整式的乘法与因式分解中考真题汇编[解析版]
上海虹口区教育学院实验中学数学整式的乘法与因式分解中考真题汇编[解析版]
∴a=5,b=6,
∵6﹣5<c<6+5,c≥6,
∴6≤c<11,
∴△ABC的最大边c的值可能是6、7、8、9、10.
(3)∵a﹣b=8,ab+c2﹣16c+80=0,
∴a(a﹣8)+16+(c﹣8)2=0,
∴(a﹣4)2+(c﹣8)2=0,
∴a﹣4=0,c﹣8=0,
∴a=4,c=8,b=a﹣8=4﹣8=﹣4,
(3)通过上述的等量关系,我们可知:当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越(填“大”或“小”).
【答案】(1) ;(2) ;
(3)大小
【解析】
【分析】
(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;
(2)设m= ,n= (且a1>a2),
∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,
∴a1﹣a2=1或a1﹣a2=3.
∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),
∴m﹣n=99或m﹣n=297.
(2)首先设出两个欢喜数m、n,表示出F(m)、F(n)代入F(m)﹣F(n)=3中,将式子变形分析得出最终结果即可.
【详解】
(1)证明:∵ 为欢喜数,
∴a+c=b.
∵ =100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,
深圳南山区星河学校数学整式的乘法与因式分解中考真题汇编[解析版]
深圳南山区星河学校数学整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.2.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.3.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).4.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..5.已知x -y =3,12x z -=,则()()22554y z y z -+-+的值等于( ) A .0B .52C .52-D .25 【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z 的值,代入所求代数式求值即可.【详解】由x-y=3,12x z -=得:()()x z x y y z ---=- 15322=-=-; 把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+= ⎪ ⎪⎝⎭⎝⎭.【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.6.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.7.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.8.已知4y 2+my +9是完全平方式,则m 为( )A .6B .±6C .±12D .12【答案】C【解析】原式利用完全平方公式的结构特征求出m 的值即可.【详解】∵4y 2+my +9是完全平方式,∴m =±2×2×3=±12.故选:C .【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.9.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】 通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.【答案】(a-b+x-y )【解析】运用公因式的概念,把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×(a-b+x-y ). 故答案为:(a-b+x-y ).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.12.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.在实数范围内因式分解:22967x y xy --=__________.【答案】9xy xy ⎛⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=93333xy xy ⎛⎫⎛---+ ⎪ ⎪⎝⎭⎝⎭11=933xy xy ⎛+--- ⎝⎭⎝⎭故答案为:11933xy xy ⎛+--- ⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.14.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.16.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9. 故答案为:9.17.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.18.设2m =5,82n =10,则62m n -=________.【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).19.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.20.因式分解:=______. 【答案】2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).考点:因式分解.。
整式的乘法与因式分解中考真题汇编[解析版]
整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是( )A .61和63B .63和65C .65和67D .64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B .【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.下列四个多项式,可能是2x 2+mx -3 (m 是整数)的因式的是A .x -2B .2x +3C .x +4D .2x 2-1【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m 是整数,∴将2x 2+mx -3分解因式:2x 2+mx -3=(x-1)(2x+3)或2x 2+mx -3=(x+1)(2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.3.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.4.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确;根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.5.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1B .﹣52C .±1D .±52 【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,故选C .点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.6.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.7.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.8.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+- =1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.9.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.10.下列等式由左边向右边的变形中,属于因式分解的是 ( )A .x 2+5x -1=x(x+5)-1B .x 2-4+3x=(x+2)(x -2)+3xC .(x+2)(x -2)=x 2-4D .x 2-9=(x+3)(x -3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A 、右边不是积的形式,故A 错误;B 、右边不是积的形式,故B 错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解.故选D .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=22∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.12.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.13.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可. 本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).【答案】ab【分析】【详解】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x ax x b +=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.15.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.17.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.19.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.20.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.。
八年级数学上册 整式的乘法与因式分解中考真题汇编[解析版]
八年级数学上册 整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.2.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.3.若3x y -=,则226x y y --=( )A .3B .6C .9D .12【答案】C【解析】【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答.【详解】解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--=故答案为C.【点睛】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键.4.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.5.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.6.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1B .﹣52C .±1D .±52 【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.7.已知x-y=3,12x z-=,则()()22554y z y z-+-+的值等于()A.0 B.52C.52-D.25【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z的值,代入所求代数式求值即可.【详解】由x-y=3,12x z-=得:()()x z x y y z---=-15322 =-=-;把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+=⎪ ⎪⎝⎭⎝⎭.故选:A.【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.8.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6B.4C.6 或4D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.9.已知a,b,c是△ABC的三条边的长度,且满足a2-b2=c(a-b),则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.10.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.12.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49.故答案为:49. 点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和完全平方公式的计算.13.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.14.因式分解:214y y ++=______ 【答案】212y ⎛⎫+ ⎪⎝⎭ 【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:2222111124222y y y y y ⎛⎫⎛⎫++=+⨯+=+ ⎪ ⎪⎝⎭⎝⎭. 故答案为:212y ⎛⎫+ ⎪⎝⎭ .15.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.计算:))201820192的结果是_____.2【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2=,【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.17.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.18.因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x2+2x=3代入即可得答案.【详解】原式=x2+2x+1-(x2-4)+x2=x2+2x+1-x2+4+x2=x2+2x+5.∵x2+2x=3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a2+2ab+b2=(a+b)2【解析】试题分析:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.。
整式的乘法与因式分解中考真题汇编[解析版]
十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子 和 分解因式,如图:
一、八年级数学整式的乘法与因式分解解答题压轴题(难)
1.利用我们学过的知识,可以导出下面这个等式:
.
该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你展开右边检验这个等式的正确性;
(2)利用上面的式子计算:
.
【答案】(1)见解析;(2)3.
【解析】
【分析】
(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;
(2)根据题目中的等式可以求得所求式子的值.
【详解】
解:(1) [(a-b)2+(b-c)2+(c-a)2]
= (a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)
= ×(2a2+2b2+2c2-2ab-2bc-2ac)
=a2+b2+c2-ab-bc-ac,
故a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2]正确;
(1)判断:9_______“明礼崇德数”(填“是”或“不是”);
(2)已知 ( 是正整数, 是常数,且 ),要使 是“明礼崇德数”,试求出符合条件的一个 值,并说明理由;
人教版数学八年级上册 整式的乘法与因式分解中考真题汇编[解析版]
人教版数学八年级上册整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)【答案】B【解析】【分析】【详解】因为(x+6)(x-1)=x2+5x-6,所以b=-6;因为(x-2)(x+1)=x2-x-2,所以a=1.所以x2-ax+b=x2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b 中分解因式.2.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B3.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1)C.x-1=x(1-1x)D.(x-1)2=x2-2x+1【答案】B【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;C、x-1=x(1-1x),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.4.下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a-1)=a2-1 B.a2-6a+9=(a-3)2C.x2+2x+1=x(x+2x)+1 D.-18x4y3=-6x2y2·3x2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C、右边不是积的形式,错误;D、左边是单项式,不是因式分解,错误.故选B.【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.5.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C . 【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.6.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B 【解析】 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.7.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D 【解析】 【分析】根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0. 【详解】 解:∵a-2b+c=0, ∴a+c=2b , ∴a+2b+c=4b <0, ∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac cb ++=∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥,故选:D. 【点睛】本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.8.已知31416181279a b c ===,,,则a b c 、、的大小关系是( ) A .a b c >> B .a c b >>C .a b c <<D .b c a >>【答案】A 【解析】 【分析】先把a ,b ,c 化成以3为底数的幂的形式,再比较大小. 【详解】解:3112412361122a 813b 3c 93a b c.,,,=====>> 故选A. 【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.9.下列从左到右的变形中,属于因式分解的是( ) A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=---⎪-⎝⎭【答案】B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A.属于整式的乘法运算,不合题意;B.符合因式分解的定义,符合题意;C.右边不是乘积的形式,不合题意;D.右边不是几个整式的积的形式,不合题意;故选:B.【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值可能分别是()A.3-,4-B.3-,4 C.3,4-D.3,4【答案】A【解析】【分析】根据题意可得规律为712a bab+=-⎧⎨=⎩,再逐一判断即可.【详解】根据题意得,a,b的值只要满足712a bab+=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.多项式x2+2mx+64是完全平方式,则m= ________ .【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8. 故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.12.若()219x y +=,()25x y -=,则22x y +=______.【答案】12 【解析】 【分析】根据完全平方公式的两个关系式间的关键解答即可. 【详解】∵()219x y +=,()25x y -=, ∴()()224x y x x y y +=-+, ∴19=5+4xy , ∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12. 【点睛】此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.13.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____. 【答案】20 【解析】 【分析】 【详解】 ∵6,a b +=∴222()236,a b a ab b +=++= ∵ab=8,∴22a b +=36-2ab=36-2×8=20. 【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.分解因式212x 123y xy y -+-=___________【答案】()232x 1y -- 【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--.故答案为()232x 1y --.15.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___. 【答案】13; 17± 【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9, 把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13; (a-b )2=a 2+b 2-2ab=13+4=17,即a-b=±17.16.分解因式:x 3y ﹣2x 2y+xy=______. 【答案】xy (x ﹣1)2 【解析】 【分析】原式提取公因式,再利用完全平方公式分解即可. 【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2. 故答案为:xy (x-1)2 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.因式分解:=______.【答案】2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3). 考点:因式分解.18.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____. 【答案】70. 【解析】 【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.19.分解因式:3x2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()22236332131x x x x x-+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a2+2ab+b2=(a+b)2【解析】试题分析:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.。
数学八年级上册 整式的乘法与因式分解中考真题汇编[解析版]
数学八年级上册 整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .2.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30B .32C .18-D .9 【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n +216+1=2n +2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n +216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n 可以取到的数是9、30、-18,不能取到的数是32.故选B .【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.3.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.4.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.5.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.6.如果是个完全平方式,那么的值是( ) A .8 B .-4 C .±8 D .8或-4【答案】D【解析】试题解析:∵x 2+(m -2)x +9是一个完全平方式,∴(x ±3)2=x 2±2(m -2)x +9,∴2(m -2)=±12,∴m =8或-4.故选D .7.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.8.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.9.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.10.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.多项式x 2+2mx+64是完全平方式,则m = ________ .【答案】±8【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8. 故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.12.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.13.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.已知25,23a b ==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.16.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.17.计算(-3x 2y)•(13xy 2)=_____________. 【答案】33x y -【解析】【分析】根据单项式乘以单项式的法则计算即可.【详解】 原式=(-3)×13x 2+1y 1+2= -x 3y 3 故答案为-x 3y 3【点睛】 本题主要考查单项式乘以单项式的法则.要准确把握法则是解答此题的关键.18.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。
人教版八年级数学上册 整式的乘法与因式分解中考真题汇编[解析版]
人教版八年级数学上册 整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.2.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.3.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.4.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A 、a 2+b 2,无法分解因式,故此选项错误;B 、x 2+9,无法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,无法分解因式,故此选项错误;故选C .5.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.6.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.7.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.8.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.9.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】 根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确;62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误;故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.10.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.12.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49.故答案为:49. 点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和完全平方公式的计算.13.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.14.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.计算:))201820192的结果是_____.2【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2=,【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.16.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.因式分解:=______. 【答案】2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解.18.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.20.若2x+5y﹣3=0,则4x•32y的值为________.【答案】8【解析】∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8,故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.。
八年级数学上册整式的乘法与因式分解中考真题汇编[解析版]
八年级数学上册整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是()A.x+2y+1 B.x+2y﹣1 C.x﹣2y+1 D.x﹣2y﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x2﹣4xy﹣2y+x+4y2=(x2﹣4xy+4y2)+(x﹣2y)=(x﹣2y)2+(x﹣2y)=(x﹣2y)(x﹣2y+1).故选:C.【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y),将其当成整体提出,进而得到答案.2.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()A.6 B.7 C.8 D.9【答案】C【解析】【分析】设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.【详解】解:设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6b2,∵a2+4ab+4b2=(a+2b)2,(b>a)∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.3.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .4.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.5.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.6.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.7.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.8.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.9.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.10.小淇用大小不同的 9 个长方形拼成一个大的长方形ABCD ,则图中阴影部分的面积是()A.(a + 1)(b + 3)B.(a + 3)(b + 1)C.(a + 1)(b + 4)D.(a + 4)(b + 1)【答案】B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是MN .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.12.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.13.计算:=_____. 【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】 本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.14.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.15.4x(m -n)+8y(n -m)2中各项的公因式是________.【答案】4(m -n)【解析】根据题意,先变形为4x(m -n)+8y(m -n)2,把m-n 看做一个整体,即可找到公因式4(m-n ).故答案为:4(m-n ).点睛:此题主要考查了提公因式法因式分解,根据公因式的特点,利用整体法确定公因式即可,关键是要把n-m 与m-n 变形为统一的式子.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x ax x b +=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.17.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】 根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.18.已知ab=a+b+1,则(a ﹣1)(b ﹣1)=_____.【答案】2【解析】【分析】将(a ﹣1)(b ﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a ﹣1)(b ﹣1)= ab ﹣a ﹣b+1,当ab=a+b+1时,原式=ab ﹣a ﹣b+1=a+b+1﹣a ﹣b+1=2,故答案为2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.19.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.20.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.。
北师大版八年级上册数学 整式的乘法与因式分解中考真题汇编[解析版]
本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.
5.阅读下列因式分解的过程,解答下列问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.
(1)上述分解因式的方法是____________,共应用了________次;
(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需要应用上述方法________次,结果是________;
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).
(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;
(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.
【答案】(1)9;(2)△ABC的最大边c的值可能是6、7、8、9、10;(3)8.
【解析】
试题分析:(1)直接利用配方法得出关于x,y的值即可求出答案;
2.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;
(2)直接利用配方法得出关于a,b的值即可求出答案;
(3)利用已知将原式变形,进而配方得出答案.
整式的乘法与因式分解中考真题汇编[解析版]
8.下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1
B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣6x+5=(x﹣5)(x﹣1)
D.x2+y2=(x﹣y)2+2x
【答案】C
【解析】
【分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.
故选 C.
【点睛】
此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形
式.
9.若 a b 6, ab 7 ,则 a-b ( )
A.
B. 2
C. 2
D. 2 2
【答案】D
【解析】
【分析】
由关系式(a-b)2=(a+b)2-4ab 可求出 a-b 的值
【详解】
∵a+b=6,ab=7, (a-b)2=(a+b)2-4ab
7.下列由左到右的变形,属于因式分解的是( )
A. (x 2)(x 2) x2 4
B. x2 4x 2 x(x 4) 2
C. x2 4 (x 2)(x 2)
D. x2 4 3x (x 2)(x 2) 3x
【答案】C 【解析】 【分析】 根据因式分解的意义,可得答案. 【详解】 A. 是整式的乘法,故 A 错误; B. 没把一个多项式转化成几个整式积的形式,故 B 错误; C. 把一个多项式转化成几个整式积的形式,故 C 正确; D 没把一个多项式转化成几个整式积的形式,故 D 错误. 故答案选:C. 【点睛】 本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.
故选 A.
苏科版八年级数学上册 整式的乘法与因式分解中考真题汇编[解析版]
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值.解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0∴(m ﹣n )2+(n ﹣4)2=0,∴(m ﹣n )2=0,(n ﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x 2+2xy+2y 2+2y+1=0,求2x+y 的值;(2)已知a ﹣b=4,ab+c 2﹣6c+13=0,求a+b+c 的值.【答案】(1)1;(2)3.【解析】【分析】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x 、y 的值,从而可以得到2x+y 的值;(2)根据a-b=4,ab+c 2-6c+13=0,可以得到a 、b 、c 的值,从而可以得到a+b+c 的值.【详解】解:(1)∵x 2+2xy+2y 2+2y+1=0,∴(x 2+2xy+y 2)+(y 2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=−1,∴2x+y=2×1+(−1)=1;(2)∵a−b=4,∴a=b+4,∴将a=b+4代入ab+c 2−6c+13=0,得b 2+4b+c 2−6c+13=0,∴(b 2+4b+4)+(c 2−6c+9)=0,∴(b+2)2+(c−3)2=0,∴b+2=0,c−3=0,解得,b=−2,c=3,∴a=b+4=−2+4=2,∴a+b+c=2−2+3=3.【点睛】此题考查了因式分解方法的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.此题解答的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.2.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b)2+(b-c)2+(c-a)2]=12(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)=12×(2a2+2b2+2c2-2ab-2bc-2ac)=a2+b2+c2-ab-bc-ac,故a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2]正确;(2)20182+20192+20202-2018×2019-2019×2020-2018×2020=12×[(2018-2019)2+(2019-2020)2+(2020-2018)2]=12×(1+1+4)=12×6=3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.3.观察下列各式:()()2111,x x x-+=-()()23111,x x x x-++=-()()324111,x x x x x-+++=-()()4325111,x x x x x x-++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.4.观察下列等式:22()()a b a b a b -=-+3322()()a b a b a ab b -=-++443223()()a b a b a a b ab b -=-+++55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示).(3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76.【解析】【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果.【详解】解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++,()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b a a b a b ab b -=-++++, 由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1),故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1, ∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ]∴33a b -=24431⨯+⨯()=76. 故答案是:76.【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.5.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.6.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++.22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.试用上述方法分解因式222a ab ac bc b ++++=(2)利用分解因式说明:22(5)(1)n n +--能被12整除.【答案】(1)()()a b a b c +++;(2)证明见解析.【解析】【分析】(1)a 2+2ab+ac+bc+b 2可以进行分组变成(a 2+2ab+b 2)+(ac+bc ),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.(2)先利用平方差公式将22(5)(1)n n +--进行因式分解,之后即可得出答案.【详解】(1)原式=()()222a ab bac bc ++++=()()2a b c a b +++=()()a b a b c +++(2)22(5)(1)n n +--=[][](5)+(1)(5)(1)n n n n +-+--=()624n +=()122n +∴ 22(5)(1)n n +--能被12整除.【点睛】本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.7.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x -- ()()222+-44040-201822m n m n mn +-=== ∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.8.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.9.(探究)如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,有阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积(2)比较两图的阴影部分面积,可以得到乘法公式(用字母表示)(应用)请应用这个公式完成下列各题①已知22412m n-=,24m n+=,则2m n-的值为②计算:(2)(2)a b c a b c+--+(拓展)①()()()()24832(21)21212121+1+++++结果的个位数字为②计算:222222221009998974321-+-++-+-【答案】[探究](1)a2﹣b2;(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;[应用]①3;②4a2﹣b2+2bc﹣c2;[拓展]①6;②5050.【解析】【分析】[探究](1)由面积公式可得答案;(2)公式由(1)直接可得;[应用]①用平方差公式分解4m2﹣n2,将已知值代入可求解;②将三项恰当组分成两组,先用平方差,再用完全平方公式展开后合并同类项即可;[拓展]①将原式乘以(2﹣1),就可以反复运用平方差公式化简,最后按照循环规律可得解;②将原式从左向右依次两项一组,运用平方差公式分解,化为100+99+98+…+4+3+2+1,从而可得答案.【详解】(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n),∴(2m﹣n)=12÷4=3.故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264.∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16.故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050.【点睛】本题考查了平方差公式的几何背景及其应用与拓展,计算具有一定的难度,属于中档题.10.(观察)1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.(发现)根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.(类比)观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.【答案】(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;类比:由于m+n=60,将n=60−m代入mn,得mn=−m2+60m=−(m−30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;类比:由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点睛】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.。
北师大版数学八年级上册 整式的乘法与因式分解中考真题汇编[解析版]
材料:一个三位自然数 (百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F( )=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.
(1)对于“欢喜数 ”,若满足b能被9整除,求证:“欢喜数 ”能被99整除;
(2)设m= ,n= (且a1>a2),
∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,
∴a1﹣a2=1或a1﹣a2=3.
∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),
∴m﹣n=99或m﹣n=297.
(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;
(3)两正数和一定,则和的平方一定,根据等式 ,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;
(3)通过上述的等量关系,我们可知:当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越(填“大”或“小”).
【答案】(1) ;(2) ;
(3)大小
【解析】
【分析】
(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;
数学八年级上册 整式的乘法与因式分解中考真题汇编[解析版]
数学八年级上册 整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.2.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).3.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确;根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.4.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.5.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.6.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.7.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.8.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B【解析】【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.13.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.【答案】(a-b+x-y )【解析】运用公因式的概念,把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×(a-b+x-y ). 故答案为:(a-b+x-y ).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.14.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.15.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为_____.【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x 的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x ﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.16.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.17.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+18.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.19.光的速度约为3×105 km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107 s 计算,则这颗恒星到地球的距离是_______km.【答案】3.6×1013【解析】【分析】根据题意列出算式,再根据单项式的运算法则进行计算.【详解】依题意,这颗恒星到地球的距离为4×3×107×3×105,=(4×3×3)×(107×105),=3.6×1013km .故答案为:3.6×1013.【点睛】本题考查了根据实际问题列算式的能力,科学记数法相乘可以运用单项式相乘的法则进行计算.20.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.。
上海三林中学北校数学整式的乘法与因式分解中考真题汇编[解析版]
上海三林中学北校数学整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3【答案】D【解析】【分析】首先把a 2+b 2+c 2﹣ab ﹣bc ﹣ac 两两结合为a 2﹣ab +b 2﹣bc +c 2﹣ac ,利用提取公因式法因式分解,再把a 、b 、c 代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )当a =2012x +2011,b =2012x +2012,c =2012x +2013时,a -b =-1,b -c =-1,c -a =2,原式=(2012x +2011)×(﹣1)+(2012x +2012)×(﹣1)+(2012x +2013)×2=﹣2012x ﹣2011﹣2012x ﹣2012+2012x ×2+2013×2=3.故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确; 根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.5.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.计算,得( ) A . B .C .D .【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m +2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C .【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.7.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.8.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.9.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.10.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确; 62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误;故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+= ∵22()()x y x y x y -=+-,∴x -y=4, 解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.【答案】0【解析】【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z ++-+-+=所以222(21)(44)(69)0x x y y z z -+++++-+=所以222(1)(2)(3)0x y z -+++-= 所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-= 故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.13.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100.故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.14.在实数范围内因式分解:231x x +-=____________【答案】x x ⎛++ ⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴1x =2x =∴231x x +-=x x ⎛+ ⎝⎭⎝⎭故答案为:x x ⎛+ ⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.15.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.16.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.17.已知ab=a+b+1,则(a ﹣1)(b ﹣1)=_____.【答案】2【解析】【分析】将(a ﹣1)(b ﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a ﹣1)(b ﹣1)= ab ﹣a ﹣b+1,当ab=a+b+1时,原式=ab ﹣a ﹣b+1=a+b+1﹣a ﹣b+1=2,故答案为2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.18.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.20.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,-后继续应用平方差公式分解即可:先提取公因式x()()()32-=--=-+-.4x x x x4x x2x2。
整式的乘法与因式分解中考真题汇编[解析版]
整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( ) A .a 2n -1与-b 2n -1 B .a 2n -1与b 2n -1 C .a 2n 与b 2n D .a n 与b n【答案】B【解析】已知a 与b 互为相反数且都不为零,可得a 、b 的同奇次幂互为相反数,同偶次幂相等,由此可得选项A 、C 相等,选项B 互为相反数,选项D 可能相等,也可能互为相反数,故选B.2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.3.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)【答案】B【解析】【分析】【详解】因为(x+6)(x-1)=x2+5x-6,所以b=-6;因为(x-2)(x+1)=x2-x-2,所以a=1.所以x2-ax+b=x2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b 中分解因式.5.下列计算正确的是()A.3x2·4x2 =12x2 B.(x-1)(x—1)=x2—1 C.(x5)2 =x7 D.x4÷x=x3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x2 ·4x2 =12x4,故A不正确;根据乘法公式(完全平方公式)可知(x-1)(x—1)=x2—2x+1,故B不正确;根据幂的乘方,底数不变,指数相乘,可得(x5)2 =x10,故C不正确;根据同底数幂的相除,可知x4 ÷x=x3,故D正确.故选:D.2x的结果是()6.化简()2A.x4B.2x2C.4x2D.4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.7.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为( )A.M<N B.M>N C.M=N D.不能确定【答案】B【解析】由于M=(x-3)(x-7)=x2-10x+21,N=(x-2)(x-8)=x2-10x+16,可以通过比较M与N的差得出结果.解:∵M=(x-3)(x-7)=x2-10x+21,N=(x-2)(x-8)=x2-10x+16,M-N=(x2-10x+21)-(x2-10x+16)=5,∴M>N.故选B.“点睛”本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.8.若33×9m=311,则m的值为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案.【详解】∵33×9m=311,∴33×(32)m=311,∴33+2m=311,∴3+2m=11,∴2m=8,解得m=4,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.10.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=- 【答案】C【解析】【分析】根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.12.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.13.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.14.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.计算:))201820192的结果是_____.2【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2=,【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.16.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.17.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.18.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.20.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.。
初中数学整式乘法与因式分解500题(含解析)
一、整式的乘除(共 73 题)1.一种计算机每秒可做 4×108 次运算,它工作 3×103 秒运算的次数为( )A .12×1024B .1.2×1012C .12×1012D .12×1082.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3 中,结果等于 66 的是() A .①②③B .②③④C .②③D .③④3.下列运算正确的是( )A .6a-5a=1B .(a 2)3=a 5C .3a 2+2a 3=5a 5D .2a 2•3a 3=6a 54A .(a 2)3=a 5B5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=;④(xy 2)3=x 3y 6,他做对的个数是()A .0.36.下列计算中,结果正确的是( )AC7.下列运算正确的是( )3+a 3=2a 6 C .a 3÷a 3=0D .3x 2•5x 3=15x 58.下列运算正确的是( )A . x 2•x 3=x 6B . x 2+x 2=2x 4C . (-2x )2=4x 2D . (-2x )2•(-3x )3=6x 59.下列运算正确的是()A . (x 2)3=x 5B . 3x 2+4x 2=7x 4C . (-x )9÷(-x )3=x 6D . -x (x 2-x+1)=-x 3-x 2-xA . a 2+2a 3=3a 5B .(2b 2)3=6b 6C . (3ab )2÷(ab )=3abD . 2a•3a 5=6a 610.下面运算正确的是( )A .(-2x 2)•x 3=4x 6B .x 2÷x=xC .(4x 2)3=4x 6D .3x 2-(2x )2=x 211.下列运算正确的是( )12.若 a 为仸意实数,则下列式子恒成立的是( )A .a+a=a 2B .a ×a=2aC .3a 3+2a 2=aD .2a ×3a 2=6a 313.下列各式正确的是( )A .a 4×a 5=a 20B .a 2×2a 2=2a 4C14.下列计算中正确的是()AC15.下列计算正确的是( )A4=a 5 D .-2x 2•3x =-6x 316.下列计算正确的是().2a 3+3a 3=5a 6 D .4a 3•2a 2=8a 517.下列运算丌正确的是( ). 2a 2•(-3a 3)=-6a 5 .b 5•b 5=b 2518.下列计算正确的是( )A . x 2+2x 2=3x 4B . a 3•(-2a 2)=-2a 5C . (-2x 2)3=-6x 6D . 3a •(-b )2=-3ab 219.下列计算正确的是( )A .(2x 3)•(3x )2=6x 6B . (-3x 4)•(-4x 3)=12x 7C.(3x4)•(5x3)=8x7 D.(-x)•(-2x)3•(-3x)2=-72x620.计算:3x2y•(-2xy)结果是()A.6x3y2 B.-6x3y2 C.-6x2y D.-6x2y2 21.下列计算正确的是()A.a+a=a2 B.a•a2=a3 C.(a2)3=a5 D.a(2a+1)=a3+1 22.一个长方体的长、宽、高分别 3a-4,2a,a,它的体积等于()A.3a3-4a2 B.a2 C.6a3-8a2 D.6a3-8a 23.2x2•(-3x3)= .24.(-2x2)•3x4= .25.(3x2y)(- x4y)= .26.2a3•(3a)3= .27.(-3x2y)•( xy2)= .28.-3x3•(-2x2y)= .29.3x2•(-2xy3)= .30.(-2a)(-3a)= .31.8b2(-a2b)= .32.8a3b3•(-2ab)3= .33.(-3a3)2•(-2a2)3= .34.(-8ab)()= .35.2x2•3xy= .36.3x4•2x3= .37.x2y•(-3xy3)2= .38.(2a2b)3c÷(3ab)3= .39.(-2a)3•b4÷12a3b2= .40.计算:()•3a b2=9ab5;-12a3bc÷()=4a2b;(4x2y-8x3)÷4x2= .41.若(a m+1b n+2)•(a2n-1b2m)=a5b3,则 m+n 的值为.42.若 n 为正整数,且 a2n=3,则(3a3n)2÷(27a4n)的值为.43.利用形如 a(b+c)=ab+ac 的分配性质,求(3x+2)(x-5)的积的第一步骤是()A.(3x+2)x+(3x+2)(-5)B.3x(x-5)+2(x-5)C.3x2-13x-10 D.3x2-17x-1044.下列多项式相乘的结果是 a2-3a-4 的是()A.(a-2)(a+2)B.(a+1)(a-4).(a+2)(a+2)45.下列多项式相乘结果为 a2-3a-18 的是()A.(a-2)(a+9)B.(a+2)(a-9)C.(a+3)(a-6)D.(a-3)(a+6)46.下面的计算结果为 3x2+13x-10 的是()A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)47.下列计算正确的是()A.(-2a)•(3ab-2a2b)=-6a2b-4a3bB.(2ab2)•(-a2+2b2-1)=-4a3b4C.(abc)•(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2•(3ab2-c)=3a3b4-a2b2c48.下列运算中,正确的是()A.2ac(5b2+3c)=10b2c+6ac2B.(a-b)2(a-b+1)=(a-b)3-(b-a)2C.(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a+b-cD.(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)249.(-2a3+3a2-4a)(-5a5)= .50.(x-2)(x+3)= .51.(x-2y)(2x+y)= .52.3x(5x-2)-5x(1+3x)= .53.(x-a)(x2+ax+a2)= .54.5x(x2-2x+4)+x2(x+1)= .55.若(x-1)(x+3)=x2+mx+n,那么 m,n 的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=-3 D.m=-2,n=356.若(x+1)(2x-3)=2x2+mx+n,则 m= ,n= .57.若(x+4)(x-3)=x 2+mx-n ,则 m=,n= .58.已知(x+a )(x+b )=x 2-13x+36,则 a+b 的值是 . A .13 B .-13 C .36D .-3659.若(mx 3)•(2x k )=-8x 18,则适合此等式的 m=,k=.60.若(x+1)(2x-3)=2x 2+mx+n ,则 m=,n= .61.若(x-2)(x-n )=x 2-mx+6,则 m=,n=.62.若(x+p )不(x+2)的乘积中,丌含 x 的一次项,则 p 的值是.63.如果(x+a )(x+b )的结果中丌含 x 的一次项,那么 a 、b 满足( )A .a=bB64.计算(a+m )(a+ )的结果中丌含关于字母 a 的一次项,则 m 等于()65.如果(x+1)(x 2-5ax+a )的乘积中丌含 x 2 项,则 a 为.66.已知(5-3x+mx 2-6x 3 1-2x )的计算结果中丌含 x 3 的项,则 m 的值为.67.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等 式是()A . (a-b )2=a 2-2ab+b 2B . (a+b )2=a 2+2ab+b 2C . 2a (a+b )=2a 2+2abD . (a+b )(a-b )=a 2-b 268.如图,正方形卡片 A 类,B 类和长方形卡片 C 类若干张,如果要拼一个长 为(a+2b ),宽为(a+b )的大长方形,则需要 C 类卡片张.69.已知 m+n=2,mn=-2,则(1-m)(1-n)的值为()A.-3 B.-1 C.1 D.570.若 2x(x-1)-x(2x+3)=15,则 x= .71.已知 a2-a+5=0,则(a-3)(a+2)的值是.72.按下列程序计算,最后输出的答案是.73.下列运算正确的是()A.(am+bm+cm)÷n=a m÷n+bm÷n+cm÷n=B.(-a3b-14a2+7a)÷7a=-7a2b-2aC.(36x4y3-24x3y2+3x2y2)÷(-6x2y)=-6x2y+4x5y3- x4y3D.(6a m+2b n-4a m+1b n+1+2a m b n+2)÷(-2a m b n)=-3a2+2ab-b n+1二、乘法公式(共 150 题)74.下列计算正确的是()A.x4-x2=x2B.(x3)2=x5C.-6x5÷(-2x3)=3x2 D.(x+y)2=x2+y275.在下列各式中,不(a-b)2 一定相等的是()A.a2+2ab+b2 B.a2-b2 C.a2+b2 D.a2-2ab+b276.下列等式成立的是()A.(a2)3=a6 B.2a2-3a=-a C.a6÷a3=a2 D.(a+4)(a-4)=a2-477.下列计算正确的是()A.3a+2b=5ab B.(x-y)2=x2-y2 C.a10÷a5=a2 D.a4•a3=a7(a-b )2-c 2D . c 2-a+b 2只能是单项式 C . 只能是多项式 D . 以上都可以(a+b )(a-b )=a 2-b 2 B . (x+1)(x-1)=x 2-1 (-a+b )(-a-b )=a 2-b 2 (2x+1)(2x-1)=2x 2-1D .78.下列计算正确的是()A . 3a+2b=5abB . (a-1)2=a 2-2a+1C . a 6÷a 3=a 2D . (a 3)2=a 579.计算(-a-b )2 等于( )A .a 2+b 2B .a 2-b 2C .a 2+2ab+b 2D .a 2-2ab+b 280.若(x-y )2=0,则下列成立的等式是( )A .x 2+y 2=2xyB .x 2+y 2=-2xyC .x 2+y 2=0D .(x+y )2=(x-y )281.(a-b+c )(-a+b-c )等于( )A .-(a-b+c )2B .c 2-(a-b )2C .82.平方差公式(a+b )(a-b )=a 2-b 2 中字母 a 、b 表示()A .只能是数B .83.下列运用平方差公式计算,错误的是( )A . C .84.下列运算正确的是( )A .x 5+x 5=2x 10 . -(x )3(-x )5=x 8C . (-2x 2y )3=-6x 6y 3. (2x-3y )(-2x+3y )=4x 2-9y 285.下列运算正确的是()A . (x+y )(-x-y )=x 2-y 2 . (-3a 2)3=-9a 6C . (-a+b )2=a 2+2ab+b 2. 2009×2007=20082-1286.下列运算中正确的是()A . x 5+x 5=2x 10B . -(-x )3•(-x )5=-x 8C . (-2x 2y )3•4x -3=-24x 3y 3D . ( x-3y )(- x+3y )= x 2-9y 287.下列各式中计算正确的是()A . (a-b )2=a 2-b 2B . (a+2b )2=a 2+2ab+4b 2C . (a 2+1)2=a 4+2a+1D . (-m-n )2=m 2+2mn+n 288.(a+1)2-(a-1)2=.89.化简(a+b )2-(a-b )2 的结果是.90.(-4a-1)不(4a-1)的积等于( ) A .-1+16a 2B .-1-8a 2C .1-4a 2D .1-16a 291.运算结果为 2mn-m 2-n 2 的是( )A .(m-n )2B92.下列各式是完全平方式的是()A .x 2-x+.x 2+2x-193.下列多项式中是完全平方式的是( )A 2-12a+4 D .x 2y 2+2xy+y 294.小明计算一个二项式的平方时,得到正确结果 a 2-10ab +■,但最后一项丌 慎被污染了,这一项应是( ).25b 2D .100b 295.下列多项式乘法中,可以用平方差公式计算的是( ). ( a+b )(b- a ) . (x 2-y )(x+y 2)96.下列各式中,能用平方差公式计算的是( )①(7ab-3b )(7ab+3b );②73×94;③(-8+a )(a-8);④(-15-x )(x-15).A .①③B .②④C .③④D .①④A . (x+2)2=x 2+2x+4B . (-3-x )(3+x )=9-x 2C . (-3-x )(3+x )=-x 2-9+6xD . (2x-3y )2=4x 2+9y 2-12xy97.应用(a+b )(a-b )=a 2-b 2 的公式计算(x+2y-1)(x-2y+1),则下列变 形正确的是()A . [x-(2y+1)]2B . [x+(2y+1)]2C . [x-(2y-1)][x+(2y-1)]D . [(x-2y )+1][(x-2y )-1]98.下列各式中,计算错误的是( ) A .( x- y )( x+ y )= x 2- y 2 B . ( a+ b )( a- b )= a 2- b 2 C . (3x 2+5)(3x 2-5)=9x 4-25D .101×99=(100+1)(100-1)=10000-1=999999.对于仸意的整数 n ,能整除(n+3)(n-3)-(n+2)(n-2)的整数是( )A .4B100.如果两个数互为倒数,那么这两个数的和的平方不它们的差的平方的差是( )A .3.6101.若(x-2y )2=(x+2y )2+m ,则 m 等于()A D .-8xy102.下列各式的计算中,正确的是( ). (2a 2+b )2=4a 2+2a 2b+b 2 .(-a-b )2=(a-b )2103.下列各式是完全平方式的是( )A .a 2+4B .x 2+2xy-y 2C .a 2-ab+b 2D .4x 2-4xy+y 2104.下列计算中正确的是( )A . (m+n )2=m 2+n 2B .C . (4x+1)2=16x 2+8x+1D .105.下列各式中,计算结果正确的是()A . (x+y )(-x-y )=x 2-y 2B . (x 2-y 3)(x 2+y 3)=x 4-y 6C . (-x-3y )(-x+3y )=-x 2-9y 2D . (2x 2-y )(2x 2+y )=2x 4-y 2106.下列计算正确的()A . (-4x )(2x 2+3x-1)=-8x 3-12x 2-4xB . (x+y )(x 2+y 2)=x 3+y 3C . (-4a-1)(4a-1)=1-16a 2D . (x-2y )2=x 2+4y 2-2xy107.下列等式恒成立的是( )(2a-b )2=4a 2-2ab+b 2 (x-3)2=x 2-9108.下列代数式中是完全平方式的是( )①y 4-4y 2+4;②9m 2+16n 2-20mn ;③4x 2-4x+1;④6a 2+3a+1;⑤a 2+4ab+2b 2. A109.多项式有:①x 2+xy+y 2;②a 2-a+ ;③ m 2+m+1;④x 2-xy+ y 2;⑤m 2+2mn+4n 2;⑥ a 4b 2-a 2b+1.以上各式中,形如 a 2±2ab+b 2 的形式的多项式有( )A个 D .5 个110.下列各式丌是完全平方式的是( ).3x 2-2 x+1 D .4a 2-12ab-9b 2111.若 m ≠n ,下列等式中正确的是()①(m-n )2=(n-m )2;②(m-n )2=-(n-m )3;③(m+n )(m-n )=(-m-n )(-m+n );④(-m-n )2=-(m-n )2. A .1 个B .2 个C .3 个D .4 个112.下列计算中:①x (2x 2-x+1)=2x 3-x 2+1;②(a+b )2=a 2+b 2;③(x-4)2=x 2-4x+16;④ (5a-1)(-5a-1)=25a 2-1;⑤(-a-b )2=a 2+2ab+b 2,正确的个数有( )A .1 个B .2 个C .3 个D .4 个x 2-6y 2C . x 2-9y 2D . 2x 2-6y 2-2x 2B . 0C .A . a 8-b 8B .113.两个连续奇数的平方差是( )A .6 的倍数B .8 的倍数C .12 的倍数D .16 的倍数114.若等式(x-4)2=x 2-8x+m 2 成立,则 m 的值是( ) A .16B .4C .-4D .4 戒-4115.计算(x-)2 的结果是.116.不( - )2 的结果一样的是()A . (x+y )2-xyB .( + )2+xyC . (x-y )2D . (x+y )2-xy117.计算(x-3y )(x+3y )的结果是( )A .x 2-3y 2B .118.计算:1232-124×122=.119.计算:a 2-(a+1)(a-1)的结果是.120.(x-1)(x+1)(x 2+1)-(x 4+1)的值是( )A . -2 D .-1121.如果,,则 xy 的值是.122.计算(a 4+b 4)(a 2+b 2)(b-a )(a+b )的结果是( ) a 6-b 6 C .b 8-a 8D .b 6-a 6123.下列各式中,运算结果为 1-2xy 2+x 2y 4 的是( )A .(-1+xy 2)2B .(-1-xy 2)2C .(-1+x 2y 2)2D .(-1-x 2y 2)2124.(x+y )2-=(x-y )2.125.填空,使等式成立:x 2- x+ =(x+ )2126.若 4x 2+kx+25=(2x-5)2,那么 k 的值是.127.设(5a+3b )2=(5a-3b )2+A ,则 A=.128.若 x 2+ax+9=(x+3)2,则 a 的值为.129.如果 x 2+8x+m=(x+n )2,则 m 、n 的值为( ) A .m=16,n=4B .m=16,n=-4C .m=-16,n=-4D .m=-16,n=4130.要使 x 2-6x+a 成为形如(x-b )2 的完全平方式,则 a ,b 的值为( )A .a=9,b=9B .a=9,b=3C131.如果 ax 2+2x+ =(2x+ )2+m ,则 a ,m 的值分别是.132.如果( a-x )2= a 2+ ya+ ,则 x 、y 的值分别为.133.若 a 满足(383-83)2=3832-83×a ,则 a 值为.134.a 2+3ab+b 2 加上( )可得(a-b )2.A D .-7ab135.已知(x+a )(x-a )=x 2-16,则 a 的值是.136.4a 2+2a 要变为一个完全平方式,则需加上的常数是( ) C .- D .137.如果二次三项次 x 2-16x+m 2 是一个完全平方式,那么 m 的值是_______.138.如果 a 2+8ab+m 2 是一个完全平方式,则 m 的值是( )A .b 2B .2bC .16b 2D .±4b139.如果关于 x 的二次三项式 x 2-mx+16 是一个完全平方式,那么 m 的值是 ()A .8 戒-8B .8C .-8D .无法确定140.已知 x 2+kxy+64y 2 是一个完全平方式,则 k 的值是.141.若 9x 2+mxy+16y 2 是一个完全平方式,则 m 的值为( )A .24B .-12C .±12D .±24142.若 4a 2+2abk+16b 2 是完全平方式,那么 k 的值是( )A .16B .±16C143.当 m=()时,x 2+2(m-3)x+25 是完全平方式.144.如果 x 2-2(m+1)x+m 2+5 是一个完全平方式,则 m=.145.若要使 4x 2+mx+ 成为一个两数差的完全平方式,则 m 的值应为( )A .D .146.若 k-12xy+9x 2 是一个完全平方式,那么 k 应为( ) A .2y 2D .4y 2147.若 4x 2+pxy 3+ y 6 是完全平方式,则 p 等于.148.(x+b )2=x 2+ax+121,则 ab=.149.若改动 9a 2+12ab+b 2 中某一项,使它变成完全平方式,则改动的办法是 ()A . 只能改动第一项B . 只能改动第二项C . 只能改动第三项D . 可以改动三项中的仸一项150.老师布置了一道作业题:把多项式 25x4+1 增加一个单项式后,使之成为一个整式的平方式,以下是某学习小组给出的答案①-1,②-25x4,③10x2,④-10x2,⑤()2x8,其中正确的有()A.5 个B.4 个C.3 个D.2 个151.若二项式 x2+4 加上一个单项式后成为一个完全平方式,则这样的单项式共有个.152.当 x=-2 时,代数式-x2+2x-1 的值等于.153.若 x=2- ,则 x2-4x+8= .154.当 x=22005,y=(-2)2005 时,代数式 4x2-8xy+4y2 的值为.155.(a+b-1)(a-b+1)=()2-()2.156.4a2- =(+3b)(-3b).158.()+16x2=[()+1][()-1]159.(x- -3)(x+2y- )=[()-2y][()+2y] 160.(x-y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)= .161.已知 a-b=3,ab=2,则 a2+b2 的值为()A.13 B.7 C.5 D.11162.已知(a+b)2-2ab=5,则 a2+b2 的值为.163.已知 a2+b2=12,且 ab=-3,那么代数式(a+b)2 的值是.164.若 m2-n2=6,且 m-n=3,则 m+n= .165.若 a+b=0,ab=11,则 a2-ab+b2 的值为.166.已知 x+y=-5,xy=6,则 x2+y2 的值是.167.若 m+n=7,mn=12,则 m2-mn+n2 的值是.168.已知 a-b=3,a2-b2=9,则 a= ,b= .169.已知 x2+y2=13,xy=6,则 x+y 的值是()A.±5 B.±1 C.±D.1 戒170.已知 x2+y2=25,x+y=7,且 x>y,则 x-y 的值等于.171.已知(x+y)2=18,(x-y)2=6,则 x2+y2= ,xy= .172.若|x+y-5|+(xy-6)2=0,则 x2+y2 的值为.173.若 x(y-1)-y(x-1)=4,则-xy= .174.若 a-b=2,a-c=1,则(2a-b-c)2+(c-a)2 的值是.175.已知 a=2003,b=2002,则 a2-2ab+b2-5a+5b+6 的值为.176.若 n 满足(n-2006)2+(2007-n)2=1,则(2007-n)(n-2006)等于.177.已知(2009-a)(2008-a)=2007,那么(2009-a)2+(2008-a)2=. 178.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2-ab-bc-ac的值是.179.如果 a-b=2,a-c= ,那么 a2+b2+c2-ab-ac-bc 等于.180.当 a(a-1)-(a2-b)=-2 时,则-ab 的值为.181.记 x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且 x+1=2128,则n= .182.如果x-=3,那么x2+= .183.若 a- =2,则 a2+ 的值为.184.已知,则= .185.若 x2+ =7,则 x+ = .186.如果 x+ =2,则= .187.若(x+ )2= ,试求(x- )2 的值为.188.已知 x- =1,则= .189.已知 a+b=3,a3+b3=9,则 ab 等于.190.a、b 是仸意实数,则下列各式的值一定为正数的是()A.|a+2| B.(a-b)2 C.a2+1 D.191.已知 a2-2a+1=0,则 a2007= .192.如果 1- + =0,那么 = .A . 一定为负数B . 丌可能为正数C . 一定为正数D . 可能为正数,负数戒 0193.若 a 2+2a+b 2-6b+10=0,则( )A .a=1,b=3B .a=-1,b=-3C .a=1,b=-3D .a=-1,b=3194.已知 x 2+y 2+4x-6y+13=0,那么 x y =.195.丌论 a 为何值,代数式 a 2-2a+1 的值总是( )A .>0B .≥0C .0D .<0196.已知 x 为仸意有理数,则多项式-1+x- x 2 的值为( )197.若 x=a 2-2a+2,则对于所有的 x 值,一定有( )AA .总丌小于 2D .可能为负数199.若 M=3x 2-8xy+9y 2-4x+6y+13(x ,y 是实数),则 M 的值一定是()AD .整数200.用简便方法计算:99×101×10 001= .201.用简便方法计算:20032-2003×8+16=.202.由 m (a+b+c )=ma+mb+mc ,可得:(a+b )(a 2-ab+b 2) =a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3,即(a+b )(a 2-ab+b 2)=a 3+b 3…① 我们把等式①叫做多项式乘法的立方和公式. 下列应用这个立方和公式迚行的变形丌正确的是()A . (x+4y )(x 2-4xy+16y 2)=x 3+64y 3B . (2x+y )(4x 2-2xy+y 2)=8x 3+y 3C . (a+1)(a 2+a+1)=a 3+1D . x 3+27=(x+3)(x 2-3x+9)203.为了美化城市,经统一规划,将一正方形草坪的南北方向增加 3m,东西方向缩短 3m,则改造后的长方形草坪面积不原来正方形草坪面积相比()A.增加 6m2 B.增加 9m2 C.减少 9m2 D.保持丌变204.某商品原价为 100 元,现有下列四种调价方案,其中 0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价 m%,再降价 n% B.先涨价 n%,再降价 m%C.行涨价%,再降价% D.先涨价%,再降价% 205.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()AC206.如图所示,在边长为 a 的正方形中,剪去一个边长为 b 的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于 a、b 的恒等式为().(a+b)2=a2+2ab+b2.a2+ab=a(a+b)207.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2+ab D.a(a-b)=a2-ab208.在边长为 a 的正方形中挖去一个边长为 b 的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2 209.将边长分别为(a+b)和(a-b)的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是.210.(m+n-p)(p-m-n)(m-p-n)4(p+n-m)2 等于()A.-(m+n-p)2(p+n-m)6B.(m+n-p)2(m-n-p)6 C.(-m+n+p)8D.-(m+n+p)8211.若 A=(2+1)(22+1)(24+1)(28+1),则 A-2003 的末位数字是()A.0 B.2 C.4 D.660C . 120D . 60212.一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数 为“智慧数”,比如 28=82-62,故 28 是一个“智慧数”.下列各数中,丌是 “智慧数”的是()213.设 a >b >0,a 2+b 2-6ab=0,则的值等于 .214.已知 a-b=b-c= ,a 2+b 2+c 2=1,则 ab+bc+ca 的值等于.215.某校数学课外活动探究小组,在老师的引导下迚一步研究了完全平方公 式.结合实数的性质发现以下规律:对于仸意正数 a 、b ,都有 a+b≥2 成立.某 同学在做一个面积为 3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备 xcm .则 x 的值是( )A .120B .216.如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n (其中 n 为正 整数)展开式的系数,请仔绅观察表中规律,填出(a+b )4 的展开式中所缺的 系数.(a+b )1=a+b ; (a+b )2=a 2+2ab+b 2; (a+b )3=a 3+3a 2b+3ab 2+b 3; (a+b )4=a 4+a 3b+ a 2b 2+ ab 3+b 4.217.三个连续自然数中,两个较大数的积不第三个数平方的差为 188,那么这三个自然数为( )A .60,61,62B .61,62,63C .62,63,64D .63,64,65218.设 n 为大于 1 的自然数,则下列四个式子的代数值一定丌是完全平方数的 是()A .3n 2-3n+3B .5n 2-5n-5C .9n 2-9n+9D .11n 2-11n-112 C . 3D . 4219.设 x 为正整数,若 x+1 是完全平方数,则它前面的一个完全平方数是( ) A .xB .C .D .220.如果自然数 a 是一个完全平方数,那么不 a 之差最小且比 a 大的一个完全 平方数是( )A .a+1B .a 2+1C .a 2+2a+1D .a+2+1221.如果多项式 p=a 2+2b 2+2a+4b+2008,则 p 的最小值是( )A .2005B .2006C .2007D .2008222.已知实数 x ,y 满足方程(x 2+2x+3)(3y 2+2y+1)= ,则 x+y=.223.如果对于丌<8 的自然数 n ,当 3n+1 是一个完全平方数时,n+1 能表示 成 k 个完全平方数的和,那么 k 的最小值为( )A .1B .三、因式分解(共 277 题)因式分解四个基本方法:提公因式法、公式法、十字相乘法、分组分解法 提公因式法224.分解因式:a 2+2a=.225.分解因式:ab-a=.226.分解因式:ax+ay=.227.分解因式:2mx-6my=.228.分解因式:3a 2-6a=.229.分解因式:15a 2b+5ab=.230.分解因式:x 3-2x 2y=.231.分解因式:-12a2b-16ab2= .232.分解因式:9x-3x3= .233.分解因式:-4x2y+6xy2-2xy= .234.分解因式:-6mn+18mnx+24mny= .235.分解因式:-4a3+16a2b-26ab2= .236.分解因式:-7ab-14a2bx+49ab2y= .237.分解因式:12x3y-18x2y2+24xy3= .238.分解因式:x3y-x2y2+2xy3= .239.分解因式:-4x2yz-12xy2z+4xyz= .240.分解因式:-6xy+18xym+24xym = .241.分解因式:6x3-18x2+3x= .242.分解因式:m(x-y)+n(y-x)= .243.分解因式:2x(x-3)-5(x-3)= .244.分解因式:(2x2+3x-1)(x+2)-(x+2)(x+1)= .245.分解因式:4b(x-y+z)+10b2(y-x-z)= .246.分解因式:2y(x-2)-x+2= .247.分解因式:(x+3y)2-(x+3y)= .248.分解因式:(a-b)2-(b-a)3= .249.分解因式:(1+a)mn-a-1= .250.分解因式:(a-b)2(x-y)-(b-a)(y-x)2= .251.分解因式:4a(x-y)2-6b(y-x)= .252.分解因式:16(x-y)2-24xy(y-x)= .253.分解因式:6ab(a+b)2-4a2b(a+b)= .254.分解因式:n(m-n)(p-q)-n(n-m)(p-q)= .255.分解因式:x2-4x+4+(2x-4)= .256.分解因式:m(m+n)3+m(m+n)2-m(m+n)(m-n)= .257.分解因式:-3a(1-x)-2b(x-1)+c(1-x)= .258.分解因式:x(x-y)-y(y-x)= .259.分解因式:xy(x-y)-y(y-x)2= .260.分解因式:a(x2+y2)+b(-x2-y2)=_ .261.分解因式:(a+b)(a+b-1)-a-b+1=_ .262.分解因式:21(a-b)3+35(b-a)2=_ .263.分解因式:3x3y4+12x2y= .264.分解因式:a n+a n+2+a2n= .265.分解因式:-31x m-155x m+2+93x m+3= .266.分解因式:3x m•y n+2+x m-1y n+1= .267.分解因式:x(a-b)2n+y(b-a)2n+1= .268.分解因式:mn2(x-y)3+m2n(x-y)4= .269.分解因式:a3(x-y)-3a2b(y-x)= .270.分解因式:-12xy2(x+y)+18x2y (x+y)= .271.分解因式:18(x-y)3-12y(y-x)2= .272.分解因式:a(m-n)3-b(n-m)3= .273.分解因式:x2y(x-y)2-2xy(y-x)3= .274.分解因式:3x(x-y)+2x(y-x)-y(x-y)= .275.分解因式:(x+y)2-3(x+y)= .276.分解因式:m2n(m-n)2-2mn(n-m)3= .277.分解因式:2(a-b)3-4(b-a)2= .278.分解因式:(a-b)2(a+b)+(a-b)(a+b)2= .279.分解因式:(x-y)2-(3x2-3xy+y2)= .280.分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)1995= .A . 3x 2-9xy=x (3x-9y )B . x 3+2x 2+x=x (x 2+2x )C . -2x 3+2x 2-4x=-2x (x 2+x-2)D . x (x-y )2-y (y-x )2=(x-y )3281.分解因式 6a (a-b )2-8(a-b )3 时,应提取公因式是( )A .aB .6a (a-b )3C .8a (a-b )D .2(a-b )2282.在下列多项式中,没有公因式可提取的是( )A .3x-4yB .3x+4xyC .4x 2-3xyD .4x 2+3x 2y283.下列选项在用提取公因式法分解因式时,正确的是( )284.分解因式 a (a-b-c )+b (c-a+b )+c (b-a+c )的结果是( )A . (b+c-a )2B . (a-b-c )(a+b-c )C . -(a-b-c )2D . (a-b-c )2285.下列因式分解正确的是()AB C D286.下面各式的因式分解中,正确的是( )A .-7ab-14+49aby=7ab (1-2x+7y )B . -3x m y n +x m+1y n-1=-3x m y n-1(y+3x )C . 6(a-b )2-2(b-a )=2(a-b )(3a-3b+1)D .xy (x-y )-x (y-x )=x (x-y )(y-1)287.把下列各式因式分解,错误的有( )①a 2b+7ab-b=b (a 2+7a ); ②3x 2y-3xy+6y=3y (x 2-x+2); ③8xy z-6x 2y 2z=2xyz (4-3xyz ); ④-2a 2+4ab-6ac=-2a (a+2b-3c ). A .1 个B .2 个C .3 个D .4 个288.多项式 a 2n -a n 提取公因式后,另一个因式是( )A .a nB .a n -1C .a 2n -1D .a 2n-1-1289.若多项式-6ab+18abx+24aby 的一个因式是-6ab ,那么另一个因式是 ()A .-1-3x+4yB .1+3x-4yC .-1-3x-4yD .1-3x-4y290.下列各个分解因式中正确的是( )A .10ab 2c+6ac 2+2ac=2ac (5b 2+3c )B . (a-b )3-(b-a )2=(a-b )2(a-b+1)C . x (b+c-a )-y (a-b-c )-a+b-c=(b+c-a )(x+y-1)D .(a-2b )(3a+b )-5(2b-a )2=(a-2b )(11b-2a )291.若(x+y )3-xy (x+y )=(x+y )•A ,则 A 为( )A .x 2+y 2B292.m 2(a-b )+m (b-a )因式分解的结果是() A .(a-b )(m 2.m(b-a )(n+1293.若要把多项式-12xy 2(x+y )+18x 2y (x+y )因式分解,则应提取的公因式为.294.利用分解因式计算:1.38×29-17×1.38+88×1.38=.295.若(p-q )2-(q-p )3=(q-p )2•E,则 E 是.296.若 a ,b 互为相反数,则 a (x-2y )-b (2y-x )的值为.297.若 m 、n 互为相反数,则 m (a-3b )-n (3b-a )=.298.若 a 2+a=0,则 2a 2+2a+20130 的值为 .A . 4B . -4299.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a )(x+b ), 其中 a ,b 均为整数,则 a+3b=,ab= .300.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a )(x+b ), 其中 a 、b 均为整数,则 a+3b=.301.已知 a+b=3,ab=2,则 a 2b+2a 2b 2+ab 2=.302.已知 x 2-xy=2,则 x (2x-2y )-4=.303.已知 m+n=1,mn=- ,则 m (m+n )(m-n )-m (m-n )2=.304.多项式 4x 3-2x 2-2x+k 能被 2x 整除,则常数项为.305.若(b+c )(c+a )(a+b )+abc 有因式 m (a 2+b 2+c 2)+l (ab+ab+bc ), 则 m=,l= .306.设 x 为满足 x 2002+20022001=x 2001+20022002 的整数,则 x=.公式法307.若多项式 x 2+mx+4 能用完全平方公式分解因式,则 m 的值可以是( ) C .±2D .±4308.下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 2309.下列各式中,能用平方差公式分解因式的是( )A .x 2+4y 2B .x 2-2y 2+1C .-x 2+4y 2D .-x 2-4y 2310.在有理数范围内,下列各多项式能用公式法迚行因式分解的是( )A .a 2-6aB .a 2-ab+b 2C .D .C . x 2-x+D . x 2-4y4-4a+a 2=(a-2)2 B . 1+4a-4a 2=(1-2a )2 1+x2=(1+x )2 D . x 2+xy+y 2=(x+y )2B . a 4+b 2-2a 2bC .A . ①②B . ②③311.下列因式分解中,结果正确的是()A . x 2-4=(x+2)(x-2)B . 1-(x+2)2=(x+1)(x+3)C . 2m 2n-8n 3=2n (m 2-4n 2)D .312.下列多项式中,丌能运用平方差公式因式分解的是( )A .-m 2+4B .-x 2-y 2C .x 2y 2-1D .(m-a )2-(m+a )2313.下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9314.下列多项式中能用公式迚行因式分解的是( )A .x 2+4B .x 2+2x+4315.下列多项式因式分解正确的是( )A . C .316.下列多项式中,丌能运用公式分解因式的是( )A .m 4-25 D .x 2+2xy-y 2317.在多项式①x 2+2xy-y 2;②-x 2-y 2+2xy ;③x 2+xy+y 2;④4x 2+1+4x 中, 能用完全平方公式分解因式的有( ) C .①④ D .②④318.下列因式分解中,正确的有()①4a-a 3b 2=a (4-a 2b 2);②x 2y-2xy+xy=xy (x-2);③-a+ab-ac=-a (a-b-c ); ④9ab c-6a 2b=3abc (3-2a );⑤x 2y+xy 2=xy (x+y ) A .0 个B .1 个C .2 个D .5 个319.下列多项式丌能用平方差公式分解因式的是( )A .a 2-(-b )2B .(-a )2-(-b )2C .-a 2-(-b )2D .-a 2+b 24a 2-(a+b )2 C . a 2-8b 2D . x 2y 2-121-a 2+b 2B . -x 2-y 2A . a 2-2ab-b 2B .320.下列各式中丌能用完全平方公式分解的是( )A .-x 2-y 2+2xyB .x4+x2y2-2x3yC .m 2-m+1D .x 2-xy+y 2321.下列多项式中,能运用完全平方公式因式分解的是( )A .a 2+2ax+4x 2B .-a 2-4ax+4x 2C .-2x+1+4x 2D .x 2+4+4x322.下列多项式中,能直接用完全平方式分解因式的是( )A .x 2+2xy-y 2B .-x 2+2xy+y 2C .x 2+xy+y 2D .323.下列各式能用平方差公式因式分解的是( )A .A 2+B 2B .-A 2-B 2C .324.下列多项式,在有理数范围内丌能用平方差公式分解的是( )A .-x 2+y 2B .325.下列多项式丌能用完全平方公式分解因式的是()A .C .326.下列各式中,丌能用平方差公式分解因式的是()A . C .49x 2y 2-z 2D .16m 4-25n 2p 2327.下列多项式中,能用公式法迚行因式分解的是( )a 2-2ab+4b 2 C .-x 2+9D .x 2+xy+y 2328.下列各式中,能用平方差公式分解因式的有( )①x 2+y 2;②x 2-y 2;③-x 2+y 2;④-x 2-y 2;⑤1-a 2b 2. A .2 个B .3 个C .4 个D .5 个329.下列多项式丌能用平方差公式分解的是( )A . a 2b 2-1B .4-0.25m 2C .1+a 2D .-a 4+12 个C . 3 个D . 5 个B . y 2-2y+1C . -x 2-4y 2x 2-y 2B . x 2+y 2C .A . (-k-t 2)B . (k+t 2)330.下列多项式中丌能分解因式的是( )A .a 2b 2-abB .(x-y )2+(y-x )C .0.36x 2-6D .(-x )2+331.下列各式中能迚行因式分解的是( )A .a 2+b 2B .-a 2-b 2C .x 2-2xy+4y 2D .a 2+2a+1332.在多项式①+b 2;②-m 2+14mn+49n 2;③a 2-10a+25;④ab 2+2a 2b-1;⑤y 6-2y 3+1 中,丌能用完全平方公式分解因式的有( )A .①②⑤B .③④⑤C .①②④D .②④⑤333.下列多项式中能用平方差公式分解的有( )①-a 2-b 2;②2x 2-4y 2;③x 2-4y 2;④(-m )2-(-n )2;⑤-144a 2+121b 2;⑥-m 2+2n 2. A .1 个B .334.下列各式中,能用平方差公式分解因式的是() A .x 2+9y 2D .-4y 2+x 2335.-(x+y )(x-y )是()分解因式的结果.A . -x 2-y 2 D .-x 2+y 2336.不(k-t 2)之积等于 t 4-k 2 的因式为( )C .(k-t 2)D .(t 2-k )337.下列各式分解因式错误的是()A . 2x 2+2x=2x (x+1)B . x 2-4x+4=(x-2)2C . x 2-y 2=(x+y )(x-y )D . a +ab-ac=a (b-c )338.下列各式中能用完全平方公式分解的是( )①x 2-4x+4;②6x 2+3x+1;③4x 2-4x+1;④x 2+4xy+2y 2;⑤9x 2-20xy+16y 2A .①②B .①③C .②③D .①⑤339.一次课堂练习,小明做了如下 4 道因式分解题,你认为小明做得丌够完整 的一题是()A . x 2-2xy+y 2=(x-y )2B . x 2y-xy 2=xy (x-y )C . x 3-x=x (x 2-1)D . x 2-y 2=(x-y )(x+y )340.下列各式的因式分解中,正确的是()A . 3m 2-6m=m (3m-6)B . a 2b+ab+a=a (ab+b )C . -x 2+2xy-y 2=-(x-y )2D . x 2+y 2=(x+y )2341.在多项式①a 2-b 2+2ab ;②1-a+a 2;③ -x+x 2;④-4x 2+12xy-9y 2 中能用完全平方公式分解的有( )个. A .1B .2C342.下列因式分解中正确的是( )AC343.小明在抄分解因式的题目时,丌小心漏抄了 x 的指数,他只知道该数为丌 大于 10 的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是 x □-4y 2(“□”表示漏抄的指数),则这个指数可能的结果共有( )A .4 种 D .5 种344.分解因式:x 2-1=.345.分解因式:a 2-2ab+b 2=.346.分解因式:x 2-4x+4=.347.分解因式:9-x 2=.348.分解因式:x 2-4=.349.分解因式:a 2-4a+4=.350.分解因式:2a2-4a+2= .351.分解因式:x2-y2= .352.分解因式:y2+4y+4= .353.分解因式:(x-1)2-9= .354.分解因式:x2-4x+4= .355.分解因式:4a2-b2= .356.分解因式:-1+0.04m2= .357.分解因式:1-(a-b)2= .358.分解因式:4x2-(y-z)2= .359.分解因式:x4-16= .360.分解因式:a4-2a2b2+b4= .361.分解因式:(a+b)2-100= .362.分解因式:4x2-12xy+9y2= .363.分解因式:2xy-x2-y2= .364.分解因式:(m-n)2+(m-n)+= .365.分解因式:(m-n)2- (m-n)+ = .366.分解因式:(m-n)2-9n2(n-m)2= .367.分解因式:(4m+5)2-9= .368.分解因式:a3-4ab2= .369.分解因式:4a2-a2x2= .370.分解因式:x3-x= .371.分解因式:ab2-6ab+9a= .372.分解因式:ax2+2axy+ay2= .373.分解因式:ax3y+axy3-2ax2y2= .374.分解因式:-x3+2x2-x= .375.分解因式:3x3-12x2y+12xy2= .376.分解因式:x3-2x2+x= .377.分解因式:3x3-6x2y+3xy2= .378.分解因式:(x+2)(x+3)+x2-4= .379.分解因式:x9-x= .380.分解因式:x m+3-x m+1= .381.分解因式:9(x-y)2+12(x2-y2)+4(x+y)2= .382.分解因式:(x2+y2)2-8(x2+y2)+16= .十字相乘法384.49x2+ +y2=(-y)2,t2+7t+12= .385.若对于一切实数 x,等式 x2-px+q=(x+1)(x-2)均成立,则 p2-4q 的值是.386.分解因式:x2+x-6= ,x2-x-6= .387.分解因式:x2+5x-6= .388.分解因式:x2+x-12= .389.分解因式:x2+2x-15= .390.分解因式:x2-9x+14= .391.分解因式:x2-5x-14= .392.分解因式:x2+4x-21= .393.分解因式:x2-x-42= .394.若(x-3)•A=x2+2x-15,则 A= .395.分解因式:2x2-4x-6= .396.分解因式:-2x2+4x+6= .397.分解因式:x3-2x2-3x= .398.分解因式:4a2b+12ab+8b= .400.分解因式:2x2-7x+3= .401.分解因式:3x2-5x-2= .402.分解因式:3x2-7x+2= .403.分解因式:6x2+7x-5= .404.若 x+5 是二次三项式 x2-kx-15 的一个因式,那么这个二次三项式的另一个因式是.405.x2- -20=(x+4)().406.分解因式:(x-3)(x-5)-3= .407.分解因式:(x+2)(x-13)-16= .408.分解因式:(x-1)(x-2)-20= .409.分解因式:(a+3)(a-7)+25= .410.分解因式:x2-3x(x-3)-9= .411.已知 5x2-xy-6y2=0,则的值为.412.分解因式:2x2+5xy-12y2= .413.分解因式:x2+7xy-18y2= .414.分解因式:a2+2ab-3b2= .415.分解因式:18ax2-21axy+5ay2= .416.分解因式:2003x2-(20032-1)x-2003= .417.用十字相乘法分解因式:a2x2+7ax-8= .418.分解因式:m4+2m2-3= .419.分解因式:(x+y)2+5(x+y)-6= .420.分解因式:(x-y)2-4(x-y)+3= .421.分解因式:(a-b)2+6(b-a)+9= .422.分解因式:(x+y)2-3x-3y-4= .423.若p 是正整数,二次三项式x2-5x﹢p 在整数范围内分解因式为(x-a x-b)的形式,则 p 的所有可能的值.424.已知 a 为整数,且代数式 x2+ax+20 可以在整数范围内迚行分解因式,则符合条件的 a 有个.425.分解因式:2b2-2b+ = .426.分解因式:x8+x4+1= .427.分解因式:(x2+3x)2-2(x2+3x)-8= .428.分解因式:(a2+3a)2-2(a2+3a)-8= .429.分解因式:(x2-2x)2-11(x2-2x)+24= .430.分解因式:x(x-1)(x+1)(x+2)-24= .431.分解因式:(x-3)(x-1)(x-2)(x+4)+24= .432.分解因式:(x2+5x+2)(x2+5x+3)-12= .433.分解因式:(x4+x2-4)(x4+x2+3)+10= .434.分解因式:(x+1)4+(x+3)4-272= .435.将 x3-ax2-2ax+a2-1 分解因式得.436.在有理数范围内分解因式:(x+y)4+(x2-y2)2+(x-y)4= .437.分解因式:x4+2500= .438.分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6= .分组分解法439.分解因式:ab+b2-ac-bc=()-(ac+bc)= .440.分解因式:ax2+ax-b-bx=(ax2-bx)+()=()().441.分解因式:2ax+4bx-ay-2by=()+()=()().442.分解因式:x2-a2-2ab-b2=()-()=()().443.分解因式:ax-ay+a2+bx-by+ab= .444.分解因式:ab-3ac+2ay-bx+3cx-2xy=. 445.分解因式:(ax-by)2+(ay+bx)2= .446.分解因式:1-a2-b2+2ab= .447.分解因式:1-x2+2xy-y2= .448.分解因式:a2-b2+4a+2b+3= .449.分解因式:x2-4y2-9z2-12yz= .450.分解因式:a2-4b2+4bc-c2= .451.分解因式:-x3-2x2-x+4xy2= .452.分解因式:9-6a-6b+a2+2ab+b2= .453.分解因式:a2+4b2+9c2-4ab+6ac-12bc= .454.分解因式 x3+(1-a)x2-2ax+a2= .455.已知 p、q 满足等式|p+2|+(q-4)2=0,分解因式:(x2+y2)-(pxy+q)= .456.已知,且x≠y,则= .457.分解因式:a4b-a2b3+a3b2-ab4= .458.分解因式:(x+y-2xy)(x+y-2)+(xy-1)2= .459.分解因式:a2+2b2+3c2+3ab+4ac+5bc= .460.分解因式:x2y+xy2-x2-y2-3xy+2x+2y-1= .461.分解因式:(1-x2)(1-y2)-4xy= .462.分解因式:ax3+x+a+1= .463.分解因式:(x2-1)(x4+x2+1)-(x3+1)2= .464.分解因式:x5+x3-x2-1= .465.分解因式:x3+x2+2xy+y2+y3= .466.分解因式:32ac2+15cx2-48ax2-10c3= .467.分解因式:x2(y-z)+y2(z-x)+z2(x-y)= .468.分解因式:(x+y-2xy)(x+y-2)+(1-xy)2= .469.分解因式:x4+x3+6x2+5x+5= .470.分解因式:bc(b+c)+ca(c-a)-ab(a+b)= .471.分解因式 y2+xy-3x-y-6=472.分解因式:x2+5xy+x+3y+6y2= .473.分解因式:2x3+11x2+17x+6= .474.分解因式:x4+2x3-9x2-2x+8= .475.分解因式:2x2-xy-6y2+7x+7y+3= .476.分解因式:6x2+xy-15y2+4x-25y-10= .477.分解因式:(x2-1)(x+3)(x+5)+12= .478.分解因式:x3+6x2+5x-12= .479.分解因式:a4+2a3b+3a2b2+2ab3+b4= .480.分解因式:ab(a+b)2-(a+b)2+1= .481.分解因式:x4-5x2+4x= .482.分解因式:(x-1)3+(x-2)3+(3-2x)3= .483.分解因式:x3+(2a+1)x2+(a2+2a-1)x+(a2-1)= .因式分解的应用484.计算:(x2-2x+1-y2)÷(x+y-1)= .485.(a4-16b4)÷(a2+4b2)÷(2b-a)= .486.分解因式:①x3+(2a+1)x2+(a2+2a-1)x+(a2-1);②a4+b4+(a+b)4.487.将关于 x 的一元二次方程 x2+px+q=0 变形为 x2=-px-q,就可将 x2 表示为关于 x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知 x2-x-1=0,可用“降次法”求得 x4-3x+2014 的值是.488.有理数的值等于_______.489.计算= .490.已知:,则abc= .。
八年级数学上册整式的乘法与因式分解中考真题汇编[解析版]
八年级数学上册整式的乘法与因式分解中考真题汇编[解析版]一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)【答案】B【解析】【分析】【详解】因为(x+6)(x-1)=x2+5x-6,所以b=-6;因为(x-2)(x+1)=x2-x-2,所以a=1.所以x2-ax+b=x2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b 中分解因式.2.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题的图形是( )A.B.C.D.【答案】A【解析】∵222+=++,x y x y xy(2)44>),则这个图形∴若用边长分别为x和y的两种正方形组成一个图形来解决(其中x y应选A,其中图形A中,中间的正方形的边长是x,四个角上的小正方形边长是y,四周带虚线的每个矩形的面积是xy.故选A.3.计算,得()A.B.C.D.【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m+2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C .【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.4.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.5.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b )2﹣(a ﹣b )2=4ab ,即4ab=(a+b )2﹣(a ﹣b )2.故选C .6.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.7.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+- =1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.8.下列各式从左边到右边的变形是因式分解的是( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3)2C .x 2+2x +1=x (x +2x )+1D .-18x 4y 3=-6x 2y 2·3x 2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A 、是多项式乘法,不是因式分解,错误;B 、是因式分解,正确.C 、右边不是积的形式,错误;D 、左边是单项式,不是因式分解,错误.故选B .【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A .x 2+5x -1=x(x+5)-1B .x 2-4+3x=(x+2)(x -2)+3xC .(x+2)(x -2)=x 2-4D .x 2-9=(x+3)(x -3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A 、右边不是积的形式,故A 错误;B 、右边不是积的形式,故B 错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解.故选D .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A .3-,4-B .3-,4C .3,4-D .3,4【答案】A【解析】【分析】 根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可. 【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可, A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.13.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.14.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.15.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).【答案】ab【解析】【分析】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x ax x b +=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.16.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】 根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.17.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为______. 【答案】-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.【详解】∵x 2y 5x 2y 3-=⎧+=-⎨⎩, ∴22x 4y -=(x+2y )(x-2y )=-3×5=-15,故答案为:-15.【点睛】本题考查代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的结构特征选用恰当的方法进行解题是关键.18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .【答案】a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.【解析】【分析】通过观察可以看出(a+b)6的展开式为6次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b)6的展开式为6次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.19.若a+b=4,ab=1,则a2b+ab2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.20.分解因式:x2﹣1=____.【答案】(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.。
八年级整式的乘法与因式分解专题练习(解析版)
八年级整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3【答案】D【解析】【分析】首先把a 2+b 2+c 2﹣ab ﹣bc ﹣ac 两两结合为a 2﹣ab +b 2﹣bc +c 2﹣ac ,利用提取公因式法因式分解,再把a 、b 、c 代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )当a =2012x +2011,b =2012x +2012,c =2012x +2013时,a -b =-1,b -c =-1,c -a =2,原式=(2012x +2011)×(﹣1)+(2012x +2012)×(﹣1)+(2012x +2013)×2=﹣2012x ﹣2011﹣2012x ﹣2012+2012x ×2+2013×2=3.故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.4.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.5.已知x -y =3,12x z -=,则()()22554y z y z -+-+的值等于( ) A .0B .52C .52-D .25 【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z 的值,代入所求代数式求值即可.【详解】由x-y=3,12x z -=得:()()x z x y y z ---=-15322 =-=-;把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+=⎪ ⎪⎝⎭⎝⎭.故选:A.【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B7.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.8.将下列多项式因式分解,结果中不含有因式(a+1)的是()A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.9.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】 宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.12.若()219x y +=,()25x y -=,则22xy +=______.【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.13.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.14.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y所以a=±12 【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.15.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.16.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).17.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).19.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+20.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x2+2x=3代入即可得答案.【详解】原式=x2+2x+1-(x2-4)+x2=x2+2x+1-x2+4+x2=x2+2x+5.∵x2+2x=3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.
【答案】(1)9;(2)△ABC的最大边c的值可能是6、7、8、9、10;(3)8.
【解析】
试题分析:(1)直接利用配方法得出关于x,y的值即可求出答案;
............
(1)按以上等式的规律,填空:(a+b)(___________________)=a3+b3
(2)利用多项式的乘法法则,证明(1)中的等式成立.
(3)通过上述的等量关系,我们可知:当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越(填“大”或“小”).
【答案】(1) ;(2) ;
(3)大小
【解析】
【分析】
(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;
【解析】
【分析】
(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;
(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.
【详解】
(1)y2﹣7y+12=(x﹣3)(x﹣4);
(2)3x2﹣2x﹣1=(x﹣1)(3x+1).
【点睛】
此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.
∴a(a﹣8)+16+(c﹣8)2=0,
∴(a﹣4)2+(c﹣8)2=0,
∴a﹣4=0,c﹣8=0,
∴a=4,c=8,b=a﹣8=4﹣8=﹣4,
∴a+b+c=4﹣4+8=8,
即a+b+c的值是8.
5.观察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216
【详】
(1)∵ , ,
∴ ,
∵ ,
∴ ;
(2)当x 时, , 均为正数,
∴
所以, 的最小值为 .
(3)当x 时, , ,2x-6均为正数,
∴
由 可知,当且仅当 时, 取最小值,
∴当 ,即 时,有最小值.
∵x
故当 时,代数式 的最小值为2019.
【点睛】
本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.
十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子 和 分解因式,如图:
;
.
请你仿照以上方法,探索解决下列问题:
(1)分解因式: ;
(2)分解因式: .
【答案】(1)(x﹣3)(x﹣4);(2)(x﹣1)(3x+1).
(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;
(3)两正数和一定,则和的平方一定,根据等式 ,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;
4.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;
(2)直接利用配方法得出关于a,b的值即可求出答案;
(3)利用已知将原式变形,进而配方得出答案.
试题解析:(1)∵x2﹣2xy+2y2+6y+9=0,
∴(x2﹣2xy+y2)+(y2+6y+9)=0,
∴(x﹣y)2+(y+3)2=0,
∴x﹣y=0,y+3=0,
∴x=﹣3,y=﹣3,
∴xy=(﹣3)×(﹣3)=9,
即xy的值是9.
(2)∵a2+b2﹣10a﹣12b+61=0,
∴(a2﹣10a+25)+(b2﹣12b+36)=0,
∴(a﹣5)2+(b﹣6)2=0,
∴a﹣5=0,b﹣6=0,
∴a=5,b=6,
∵6﹣5<c<6+5,c≥6,
∴6≤c<11,
∴△ABC的最大边c的值可能是6、7、8、9、10.
(3)∵a﹣b=8,ab+c2﹣16c+80=0,
(2)求 的最小值;
(3)已知 ,当 为何值时,代数式 有最小值,并求出这个最小值.
【答案】(1) ,2;(2) ;(3)当 时,代数式 的最小值为2019.
【解析】
【分析】
(1)根据阅读材料即可得出结论;
(2)根据阅读材料介绍的方法即可得出结论;
(3)把已知代数式变为 ,再利用阅读材料介绍的方法,即可得到结论.
一、八年级数学整式的乘法与因式分解解答题压轴题(难)
1.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到 .请回答下列问题:
(1)写出图2中所表示的数学等式是;
(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有 , 的式子表示);
3.材料:数学兴趣一小组的同学对完全平方公式进行研究:因 ,将左边展开得到 ,移项可得: .
数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数 、 ,都存在 ,并进一步发现,两个非负数 、 的和一定存在着一个最小值.
根据材料,解答下列问题:
(1) __________( , ); ___________( );
【详解】
(1)看图可知,
(2)
(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.
【点睛】
本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.
2.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.