中考试题分类因式分解(含答案)
中考试题 因式分解(解析版)2019数学全国中考真题
![中考试题 因式分解(解析版)2019数学全国中考真题](https://img.taocdn.com/s3/m/6fa43db31eb91a37f0115cc0.png)
2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。
1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。
中考数学专题练习因式分解分组分解法(含解析)
![中考数学专题练习因式分解分组分解法(含解析)](https://img.taocdn.com/s3/m/84f310e5a1c7aa00b52acbb2.png)
2019中考数学专题练习-因式分解分组分解法(含解析)一、单选题1.把ab﹣a﹣b+1分解因式的结果为()A. (a+1)(b+1)B. (a+1)(b﹣1)C. (a﹣1)(b﹣1)D. (a﹣1)(b+1)2.把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A. (4x2﹣y)﹣(2x+y2)B. (4x2﹣y2)﹣(2x+y)C. 4x2﹣(2x+y2+y)D. (4x2﹣2x)﹣(y2+y)3.分解因式4﹣x2+2x3﹣x4 ,分组合理的是()A. (4﹣x2)+(2x3﹣x4)B. (4﹣x2﹣x4)+2x3C. (4﹣x4)+(﹣x2+2x3)D. (4﹣x2+2x3)﹣x44.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y) D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x25.把多项式a3+2a2b+ab2﹣a分解因式正确的是()A. (a2+ab+a)(a+b+1)B. a(a+b+1)(a+b﹣1)C. a(a2+2ab+b2﹣1)D. (a2+ab+a)(a2+ab﹣a)6.能分解成(x+2)(y﹣3)的多项式是()A. xy﹣2x+3y﹣6B. xy﹣3y+2x﹣y C. ﹣6+2y﹣3x+xy D. ﹣6+2x﹣3y+xy7.把多项式ac-bc+a2-b2分解因式的结果是()A. (a-b)(a+b+c)B. (a-b)(a+b-c)C. (a+b)(a-b-c)D. (a+b)(a-b+c)8.若m>﹣1,则多项式m3﹣m2﹣m+1的值为()A. 正数B. 负数C. 非负数D. 非正数9.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A. (x+y+3)(x﹣y﹣1)B. (x+y﹣1)(x﹣y+3)C. (x+y﹣3)(x﹣y+1)D. (x+y+1)(x﹣y﹣3)10.分解因式:x2+y2+2xy-1=( )A. (x+y+1)(x+y-1)B. (x+y-1)(x-y-1)C. (x+y-1)(x-y+1)D. (x-y+1)(x+y+1)11.把多项式ab﹣1+a﹣b因式分解的结果是()A. (a+1)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)12.把多项式a2-2ab+b2-1分解因式,结果是( )A.B.C.D.13.下列因式分解错误的是()A. x2﹣y2=(x+y)(x﹣y)B. x2+y2=(x+y)(x+y)C. x2﹣xy+xz﹣yz=(x﹣y)(x+z) D. x2﹣3x﹣10=(x+2)(x﹣5)14.下列四个等式中错误的是()A. 1﹣a﹣b+ab=(1﹣a)(1﹣b) B. 1+a+b+ab=(1+a)(1+b)C. 1﹣a+b+ab=(1﹣a)(1+b) D. 1+a﹣b﹣ab=(1+a)(1﹣b)二、填空题15.若x2﹣y2﹣x+y=(x﹣y)•A,则A=________.16.分解因式:x2﹣y2=________.ab﹣a﹣b+1=________.17.分解因式:a2﹣6a+9﹣b2=________.18.分解因式:x2+3x(x﹣3)﹣9=________.19.分解因式:xy﹣x﹣y+1=________.20.分解因式:=________21.分解因式x2﹣2xy+y2﹣4x+4y+3=________.22.分解因式:x2﹣y2﹣3x﹣3y=________三、计算题23.因式分解:(1)x2﹣xy﹣12y2;(2)a2﹣6a+9﹣b224.若|m﹣4|与n2﹣8n+16互为相反数,把多项式a2+4b2﹣mab﹣n因式分解.25.因式分解(1)3ax+6ay(2)25m2﹣4n2(3)3a2+a﹣10(4)ax2+2a2x+a3(5)x3+8y3(6)b2+c2﹣2bc﹣a2(7)(a2﹣4ab+4b2)﹣(2a﹣4b)+1(8)(x2﹣x)(x2﹣x﹣8)+12.四、解答题26.先阅读以下材料,然后解答问题.分解因式mx+nxmy+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y);也可以mx+nxmy+ny=(mx+my)+( nx+ny)=m(x+y)+n(x+y)=(m+n)(x+y).以上分解因式的方法称为分组分解法.请用分组分解法分解因式:a3﹣b3+a2b ﹣ab2 .27.已知a,b,c是△ABC的三边长,且满足,试判断△ABC 的形状。
中考数学代数式和因式分解试卷分类解析
![中考数学代数式和因式分解试卷分类解析](https://img.taocdn.com/s3/m/a06f6efe0875f46527d3240c844769eae109a35d.png)
中考数学代数式和因式分解试卷分类解析以下是查字典数学网为您举荐的2021年中考数学代数式和因式分解试题分类解析,期望本篇文章对您学习有所关心。
2021年中考数学代数式和因式分解试题分类解析一、选择题1.(2021浙江杭州3分)下列运算正确的是【】A.(﹣p2q)3=﹣p5q3B.(12a2b3c)(6ab2)=2abC.3m2(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣4【答案】D。
【考点】整式的混合运算,积的乘方和幂的乘方,整式的乘法,同底数幂的乘法和除法。
【分析】依照整式的混合运算法则对各选项分别进行运算,即可判定:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)(6ab2)=2abc,故本选项错误;C、,故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确。
故选D。
2.(2021浙江湖州3分)运算2a-a,正确的结果是【】A.-2a3B.1C.2D.a【答案】D。
【考点】合并同类项。
【分析】依照合并同类项的运算法则运算作出判定:2a-a= a。
故选D。
3.(2021浙江湖州3分)要使分式有意义,x的取值范畴满足【】A.x=0B.x0C.x0D.x0【答案】B。
【考点】分式有意义的条件。
【分析】依照分式分母不为0的条件,要使在实数范畴内有意义,必须x0。
故选B。
4.(2021浙江嘉兴、舟山4分)若分式的值为0,则【】A. x=﹣2B. x=0C. x=1或2D. x=1【答案】D。
【考点】分式的值为零的条件。
【分析】∵分式的值为0,,解得x=1。
故选D。
5. (2021浙江丽水、金华3分)运算3a(2b)的结果是【】A.3abB.6aC.6abD.5ab【答案】C。
【考点】单项式乘单项式。
【分析】依照单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,运算即可:3a(2b)=32ab=6ab.故选C。
6. (2021浙江宁波3分)下列运算正确的是【】A.a6a2=a3B.(a3)2=a5C.D.【答案】D。
2022中考真题分类4——因式分解(参考答案)
![2022中考真题分类4——因式分解(参考答案)](https://img.taocdn.com/s3/m/18c7311acec789eb172ded630b1c59eef8c79aa9.png)
2022中考真题分类——因式分解(参考答案)1.(2022·广西河池)多项式244x x −+因式分解的结果是( )A .x (x −4)+4B .(x +2)(x −2)C .(x +2)2D .(x −2)2 【答案】D【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x −+=−.故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.2.(2022·四川绵阳)因式分解:32312x xy −=_________. 【答案】()()322x x y x y +−【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y −=+−. 故答案为:()()322x x y x y +−.【点睛】本题考查了因式分解,正确的计算是解题的关键.3.(2022·广西贺州)因式分解:2312m −=__________.【答案】3(2)(2)m m +−【分析】首先提取公因数3,进而利用平方差公式进行分解即可.【详解】解:原式=3(x 2−4)=3(x +2)(x −2);故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键.4.(2022·湖北恩施)因式分解:3269a a a −+=______.【答案】2(3)a a −【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =−+=−,故答案为:2(3)a a −.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.5.(2022·辽宁锦州·)分解因式:2232x y xy y −+=____________. 【答案】2()y x y −【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=−++=−−x y xy y x xy y y x y y ;故答案为:2()y x y −【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.6.(2022·四川内江)分解因式:a 4−3a 2−4=_____.【答案】(a 2+1)(a +2)(a −2)【分析】首先利用十字相乘法分解为()()2214a a +− ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4−3a 2−4=(a 2+1)(a 2−4)=(a 2+1)(a +2)(a −2),故答案为:(a 2+1)(a +2)(a −2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查.7.(2022·黑龙江绥化)因式分解:()()269m n m n +−++=________.【答案】()23m n +−【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:()()269m n m n +−++ ()()22233m n m n =+−⨯⨯++ ()23m n =+−,故答案为:()23m n +−.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.8.(2022·辽宁沈阳)分解因式:269ay ay a ++=______. 【答案】()23a y +【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:269ay ay a ++=()269a y y ++ ()23a y =+; 故答案为:()23a y +.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.9.(2022·贵州黔东南)分解因式:2202240442022x x −+=_______.【答案】()220221x −##()220221x −【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x −+=−; 故答案为()220221x −.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.10.(2022·四川广元)分解因式:a 3−4a =_____.【答案】()()22a a a +−【分析】根据提公因式及平方差公式进行因式分解即可.【详解】解:原式=()()()2422a a a a a −=+−; 故答案为:()()22a a a +−.【点睛】本题主要考查提公因式和公式法进行因式分解,熟练掌握因式分解是解题的关键.11.(2022·湖南常德)分解因式:329x xy −=________.【答案】(3)(3)x x y x y −+【分析】先提取公因式,然后再根据平方差公式即可得出答案.【详解】原式=32229(9)x xy x x y −=−=(3)(3)x x y x y −+.故答案为:(3)(3)x x y x y −+.【点睛】本题考查分解因式,解题的关键是熟练掌握分解因式的方法.12.(2022·湖南怀化)因式分解:24−=x x _____. 【答案】2(1)(1)+−x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)−=−=+−x x x x x x x , 故答案为:2(1)(1)+−x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.13.(2022·内蒙古赤峰)分解因式:32242x x x ++=______. 【答案】22(1)x x +【分析】先提取公因式,再利用完全平方公式进行因式分解.【详解】解:32242x x x ++,22(21)x x x =++,22(1)x x =+,故答案是:22(1)x x +.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式.14.(2022·四川巴中)因式分解:322a a a −+−=______.【答案】2(1)a a −−【分析】先提取公因式,后采用公式法分解即可【详解】∵322a a a −+−=−a 22)1(a a −+=2(1)a a −−故答案为: 2(1)a a −−.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键.15.(2022·山东威海)因式分解24ax a −=___________ 【答案】(2)(2)a x x +−.【详解】试题分析:原式=2(4)(2)(2)a x a x x −=+−.故答案为(2)(2)a x x +−. 考点:提公因式法与公式法的综合运用.16.(2022·贵州黔西)已知2ab =,3a b +=,则22a b ab +的值为_____. 【答案】6【分析】将22a b ab +因式分解,然后代入已知条件即可求值.【详解】解:22a b ab +()ab a b =+23=⨯6=.故答案为:6【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键.17.(2022·四川广安)已知a +b =1,则代数式a 2−b 2 +2b +9的值为________. 【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +−++,可得9a b ++,即可求解.【详解】解:a 2−b 2 +2b +9()()29a b a b b =+−++29a b b =−++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.。
中考数学专题复习第4讲因式分解(含详细答案)
![中考数学专题复习第4讲因式分解(含详细答案)](https://img.taocdn.com/s3/m/6ea7f5677f21af45b307e87101f69e314332faa1.png)
第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
中考数学试题分类解析2代数式和因式分解(含答案)
![中考数学试题分类解析2代数式和因式分解(含答案)](https://img.taocdn.com/s3/m/5a5e80cc58fafab069dc02e7.png)
浙江省2011年中考数学专题2:代数式和因式分解一、选择题1.(浙江舟山、嘉兴3分)下列计算正确的是(A )32x x x =⋅ (B )2x x x =+ (C )532)(x x = (D )236x x x =÷【答案】A 。
【考点】同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法。
【分析】根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可:A 、正确;B 、x +x =2x ,选项错误;C 、(x 2)3=x 6,选项错误;D 、x 6÷x 3=x 3,选项错误。
故选A 。
2.(浙江金华、丽水3分)下列各式能用完全平方公式进行分解因式的是A 、x 2+1B 、x 2+2x ﹣1C 、x 2+x+1D 、x 2+4x+4【答案】D 。
【考点】运用公式法因式分解。
【分析】完全平方公式是:(a ±b )2=a 2±2a b +b 2,由此可见选项A 、B 、C 都不能用完全平方公式进行分解因式,只有D 选项可以。
故选D 。
3.(浙江金华、丽水3分)计算111a a a ---的结果为 A 、11a a +- B 、1a a -- C 、﹣1 D 、2 【答案】C 。
【考点】分式的加减法。
【分析】根据同分母的分式加减,分母不变,分子相加减的运算法则,得111111a a a a a --==----。
故选C 。
4.(浙江湖州3分)计算a 2·a 3,正确的结果是 A .2a 6 B .2a 5 C .a 6 D .a 5【答案】B 。
【考点】同底幂乘法。
【分析】根据同底幂乘法法则,直接得出结果:a 2·a 3=a 2+3 =a 5。
故选B 。
5.(浙江宁波3分)下列计算正确的是(A)632)(a a =(B) 422a a a =+ (C)a a a 6)2()3(=⋅ (D)33=-a a 【答案】A 。
2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)
![2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)](https://img.taocdn.com/s3/m/c0c37907cec789eb172ded630b1c59eef8c79aa0.png)
专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.3.(2022·陕西)计算:()A.B.C.D.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a35.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.6.(2022·江西)下列计算正确的是()A. B. C. D.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积8.(2022·浙江温州)化简的结果是()A.B.C.D.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.1210.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.913.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.14.(2022·四川成都)下列计算正确的是()A. B. C. D.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.4117.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题20.(2022·江苏苏州)已知,,则______.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.22.(2022·四川乐山)已知,则______.23.(2022·湖南邵阳)已知,则_________.24.(2022·天津)计算的结果等于___________.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.28.(2022·山东滨州)若,,则的值为_______.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.31.(2022·浙江嘉兴)分解因式:m2-1=_____.32.(2022·湖南怀化)因式分解:_____.33.(2022·浙江绍兴)分解因式:= ______.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,24 68 10 1214 16 18 20……则第27行的第21个数是______.三.解答题39.(2022·江苏苏州)已知,求的值.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?41.(2022·湖南衡阳)先化简,再求值:,其中,.42.(2022·浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形. (1)用关于a的代数式表示图2中小正方形的边长.(2)当时,该小正方形的面积是多少?43.(2022·安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.44.(2022·浙江丽水)先化简,再求值:,其中.45.(2022·重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”.例如:,∵,∴2543是“勾股和数”;又如:,∵,,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,.当,均是整数时,求出所有满足条件的.46.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵,∴247是13的“和倍数”.又如:∵,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且.在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A.47.(2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.【答案】A【分析】根据有理数的加法法则计算即可.【详解】解:.故选:A.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.【答案】C【分析】由合并同类项可判断A,由同底数幂的乘法可判断B,由积的乘方运算可判断C,由幂的乘方运算可判断D,从而可得答案.【详解】解:,故A不符合题意;,故B不符合题意;,故C符合题意;,故D不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.3.(2022·陕西)计算:()A.B.C.D.【答案】C【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:.故选:C.【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是()A. B. C. D.【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意.故选:B.【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积【答案】C【分析】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH是正方形,设正方形纸片边长为x,正方形EFGH边长为y,则长方形的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2S△AEH+2S△DHG==2xy,所以根据题意,已知条件为xy的值,A.正方形纸片的面积=x2,根据条件无法求出,不符合题意;B.四边形EFGH的面积=y2,根据条件无法求出,不符合题意;C.的面积=,根据条件可以求出,符合题意;D.的面积=,根据条件无法求出,不符合题意;故选 C.【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简的结果是()A.B.C.D.【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:,故选:D.【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.10.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A.【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【分析】根据第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,∴则第⑥个图案中菱形的个数为:,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.,不是同类项,不能合并在一起,故选项A不合题意;B.,符合题意;C.,不是同类项,不能合并在一起,故选项C不合题意;D.,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是()A. B. C. D.【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意;B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意;D.,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.【详解】A. ,故A不正确;B. ,故B正确;C. ,故C不正确;D. ,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵∴①说法正确∵又∵无论如何添加括号,无法使得的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是、、、;当括号中有三个字母,共有3种情况,分别是、、;当括号中有四个字母,共有1种情况,∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.20.(2022·江苏苏州)已知,,则______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵,,∴,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.【答案】5【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=c,∴d=2b+c=c,则c=d,∴4d+d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知,则______.【答案】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解.【详解】解:,,即,,,故答案为:.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知,则_________.【答案】2【分析】将变形为即可计算出答案.【详解】∵∴故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算的结果等于___________.【答案】【分析】根据同底数幂的乘法即可求得答案.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量与震级的关系为(其中为大于0的常数)可得到,当震级为8级的地震所释放的能量为:,当震级为6级的地震所释放的能量为:,,震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=;n=2时,“○”的个数是,n=3时,“○”的个数是,n=4时,“○”的个数是,……∴第n个“○”的个数是,由图形中的“○”的个数和“.”个数差为2022①,②解①得:无解解②得:故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.28.(2022·山东滨州)若,,则的值为_______.【答案】90【分析】将变形得到,再把,代入进行计算求解.【详解】解:∵,,∴.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.【答案】4【分析】根据完全平方公式的运算即可.【详解】∵,∵+=4=16,∴=4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m2-1=_____.【答案】【分析】利用平方差公式进行因式分解即可.【详解】解:m2-1=故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.32.(2022·湖南怀化)因式分解:_____.【答案】【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:,故答案为:【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:= ______.【答案】【分析】利用提公因式法即可分解.【详解】,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.【答案】(x-1)2【详解】由完全平方公式可得:故答案为.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.【答案】1【分析】根据一元二次方程解的定义把代入到进行求解即可.【详解】∵关于x的一元二次方程的一个解是,∴,∴,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.【答案】【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得。
专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)
![专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)](https://img.taocdn.com/s3/m/8630cd3eb9f3f90f77c61b1e.png)
专题3因式分解(共41题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.2.(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 3.(2021·贵州铜仁市·中考真题)下列等式正确的是( )A .3tan452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+- 【答案】D【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.【详解】 A. 3tan45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意 C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意 故选D .【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.4.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题5.(2021·四川成都市·中考真题)因式分解:24x -=__________.【答案】(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-6.(2021·云南中考真题)分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.7.(2021·山东临沂市·中考真题)分解因式:2a 3﹣8a=________.【答案】2a (a+2)(a ﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.8.(2021·广西柳州市·中考真题)因式分21x -= .【答案】(1)(1)x x +-.【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.9.(2021·浙江宁波市·中考真题)分解因式:23x x -=_____________.【答案】x(x -3)【详解】直接提公因式x 即可,即原式=x (x -3).10.(2021·江苏宿迁市·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).11.(2021·浙江丽水市·中考真题)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____.【答案】(a +1)2【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.13.(2021·吉林长春市·中考真题)分解因式:22a a +=_____.【答案】22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】 22(2)a a a a +=+.【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.14.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.15.(2021·江苏苏州市·中考真题)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.(2021·浙江台州市·中考真题)因式分解:xy -y 2=_____.【答案】y (x -y )【分析】根据提取公因式法,即可分解因式.【详解】解:原式= y (x -y ),故答案是:y (x -y ).【点睛】本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.17.(2021·江西中考真题)因式分解:224x y -=______.【答案】(2)(2)x y x y +-【分析】直接利用平方差公式分解即可.【详解】解:224(2)(2)x y x y x y -=+-.故答案为:(2)(2)x y x y +-.【点睛】本题考查了分解因式-公式法,熟练掌握平方差公式的结构特征是解题的关键.18.(2021·甘肃武威市·中考真题)因式分解:242m m -=___________.【答案】()22m m -【分析】先确定242m m -的公因式为2m ,再利用提公因式分解因式即可得到答案.【详解】解:()24222.m m m m -=- 故答案为:()22m m -【点睛】本题考查的是提公因式分解因式,掌握公因式的确定是解题的关键.19.(2021·湖北黄石市·中考真题)分解因式:322a a a -+=______.【答案】()21a a -.【分析】观察所给多项式有公因式a ,先提出公因式,剩余的三项可利用完全平方公式继续分解.【详解】解:原式()221a a a =-+, ()21a a =-,故答案为:()21a a -.【点睛】本题考查了用提公因式法和公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,有公因式要先提公因式,再考虑运用公式法分解,注意一定要分解到无法分解为止.20.(2021·四川泸州市·)分解因式:244m -=___________.【答案】()()411m m +-.【分析】先提取公因式4,再利用平方差公式分解即可.【详解】解:()()()224441411m m m m -=-=+-. 故答案为:()()411m m +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2021·四川乐山市·中考真题)因式分解:249a -=________.【答案】(23)(23)a a -+【分析】此多项式可直接采用平方差公式进行分解.【详解】解:22249(2)3a a -=-=(23)(23)a a -+.故答案为:(23)(23)a a -+.【点睛】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.(2021·江苏无锡市·中考真题)分解因式:328x x -=_________.【答案】2x (x +2)(x -2)【分析】先提取公因式2x ,再利用平方差公式分解即可得.【详解】解:原式=2x (x 2-4)=2x (x +2)(x -2);故答案为:2x (x +2)(x -2).【点睛】本题主要考查了因式分解,解题的关键是掌握提公因式法和平方差公式.23.(2021·广西来宾市·中考真题)分解因式:224a b -=______.【答案】()()22a b a b +-【分析】利用平方差公式进行因式分解即可.【详解】解:224a b -=()222a b -=()()22a b a b +-.故答案为()()22a b a b +-.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.24.(2021·浙江绍兴市·中考真题)分解因式:221x x ++= ___________ .【答案】2(1)x +【分析】根据完全平方公式因式分解即可.【详解】解:221x x ++=2(1)x +故答案为:2(1)x +.【点睛】此题考查的是因式分解,掌握利用完全平方公式因式分解是解决此题的关键. 25.(2021·湖北恩施土家族苗族自治州·中考真题)分解因式:2a ax -=__________.【答案】()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.26.(2021·山东菏泽市·中考真题)因式分解:322a a a -+-=______.【答案】2(1)a a --【分析】先提取公因式,后采用公式法分解即可【详解】∴322a a a -+-=-a 22)1(a a -+=2(1)a a --故答案为: 2(1)a a --.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键. 27.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∴2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键. 28.(2021·湖南长沙市·中考真题)分解因式:22021x x -=______.【答案】(2021)x x -【分析】利用提公因式法进行因式分解即可得. 【详解】解:22021(2021)x x x x -=-, 故答案为:(2021)x x -. 【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键. 29.(2021·湖南株洲市·中考真题)因式分解:264x xy -=__________. 【答案】()232x x y - 【分析】直接提出公因式2x 即可完成因式分解. 【详解】解:()264232x xy x x y -=-;故答案为:()232x x y -. 【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是找到它们的公因式,提出公因式后再检查分解是否彻底即可,本题为基础题,考查了学生对基础知识的掌握与运用. 30.(2021·陕西中考真题)分解因式:3269x x x ++=______. 【答案】()23x x + 【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案. 【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +. 【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.31.(2021·湖南岳阳市·中考真题)因式分解:221x x ++=______. 【答案】()21x +. 【详解】解:()22211x x x ++=+.故答案为:()21x +. 【点睛】此题考查了运用公式法因式分解,熟练掌握完全平方公式是解答此题的关键. 32.(2021·湖南邵阳市·中考真题)因式分解:23xy x -=______. 【答案】()()x y x y x -+ 【分析】提公因式与平方差公式相结合解题. 【详解】解:2322()()()xy x x y x x y x y x -=-=-+, 故答案为:()()x y x y x -+. 【点睛】本题考查因式分解,涉及提公因式与平方差公式,是重要考点,难度较易,掌握相关是解题关键. 33.(2021·四川眉山市·中考真题)分解因式:3x y xy -=______. 【答案】()()11xy x x +- 【分析】先利用提公因式法提出公因式xy ,再利用平方差公式法进行变形即可. 【详解】解:()()()32111x y xy xy x xy x x -=-=+-;故答案为:()()11xy x x +-. 【点睛】本题考查了提公因式法和公式法(平方差公式)进行的因式分解的知识,解决本题的关键是牢记因式分解的特点和基本步骤,分解的结果是几个整式的积的形式,结果应分解到不能再分解为止,即分解要彻底,本题易错点是很多学生提公因式后以为分解就结束了,因此要对结果进行检查. 34.(2021·湖南衡阳市·中考真题)因式分解:239a ab -=__________. 【答案】()33a a b - 【分析】利用提取公因式法因式分解即可 【详解】解:()23933a ab a a b -=-故答案为: ()33a a b - 【点睛】本题考查提取公因式法因式分解,熟练掌握因式分解的方法是关键 35.(2021·北京中考真题)分解因式:2255x y -=______________. 【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解. 【详解】解:()()()22225555x y x y x y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 36.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m -=2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 37.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b .【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b故答案为:(a b b .【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键.三、解答题38.(2021·黑龙江大庆市·中考真题)先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.39.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos4512π-⎛⎫-+-+︒- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)2=++⨯-411=++6=+(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.40.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∴2x y -=,∴1121y x x y xy xy---===,∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.41.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .【答案】(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616. 【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .【详解】 解:(1)168不是“合和数”,621是“合和数”. 1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=, 621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-.∴()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-. ∴()()21054()2105P M m m G M k Q M n n ++====--(k 是整数).39m ≤≤,8514m ∴≤+≤,k 是整数,58m ∴+=或512m +=,∴当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.∴当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616. 【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。
中考数学试题分类解析汇编:代数式和因式分解
![中考数学试题分类解析汇编:代数式和因式分解](https://img.taocdn.com/s3/m/392e103ab9d528ea80c77921.png)
A.选择题
1.(3分)在下列各组根式中,是同类二次根式的是【】
(A) 和 ;(B) 和 ;
(C) 和 ;(D) 和 .
【答案】B,C。.
【考点】同类二次根式。
【分析】首先把各选项中不是最简二次根式的式子化成最简二次根式,然后根据同类二次根式的定义判断:
A、 和 被开方数不同,不是同类二次根式;
【考点】分式的混合运算。
【分析】首先把分式分子分母能分解因式的先分解因式,进行乘法运算,约分后进行减法运算。
2.(7分)已知 ,将下式先简化,再求值: .
【答案】解:
当 时,原式= 。
【考点】整式的混合运算(化简求值)。
【分析】首先将所求代数式化简,然后将x2-2x的值整体代入,从而求得代数式的值。
(A) ;(B) ;(C) ;(D) .
【答案】B。
【考点】最简二次根式。
【分析】∵ , , ,∴ , , 都不是最简二次根式。故选B。
7.(4分)在下列代数式中,次数为3的单项式是( )
A.xy2B.x3+y3C..x3yD..3xy
【答案】A。
【考点】单项式。
【分析】解:根据单项式的次数定义可知:
13.(4分)计算: ▲.
【答案】 。
【考点】平方差公式。
【分析】根据平方差公式计算即可: 。
14.(4分)分解因式: =▲.
【答案】 。
【考点】提公因式法因式分解。
【分析】直接提取公因式 即可: 。
15.(4分)计算: ▲.
【答案】a5
【考点】同底幂乘法运算法则。
【分析】根据底数不变,指数相加的同底幂乘法运算法则,得 。
A、xy2的次数为3,符合题意;
中考数学试题及答案分类汇编-代数式和因式分解
![中考数学试题及答案分类汇编-代数式和因式分解](https://img.taocdn.com/s3/m/3ac978ff76a20029bd642d70.png)
2012中考数学试题及答案分类汇编:代数式和因式分解一、选择题1.(天津3分)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是(A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D)2=0x z y +-【答案】D 。
【考点】代数式变形,完全平方公式。
【分析】∵()()2222()4()()=24x z x y y z x xz z xy xz y yz -----+---+()()()()()222222=244=44=2x xz zxy yz y x z y x z y x z y ++-+++-+++-∴由()22=0x z y +-得2=0x z y +-。
故选D 。
2.(河北省2分)下列分解因式正确的是A 、﹣a +a 3=﹣a (1+a 2)B 、2a ﹣4b +2=2(a ﹣2b )C 、a 2﹣4=(a ﹣2)2D 、a 2﹣2a +1=(a ﹣1)2【答案】D 。
【考点】提公因式法和应用公式法因式分解。
【分析】根据提公因式法,平方差公式,完全平方公式求解即可求得答案:A 、﹣a +a 3=﹣a (1﹣a 2)=﹣a (1+a )(1﹣a ),故本选项错误;B 、2a ﹣4b +2=2(a ﹣2b +1),故本选项错误;C 、a 2﹣4=(a ﹣2)(a +2),故本选项错误;D 、a 2﹣2a +1=(a ﹣1)2,故本选项正确。
故选D 。
3.(河北省2分)下列运算中,正确的是A 、2x ﹣x =1B 、x +x 4=x 5C 、(﹣2x )3=﹣6x 3D 、x 2y ÷y =x 2【答案】D 。
【考点】合并同类项,幂的乘方与积的乘方,整式的除法。
【分析】A 中整式相减,系数相减再乘以未知数,故本选项错误;B 、不同次数的幂的加法,无法相加,故本选项错误;C 、整式的幂等于各项的幂,故本选项错误;D 、整式的除法,相同底数幂底数不变,指数相减.故本答案正确。
中考数学《因式分解》专题复习试卷(含答案)
![中考数学《因式分解》专题复习试卷(含答案)](https://img.taocdn.com/s3/m/d8a76218876fb84ae45c3b3567ec102de2bddfb3.png)
2018-2019学年初三数学专题复习因式分解一、单选题1.多项式﹣6x3y2﹣3x2y+12x2y2分解因式时,应先提的公因式是()A. 3xyB. ﹣3x2yC. 3xy2D. ﹣3x2y22.下列多项式中能用平方差公式分解因式的是()A. a2+(-b)2B. 5m2-20mnC. -x2-y2D. -x2+93.多项式6x3y2﹣3x2y2+12x2y3的公因式为()A. 3xyB. ﹣3x2yC. 3xy2D. 3x2y24.下列四个多项式,哪一个是2X2+5X-3的因式?()A. 2x-1B. 2x-3C. x-1D. x-35.下列各式从左到右的变形,是因式分解的是()A. x2-9+6x=(x+3)(x-3)+6xB. (x+5)(x-2)=x2+3x-10C. x2-8x+16=(x-4)2D. 6ab=2a.3b6.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A. 962×95+962×5=962×(95+5)=962×100=96200B. 962×95+962×5=962×5×(19+1)=962×(5×20) =96200C. 962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D. 962×95+962×5=91390+4810=962007.把代数式xy2﹣9x分解因式,结果正确的是()A. x(y2﹣9)B. x(y+3)2C. x(y+3)(y﹣3)D. x(y+9)(y﹣9)8.计算(﹣2)2002+(﹣2)2001所得的正确结果是()A. 22001B. ﹣22001C. 1D. 29.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y)D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x210.下列多项式中,能用提取公因式法分解因式的是()A. x2﹣yB. x2+2xC. x2+y2D. x2﹣xy+y211.下列由左边到右边的变形,属于分解因式的变形是()A. ab+ac+d=a(b+c)+dB. a2﹣1=(a+1)(a﹣1)C. 12ab2c=3ab•4bcD. (a+1)(a﹣1)=a2﹣112.分解因式(a2+1)2﹣4a2,结果正确的是()A. (a2+1+2a)(a2+1﹣2a)B. (a2﹣2a+1)2C. (a﹣1)4D. (a+1)2(a﹣1)213.把x2﹣xy2分解因式,结果正确的是()A. (x+xy)(x﹣xy)B. x(x2﹣y2)C. x(x﹣y2)D. x(x﹣y)(x+y)14.下列各式中,从左到右的变形是分解因式的是()A. x2﹣2=(x+1)(x﹣1)﹣1B. (x﹣3)(x+2)=x2﹣x+6C. a2﹣4=(a+2)(a﹣2)D. ma+mb+mc=m(a+b)+mc15.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2-y2C. x2+2x+1D. x2+2x16.若a ,b ,c是三角形的三边之长,则代数式a-2ac+c-b的值()A. 小于0B. 大于0C. 等于0D. 以上三种情况均有可能二、填空题17.分解因式:a2+ab=________.18.分解因式:a2﹣9=________.19.将多项式x2y-2xy2+y3分解因式的结果是________.20.因式分解:2x2﹣18=________.21.已知m2+m﹣1=0,则m3+2m2+2017=________.三、计算题22.因式分解:(1);(2)23.先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.24.因式分解:3ab2+6ab+3a.25.把下列各式分解因式(1)3ax2+6axy+3ay2(2)a2(x﹣y)﹣b2(x﹣y)26.把下列各式分解因式:(1);(2).四、解答题27.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.28.﹣x2+7x﹣10.五、综合题29.把下列各式因式分解(1)﹣36aby+12abx﹣6ab(2)9x2﹣12x+4;(3)4x2﹣9y2(4)3x3﹣12x2y+12xy2.30.因式分解:(1)5mx2﹣10mxy+5my2(2)x2(a﹣1)+y2(1﹣a)答案解析部分一、单选题1.【答案】B【解析】【解答】解:﹣6x3y2﹣3x2y+12x2y2=﹣3x2y(2xy+1﹣4y)故选:B.【分析】根据公因式的确定方法:①系数取最大公约数,②字母取公共的字母③指数取最小的,可得到答案;2.【答案】D【解析】【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】A、a2+(-b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2-20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、-x2-y2符号相同,不能用平方差公式分解因式,故错误;D、-x2+9能用平方差公式分解因式,故正确.故选D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.3.【答案】D【解析】【解答】解:6x3y2﹣3x2y2+12x2y3的公因式为3x2y2.故选:D.【分析】分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.4.【答案】A【解析】【分析】利用十字相乘法将2x2+5x-3分解为(2x-1)(x+3),即可得出符合要求的答案.【解答】∵2x2+5x-3=(2x-1)(x+3),2x-1与x+3是多项式的因式,故选:A.【点评】此题主要考查了因式分解的应用,正确的将多项式因式分解是解决问题的关键.5.【答案】C【解析】【解答】解:A. 的右边不是积的形式,不是因式分解;故选项错误;B. 是多项式乘法,不是因式分解;故选项错误;C. 运用平方差公式因式分解,故选项正确;D. 不是把多项式化成整式积的形式,故选项错误.故选C.6.【答案】A【解析】【解答】解:计算962×95+962×5的值,最简单的方法先提取公因式962,即962×95+962×5=962×(95+5)=962×100=96200,故答案为:A.【分析】通过观察式子,两个加数项中分别存在一个962,所以采取的简便方法为提取公因式法,将962提出公因式,进行接下来的计算即可。
中考数学《因式分解》专题训练(附带答案)
![中考数学《因式分解》专题训练(附带答案)](https://img.taocdn.com/s3/m/204da50042323968011ca300a6c30c225901f0bd.png)
中考数学《因式分解》专题训练(附带答案)一、单选题1.下列分解因式中,完全正确的是()A.x3-x=x(x2-1)B.4a2-4a+1=4a(a-1)+1C.x2+y2=(x+y)2D.6a-9-a2=-(a-3)22.下列等式正确的是()A.(a﹣b)2=a2﹣b2B.9a2﹣b2+6ab=(3a﹣b)2C.3a2+2ab﹣b2=(3a﹣b)(a+b)D.3.把多项式x2+3x−54分解因式,其结果是()A. (x+6 ) (x−9 )B. (x−6 ) (x+9 )C. (x+6 ) (x+9 )D. (x−6 ) (x−9 )4.下列多项式中,不能用公式法因式分解的是()A.x2+xy B.x2+2xy+y2C.﹣x2+y2D.14x2﹣xy+y25.下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+16.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为( ) A.35B.70C.140D.2807.把x2﹣4x+c分解因式得:x2﹣4x+c=(x﹣1)(x﹣3),则c的值为()A.3B.4C.﹣3D.﹣48.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣19.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)10.下列因式分解错误的是()A.x2+xy=x(x+y)B.x2−y2=(x+y)(x−y)C.x2+6x+9=(x+3)2D.x2+y2=(x+y)211.把代数式ax2-4ax+4a因式分解,下列结果中正确的是()A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2)12.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )二、填空题13.分解因式:x 2﹣3x ﹣4= ;(a+1)(a ﹣1)﹣(a+1)= . 14.因式分解:x 2−8x −9= .15.把多项式a 3-4a 分解因式的结果是 。
2022年中考数学试题分项版解析汇编(第02期)专题1.4 因式分解分式二次根式(含解析)
![2022年中考数学试题分项版解析汇编(第02期)专题1.4 因式分解分式二次根式(含解析)](https://img.taocdn.com/s3/m/fd453112974bcf84b9d528ea81c758f5f61f2942.png)
专题1.4 因式分解分式二次根式一、单项选择题1.【湖南省邵阳市 2022年中考数学试卷】将多项式x﹣x3因式分解正确的选项是〔〕A. x〔x2﹣1〕 B. x〔1﹣x2〕 C. x〔x+1〕〔x﹣1〕 D. x〔1+x〕〔1﹣x〕【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x〔1﹣x2〕=x〔1﹣x〕〔1+x〕.应选D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省 2022年中考数学试卷】某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购置假设干本笔记本.假设小锦购置笔记本的花费为36元,那么小勤购置笔记本的花费可能为以下何者?〔〕A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市 2022年中考数学试卷】以下运算正确的选项是〔〕A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.〔a+2〕〔a﹣2〕=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法那么、负指数幂的性质、二次根式的加减运算法那么、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、〔a+2〕〔a﹣2〕=a2﹣4,故D选项错误,应选C.【点睛】此题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法那么是解题关键.4.【河北省 2022年中考数学试卷】假设2n+2n+2n+2n=2,那么n=〔〕A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】此题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法那么是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n〔m,n是正整数〕.5.【湖北省孝感市 2022年中考数学试题】,,那么式子的值是〔〕A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:〔x-y+〕〔x+y-〕===〔x+y〕〔x-y〕,当x+y=4,x-y=时,原式=4×=12,应选:D.点睛:此题考查了分式的混合运算和求值,能正确根据分式的运算法那么进行化简是解此题的关键.6.【湖南省邵阳市 2022年中考数学试卷】据?经济日报? 2022年5月21日报道:目前,世界集成电路生产技术水平最高已到达7nm〔1nm=10﹣9m〕,主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为〔〕A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市 2022年中考数学试卷】:﹣=,那么的值是〔〕A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:等式左边两项通分并利用同分母分式的减法法那么计算,变形后即可得到结果.详解:∵﹣=,∴=,那么=3,应选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择适宜的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市 2022年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为〔〕A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省 2022年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规那么是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如下图:接力中,自己负责的一步出现错误的选项是〔〕A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法那么逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,应选D.【点睛】此题考查了分式的乘除法,熟练掌握分式乘除法的运算法那么是解题的关键. 10.【四川省达州市 2022年中考数学试】题二次根式中的x的取值范围是〔〕A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:此题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省 2022年中考数学试卷】算式×〔﹣1〕之值为何?〔〕A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答此题.详解:×〔﹣1〕=×﹣1=,应选:A.点睛:此题考查二次根式的混合运算,解答此题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市 2022年中考数学试卷】以下计算正确的选项是〔〕A. B.C. D.【答案】B点睛:此题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法那么. 13.【湖南省张家界市 2022年初中毕业学业考试数学试题】以下运算正确的选项是〔〕A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法那么:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a 〔a≥0〕;完全平方公式:〔a±b〕2=a2±2ab+b2;幂的乘方法那么:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、〔a+1〕2=a2+2a+1,故原选项错误;D、〔a3〕2=a6,故原选项正确.应选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法那么和计算公式.二、填空题14.【山东省东营市 2022年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x〔x+2y〕〔x﹣2y〕【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x〔x2-4y2〕=x〔x+2y〕〔x-2y〕,故答案为:x〔x+2y〕〔x-2y〕点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.15.【湖南省郴州市 2022年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a〔a﹣b〕2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.16.【湖南省怀化市 2022年中考数学试题】因式分解:ab+ac=_____.【答案】a〔b+c〕【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a〔b+c〕.故答案为:a〔b+c〕.点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省 2022年中考数学试卷】假设a,b互为相反数,那么a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=〔a+b〕〔a﹣b〕=0,故答案为:0.【点睛】此题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市 2022年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣〔a﹣2〕2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣〔a2﹣4a+4〕=﹣〔a﹣2〕2,故答案为:﹣〔a﹣2〕2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解此题的关键.19.【湖南省湘西州 2022年中考数学试卷】要使分式有意义,那么x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】此题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市 2022年中考数学试卷】计算的结果是_____.【答案】【点睛】此题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法那么是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市 2022年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法那么进行计算即可得答案.【详解】原式===,故答案为:.【点睛】此题考查分式的加减运算,熟练掌握分式加减的运算法那么是解题的关键,此题属于根底题.22.【山东省滨州市 2022年中考数学试题】假设分式的值为0,那么x的值为______.【答案】-3点睛:此题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区 2022年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市 2022年中考数学试卷】与最简二次根式5是同类二次根式,那么a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:此题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市 2022年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市 2022年中考数学试卷】阅读以下题目的解题过程:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4〔A〕∴c2〔a2﹣b2〕=〔a2+b2〕〔a2﹣b2〕〔B〕∴c2=a2+b2〔C〕∴△ABC是直角三角形问:〔1〕上述解题过程,从哪一步开始出现错误?请写出该步的代号:;〔2〕错误的原因为:;〔3〕此题正确的结论为:.【答案】〔1〕C;〔2〕没有考虑a=b的情况;〔3〕△ABC是等腰三角形或直角三角形.〔2〕错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;〔3〕此题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】此题考查因式分解的应用、勾股定理的逆定理,解答此题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市 2022年中考数学试卷】先化简,再求值:〔﹣〕÷,其中a=.【答案】原式=【点睛】此题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市 2022年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答此题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】此题考查分式的化简求值,熟练掌握分式化简求值的方法是解答此题的关键.29.【云南省昆明市 2022年中考数学试题】先化简,再求值:〔+1〕÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法那么即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:此题考查分式的运算法那么,解题的关键是熟练运用分式运算法那么.30.【黑龙江省哈尔滨市 2022年中考数学试题】先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.【答案】点睛:此题考查分式的运算,解题的关键是熟练运用分式的运算法那么,此题属于根底题型.31.【广西钦州市 2022年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣〔〕﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣〔〕﹣1=4+3﹣2﹣2=+2.【点睛】此题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法那么以及实数混合运算的运算法那么是解题的关键.32.【江苏省徐州巿 2022年中考数学试卷】计算:〔﹣1〕 2022+π0﹣〔〕﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】〔﹣1〕 2022+π0﹣〔〕﹣1+=1+1﹣3+2=1.【点睛】此题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法那么、负指数幂的运算法那么以及实数混合运算的运算法那么是解题的关键.33.【湖北省荆门市 2022年中考数学试卷】先化简,再求值:〔x+2+〕÷,其中x=2.【答案】,4-2.【点睛】此题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法那么是解题的关键.34.【四川省达州市2022年中考数学试题】化简代数式:,再从不等式组的解集中取一个适宜的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法那么化简,再解不等式组,进而得出x 的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法那么是解题关键.35.【湖南省邵阳市 2022年中考数学试卷】计算:〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|=1+1-〔2-〕=1+1-2+=.【点睛】此题考查了实数的运算,熟练掌握运算法那么是解此题的关键.36.【湖北省随州市 2022年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】此题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答此题的关键.37.【山东省烟台市 2022年中考数学试卷】先化简,再求值:〔1+〕÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.38.【江苏省淮安市 2022年中考数学试题】先化简,再求值:〔1﹣〕÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法那么化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:此题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法那么.39.【贵州省〔黔东南,黔南,黔西南〕 2022年中考数学试题】〔1〕计算:|﹣2|﹣2cos60°+〔〕﹣1﹣〔 2022﹣〕0〔2〕先化简〔1﹣〕•,再在1、2、3中选取一个适当的数代入求值.【答案】〔1〕6;〔2〕-2〔2〕〔1﹣〕•,===,当x=2时,原式=.点睛:此题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答此题的关键是明确它们各自的计算方法.40.【湖北省黄石市 2022年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法那么化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:此题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法那么.41.【江苏省盐城市 2022年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:此题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州 2022年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法那么计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区 2022年中考数学试题】先化简,再求值:〔+1〕÷,其中x是方程x2+3x=0的根.【答案】-2点睛:此题考查分式的化简求值、一元二次方程的解,解答此题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市 2022年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市 2022年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:此题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.46.【湖南省常德市 2022年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×〔x﹣3〕2=×〔x﹣3〕2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】此题主要考查了分式的化简求值,熟练掌握分式的混合运算法那么是解题关键.47.【湖南省常德市 2022年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣〔2﹣1〕+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】此题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【 2022年湖南省湘潭市中考数学试卷】先化简,再求值:〔1+〕÷.其中x=3.【答案】x+2,5点睛:此题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市 2022年中考数学试题】〔1〕计算:π0+2cos30°﹣|2﹣|﹣〔〕﹣2;〔2〕化简:〔2﹣〕÷.【答案】〔1〕2﹣5;〔2〕【解析】分析:〔1〕先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;〔2〕根据分式的混合运算顺序和运算法那么计算可得.详解:〔1〕原式=1+2×﹣〔2﹣〕﹣4=1+﹣2+-4=2﹣5;〔2〕原式=,=,=.点睛:此题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法那么.【山东省菏泽市 2022年中考数学试题】先化简,再求值:,其中,50..【答案】7点睛:此题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.。
中考数学分类(含答案)因式分解
![中考数学分类(含答案)因式分解](https://img.taocdn.com/s3/m/ea20b64b33687e21af45a97e.png)
中考数学分类(含答案)因式分解一、选择题1. (2010山东济宁)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D2.(2010四川眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x -【答案】D3.(2010台湾) 下列何者为5x 2+17x -12的因式?(A) x +1 (B) x -1 (C) x +4 (D) x -4 。
【答案】C4.(2010 贵州贵阳)下列多项式中,能用公式法分解因式的是(A )xy x -2 (B )xy x +2 (C )22y x + (D )22y x - 【答案】D5.(2010 四川自贡)把x 2-y 2-2y -1分解因式结果正确的是( )。
A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1) 【答案】A6.(2010宁夏回族自治区)把多项式322x x x -+分解因式结果正确的是 ( )A .2(2)x x x -B .2(2)x x -C .(1)(1)x x x +-D .2(1)x x -【答案】D二、填空题1.(2010江苏苏州)分解因式a 2-a= ▲ . 【答案】 2.(2010安徽芜湖)因式分解:9x 2-y 2-4y -4=__________. 【答案】3.(2010广东广州,15,3分)因式分解:3ab 2+a 2b =_______.【答案】ab (3b +a )4.(2010江苏南通)分解因式:2ax ax -= ▲ .【答案】ax (x-1)5.(2010江苏盐城)因式分解:=-a a 422 ▲ .【答案】2a (a -2)6.(2010浙江杭州)分解因式 m 3 – 4m = .【答案】m (m +2)(m – 2)7.(2010浙江嘉兴)因式分解:=+-m mx mx 2422 ▲ .【答案】2)1(2-x m8.(2010浙江绍兴)因式分解:y y x 92-=_______________. 【答案】)3)(3(-+x x y9.(2010 浙江省温州)分解因式:m 2—2m= .【答案】m (m-2)10.(2010 浙江台州市)因式分解:162-x = ▲ .【答案】)4)(4(-+x x11.(2010山东聊城)分解因式:4x 2-25=_____________.【答案】(2x +5)(2x -5)12.(2010 福建德化)分解因式:442++a a =_______________ 【答案】2)2(+a13.(2010 福建晋江)分解因式:26_________.x x +=【答案】(6)x x +14.(2010江苏宿迁)因式分解:12-a = ▲ .【答案】(a+1)(a-1)15.(2010浙江金华)分解因式=-92x ▲ .【答案】(x -3)(x +3)16.(2010 山东济南)分解因式2x 2-8=_____ .【答案】2(x +2)(x -2)17.(2010 浙江衢州) 分解因式:x 2-9= . 全品中考网【答案】(x +3)(x -3)18.(2010福建福州)因式分解:x 2-1=_______.【答案】(x +1)(x -1)19.(2010江苏无锡)分解因式:241a -=▲ .【答案】(21)(21)a a +-20.(2010年上海)分解因式:a 2 ─ a b = ______________.【答案】a ( a ─b )21.(2010四川宜宾)分解因式:2a 2– 4a + 2=【答案】2(a -1)222.(2010 黄冈)分解因式:x 2-x =__________.【答案】x (x+1)(x -1)23.(2010 山东莱芜)分解因式:=-+-x x x 232 . 【答案】2)1(--x x24.(2010 广东珠海)分解因式22ay ax -=________________.【答案】a(x+y)(x-y)25.(2010福建宁德)分解因式:ax 2+2axy +ay 2=______________________.【答案】a(x +y)226.2010江西)因式分解:=-822a . 【答案】)2)(2(2-+a a27.(2010四川 巴中) 把多项式2336x x +-分解因式的结果是【答案】3(x-1)228.(2010江苏常州)分解因式:224a b -= 。
中考数学考点研究与突破【3】因式分解(含答案)
![中考数学考点研究与突破【3】因式分解(含答案)](https://img.taocdn.com/s3/m/7fb1ccf89e314332396893ca.png)
考点跟踪突破3因式分解一、选择题(每小题6分,共30分)1.(2014·衡阳)下列因式分解中正确的个数为( C )①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y).A.3个B.2个C.1个D.0个2.(2014·广东)把x3-9x分解因式,结果正确的是( D )A.x(x2-9) B.x(x-3)2C.x(x+3)2D.x(x+3)(x-3)3.(2012·台湾)下列四个选项中,哪一个为多项式8x2-10x+2的因式( A )A.2x-2 B.2x+2C.4x+1 D.4x+2解析:8x2-10x+2=2(4x2-5x+1)=2(x-1)(4x-1),有因式2(x-1),即2x-24.若实数x,y,z满足(x-z)2-4(x-y)(y-z)=0,则下列式子一定成立的是( D )A.x+y+z=0 B.x+y-2z=0C.y+z-2x=0 D.z+x-2y=0解析:左边=[(x-y)+(y-z)]2-4(x-y)(y-z)=(x-y)2-2(x-y)(y-z)+(y-z)2=[(x -y)-(y-z)]2,故(x-y)-(y-z)=0,x-2y+z=05.(2012·宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为( B )A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+4二、填空题(每小题6分,共30分)6.(2014·泸州)分解因式:3a2+6a+3=__3(a+1)2__.7.(2014·潍坊)分解因式:2x(x-3)-8=__2(x-4)(x+1)__.8.(2014·呼和浩特)把多项式6xy2-9x2y-y3因式分解,最后结果为__-y(3x-y)2__.9.(2014·连云港)若ab=3,a-2b=5,则a2b-2ab2的值是__15__.10.(2012·宜宾)已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y的值为__2__.三、解答题(共40分)11.(6分)分解因式:(1)(2013·达州)x3-9x;解:a3-16a=a(a2-16)=a(a+4)(a-4)(2)(2012·南充)x2-4x-12;解:x2-4x-12=x2-4x+4-16=(x-2)2-16=(x-2+4)(x-2-4)=(x+2)(x-6)(3)8(x2-2y2)-x(7x+y)+xy.解:8(x2-2y2)-x(7x+y)+xy=8x2-16y2-7x2-xy+xy=x2-16y2=(x+4y)(x-4y)12.(8分)若△ABC 的三边长分别为a ,b ,c ,且a +2ab =c +2bc ,判断△ABC 的形状. 解:∵a +2ab =c +2bc ,∴a -c +2ab -2bc =0,(a -c)+2b(a -c)=0,∴(1+2b)(a -c)=0.∵1+2b ≠0,∴a -c =0,a =c ,∴△ABC 是等腰三角形13.(8分)有足够多的长方形和正方形的卡片,如下图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.或这个长方形的代数意义是__a 2+3ab +2b 2=(a +b)(a +2b)__.14.(8分)设a =12m +1,b =12m +2,c =12m +3.求代数式a 2+2ab +b 2-2ac -2bc +c 2的值.解:原式=(a 2+2ab +b 2)-(2ac +2bc)+c 2=(a +b)2-2(a +b)c +c 2=(a +b -c)2=[(12m +1)+(12m +2)-(12m +3)]2=(12m)2=14m 215.(10分)如果多项式2x 3+x 2-26x +k 有一个因式是2x +1,求k 的值. 解:∵2x +1是2x 3+x 2-26x +k 的因式,∴可设2x 3+x 2-26x +k =(2x +1)·R.令2x +1=0,x =-12,得2×(-12)3+(-12)2-26×(-12)+k =0,-14+14+13+k =0,k =-13。
因式分解题及答案
![因式分解题及答案](https://img.taocdn.com/s3/m/acfe3088dd3383c4bb4cd2c6.png)
因式分解题及答案【篇一:因式分解练习题(计算)[含答案]】>一、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2; 11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; 13.ab2-ac2+4ac-4a; 14.x3n+y3n;15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3; 17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3; 20.x2+4xy+3y2; 21.x2+18x-144;22.x4+2x2-8; 23.-m4+18m2-17; 24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24; 27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2; 29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48; 31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b; 33.m4+m2+1; 34.a2-b2+2ac+c2; 35.a3-ab2+a-b; 36.625b4-(a-b)4;37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;39.m2-a2+4ab-4b2; 40.5m-5n-m2+2mn-n2.二、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数. 3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小. 8.两个连续偶数的平方差是4的倍数.参考答案一、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y). 21.(x-6)(x+24).27.(3+2a)(2-3a).31.(x+y)(x-y-1).38.(x+2y-7)(x+2y+5).【篇二:中考试题分类因式分解(含答案)】一、选择题1.(2008安徽)下列多项式中,能用公式法分解因式的是()a.答案:c2. (2008宁夏)下列分解因式正确的是()a.c.答案:c3. (08绵阳市)若关于x的多项式x2-px-6含有因式x-3,则实数p的值为().a.-5 b.5 c.-1 d.1 答案:a4. (2008 台湾)有两个多项式m=2x+3x+1,n=4x-4x-3,则下列哪一个为m与n的公因式?() c(a) x+1 (b) x-1 (c) 2x+1 (d) 2x-1答案:c 5. (08赤峰)把a.2 答案:a 二.填空题1.(2008年四川省宜宾市)因式分解:3y-27= .答案:222b. c. d.b.d.分解因式得:b.3c.,则的值为() d.2.(2008年浙江省衢州市)分解因式:答案:- 1 -3.(08浙江温州)分解因式:答案:.4.(08山东日照)分解因式:答案:=____________.6、(2008浙江义乌)因式分解:答案:..7(2008浙江金华)、如果x+y=-4,x-y=8,那么代数式答案:-32;8.(2008浙江宁波) 分解因式答案:=2的值是cm。
中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学
![中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学](https://img.taocdn.com/s3/m/20ef722f33d4b14e84246860.png)
专题02 代数式和因式分解一、选择题1.(2017年某某省某某地区第3题)下列计算正确的是( ) A .a 3•a 3=a 9B .(a+b )2=a 2+b 2C .a 2÷a 2=0 D .(a 2)3=a6【答案】D. 【解析】试题分析:A 、原式=a 6,不符合题意;B 、原式=a 2+2ab+b 2,不符合题意; C 、原式=1,不符合题意;D 、原式=a 6,符合题意, 故选D考点:整式的混合运算2.(2017年某某省黔东南州第3题)下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2C .6ab 2÷(﹣2ab )=﹣3bD .a (a+b )=a 2+b 【答案】C 【解析】考点:整式的混合运算3. (2017年某某省某某市第7题)下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B 【解析】考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方4.(2017年某某省某某市第14题)计算()()224x y x yxy+--的结果为()A.1 B.12C.14D.0【答案】A【解析】考点:约分5.(2017年某某省第4题)下列运算正确的是()A.(﹣a5)2=a10B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【答案】A【解析】试题分析: A.根据幂的乘方,可得(﹣a5)2=a10,故A正确;B.根据单项式乘以单项式,可得2a•3a2=6a3,故B错误;C.根据合并同类项法则,可得﹣2a+a =a,故C错误;D.根据单项式除以单项式法则,可得﹣6a6÷2a2=﹣3a4,故D错误;故选:A考点:整式的混合运算6.(2017年某某省东营市第2题)下列运算正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .|3﹣2|=2﹣3 C .8﹣3=5 D .﹣(﹣a+1)=a+1【答案】B 【解析】考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号 7. (2017年某某省某某市第2题)下列运算正确的是( ) A .2222a a a = B .224a a a +=C .22(12)124a a a +=++D .2(1)(1)1a a a -++=- 【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知a 2•a 2=a 4,此选项错误; B 、根据合并同类项法则,可知a 2+a 2=2a 2,此选项错误; C 、根据完全平方公式,可知(1+2a )2=1+4a+4a 2,此选项错误; D 、根据平方差公式,可知(﹣a+1)(a+1)=1﹣a 2,此选项正确; 故选:D .考点:1、平方差公式;2、合并同类项;3、同底数幂的乘法;4、完全平方公式8. (2017年某某省某某市第5题)化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x-【答案】A 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到:原式=2222211x x x x x-+-÷=222(1)(1)(1)x x x x x -⋅+-=11x x -+ , 故选:A考点:分式的混合运算9. (2017年某某省威海市第3题)下列运算正确的是( ) A .422743x x x =+ B .333632x x x =⋅ C .32a a a =÷- D .363261)21(b a b a -=-【答案】C 【解析】考点:1、整式的混合运算,2、负整数指数幂10.(2017年某某省潍坊市第1题)下列计算,正确的是().A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)(【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知原式=a 5,故A 错误; B 、根据同底数幂相除,可知原式=a 2,故B 错误; C 、根据合并同类项法则,可知原式=2a 2,故C 错误;D 、根据幂的乘方,底数不变,指数相乘,可知422a a =)(,故正确. 故选:D考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方11. (2017年某某省潍坊市第9题)若代数式12--x x 有意义,则实数x 的取值X 围是(). A.1≥x B.2≥x C.1>x D.2>x 【答案】B 【解析】试题分析:根据二次根式有意义的条件可知:2010x x -⎧⎨-⎩≥>,解得:x ≥2.故选:B考点:二次根式有意义的条件12. (2017年某某省某某市第4题)下列运算正确的是( )A .235()a a = B .235a a a ⋅= C .1a a -=- D .22()()a b a b a b +-=+【答案】B. 【解析】试题分析:选项A ,原式=a 6;选项B ,原式=a 5;选项C ,原式=1a;选项D ,原式=a 2﹣b 2,故选B. 考点:整式的运算.13.(2017年某某省内江市第8题)下列计算正确的是( ) A .232358x y xy x y += B .222()x y x y +=+ C .2(2)4x x x -÷= D .1y x x y y x+=-- 【答案】C . 【解析】考点:分式的加减法;整式的混合运算.14. (2017年某某省某某市第7题)下列运算正确的是( ) A.358x x x +=B.3515x x x +=C.()()2111x x x +-=-D.()5522x x =【答案】C. 【解析】试题分析:选项A ,不是同类项,不能够合并,选项A 错误;选项B ,不是同底数幂的乘法,不能够计算,选项B 错误;选项C ,根据平方差公式,选项C 计算正确;选项D ,根据积的乘方可得原式=532x =,选项D 错误,故选C. 考点:整式的计算.15. (2017年某某省某某市第6题)下列计算正确的是 ( )A .5510a a a += B . 76a a a ÷= C. 326a a a = D .()236a a -=-【答案】B 【解析】考点:幂的性质16. (2017年某某省六盘水市第3题)下列式子正确的是( ) A.7887m n m nB.7815m n mnC.7887m n n mD.7856m n mn 【答案】C.试题分析:选项C 、利用加法的交换律,此选项正确;故选C. 考点:整式的加减.17. (2017年某某省六盘水市第8题)使函数3y x 有意义的自变量的取值X 围是( )A. 3≥xB. 0≥xC.3≤xD.0≤x【答案】C .试题分析:根据二次根式a ,被开方数0≥a 可得3-x ≥0,解得x ≤3,故选C . 考点:函数自变量的取值X 围.18. (2017年某某省某某市第2题)下列运算正确的是 A .()235xx = B .()55x x -=- C .326x x x ⋅= D .235325x x x +=【答案】B . 【解析】考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 19. (2017年某某省黄冈市第2题)下列计算正确的是( ) A . 235x y xy += B .()2239m m +=+ C . ()326xy xy = D .1055a a a ÷=【答案】D 【解析】试题分析:A 、原式中的2x 与3y 不是同类项,不能进行加减计算,故不正确;B 、根据完全平方公式()2222a b a ab b ±=±+,可知22(3)69m m m +=++,故不正确;C 、根据积的乘方,等于各项分别乘方,可得2336()xy x y =,故不正确; D 、根据同底数幂相除,底数不变,指数相减,可知1055a a a ÷=,故正确. 故选:D考点:整式的运算20.(2017年某某省某某市第2题)下列计算正确的是( ) A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =【答案】C 【解析】考点:1、同类项,2、同类二次根式,3、单项式乘以多项式,4、积的乘方二、填空题1.(2017年某某省某某地区第16题)分解因式:2x2﹣8xy+8y2=.【答案】2(x﹣2y)2【解析】试题分析:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.考点:提公因式法与公式法的综合运用2.(2017年某某省某某市第12题)若a﹣b=1,则代数式2a﹣2b﹣1的值为.【答案】1.【解析】试题分析:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.考点:代数式求值3.(2017年某某省黔东南州第13题)在实数X围内因式分解:x5﹣4x=.【答案】x(x2+3)(x)【解析】试题分析:先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.)(x即原式=x(x4﹣22)=x(x2+2)(x2﹣2)=x(x2+2)(故答案是:x(x2+3)()(x)考点:实数X围内分解因式4.(2017年某某省荆州市第12题)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m-7n的算术平方根是_________.【答案】4【解析】考点:1、算术平方根;2、同类项;3、解二元一次方程组 5. (2017年某某某某市第14题)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是. 【答案】±1 【解析】试题分析:这里首末两项是x 和12这两个数的平方,那么中间一项为加上或减去x 和12积的2倍,故﹣a=±1,求解得a=±1, 故答案为:±1. 考点:完全平方式6.(2017年某某省东营市第12题)分解因式:﹣2x 2y+16xy ﹣32y=. 【答案】﹣2y (x ﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y (x 2﹣8x+16)=﹣2y (x ﹣4)2故答案为:﹣2y (x ﹣4)2 考点:因式分解7.(2017年某某省潍坊市第13题)计算:212(1)11x x x --÷-- = .【答案】x+1【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,从而可以解212(1)11x x x --÷-- =11(1)(1)12x x x x x --+-⋅-- =2(1)(1)12x x x x x -+-⋅--=x+1,故答案为:x+1. 考点:分式的混合运算8. (2017年某某省潍坊市第14题)因式分解:=-+-)2(22x x x .【答案】(x+1)(x ﹣2) 【解析】考点:因式分解﹣提公因式法9. (2017年某某省某某市第10题)函数1y x =+的自变量x 的取值X 围是.【答案】x ≥﹣1. 【解析】试题分析:由题意得,x+1≥0,解得x ≥﹣1. 考点:函数自变量的取值X 围.10. (2017年某某省某某市第11题)把多项式2312x -因式分解的结果是. 【答案】3(x ﹣2)(x+2). 【解析】试题分析:先提取公因式,再利用平方差公式进行二次分解即可,即3x 2﹣12=3(x 2﹣4)=3(x ﹣2)(x+2). 考点:因式分解.11.(2017年某某省内江市第13题)分解因式:231827x x -+=. 【答案】23(3)x - . 【解析】试题分析:231827x x -+=23(69)x x -+=23(3)x -.故答案为:23(3)x -.考点:提公因式法与公式法的综合运用. 12.(2017年某某省内江市第14题)在函数123y x x =+--中,自变量x 的取值X 围是. 【答案】x ≥2且x ≠3.考点:函数自变量的取值X 围.13.(2017年某某省内江市第22题)若实数x 满足2210x x --=,则322742017x x x -+-=. 【答案】﹣2020. 【解析】 试题分析:∵2210x x --=,∴221x x =+,322742017x x x -+-=2(21)7(21)42017x x x x +-++-=24214742017x x x x +--+-=2482024x x --=4(21)82024x x +--=4﹣2024=﹣2020,故答案为:﹣2020. 考点:因式分解的应用;降次法;整体思想.14. (2017年某某省某某市第11题)因式分解23a a +=. 【答案】3(3a+1). 【解析】试题分析:直接提公因式a 即可,即原式=3(3a+1). 考点:因式分解.15. (2017年某某省某某市第13题)2121x xx x x +⋅=++. 【答案】11x +. 【解析】 试题分析:原式=211(1)1x x x x x +⋅=++. 考点:分式的运算.16.(2017年某某省六盘水市第14题)计算:2017×1983. 【答案】3999711.试题分析:2017×1983=()()399971117200017200017200022=-=-+考点:平方差公式.17.(2017年某某省日照市第13题)分解因式:2m 3﹣8m=.【答案】2m (m+2)(m ﹣2).试题分析:提公因式2m ,再运用平方差公式对括号里的因式分解即可,即2m 3﹣8m=2m (m 2﹣4)=2m (m+2)(m ﹣2).考点:提公因式法与公式法的综合运用.18. (2017年某某省某某市第10题)因式分解:269x x -+=. 【答案】(x-3)2. 【解析】试题解析:x 2-6x+9=(x-3)2. 考点:因式分解-运用公式法.19. (2017年某某省黄冈市第8题)分解因式:22mn mn m -+=____________. 【答案】m (n-1)2考点:分解因式20. (2017年某某省黄冈市第11题) 化简:23332xx x x x -⎛⎫+= ⎪---⎝⎭_____________. 【答案】1 【解析】试题分析:原式变形后,利用乘法分配律计算,再约分化简即可得23()332x x x x x -+⋅---=23()332x x x x x --⋅---=222x x x ---=1. 考点:分式的运算21.(2017年某某省某某市第13题)分解因式:=++2422a a . 【答案】2(a+1)2【解析】一般步骤:一提(公因式)、二套(平方差公式()()22-=+-a b a b a b ,完全平方公式()2222±+=±a ab b a b)、三检查(彻底分解),可以先提公因式2,再用完全平方分解为2(a+1)2.故答案为:2(a+1)2考点:因式分解22.(2017年某某省某某市第16题)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.【答案】30﹣2t【解析】考点:列代数式三、解答题1.(2017年某某省某某地区第22题)先化简,再求值:(2221x xx x-+-+2242xx x-+)÷1x,且x为满足﹣3<x<2的整数.【答案】【解析】试题分析:首先化简(2221x xx x-+-+2242xx x-+)÷1x,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值X围,求出算式的值是多少即可.试题解析:(2221x xx x-+-+2242xx x-+)÷1x=[2(1)1)xx x--(+(2)(2(2)x xx x+-+)]×x=(1xx-+2xx-)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5考点:分式的化简求值.2.(2017年某某省某某市第18题)化简:(21a++221aa+-)÷1aa-【答案】31aa+.【解析】考点:分式的混合运算3.(2017年某某省黔东南州第18题)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【答案】3x-【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式=221(1).(1)(1) x x x xx x x-+++-=2(1)(1).(1)(1)x x x x x x -++- =x ﹣1,当x=3+1时,原式=3. 考点:分式的化简求值4. (2017年某某某某市第19题)先化简,再求值.165)121(2-+-÷--x x x x ,其中x 从0,1,2,3,四个数中适当选取.【答案】12x -,-12【解析】考点:分式的化简求值5.(2017年某某省东营市第19题)(1)计算:6cos45°+(13)﹣1+3﹣1.73)0+|5﹣2|+42017×(﹣0.25)2017(2)先化简,再求值:(31a +﹣a+1)÷244412a a a a -+++-﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.【答案】(1)8(2)﹣a ﹣1,当a=0时,原式=﹣0﹣1=﹣1 【解析】考点:1、分式的化简求值,2、实数的运算,3、殊角的三角函数值,4、负整数指数幂,5、零指数幂,6、绝对值,7、幂的乘方6. (2017年某某省威海市第19题)先化简)111(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的X 围内选取一个合适的整数作为x 的值代入求值.【答案】1x -,12【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后在﹣<x <中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.试题解析:22211(1)11x x x x x x -+-÷-+-+ =2(1)1(1)(1)(1)(1)1x x x x x x x ----+÷+-+=211111x x x x x -+⋅+--+ =1(1)x x x --- =1x-∵﹣5<x <5且x+1≠0,x ﹣1≠0,x ≠0,x 是整数, ∴x=﹣2时,原式=﹣12-=12. 考点:1、分式的化简求值,2、估算无理数的大小 7. (2017年某某省某某市第18题)先化简,再求值21639a a ---,其中1a =. 【答案】原式=13a +,当a=1时,原式=14. 【解析】考点:分式的化简求值.8. (2017年某某省某某市第16题)化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =-.【答案】11x +,33【解析】考点:分式的化简求值9.(2017年某某省日照市第17题)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=.【答案】(1)3+1;(2)原式= 221a --,当2=2-.试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式==3﹣2﹣1+(1﹣32)×4 =3-2-1+4-23 =-3+1; (2)原式=21111(1)1a a a a a ++-÷+--考点:分式的化简求值;实数的运算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.(2008安徽)下列多项式中,能用公式法分解因式的是()
A.B.C.D.
答案:C
2. (2008宁夏)下列分解因式正确的是()
A.B.
C.D.
答案:C
3. (08绵阳市)若关于x的多项式x2-px-6含有因式x-3,则实数p的值为().
A.-5 B.5 C.-1 D.1
答案:A
4. (2008 台湾)有两个多项式M=2x2+3x+1,N=4x2-4x-3,则下列哪一个为M与N的
公因式( ) C
(A) x+1 (B) x-1 (C) 2x+1 (D) 2x-1
答案:C
5. (08赤峰)把分解因式得:,则的值为()
A.2 B.3 C.D.
答案:A
二.填空题
1.(2008年四川省宜宾市)因式分解:3y2-27= .
答案:
2.(2008年浙江省衢州市)分解因式:
答案:
3.(08浙江温州)分解因式:.
答案:
4.(08山东日照)分解因式:=____________.
答案:
6、(2008浙江义乌)因式分解:..
答案:
7(2008浙江金华)、如果x+y=-4,x-y=8,那么代数式的值是cm。
答案:-32;
8.(2008浙江宁波) 分解因式.
答案:
9.(2008山东威海)分解因式=.
答案:
10.(2008年山东省滨州市)分解因式:(2a+b)2-8ab=_______________.
答案:
11.(2008年山东省临沂市)分解因式:=___________.
答案:a(3+a)(3-a)
12.(2008年山东省潍坊市)分解因式x3+6x2-27x=________________.
答案:. x(x-3)(x+9)
13.(2008年辽宁省十二市)分解因式:.
答案:
14.(2008年浙江省绍兴市)分解因式
答案:
15.(2008年沈阳市)分解因式:.
答案:
16.(2008年四川巴中市)把多项式分解因式,结果为.
答案:
17.(2008年大庆市)分解因式:.
答案:
18.(2008福建省泉州市)分解因式:=_______________。
答案:(x+2)(x-2)
19.(2008年湖南省邵阳市)分解因式:.
答案:
20.(2008 江西南昌)分解因式:= .
答案:x(x+2)(x-2)
21.(2008年浙江省衢州)分解因式:
答案:
22.(2008年山东省)分解因式:=____________.答案:
23.(2008年上海市)分解因式:.
答案:
24.(2008年山东省威海市)分解因式=.答案:
25.(2008年江苏省无锡市)分解因式:.答案:
26.(2008年江苏省苏州市)分解因式:.答案:
27.(2008北京)分解因式:.
答案:
28.(2008年云南省双柏县)分解因式:.答案:(x+1)(x-1)
29.(2008湖南郴州).因式分解:____________
答案:
30.(2008山东济南)分解因式:x2+2x-3=_________.
答案:(x+3)(x-1)
31.(2008江苏宿迁)因式分解.
答案:
32.(2008 湖南怀化)分解因式:.
答案:
33.(2008 重庆)分解因式:.
答案:
34.(2008 江西)分解因式:= .
答案:
35.(2008黑龙江哈尔滨)把多项式2mx2-4mxy+2my2分解因式的结果是.
答案:
36.(2008湖北黄冈)分解因式:;化简:;
答案:a(a-1);3
37.(2008贵州贵阳)分解因式:.
答案:(x+2)(x-2)
38.(2008广东深圳)分解因式:;
答案:
39.(2008山西太原)分解因式x(x+4)+4的结果是。
;
答案:
40. (2008 山东聊城)分解因式.
答案:
41.(2008山东泰安)将分解因式的结果是.
答案:;
42.(2008四川内江)分解因式:.
答案:
43.(2008山东德州)分解因式:=____________.
答案:
44.(2008山东济宁)分解因式:.
答案:
45.(2008江苏淮安)分解因式:a2-4=______________
答案:(a+2)(a-2)
46.(2008云南省)分解因式:_______________________.
答案:
47.(2008浙江温州)分解因式:.
答案:
48.(2008常德市)分解因式:=
答案:m(a+b)(a-b)
49.(2008广东肇庆市)因式分解:= .
答案:(x-1)2
50.(2008仙桃等)分解因式:= .
答案:
51.(2008浙江台州)因式分解:.
答案:
52.(2008广东中山)分解因式=_____ _____;
答案:(a + b)(m + n)
53. (2008四川凉山州)分解因式.
答案:
54. (2008青海)分解因式:.
答案:
55.(2008青海西宁)分解因式:;
答案:
56. (2008福建龙岩)分解因式:.
答案:a ( a + b )
57.(2008南宁)因式分解:
答案:
58.(2008东营)分解因式:=____________
答案:
59. (2008福建福州)因式分解:.
答案:(x+2)2
60.(2008年广东茂名)分解因式:3-27=
答案:(+3)(-3)
61.(2008年广东湛江)分解因式:.
答案:
三、解答题
1.(2008年江苏省南通市)分解因式
解:原式===2.(2008 四川泸州)分解因式
解:原式==
3. (2008湖南株洲)分解因式:
解:原式=
4. (2008广州市)分解因式
解:
5. (2008浙江丽水)因式分解:.
解:原式==
6.(2008遵义)现有三个多项式:,,,请你选择其
中两个进行加法运算,并把结果因式分解。
解:()+()=2-4=(+2)(-2)
"。