
②电化学反应机理 铁的溶解:Fe→ Fe2++2e
Fe2+→ Fe3+:6Fe2++NO2-+11OH-→ 6FeOOH+H2O+NH3
No1. 通用氧化液,操作方便,镀层美观光亮、薄
No2. 氧化速度快,膜层致密,光亮度略差
双槽法:两次氧化处理,膜厚、耐蚀性好
No3. 保护性好的蓝黑色光亮氧化膜
No4. 较厚的黑色氧化膜
2020/1/16
7
2 )钢铁高温氧化工艺
§1 氧化处理
影响氧化膜成膜速度、厚度、致密性的因素:
①氢氧化钠:浓度? δ ? 膜层疏松、多孔 浓度? δ ? 防护能力差
8
§1 氧化处理
2 钢铁常温化学氧化 (常温发黑__节能高效简便、污染小)
1) 钢铁常温发黑机理 置换反应:CuSO4+Fe→FeSO4+Cu ?
3Cu+3H2SeO3 →2CuSeO3+CuSe?+3H2O
2020/1/16
9
§1 氧化处理
2 钢铁常温化学氧化 (常温发黑__节能高效简便、污染小)
其 中:M__基体金属 A__介质阴离子
2020/1/16
2
分类(根据形成膜介质的不同):
概述
1、氧化物膜__在含有氧化剂的溶剂中形成(氧化)
2、磷酸盐膜__金属在磷酸中形成(磷化)
3、铬酸盐膜__在铬酸或铬酸盐溶液中形成(钝化)
几乎所有的金属表面均能成膜,工业上以 Fe、 Al 、Zn、Cu、Mg为主。
第11章 化学转化膜技术
§11.1 氧化处理 §11.2 铝及铝合金的阳极氧化 §11.3 磷化处理 §11.4 铬酸盐处理
概述
化学转化膜:通过化学或电化学手段,使金属表 面形成稳定化合物膜层的方法。
结合力好:由于化学转化膜是金属基体直接参与 成膜反应而成的,因此膜与基体的结合力大。
典型反应:mM + nA Z-→ MmAn+ nZe
2)钢铁常温发黑工艺 2~10min后,用脱水缓蚀剂、石蜡封闭,耐蚀性 ??
影响表面膜的因素:
①成膜剂___铜盐、亚硒酸 加入磷酸辅助成膜,可提高耐蚀性和附着力
②PH缓冲剂___ 2~3之间,PH? 反应快、膜疏松,附着、耐蚀? PH? 反应慢、膜薄,稳定性?
③络合剂___
④表面润湿剂___十二烷基磺酸钠、OP-10 1%
②氧化剂:浓度? 氧化速度 ? 膜层致密、牢固 浓度? 氧化速度 ? 膜层厚而疏松
③温度:T ? δ ? 膜层质量下降
④氧化液中铁离子含量: 应有一定量的铁离子,可使膜层致密、结合牢固
⑤钢铁中的含碳量:C% ? Fe3C ? δ ? 发黑后→热水清洗→ 干燥→在105~110 ℃浸油
2020/1/16
2020/1/16
3
一、钢铁的化学氧化
§1 氧化处理
氧化剂中生成蓝、黑膜层,称为 “发蓝”或“发 黑”,分为:高温化学氧化和常温化学氧化。
1 、钢铁高温化学氧化 (传统发黑方法)
浓碱性NaNO 2、140 ℃、15~90min 生成Fe 3O4膜,厚度0.5~1.5 μm(2.5μm) 浸油(吸附性好)耐蚀性大大提高
2020/1/16
10
二、非铁金属的化学氧化 1 、铝及铝合金的化学氧化
§1 氧化处理
设备简单,操作方便,生产效率高,不耗电,成本低。 δ0.5~4 μm,膜层多孔,具有良好的吸附性。
当PH 为4.45~8.38 时: Al ? Al 3 ++3e 3H 2O+3e ? 3OH -+(3/2 )H2 Al 3+ +3OH - ? AlOOH+H 2O AlOOH ? γ-Al 2O3?H2O 晶体吸附在表面上,形成氧化膜。
2020/1/16
15
§1 氧化处理
3 、铜及铜合金的化学氧化 生成CuO 或Cu 2O膜层,各种不同颜色的膜层
2020/1/16
16
第11章 化学转化膜技术
§11.1 氧化处理 §11.2 铝及铝合金的阳极氧化 §11.3 磷化处理 §11.4 铬酸盐处理
2020/1/16
17
铝及铝合金的阳极氧化:
§2 铝及铝合金Biblioteka 阳极氧化在适当的电解液中,以金属作为阳极,在外 加电流的作用下,使表面生成氧化膜的方法。
膜层厚:几十到几百μm (铝的自然氧化膜厚度0.010~0.015μm)
2020/1/16
18
§2 铝及铝合金的阳极氧化
铝及铝合金的阳极氧化:金属作为阳极
2020/1/16
19
§2 铝及铝合金的阳极氧化
2020/1/16
11
二、非铁金属的化学氧化
§1 氧化处理
* 铝合金化学氧化的分类:碱性氧化法、酸性氧化法 *Al -alloy 化学氧化工艺规范
2020/1/16
12
不同氧化工艺的特点:
§1 氧化处理
No1. 膜层软,孔隙率高,吸附性好,耐蚀性差;
No2. 硅酸钠作为缓蚀剂,无色氧化膜, 硬度高,孔隙率小吸附性差,耐蚀性好;
一、阳极氧化膜的性质及用途 1、膜层多孔
相关文档
最新文档