因式分解中考真题汇总
初三因式分解题20道
20 道初三因式分解题题目一:x² - 9解析:这是平方差公式的形式,x² - 9 = (x + 3)(x - 3)。
题目二:4x² - 25解析:同样是平方差公式,4x² - 25 = (2x + 5)(2x - 5)。
题目三:x² - 4x + 4解析:完全平方公式,x² - 4x + 4 = (x - 2)²。
题目四:9x² + 6x + 1解析:完全平方公式,9x² + 6x + 1 = (3x + 1)²。
题目五:x² + 5x + 6解析:采用十字相乘法,x² + 5x + 6 = (x + 2)(x + 3)。
题目六:x² - 7x + 12解析:十字相乘法,x² - 7x + 12 = (x - 3)(x - 4)。
题目七:2x² - 5x - 3解析:十字相乘法,2x² - 5x - 3 = (2x + 1)(x - 3)。
题目八:3x² + 4x - 4解析:十字相乘法,3x² + 4x - 4 = (3x - 2)(x + 2)。
题目九:x³ - 27解析:立方差公式,x³ - 27 = (x - 3)(x² + 3x + 9)。
题目十:8x³ + 27解析:立方和公式,8x³ + 27 = (2x + 3)(4x² - 6x + 9)。
题目十一:x² - 6x + 9 - y²解析:先将前三项用完全平方公式变形为(x - 3)²,再用平方差公式,(x - 3)² - y² = (x - 3 + y)(x - 3 - y)。
题目十二:4x² - 12xy + 9y²解析:完全平方公式,4x² - 12xy + 9y² = (2x - 3y)²。
专题03 因式分解(共20题)(解析版)-2023年中考数学真题分项汇编(全国通用)
专题03因式分解(20题)一、单选题1.(2023·河北·统考中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.2.(2023·甘肃兰州·统考中考真题)计算:255a a a -=-()A .5a -B .5a +C .5D .a【答案】D【分析】分子分解因式,再约分得到结果.【详解】解:255a aa --()55a a a -=-a =,故选:D .【点睛】本题考查了约分,掌握提公因式法分解因式是解题的关键.二、填空题3.(2023·山东东营·统考中考真题)因式分解:22363ma mab mb -+=.【答案】()23m a b -122124mx mx -=⎧∴⎨-=⎩或122222mx mx -=⎧⎨-=⎩或122421mx mx -=⎧⎨-=⎩,1236mx mx =⎧∴⎨=⎩或1244mx mx =⎧⎨=⎩或1263mx mx =⎧⎨=⎩,当1236mx mx =⎧⎨=⎩时,1m =时,123,6x x ==;3m =时,121,2x x ==,故()12,x x 为(3,6),(1,2),共2个;当1244mx mx =⎧⎨=⎩时,1m =时,124,4x x ==;2m =时,122,2x x ==,4m =时,121,1x x ==故()12,x x 为(4,4),(2,2),(1,1),共3个;当1263mx mx =⎧⎨=⎩时,1m =时,126,3x x ==;3m =时,122,1x x ==,故()12,x x 为(6,3),(2,1),共2个;综上所述:共有2327++=个.故答案为:7.【点睛】本题考查了整式方程的代入求值、整式方程的整数解,因式分解的应用,及分类讨论的思想方法.本题的关键及难点是运用分类讨论的思想方法解题.6.(2023·江苏无锡·统考中考真题)分解因式:244x x -+=.【答案】()22x -/()22x -【分析】利用完全平方公式进行因式分解即可.【详解】解:244x x -+=()22x -;故答案为:()22x -.【点睛】本题考查因式分解.熟练掌握完全平方公式法因式分解,是解题的关键.7.(2023·湖北恩施·统考中考真题)因式分解:()21x x -+=.【答案】()21x -/()21x -【分析】利用完全平方公式进行因式分解即可.【详解】解:()()2221211x x x x x -+=-+=-;故答案为a (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法分解因式,熟练掌握平方差公式的结构特征是解本题的关键.12.(2023·吉林长春·统考中考真题)分解因式:21a -=.【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.13.(2023·贵州·统考中考真题)因式分解:24x -=.【答案】(+2)(-2)x x 【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-14.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.15.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--=.【答案】()()x y x z +-【分析】先分组,然后根据提公因式法,因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.8=;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.19.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为.【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.20.(2023·湖南张家界·统考中考真题)因式分解:22x y xy y ++=.【答案】()21+y x 【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:2222(21)(1)x y xy y y x x y x ++=++=+,故答案为:2(1)y x +.【点睛】题目主要考查因式分解的方法,熟练掌握提公因式法及公式法是解题关键.。
2022中考真题分类4——因式分解(参考答案)
2022中考真题分类——因式分解(参考答案)1.(2022·广西河池)多项式244x x −+因式分解的结果是( )A .x (x −4)+4B .(x +2)(x −2)C .(x +2)2D .(x −2)2 【答案】D【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x −+=−.故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.2.(2022·四川绵阳)因式分解:32312x xy −=_________. 【答案】()()322x x y x y +−【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y −=+−. 故答案为:()()322x x y x y +−.【点睛】本题考查了因式分解,正确的计算是解题的关键.3.(2022·广西贺州)因式分解:2312m −=__________.【答案】3(2)(2)m m +−【分析】首先提取公因数3,进而利用平方差公式进行分解即可.【详解】解:原式=3(x 2−4)=3(x +2)(x −2);故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键.4.(2022·湖北恩施)因式分解:3269a a a −+=______.【答案】2(3)a a −【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =−+=−,故答案为:2(3)a a −.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.5.(2022·辽宁锦州·)分解因式:2232x y xy y −+=____________. 【答案】2()y x y −【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=−++=−−x y xy y x xy y y x y y ;故答案为:2()y x y −【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.6.(2022·四川内江)分解因式:a 4−3a 2−4=_____.【答案】(a 2+1)(a +2)(a −2)【分析】首先利用十字相乘法分解为()()2214a a +− ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4−3a 2−4=(a 2+1)(a 2−4)=(a 2+1)(a +2)(a −2),故答案为:(a 2+1)(a +2)(a −2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查.7.(2022·黑龙江绥化)因式分解:()()269m n m n +−++=________.【答案】()23m n +−【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:()()269m n m n +−++ ()()22233m n m n =+−⨯⨯++ ()23m n =+−,故答案为:()23m n +−.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.8.(2022·辽宁沈阳)分解因式:269ay ay a ++=______. 【答案】()23a y +【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:269ay ay a ++=()269a y y ++ ()23a y =+; 故答案为:()23a y +.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.9.(2022·贵州黔东南)分解因式:2202240442022x x −+=_______.【答案】()220221x −##()220221x −【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x −+=−; 故答案为()220221x −.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.10.(2022·四川广元)分解因式:a 3−4a =_____.【答案】()()22a a a +−【分析】根据提公因式及平方差公式进行因式分解即可.【详解】解:原式=()()()2422a a a a a −=+−; 故答案为:()()22a a a +−.【点睛】本题主要考查提公因式和公式法进行因式分解,熟练掌握因式分解是解题的关键.11.(2022·湖南常德)分解因式:329x xy −=________.【答案】(3)(3)x x y x y −+【分析】先提取公因式,然后再根据平方差公式即可得出答案.【详解】原式=32229(9)x xy x x y −=−=(3)(3)x x y x y −+.故答案为:(3)(3)x x y x y −+.【点睛】本题考查分解因式,解题的关键是熟练掌握分解因式的方法.12.(2022·湖南怀化)因式分解:24−=x x _____. 【答案】2(1)(1)+−x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)−=−=+−x x x x x x x , 故答案为:2(1)(1)+−x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.13.(2022·内蒙古赤峰)分解因式:32242x x x ++=______. 【答案】22(1)x x +【分析】先提取公因式,再利用完全平方公式进行因式分解.【详解】解:32242x x x ++,22(21)x x x =++,22(1)x x =+,故答案是:22(1)x x +.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式.14.(2022·四川巴中)因式分解:322a a a −+−=______.【答案】2(1)a a −−【分析】先提取公因式,后采用公式法分解即可【详解】∵322a a a −+−=−a 22)1(a a −+=2(1)a a −−故答案为: 2(1)a a −−.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键.15.(2022·山东威海)因式分解24ax a −=___________ 【答案】(2)(2)a x x +−.【详解】试题分析:原式=2(4)(2)(2)a x a x x −=+−.故答案为(2)(2)a x x +−. 考点:提公因式法与公式法的综合运用.16.(2022·贵州黔西)已知2ab =,3a b +=,则22a b ab +的值为_____. 【答案】6【分析】将22a b ab +因式分解,然后代入已知条件即可求值.【详解】解:22a b ab +()ab a b =+23=⨯6=.故答案为:6【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键.17.(2022·四川广安)已知a +b =1,则代数式a 2−b 2 +2b +9的值为________. 【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +−++,可得9a b ++,即可求解.【详解】解:a 2−b 2 +2b +9()()29a b a b b =+−++29a b b =−++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.。
因式分解中考题型汇总
因式分解中考题型汇总题型一:直接提公因式1. 因式分解:xy -y =2.分解因式:2x x +=.3. 分解因式:24_________.x x -=4. 分解因式:2a 2-4a= .5.(因式分解:2x 3-x 2=______________.6.分解因式:ax+ay=.7.分解因式:24_________.x x -=8.分解因式:23x x +=.题型二:直接用公式平方差公式:))((22b a b a b a -+=-完全平方公式:222)(b ab a b a ++=+222)(b ab a b a +-=-1. 分解因式:225x -=.2. 分解因式:24x -=______.3. 因式分解:21a -=,4. 分解因式:x 2-9=______.5.因式分解:229x y -=_______________.6.分解因式:=-142x ____________________.7.分解因式:41242++x x =. 8. (2011山东威海)分解因式:2168()()x y x y --+-=.题型三:先提公因式,再套平方差或者完全平方公式。
A :先提后套平方差1.分解因式:822-x = .2因式分解:x 3-x =.3.分解因式:24_________.x x -=4.分解因式:2218x -= ______________5.分解因式:9a -ab 2=.6. 因式分解:a 3-a =____7.因式分解:x 3-9x =8、分解因式8a 2-2=_________________.9.因式分解:x 3y 2-x 5=.B :先提后套完全平方1.分解因式:22x y xy y -+=________________.2.因式分解3222x x y xy -+=3. 因式分解:a 2b+2ab+b =4因式分解3222x x y xy -+=.5. 因式分解:x x x 4423+-=6. 因式分解:2a 2-4a +2= ______ .分解因式:32214a ab ab -+-=。
中考数学专题复习:因式分解
中考数学专题复习:因式分解一、单项选择题(共6小题)1.下列从左到右的变形是因式分解的是()A.(x-a)(x+a)=x2-a2B.4a2+4a+1=4a(a+1)+1 C.(a+b)2=a2+2ab+b2D.x2-4y2=(x-2y)(x+2y) 2.下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)2 3.已知x-y=2,xy=3,则xy2-x2y的值为()A.5B.6C.-6D.12 4.下列因式分解正确的是()A.a(a-b)-b(a-b)=(a-b)(a+b)B.a2-9b2=(a-3b)2C.a2+4ab+4b2=(a+2b)2D.a2-ab+a=a(a-b)5.已知a-b=2,则a2-b2-4b的值为()A.2B.4C.6D.86.若4x2+(k-1)x+9能用完全平方公式因式分解,则k的值为()A.±6B.±12C.-13或11D.13或-11二、填空题(共4小题)7.分解因式:4-4m2=__________.8.因式分解-a3+2a2-a=__________.9.若x2+ax+4=(x-2)2,则a=__________.10.若a+b=2,ab=2,则12a3b+a2b2+12ab3的值是__________.三、解答题(共6小题)11.将下列各式因式分解:(1)a4-16;(2)-mp2+4mp-4m;(3)(x-3)x2+9(3-x);(4)(m2+2m)2+2(m2+2m)+1.12.已知b2-4b+a2+10a+29=0,求3a+20222⎪⎭⎫⎝⎛b的值。
13.如图,你能用若干个边长为a的小正方形与长、宽分别为a,b的小长方形拼成一个长方形ABCD吗?若能,请画出示意图,再写出表示长方形ABCD面积的一个多项式,并将其因式分解。
初中因式分解经典题型(含详细答案)
初中因式分解经典题型(含详细答案) 初中因式分解经典题型精选第一组:基础题1.a²b+2ab+b答案:b(a+1)²2.2a²-4a+2答案:2(a-1)²3.16-8(m-n)+(m-n)²答案:(4-m+n)²4.a²(p-q)-p+q答案:(p-q)(a+1)(a-1)5.a(ab+bc+ac)-abc答案:a²(b+c)第二组:提升题6.(x-y-1)²-(y-x-1)²答案:-4(x-y)7.ab-ab⁄4答案:ab(a+b)(a-b)8.b-14b²+1答案:(b²+4b+1)(b²-4b+1)9.x+x²+2ax+1-a²答案:(x+1+a)(x+1-a)10.a+a+1答案:2(a+1)11、化简表达式x-2y-2xy+xy x + xy - 2y - 2xyx(1+y) - 2y(1+x)x+y)(x-2y)12、展开表达式(ac-bd)²+(bc+ad)²a²c² - 2abcd + b²d² + b²c² + 2abcd + a²d²a²c² + b²c² + a²d² + b²d²a²+b²)(c²+d²)13、化简表达式x²(y-z)+y²(z-x)+z²(x-y)x²y - x²z + y²z - y²x + z²x - z²yx²y - y²x + z²x + y²z - x²z - z²yx-y)(x²+y²-z²)14、化简表达式x²-4ax+8ab-4b²x-2a)² - (2a-4b)²x-2a+2a-4b)(x-2a-2a+4b)x-4b)(x-2a)15、化简表达式xy²+4xz-xz²-4xx(y²-4) - z(x²-4)x-2)(x+z)(y+2z)16、将a(a²-b²)和b(b²-a²)的公因式提取出来,得到(a-b)(a+b)a和(b-a)(b+a)b,再利用立方差公式,化简为(a-b)²(a+b)(a²b²+a+b)。
中考数学总复习《因式分解》练习题附带答案
中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
中考数学《因式分解》专项练习题及答案
中考数学《因式分解》专项练习题及答案一、单选题1.下列多项式中,能用提公因式法因式分解的是()A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y22.下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.下列因式分解正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y﹣4xy+5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)24.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x)B.ax2(x﹣2)C.ax(x+1)(x﹣1)D.ax(x﹣1)25.下面从左到右的变形是因式分解的是()A.6xy=2x⋅3y B.(x+1)(x−1)=x2−1C.x2−3x+2=x(x−3)+2D.2x2−4x=2x(x−2)6.对于①(x+3)(x−1)=x2+2x−3,②x−3xy=x(1−3y)从左到右的变形,表述正确的是()A.都是因式分解B.都是整式的乘法C.①是因式分解,②是整式的乘法D.①是整式的乘法,②是因式分解7.若x2+kx+16=(x−4)2,那么()A.k=-8,从左到右是乘法运算B.k=8,从左到右是乘法运算C.k=-8,从左到右是因式分解D.k=8,从左到右是因式分解8.把代数式mx2-6mx+9m分解因式,下列结果中正确的是()A.m(x+3)2B.m(x+3)(x-3)C.m(x-4)2D.m(x-3)29.下列等式中,从左到右的变形是因式分解()A.2x2y+8xy2+6=2xy(x+4y)+6B.(5x−1)(x+3)=5x2−14x−3C.x2−y2=(x+y)(x−y)D.x3+y2+2x+1=(x+1)2+y210.下列等式中,从左到右的变形是因式分解的是()A .x(x −2)=x 2−2xB .(x −1)2=x 2−2x −1C .x 2−4=(x +2)(x −2)D .x 2+3x +2=x(x +3)+211.若多项式mx 2-1n 可分解因式为(3x+15)(3x-15),则m 、n 的值为( )A .m=3,n=5B .m=-3,n=5C .m=9,n=25D .m=-9,n=-2512.下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x + 14 =(x ﹣ 12 )2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)二、填空题13.分解因式: 2a 2−2= . 14.分解因式:2 a 3−8a = . 15.因式分解:a 3﹣2a 2b+ab 2= . 16.已知x+y=6,xy=3,则x 2y+xy 2的值为 . 17.因式分解: 3a 2−6a +3 = . 18.分解因式:xy 2﹣9x= .三、综合题19.综合题(1)已知a+b=1,ab= 14 ,利用因式分解求a(a+b)(a-b)-a(a+b)2的值.(2)若x 2+2x=1,试求1-2x 2-4x 的值.20.我们用xyz ̅̅̅̅̅表示一个三位数,其中x 表示百位上的数,y 表示十位上的数,z 表示个位上的数,即xyz̅̅̅̅̅=100x +10y +z . (1)说明abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数; (2)①写出一组a 、b 、c 的取值,使abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,这组值可以是a= ,b= ,c= ;②若abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,则a 、b 、c 三个数必须满足的数量关系是 .21.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a+8 解:原式=a 2+6a+8+1-1=a 2+6a+9-1=(a+3)2-12= [(a +3)+1][(a +3)−1]=(a +4)(a +2)②M=a2-2a-1,利用配方法求M的最小值.解:a2−2a−1=a2−2a+1−2=(a−1)2−2∵(a-b)2≥0,∴当a=1时,M有最小值-2.请根据上述材料解决下列问题:2+2x−3.(1)用配方法...因式分解:x(2)若M=2x2−8x,求M的最小值.(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值.22.由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+)(x+);(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.23.将下列各式分解因式:(1)2x2y−8xy+8y(2)a2(x−y)−9b2(x−y)24.因式分解:(1)−20a−15ax(2)(a−3)2−(2a−6)参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】D 6.【答案】D 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】B13.【答案】2(a+1)(a-1) 14.【答案】2a(a+2)(a-2) 15.【答案】a (a ﹣b )2 16.【答案】18 17.【答案】3(a -1)2 18.【答案】x (y ﹣3)(y+3)19.【答案】(1)解:原式=a(a+b)(a-b-a-b)=-2ab(a+b).∵a+b=1,ab= 14∴原式=-2× 14 ×1=- 12 .(2)解:∵x 2+2x=1, ∴1-2x 2-4x=1-2(x 2+2x) =1-2×1=-1.20.【答案】(1)解:abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅ =100a +10b +c +100b +10c +a +100c +10a +b=111a +111b +111c =111(a +b +c)∵a 、b 、c 都是整数 ∴a +b +c 也是整数∴111(a +b +c)是111的倍数∴abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数 (2)2;4;5(答案不唯一);a +b +c =11或a +b +c =22(1≤a ≤9,1≤b ≤9,1≤c ≤9)21.【答案】(1)解:原式 =x 2+2x −3+4−4=x 2+2x +1−4 =(x +1)2−22 =[(x +1)+2][(x +1)−2]=(x +3)(x −1) ;(2)解: 2x 2−8x =2(x 2−4x)=2(x 2−4x +4−4) =2[(x −2)2−4] =2(x −2)2−8 ∵(x −2)2≥0∴ 当 x =2 时, M 有最小值 −8 ; (3)解: x 2+2y 2+z 2−2xy −2y −4z +5=(x 2−2xy +y 2)+(y 2−2y +1)+(z 2−4z +4)=(x −y)2+(y −1)2+(z −2)2 ∵(x −y)2+(y −1)2+(z −2)2=0∴{x −y =0y −1=0z −2=0解得 {x =1y =1z =2则 x +y +z =1+1+2=4 .22.【答案】(1)2;4(2)解:∵x 2﹣3x ﹣4=0 x 2+(﹣4+1)x+(﹣4)×1=0 ∴(x ﹣4)(x+1)=0 则x+1=0或x ﹣4=0 解得:x=﹣1或x=4.23.【答案】(1)解:原式=2y (x 2﹣4x+4)=2y (x ﹣2)2;(2)解:原式=(x ﹣y )(a 2﹣9b 2) =(x ﹣y )(a+3b )(a ﹣3b ).24.【答案】(1)解: −20a −15ax= −5a×4−5a⋅3x=−5a(4+3x);(2)解:(a−3)2−(2a−6) = (a−3)2−2(a−3)= (a−3)(a−3−2)=(a−3)(a−5)。
中考因式分解专题(难)
中考因式分解专题一(1)a 2-b 2=(a+b)(a -b); (2)a 2±2ab+b 2=(a ±b)2;3)a 3+b 3=(a+b)(a 2-ab+b 2); (4)a 3-b 3=(a -b)(a 2+ab+b 2).(1)33xy y x -(2)x x x 2718323+-(3)()112---x x(4)()()3224x y y x ---【例2】分解因式:(1)22103y xy x --(2)32231222xy y x y x -+(3)()222164x x -+【例3】分解因式:(1)22244z y xy x -+-;(2)b a b a a 2322-+-(3)322222--++-y x y xy x【例4】在实数范围内分解因式:(1)44-x ; ( 2)1322-+x x【例5】已知a 、b 、c 是△ABC 的三边,且满足ac bc ab c b a ++=++222,求证:△ABC为等边三角形。
跟踪训练: 一、填空题: 1、()229=n ;()222=a ;c a b a m m ++1= 。
2、分解因式:222y xy x -+-= ;1872--xy x = ;()()25102++-+y x y x = 。
4、若012=++a a ,那么199920002001a a a ++= 。
5、如果n 222108++为完全平方数,则n = 。
6、m 、n 满足042=-++n m ,分解因式()()n mxy y x +-+22= 。
二、选择题:1、把多项式b a ab -+-1因式分解的结果是( )A 、()()11++b aB 、()()11--b aC 、()()11-+b aD 、()()11+-b a 2、如果二次三项式12-+ax x 可分解为()()b x x +-2,则b a +的值为( )A 、-1B 、1C 、-2D 、2 3、若22169y mxy x ++是一个完全平方式,那么m 的值是( )A 、24B 、12C 、±12D 、±24 4、已知1248-可以被在60~70之间的两个整数整除,则这两个数是( )A 、61、63B 、61、65C 、61、67D 、63、65 三、解答题:1、因式分解:(1)118146-++-n n n x x x (2)()()8323222-+-+x x x x(3)122222++--+a b ab b a (4)()()()()14321+++++x x x x(5)()()ab b a 41122--- (6)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(7)a 2+b 2+c 2-2bc+2ca -2ab ;一、填空题:1、n 3±,a 2±,()c ab a m+;2、()2y x --,()()29+-x x ,()25-+y x4、0;5、10或4;6、()()22-+++y x y x 二、选择题:DADD 三、解答题1、(1)()()43121---x x xn ; (2)()()()()1421-+++x x x x(3)()21+-b a ; (4)()2255++x x (5)()()b a ab b a ab ---++-11(6)原式=-2xn-1y n(x 4n -2x 2ny 2+y 4)=-2x n-1y n [(x 2n)2-2x 2ny 2+(y 2)2] =-2x n-1y n (x 2n -y 2)2 =-2x n-1y n (x n -y)2(x n +y)2.(7)原式=(a 2-2ab+b 2)+(-2bc+2ca)+c 2=(a -b)2+2c(a -b)+c 2=(a -b+c)2.参考答案例子1、分析:①因式分解时,无论有几项,首先考虑提取公因式。
中考数学《因式分解》专题训练(附带答案)
中考数学《因式分解》专题训练(附带答案)一、单选题1.下列分解因式中,完全正确的是()A.x3-x=x(x2-1)B.4a2-4a+1=4a(a-1)+1C.x2+y2=(x+y)2D.6a-9-a2=-(a-3)22.下列等式正确的是()A.(a﹣b)2=a2﹣b2B.9a2﹣b2+6ab=(3a﹣b)2C.3a2+2ab﹣b2=(3a﹣b)(a+b)D.3.把多项式x2+3x−54分解因式,其结果是()A. (x+6 ) (x−9 )B. (x−6 ) (x+9 )C. (x+6 ) (x+9 )D. (x−6 ) (x−9 )4.下列多项式中,不能用公式法因式分解的是()A.x2+xy B.x2+2xy+y2C.﹣x2+y2D.14x2﹣xy+y25.下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+16.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为( ) A.35B.70C.140D.2807.把x2﹣4x+c分解因式得:x2﹣4x+c=(x﹣1)(x﹣3),则c的值为()A.3B.4C.﹣3D.﹣48.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣19.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)10.下列因式分解错误的是()A.x2+xy=x(x+y)B.x2−y2=(x+y)(x−y)C.x2+6x+9=(x+3)2D.x2+y2=(x+y)211.把代数式ax2-4ax+4a因式分解,下列结果中正确的是()A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2)12.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )二、填空题13.分解因式:x 2﹣3x ﹣4= ;(a+1)(a ﹣1)﹣(a+1)= . 14.因式分解:x 2−8x −9= .15.把多项式a 3-4a 分解因式的结果是 。
中考复习_因式分解
因式分解一、选择题1.(2011泰安,5,3分)下列等式不成立的是()A.m2-16=(m-4)(m+4)B.m2+4m=m(m+4)C.m2-8m+16=(m-4)2D.m2+3m+9=(m+3)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:由平方差公式,提公因式以及完全平方公式分解因式的知识求解即可求得答案.解答:解:A.m2-16=(m-4)(m+4),故本选项正确;B.m2+4m=m(m+4),故本选项正确;C.m2-8m+16=(m-4)2,故本选项正确;D.m2+3m+9≠(m+3)2,故本选项错误.故选D.点评:此题考查了因式分解的知识.注意因式分解的步骤:先提公因式,再用公式法分解,注意分解要彻底.2.(2011•丹东,4,3分)将多项式x3﹣xy2分解因式,结果正确的是()A、x(x2﹣y2)B、x(x﹣y)2C、x(x+y)2D、x(x+y)(x﹣y)考点:提公因式法与公式法的综合运用。
分析:先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a﹣b)(a+b).解答:解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),故选:D.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.3.(2011福建龙岩,10,4分)现定义运算―★‖,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=33﹣3×3+5,若x★2=6,则实数x的值是()A.﹣4或﹣1B.4或﹣1C.4或﹣2D.﹣4或2考点:解一元二次方程-因式分解法.分析:根据新定义a★b=a2﹣3a+b,将方程x★2=6转化为一元二次方程求解.解答:解:依题意,原方程化为x2﹣3x+2=6,即x2﹣3x﹣4=0,分解因式,得(x+1)(x﹣4)=0,解得x1=﹣1,x2=4.故选B.点评:本题考查了因式分解法解一元二次方程.根据新定义,将方程化为一般式,将方程左边因式分解,得出两个一次方程求解.4.(2011天水,4,4)多项式2a2﹣4ab+2b2分解因式的结果正确的是()A、2(a2﹣2ab+b2)B、2a(a﹣2b)+2b2C、2(a﹣b)2D、(2a﹣2b)2考点:提公因式法与公式法的综合运用。
初三因式分解练习题及答案40题
初三因式分解练习题及答案40题一、单项选择题1. x² + 4x + 4 的因式分解形式是:A) (x + 2)²B) (x - 2)²C) (x + 4)²D) (x - 4)²2. 2x² + 3x - 2 的因式分解形式是:A) (2x - 1)(x + 2)B) (2x + 1)(x - 2)C) (2x + 2)(x - 1)D) (2x - 2)(x + 1)3. x² - 36 的因式分解形式是:A) (x - 6)(x + 6)B) (x - 12)(x + 12)C) (x - 18)(x + 18)D) (x - 9)(x + 9)4. 3x² - 7x + 2 的因式分解形式是:A) (3x - 2)(x - 1)B) (3x + 2)(x + 1)C) (3x - 1)(x - 2)D) (3x + 1)(x + 2)5. x³ - 12x 的因式分解形式是:A) x(x - 6)(x + 6)B) x(x - 2)(x + 2)C) x(x - 4)(x + 4)D) x(x - 3)(x + 3)二、填空题1. 16a² - 4b²的因式分解形式是:() ×()2. 2xy² + 5x²y 的因式分解形式是:() ×()3. 4x² - 12xy + 9y²的因式分解形式是:() ×()4. 9a³ - 27a²b + 18ab²的因式分解形式是:() ×()5. 6x³y - 9xy² + 15x²y 的因式分解形式是:() ×() ×()三、解方程1. 解方程 x² - 2x - 15 = 0 的因式分解形式是:() ×()2. 解方程 4x² - 4x - 12 = 0 的因式分解形式是:() ×()3. 解方程 3x² + 11x + 6 = 0 的因式分解形式是:() ×()4. 解方程 x² - 16 = 0 的因式分解形式是:() ×()5. 解方程 x² + 14x + 48 = 0 的因式分解形式是:() ×()四、综合题解方程组:1. 2x + y = 7x - y = 1的解为:(),()2. 3x - 4y = 22x + 5y = 17的解为:(),()3. x - 2y - z = 02x + y - 3z = -1x + 2y + 3z = 6的解为:(),(),()4. 3x + 2y + z = 6x - y + 2z = 102x - 3y - 2z = -10的解为:(),(),()5. x + y + z = 22x - y + 3z = 17x + 3y + 2z = 8的解为:(),(),()答案:一、1. A 2. A 3. A 4. A 5. A二、1. (4a + 2b)(4a - 2b) 2. xy(2y + 5x) 3. (2x - 3y)² 4. 3a(a - b)(3a - 2b) 5. 3xy(2x - 3y + 5)三、1. (x - 5)(x + 3) 2. 2(x - 2)(x + 3) 3. (x + 2)(x + 3) 4. (x - 4)(x + 4)5. (x + 6)(x + 8)四、1. (2, 5) (-1, 0) 2. (2, 1) (5, 3) 3. (1, 2, 1) (2, -2, -2) 4. (1, 2, 3) (-2, 1, 3) 5. (2, 3, -3) (-1, 2, 3)。
因式分解经典实例及解析50题(打印版)
12.(分解因式):4小瓶—4十九—炉机+人2九
解:原式=4q2(m 一九)一炉(加一九)
=(4。2 —》2)(加—九)
=(2Q + b)(2α —
一九)
13.(分解因式):%(% - 2) -(y + l)(y - 1) 解:原式二%2 - 2% - V + 1 二(/ - 2% + 1) -y2 = (% — I)? — y2 =(% — 1 + y)(% - 1 - y)
10.(分解因式):/ 一 4孙+ 8y + 4y2 一轨 解:原式二(/ - 4%y + 4y2) + (8y - 4%) =(% — 2y7 — 4(% — 2y) =(% - 2y)(% - 2y - 4)
11.(分解因式):%4 - 2/ + %2 - 36 解:原式=%2(%2 一 2% + 1) - 36 =%2(χ - 1)2 — 36 = [%(% — 1) + 6] [%(% — 1) — 6] =(%2 — % + 6)(%2 _ % _ 6) =(%? — % + 6)(% — 3)(% + 2)
二.答案解析
L(分解因式):α% — b% + αy — by 解:原式=%(α - b) + y(α - b)
=(α-b)(% + y)
2.(分解因式):2mα — IOmb + 5献)一九Q 解:原式=2m(α — 5b)—九(G — 5b) =(2租 一 九)(Q _ 5b)
3.(分解因式):/ — %y + * - yz 解:原式二%(% - y) + z(% - y) 二(% + z)(% — y)
因式分解中考真题汇总
精品文档因式分解中考真题汇总三一、选择题1. 〔 2021 山东济宁〕把代数式3x36x2 y3xy2分解因式,结果正确的选项是A.x(3 x y)( x 3 y)B.3x(x22xy y2 )C.x(3 x y)2D.3x( x y)2【答案】 D2.〔 2021 四川眉山〕把代数式 mx26mx9m 分解因式,以下结果中正确的选项是A. m( x3)2B. m( x 3)(x3)C. m( x 4) 2D. m( x 3)2【答案】 D3.〔 2021 台湾〕以下何者为 5x217 x 12的因式?(A) x 1 (B) x 1(C) x 4 (D) x4。
【答案】 C4.〔 2021贵州贵阳〕以下多项式中,能用公式法分解因式的是〔A〕x2xy〔B〕x2xy〔C〕x2y 2〔D〕x2y 2【答案】 D5.〔 2021 四川自贡〕把 x2-y2- 2y -1 分解因式结果正确的选项是〔〕。
A.〔 x+ y+1〕(x - y- 1)B.〔 x+ y-1〕(x -y -1)C.〔 x+ y-1〕(x + y+ 1)D.〔 x- y+1〕(x +y +1)【答案】 A6.〔 2021 宁夏回族自治区〕把多项式x32x2x分解因式结果正确的选项是〔〕A.x( x22x)B.x2( x2)C.x(x1)(x 1)D.x( x1)2【答案】 D二、填空题1.〔 2021 江苏苏州〕分解因式 a2- a=▲.【答案】2.〔2021 安徽芜湖〕因式分解: 9x2-y2-4 y- 4=.【答案】3.〔2021 广东广州, 15 , 3 分〕因式分解: 3ab2+ a2 b=.【答案】 ab (3b+ a)4.〔 2021 江苏南通〕分解因式:ax2ax =▲.【答案】 ax〔 x-1〕5.〔 2021 江苏盐城〕因式分解:2a24a▲.【答案】 2a( a-2)6.〔 2021 浙江杭州〕分解因式m 3–4m =.【答案】 m(m +2)( m –2)7.〔 2021 浙江嘉兴〕因式分解:2mx24mx 2m▲.【答案】 2m(x1) 28.〔 2021 浙江绍兴〕因式分解:x2y9 y =.【答案】 y( x 3)( x3)29.〔2021 浙江省温州〕分解因式: m— 2m=.【答案】 m〔 m-2〕10.〔 2021 浙江台州市〕因式分解:x216=▲.【答案】 ( x 4)( x 4)11.〔2021 山东聊城〕分解因式:4x2- 25=.【答案】〔 2x+5〕〔 2x- 5〕12.〔 2021 福建德化〕分解因式:a24a 4 =_______________【答案】 ( a2) 213.〔 2021福建晋江〕分解因式:x2 6 x _________.【答案】 x( x6)14.〔 2021 江苏宿迁〕因式分解:a2 1 =▲.【答案】 (a+1)(a-1)15.〔 2021 浙江金华〕分解因式x29▲.【答案】 (x- 3)( x+3)16.〔 2021山东济南〕分解因式2x2-8=_____.【答案】 2(x+2)( x-2)17.〔 2021浙江衢州〕分解因式:x2- 9=.全品中考网【答案】 (x+3)( x- 3)18.〔2021 福建福州〕因式分解:x2- 1=.【答案】〔 x+1〕〔 x-1〕19.〔2021 江苏无锡〕分解因式:4a 21▲.【答案】 (2 a 1)(2a1)20.〔2021 年上海〕分解因式: a 2─ a b =.【答案】 a〔 a─b〕21.〔2021 四川宜宾〕分解因式:2a2–4a + 2=【答案】 2(a-1) 222.〔 2021黄冈〕分解因式:x2-x=__________.【答案】 x〔x+1 〕(x - 1)23.〔 2021山东莱芜〕分解因式:x3 2 x2x.【答案】x( x1)224.〔 2021 广东珠海〕分解因式ax2ay2=________________.【答案】 a(x+y)(x-y)25.〔 2021 福建宁德〕分解因式: ax2+2axy+ ay2= ______________________.【答案】 a(x + y) 226. 2021 江西〕因式分解:2a28.【答案】 2(a 2)( a2)27.〔 2021 四川巴中〕把多项式3x23x 6 分解因式的结果是【答案】 3〔x-1 〕228.〔 2021江苏常州〕分解因式: a24b2=。
中考专题训练(因式分解)—解析版
【详解】试题分析: = = .
19.(2020•青海)分解因式:﹣2ax2+2ay2=﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x);
【解答】解:﹣2ax2+2ay2=﹣2a(x2﹣y2)
=﹣2a(x﹣y)(x+y);
【详解】解:原式= =a(b+1)(b﹣1),
12.(2020年天水市)分解因式: _________.
【详解】解:
=
= .
13.(2020年贵州省黔东南州)在实数范围内分解因式:xy2﹣4x=x(y+2)(y﹣2).
【解答】解:xy2﹣4x
=x(y2﹣4)
=x(y+2)(y﹣2).
14.(2020年湖南省怀化市)若因式分解: __________.
【详解】
9.(2020年江苏省盐城市)因式分解: ____.
【解析】直接利用平方差公式分解:x2-y2=(x+y)(x-y).
三、先提公因式,再使用平方差公式
10.(2020•宁波)分解因式:2a2﹣18=2(a+3)(a﹣3).
解:2a2﹣18=2(a2﹣9)
=2(a+3)(a﹣3).
11.(2020年安徽省)分解因式: =______.
=a(x﹣y)2.
30.(2020•宁夏)分解因式:3a2﹣6a+3=3(a﹣1)2.
【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.
五、先使用十字相乘法,再使用平方差公式
31.(2020•内江)分解因式:b4﹣b2﹣12=(b+2)(b﹣2)(b2+3).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解中考真题汇总三一、选择题1. (2010山东济宁)把代数式 322363x x y xy -+分解因式,结果正确的是 A .(3)(3)x x y x y +- B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - 【答案】D2.(2010四川眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是 A .2(3)m x + B .(3)(3)m x x +- C .2(4)m x - D .2(3)m x - 【答案】D3.(2010台湾) 下列何者为5x 2+17x -12的因式? (A) x +1 (B) x -1 (C) x +4 (D) x -4 。
【答案】C4.(2010 贵州贵阳)下列多项式中,能用公式法分解因式的是(A )xy x -2 (B )xy x +2 (C )22y x + (D )22y x - 【答案】D5.(2010 四川自贡)把x 2-y 2-2y -1分解因式结果正确的是( )。
A .(x +y +1)(x -y -1) B .(x +y -1)(x -y -1) C .(x +y -1)(x +y +1) D .(x -y +1)(x +y +1)【答案】A6.(2010宁夏回族自治区)把多项式322x x x -+分解因式结果正确的是 ( )A .2(2)x x x -B .2(2)x x -C .(1)(1)x x x +-D .2(1)x x -【答案】D二、填空题1.(2010江苏苏州)分解因式a 2-a= ▲ . 【答案】2.(2010安徽芜湖)因式分解:9x 2-y 2-4y -4=__________.【答案】3.(2010广东广州,15,3分)因式分解:3ab 2+a 2b =_______.【答案】ab (3b +a )4.(2010江苏南通)分解因式:2ax ax -= ▲ .【答案】ax (x-1)5.(2010江苏盐城)因式分解:=-a a 422 ▲ . 【答案】2a (a -2)6.(2010浙江杭州)分解因式 m 3 – 4m = . 【答案】m (m +2)(m – 2)7.(2010浙江嘉兴)因式分解:=+-m mx mx 2422 ▲ .【答案】2)1(2-x m8.(2010浙江绍兴)因式分解:y y x 92-=_______________.【答案】)3)(3(-+x x y9.(2010 浙江省温州)分解因式:m 2—2m= . 【答案】m (m-2)10.(2010 浙江台州市)因式分解:162-x = ▲ . 【答案】)4)(4(-+x x11.(2010山东聊城)分解因式:4x 2-25=_____________. 【答案】(2x +5)(2x -5)12.(2010 福建德化)分解因式:442++a a =_______________ 【答案】2)2(+a13.(2010 福建晋江)分解因式:26_________.x x += 【答案】(6)x x +14.(2010江苏宿迁)因式分解:12-a = ▲ . 【答案】(a+1)(a-1)15.(2010浙江金华)分解因式=-92x ▲ . 【答案】(x -3)(x +3)16.(2010 山东济南)分解因式2x 2-8=_____ . 【答案】2(x +2)(x -2)17.(2010 浙江衢州) 分解因式:x 2-9= . 全品中考网 【答案】(x +3)(x -3)18.(2010福建福州)因式分解:x 2-1=_______. 【答案】(x +1)(x -1)19.(2010江苏无锡)分解因式:241a -= ▲ .【答案】(21)(21)a a +-20.(2010年上海)分解因式:a 2 ─ a b = ______________.【答案】a ( a ─b )21.(2010四川宜宾)分解因式:2a 2– 4a + 2= 【答案】2(a -1)222.(2010 黄冈)分解因式:x 2-x =__________. 【答案】x (x+1)(x -1)23.(2010 山东莱芜)分解因式:=-+-x x x 232 . 【答案】2)1(--x x24.(2010 广东珠海)分解因式22ay ax -=________________. 【答案】a(x+y)(x-y)25.(2010福建宁德)分解因式:ax 2+2axy +ay 2=______________________. 【答案】a(x +y)226.2010江西)因式分解:=-822a . 【答案】)2)(2(2-+a a27.(2010四川 巴中) 把多项式2336x x +-分解因式的结果是【答案】3(x -1)228.(2010江苏常州)分解因式:224a b -= 。
【答案】29.(2010山东潍坊)分解因式:xy 2-2xy +2y -4= . 【答案】(xy +2)(y -2)30.(2010湖南常德)分解因式:269x x ++= .【答案】2(3)x +31.(2010湖南郴州) 分解因式:22a 8-= . 【答案】2(2)(2)a a +-32.(2010湖北荆州)分解因式 x(x -1)-3x+4= . 【答案】()22-x33.(2010湖北恩施自治州) 分解因式:=+-b ab b a 22 . 【答案】2)1(-a b34.(2010北京)分解因式:m 2-4m = 【答案】m (m +2)(m -2)35.(2010山东泰安)分解因式2x 3-8x 2y+8xy 2= . 【答案】2x (x-2y )236.(2010湖北随州)分解因式:x 2-x =__________. 全品中考网 【答案】x (x+1)(x -1)37.(2010四川乐山)下列因式分解:①324(4)x x x x -=-;②232(2)(1)a a a a -+=--;③222(2)2a a a a --=--;④2211()42x x x ++=+. 其中正确的是_______.(只填序号) 【答案】②④38.(2010黑龙江哈尔滨)把多项式22242b ab a =-分解因式的结果是 。
【答案】2)(2b a -39.(2010 山东东营)把x x 43-分解因式,结果为________________________________. 【答案】)2)(2(-+x x x40.(2010 四川绵阳)因式分解:x 3y -xy = . 【答案】xy (x -1)(x + 1)41.(2010江苏 镇江)分解因式:a a 32-= ;化简:22)1(x x -+= .【答案】12),3(+-x a a42.(2010四川 泸州)分解因式:3x 2+6x +3= . 【答案】3(x+1)243.(2010 山东淄博)分解因式:3222b ab b a +-= . 【答案】2)(b a b -44.(2010 湖南湘潭)分解因式:=+-122x x . 【答案】2)1(-x45.(2010广西桂林)因式分解:2()1xy -= . 【答案】(1)(1)xy xy +-46.(2010湖北十堰)分解因式:a 2-4b 2= . 【答案】(a +2b )(a -2b )47.(2010 广西玉林、防城港)分解因式:a 2-4a = 。
【答案】a (a -4)48.(2010 重庆江津)把多项式22x x --分解因式得__________________. 【答案】()()12x x +-49.(2010 福建泉州南安)因式分解:29a -= . 【答案】)3)(3(-+a a50.(2010 山东荷泽)将多项式a 3-6a 2b +9ab 2分解因式得 . 【答案】a (a -3b )251.(2010吉林长春)因式分解:a-a ²= . 【答案】a (1-a )52.(2010新疆维吾尔自治区新疆建设兵团)利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________。
全品中考网【答案】222)(2b a b ab a +=++53.(2010云南昭通)分解因式:3a 2b -4ab =_________________. 【答案】ab(3a -4)54.(2010贵州遵义)分解因式:4χ2-y 2= . 【答案】(2x+y)(2x-y)55.(2010广东深圳)分解因式:=-442x 【答案】4(1)(1)x x +-56.(2010广西柳州)因式分解:x 2-9=_____________________.【答案】(x +3)(x -3)57.(2010广东佛山)分解因式:x ²y-xy ²= . 【答案】xy(x-y)58.(2010辽宁沈阳)分解因式:=++222y xy x 。
【答案】2)(y x +59.(2010福建南平)分解因式:a 3-2a 2+a=_______________. 【答案】: a ( a -1)260.(2010广西河池)分解因式:29a -= . 【答案】(3)(3)a a +-61.(2010贵州铜仁)分解因式x 2-9y 2=_______. 【答案】(x +3y )(x -3y )62.(2010四川广安)分解因式:34x x -= . 【答案】)2)(2(-+x x x63.(2010四川攀枝花)因式分解:xy 2—9x= . 【答案】x(y+3)(y-3)64.(2010湖北黄石)分解因式:4x 2-9= . 【答案】三、解答题1.(2010江苏扬州)(2)因式分解:m 3-4m (2)原式=m (m 2-4)=m (m -2)(m +2)2.(2010 福建三明)(1)给出三个多项式ab a ab a b ab a ++++2222,33,32,请你任选两个进行加(或减)法运算,再将结果分解因式。
【答案】(1)答案不唯一.3.(2010广东清远)分解因式:2x 3y -2xy 3. 答案:原式=2xy (x 2-y 2)=2xy (x +y ) (x -y ).。