初一上数学应用题复习题型大全用心收集的
新人教版七年级上册数学应用题汇总
新人教版七年级上册数学应用题汇总(只列式不计算)一、“工程问题”1、一项工程甲单独完成要6天,乙单独完成要12天,丙单独完成要15天(1)甲、乙合作几天完成这项工作?(2)甲、乙、丙合作几天完成这项工程?(3)甲、丙合作几天完成这项工作?(4)乙、丙合作几天完成这项工程?3?(5)甲、乙合作几天完成这项工作的43?(6)甲、乙、丙合作几天完成这项工程5(7)甲单独做了2天后,甲乙合作几天完成这项工作?(8)甲单独做了2天后,甲乙丙合作几天完成这项工作?(9)甲、丙合作3天后有其他工作离开,由乙单独完成,一共几天完成这项工作?4,问甲共工作了(10)乙单独做了3天,后甲乙丙合作,完成了该工程的5几天完成这项工程?4,剩下的由丙单独(11)乙单独做了3天,后甲乙合作,完成了该工程的5完成这项工作,问甲、乙、丙各工作了几天?2、某车间接到x件零件加工任务,计划每天加工120件。
(1)6天能完成,问总任务是多少件?(2)实际每天比计划多加工20件,7天能完成,问总任务多少件?2,4天能完成,问总任务多少件?(3)实际每天比计划多加工5(4)实际每天比计划多加工20件,结果比计划提前了2天完成,问总任务多少件?1,结果比计划多用了4天完成,问总任务多少(5)实际每天比计划少加工5件?3、某工程,甲单独完成要45天完成,乙单独做要30天完成,若乙先单独做了22天,剩下的由甲去完成,问甲、乙一共用几天可以完成全部工程?4、一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两对合作。
(1)求甲、乙合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天施工费为2500元,求完成此项工程需付给甲、乙两队共多少钱?5、一件工作甲队单独完成需7.5小时,乙队单独完成要5小时,现乙队单独先做1小时候,剩余工作由甲、乙两队共同完成,问这项工作还需要多长时间完成?二、配套问题1、一个工厂有32工人,要加工一批螺母和螺栓,一个工人每天可生产120个螺母或80个螺栓,已知一个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?2、一个木材加工厂,有28名职工,接到一批方桌生产任务,一个工人每天可制作120条桌腿或40个桌面,1张方桌需要一个桌面和4条桌腿,问,如何安排职工才可使每天完成的桌面和桌腿刚好配套?3、用木料做方桌,每立方米木料可做桌面50个或桌腿300条,一张方桌需要一个桌面和4条桌腿,5立方米的木料敲好可做多少张方桌?4、整理一批档案,由一个人完成需要20天,先计划由一部分人先做2天,3,假设每人的效率都然后再增加2人与他们一起做了8天,完成了这项任务的4一样,具体应先安排多少人工作?5、有一批苹果和一些箱子,如果每个箱子里装6千克,则剩余4千克苹果无箱可装,如果每个箱子装8千克苹果则期中一个箱子再装6千克才装满,还剩1只空箱子无苹果可装,问一共有多少个箱子和多少千克苹果?6、美术课上,老师计划将同学们分成若干小组做手工制作,如果每组5人,则多3人;如果每组6人则少5人,教师计划将同学们分成几组?7、一个工厂有职工660人,要加工一批螺母和螺栓,一个工人每天可生产14个螺母或20个螺栓,已知两个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?8、某校七年级安排170名学生参加义务绿化活动。
七年级(上册)数学常考题型归纳(期末复习用)
七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】; A .-1; B .-2 ; C .-3 ; D .-4; (思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( );;A .a +b>0 ;B .ab >0;C .110a b -<;D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ; C .a -<b <b -<a ; D .b -<a <b <a -;B 0 2A-1 a 01 b图3ab 07、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .0ab >B .0a b +<C .1a b <D .0a b -<8、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则c b c a +--= ;9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 .三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)10、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1;C .1-与1;D .-12与1;四、倒数 :(互为倒数的两数的积为1)11、-3的倒数是________;五、绝对值 (|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a=±b )12、2-等于( );A .-2 ;B .12- ; C .2 ; D .12; 13、若ab ≠0,则等式a b a b+=+成立的条件是______________;14、若有理数a, b 满足(a-1)2+|b+3|=0, 则a-b= ;15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别; (-1)奇与(-1)偶的区别]ao cb 图316、下列计算中正确的是( );A .532a a a =+ ; B .22a a -=- ; C .33)(a a =- ; D .22)(a a --;七、科学计数法 (表示形式a ×10n )17、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【 】;A .精确到十分位 ;B .精确到个位;C .精确到百位;D .精确到千位; 19、下面说法中错误的是( ); A .368万精确到万位 ;B .2.58精确到百分位;C .0.0450有精确到千分位;D .10000精确到万位表示为“1万”或“1×104”;九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12] (3))23(24)32(412)3(22---×++÷÷ (4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] . (6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有();A.1 ; B.2; C.3 ; D.4;22、下列说,其中正确的个数为();①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a-一定在原点的左边。
七年级数学上册 一元一次方程应用题知识点及题型汇总(题型齐全)
一元一次方程应用题题型汇总一、列一元一次方程解应用题完整步骤∶审∶找出等量关系设:直接设元和间接设元列:根据等量关系,列方程解∶解方程验:方程的解要符合实际情况答: 作答一、常见列方程解应用题的几种类型(一)和差倍分问题基本数量关系(抓住关键性词语)和差倍分的关键词有和、差、多、少、几分之几、几倍多几、几倍少几等.【例1】已知小明的课时费是每小时100元,底薪是20000元,余半仙的课时费是每小时2000元,底薪是50000元.若小明和余半仙在某个月上课时间长度相同,而收入情况为小明是余半仙的 .问这个月小明上了多少小时的课?(单小时课时费*小时数+底薪=总收入) 解:设这个月小明上了x小时的课,根据题意,可列方程100x + 20000 = 1/10 (2000x + 50000)解得:x = 150.答:这个月小明上了150小时的课.【例2】小明没有什么经济头脑,其日常开销主要由小红管理.一天小红看了看小明的钱包,说:“我如果给你400元,我剩下的钱是你的11倍;我如果给你500元,我剩下的钱是你的9倍.”问小明实际有多少钱?解:设小明实际有x元,根据题意,可列方程11(x + 400) + 400 = 9 (x + 500) + 500解得:x = 100答:小明实际有100元.【举一反三】1.某房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿数与凳子腿数的和为60条,有几张椅子和几条凳子?2.一个长方形的周长是60cm,且长与宽的比是3∶2,求长方形的宽.3. 足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分. 某队在某次比赛中共踢了14场球,其中负5场,共得19分. 问这个队共胜了多少场.(二)配套问题:1.人员调配问题从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量。
调配问题中,若从一处调到另一处,则一处减,另一处加,且量相同;若另外从其他地方调入,则两处都加,且两处加的总数等于调入总数。
七年级上册数学应用题及答案大全
七年级上册数学应用题及答案大全一、有理数运算1. 某人的银行卡上存有 200 元钱,他取了 120 元钱,还了一笔帐,付了 67 元钱,最后他的银行卡上还剩下多少钱?答:银行卡上还剩下 13 元钱。
2. 某家饭店有 5 桌客人,每桌消费 78 元钱,另外还有一桌消费了 120 元钱。
饭店的总收入是多少?答:饭店的总收入是 510 元钱。
3. 汽车每小时行驶 56 公里,从 A 市到 B 市要行驶 448 公里,需要多长时间?答:汽车需要行驶 8 小时。
二、比例与比例应用1. 一朵花每天太阳下山后的 6 小时内会开放 9 朵花瓣,如果这朵花一天中太阳落山的时间为 18:30,那么它最晚开放多少朵花瓣?答:这朵花最晚开放 45 朵花瓣。
2. 一家糖果店有 4 种不同重量的糖果,它们的价格比分别是 1:2:3:4,如果第一种糖果每克 0.4 元,那么第四种糖果每克多少钱?答:第四种糖果每克 1.2 元。
3. 好视力党员比例是 3:7,全国共有 8000 万好视力人群,那么党员中好视力人群的人数是多少?答:好视力的党员人数是 3600 万。
三、平均数1. 某班有 50 个学生,他们的总成绩为 2500 分,平均分是多少?答:平均分是 50 分。
2. 一家餐厅一天供应 300 份饭菜,若中午饭时间供应的饭菜量是晚饭的 1.5 倍,中午共供应多少份饭菜?答:中午共供应 150 份饭菜。
3. 用一张面积为 20 $\mathrm{dm}^{2}$ 的长方形纸板剪出 5 个形状相同的小正方形,每个小正方形的面积是多少平方厘米?答:每个小正方形的面积是 20 平方厘米。
四、百分数1. 一桶汽油原价是 280 元,打了 8 折之后的价格是多少?答:打折后的价格是 224 元。
2. 某商场清仓促销,商品原价标价 60 元,打了 2 折的折扣,折后价格是多少?答:折后价格是 12 元。
3. 某自行车厂每条自行车生产 100 元的成本,标价 300 元,最终实际售价是标价的 80%,每条自行车的利润是多少?答:每条自行车的利润是 40 元。
七年级数学上册精选应用题47道
应用题精选1、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?2、一个梯形的下底比上底多2cm,高是5cm,面积是40平方厘米,求上底?3、用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?4、某校七年级1班共有学生48人,其中女生人数比男生人数的多3人,这个班有男生多少人?5、把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?6、今年上半年某镇居民人均可支配收入为5109元,比去年同期增长了8.3%,去年同期这项收入为多少元?7、一辆汽车已经行驶了12000km,计划每月再行驶800km,几个月后这辆汽车将行驶20800km?8、七年级一班全体学生为地震灾区共捐款428元,七年级二班每个学生捐款10元,七年级一班所捐款数比七年级二班少22元,两班学生人数相同,求每班有多少名学生?9、一个两位数个位上的数字是1,十位上的数字是x,把1与x 对调,新两位数比原两位数小18,求x?10、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?11、有一列数,按一定规律排列成1,-3,9,-27,81,-243,……,其中某三个相邻数的和是-1701,这三个数各是多少?12、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?13、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?14、某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t,如用新工艺,则废水排量比环保限制的最大量少100t,新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?15、王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg,采摘结束后王芳从她采摘的樱桃中取出0.25千克给了李丽,这时两人的樱桃一样多,她们采摘用了多少时间?16、用方程解答下列问题:(1)x的5倍与2 的和等于x的3倍与4的差,求x?(2)y与-5的积等于y与5的和,求y?17、小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄?18、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型,Ⅲ型三种洗衣机的数量比为1:2:14,计划生产这三种洗衣机各多少台?19、用一根长60m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?20、随着农业技术的现代化,节水型灌溉得到逐步推广,喷灌和滴灌是比漫灌节水的灌溉方式,灌溉三块同样大的试验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式,后两种方式用水量分别是漫灌的25%和15%.(1)设第一块试验田用水x t,则另两块试验田的用水量各如何表示?(2)如果三块试验田共用水420t,每块试验田各用水多少吨?21、某造纸厂为节约木材,大力扩大再生纸的生产,它去年10月生产再生纸2050t,这比它前年10月再生纸产量的2倍还多150t,它前年10月生产再生纸多少吨?22、把一根长100cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5cm,应该在木棍的哪个位置锯开?23、几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人中12棵,则缺6棵树苗。
初一应用题经典题型
初一的应用题经典题型包括但不限于以下几种:
1. 追及问题:两个物体在同一时刻开始运动,一个在另一个前面,求后者追上前者的时间或者距离。
2. 相遇问题:两个物体从两个相对的点同时开始运动,最终在某一点相遇。
要求相遇的时间或者距离。
3. 比例问题:涉及到两个或多个数量之间的比例关系,如工程问题中的工作量与工作时间之间的比例。
4. 百分数问题:涉及到百分数的应用,例如增长率、折扣、利息等。
5. 平均数问题:求一组数的平均数,或者比较两组数的平均数。
6. 代数问题:涉及到代数方程的解,不等式的求解,函数的图象等。
7. 几何问题:涉及到几何图形的性质,如周长、面积、体积等。
8. 逻辑推理问题:通过已知信息进行逻辑推理,得出结论。
9. 最大/最小值问题:求某个量在给定条件下的最大值或最小值。
10. 方案选择问题:给定一组条件,要求选择最优的方案。
以上只是初一应用题的一些经典题型,实际上应用题的题型非常广泛,可以涉及各个学科的知识。
七年级数学上册必考题 有理数应用题
七年级数学上册必考题有理数应用题1.某个体儿童服装店老板以每件32元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:问服装店老板在售完这30件连衣裙后,赚了多少钱?解:由题意可得:6×2+4×1+5×0+4×(-1)+5×(-2)+6×(-1)+(47-32)×30 =-4+450=446(元),答:服装店老板在售完这30件连衣裙后,赚了446元。
2.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,如表是某周的生产情况(超产为正,减产为负):(1)根据记录可知前三天共生产()辆;(2)产量最多的一天比产量最少的一天多生产()辆;(3)该厂实行计件工资制,每辆车60元,每天超额生产一辆奖15元,少生产一辆扣5元,那么该厂工人这周的工资总额是多少?解:(1)∵5-2-4+600=599(辆),故答案为599;(2)∵13-(-10)=23(辆),故答案为23;(3)5-2-4+13-10+6-9=-1(1400-1)×60+5×15-2×5-4×5+13×15-10×5+6×15-9×5 =84000-60+75-10-20+195-50+90-45 =84175答:该厂工人这一周的工资总额是84175元,3.某水果店新进某种水果12箱,以每箱15千克为标准(不含纸箱重量),超过或不足的千克数分别用正、负数来表示,见下表:(1)12箱水果中,最重的一箱比最轻的一箱多()千克;(2)求这12箱水果总的重量;(3)若购进这批水果成本共900元,该店以8元/千克的价格出售,在销售过程中有10%的水果损耗,求该水果店售完这批水果获利多少元?解:(1)2-(-1)=2+1=3(千克),即12箱水果中,最重的一箱比最轻的一箱多3千克,故答案为:3;(2)-1×1+1×2+0×4+1×4+2×1+12×15=-1+2+0+4+2+180=187(千克)答:这12箱水果总的重量为187千克;(3)8×187×(1-10%)-900=1346.4-900=446.4(元)答:该水果店售完这批水果获利446.4元。
七上一元一次方程应用题专题
七上一元一次方程应用题专题
1. 一个数的三倍加上5等于20,这个数是多少?
2. 现在小华的年龄是小明的两倍,5年后小华的年龄将是小明的1.5倍,求他们现在各自的年龄。
3. 甲组人数是乙组人数的2/5,如果甲组再增加10人,乙组人数减少10人,两组人数相等,求原来各组的人数。
4. 一块矩形花坛的长是宽的2倍,如果宽增加5米,长增加10米,长和宽分别是多少米?
5. 一条长方形围墙的长是宽的3倍,如果长增加5米,宽减少2米,围墙的长度和宽度分别是多少?
6. 小杨和小张合伙做苹果生意,小杨出资800元,小张出资600元,小杨得到的利润是小张的2倍,求他们两人分别得到的利润是多少?
7. 小明身上有某数的1/4和另外某数的1/3,共39元,求这两个数分别是多少?
8. 两个数相加得13,其中一个数是另一个数的3倍,求这两个数分别是多少?
9. 两个差为3的数的倒数的和是7/12,求这两个数。
10. 小李一共有40元,他用部分钱购买了一本书,剩下的钱还剩下购买书的三倍,求书的价格是多少?。
七年级上册数学解方程应用题
七年级上册数学解方程应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 解析:- 设甲出发t秒与乙相遇。
- 甲先走12米后,两人共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度和×时间,可列方程(8 + 6)t=285 - 12。
- 化简得14t = 273,解得t=(273)/(14)=19.5秒。
2. 一辆汽车从A地到B地,若每小时行45千米,就要比原计划晚0.5小时到达;若每小时行50千米,就可比原计划提前0.5小时到达。
求A、B两地的距离。
- 解析:- 设原计划用x小时到达。
- 根据路程相等,可列方程45(x + 0.5)=50(x - 0.5)。
- 展开括号得45x+22.5 = 50x - 25。
- 移项得50x - 45x=22.5 + 25。
- 合并同类项得5x = 47.5,解得x = 9.5小时。
- 那么A、B两地的距离为50×(9.5 - 0.5)=450千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 解析:- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
- 两人合作4天的工作量为((1)/(10)+(1)/(15))×4,乙单独做x天的工作量为(1)/(15)x,可列方程((1)/(10)+(1)/(15))×4+(1)/(15)x = 1。
- 先计算((1)/(10)+(1)/(15))×4=((3 + 2)/(30))×4=(2)/(3)。
- 方程变为(2)/(3)+(1)/(15)x=1,移项得(1)/(15)x = 1-(2)/(3),(1)/(15)x=(1)/(3),解得x = 5天。
七年级经典应用题十六类
七年级经典应用题可以分为以下十六类:
1.和差倍分问题:利用和差、和倍、差倍或分数关系,求解未知量的问题。
2.行程问题:涉及速度、时间和距离的关系,如相遇、追及等问题。
3.工程问题:通过工作效率、工作时间和工作总量之间的关系,求解工程完成的时间
或效率等问题。
4.利润和折扣问题:涉及商品的进价、售价、利润率和折扣等概念,求解相关的问题。
5.浓度问题:通过溶质、溶剂和溶液之间的关系,求解浓度或质量分数等问题。
6.配套问题:涉及按比例分配或组合的问题,如零件配套、服装配套等。
7.分配问题:通过比例关系或平均分配原则,求解分配量或分配比例等问题。
8.增长率问题:涉及增长率、增长量、原量和现量等概念,求解相关的问题。
9.方程问题:通过列方程或方程组,求解未知量的问题。
10.不等式问题:通过列不等式或不等式组,求解未知量的取值范围或最值等问题。
11.函数问题:通过函数的性质、图像和解析式等,求解与函数相关的问题。
12.三角形问题:涉及三角形的边、角、面积和相似性等概念,求解相关的问题。
13.平行四边形和梯形问题:通过平行四边形的性质、判定和面积公式等,求解相关的
问题;通过梯形的性质、判定和面积公式等,求解相关的问题。
14.圆的问题:涉及圆的性质、判定和面积公式等,求解相关的问题。
15.统计与概率问题:通过数据的收集与整理、概率初步知识与事件的概率等,求解相
关的问题。
16.综合应用问题:将多个知识点融合在一起,求解复杂的应用题。
以上十六类应用题是七年级数学中常见的经典题型,需要学生掌握相应的解题方法和技巧。
2024年七年级上册数学应用题
2024年七年级上册数学应用题一、行程问题。
1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。
根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。
所以2小时后两人相遇。
2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。
返回时速度为每小时45千米,求汽车往返的平均速度。
- 解析:A地到B地的距离为60×3 = 180千米。
返回时所用时间为180÷45=4小时。
往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。
则平均速度为360÷7=(360)/(7)≈51.43千米/小时。
3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。
求环形跑道的周长。
- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。
所以周长为40×40 = 1600米。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。
把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。
所以两人合作需要6天完成。
5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。
实际每天修500米,那么实际完成天数为10000÷500 = 20天。
七年级上册数学题应用题
七年级上册数学题应用题一、行程问题1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?解析:设小时后两人相遇。
根据路程 = 速度×时间,甲走的路程为千米,乙走的路程为千米。
由于两人是相向而行,总路程为20千米,所以可列方程。
合并同类项得,解得。
2. 一艘轮船在两个码头间航行,顺水航行需4小时,逆水航行需5小时,水流速度为2千米/时,求轮船在静水中的速度。
解析:设轮船在静水中的速度为千米/时。
顺水速度 = 静水速度+水流速度,即千米/时;逆水速度=静水速度 - 水流速度,即千米/时。
根据两个码头间的距离不变,可列方程。
去括号得,移项得,合并同类项得,解得。
二、工程问题1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。
甲的工作效率为,乙的工作效率为。
两人合作4天的工作量为。
剩下的工作量为。
乙单独完成剩下部分需要的时间为天。
2. 某工程队承建一项工程,要用12天完成。
如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。
如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?解析:设甲、乙、丙、丁的工作效率分别为、、、。
正常情况下工作效率为。
甲、乙交换工作内容后,工作效率为。
两式相减可得,即(这里说明甲、乙交换工作内容后效率降低了)。
当甲、乙交换且丙、丁交换时能按期完成,说明丙、丁交换后弥补了甲、乙交换带来的效率降低。
设丙、丁交换工作内容后,全工程需要天完成,则,因为且,所以丙、丁交换工作内容后效率提高了。
如果只让丙、丁交换工作内容,工作效率变为,所以需要10天完成,提前天。
三、销售问题1. 某商品的进价为200元,标价为300元,折价销售时的利润率为5%,求此商品是按几折销售的?解析:设此商品是按折销售的。
初一上学期数学应用题型汇总
5.某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈 利20% ,乙种成衣卖价也是120元但亏损20% ,问该商店在 本次销售中实际上是盈还是亏,盈或亏多少钱?
6、某种商品的进价为100元,若要使利润率达20% ,则该 商品的销售价格应为多少元?此时每件商品可获利润多少 元?
二、行程问题 路程=速度×时间 时间=路程÷速度 速度=路
千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班 40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800 x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组 去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多 少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多
一、销售题答案: 1.解:设该品牌电脑每台售价x元。 x(1-0.3)=4200 x=6000 答:去年台电脑价6000元。 2.解:设该商品的进价为x元。 1890*0.8-x=10%x 3.解:设最多降x元出售此商品。 (1500-x)-1000=1000*5% 4.解:设至多打x折。 1200*0.1x-800=800*5% 5.解:设甲种成衣的成本为x元,乙种成衣的成本为y元
初一数学上册复习专用:15个常考应用题
初一数学上册复习专用:15个常考应用题
利息税=利息×税率(20%)
(3)利润=×100%
注意利率有日利率、月利率和年利率:
年利率=月利率×12=日利率×365.
9.溶液配制问题
溶液质量=溶质质量+溶剂质量
溶质质量=溶液中所含溶质的质量分数.
常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意.
10.年龄问题
大小两个年龄差不会变;主要等量关系:抓住年龄增长,一年一岁,人人平等.
11.时钟问题
⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分;②分针的速度是6°/分;
③秒针的速度是6°/秒。
12.配套问题
这类问题的关键是找对配套的两类物体的数量关系
13.比例分配问题
各部分之和=总量
比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式.
14.比赛积分问题
注意比赛的积分规则,胜、负、平各场得分之和=总分
15.方案选择问题
根据具体问题,选取不同的解决方案。
初一上数学应用题复习
一、数量问题
某车间加工螺丝和螺母,一个螺
丝配两个螺母,车间现有工人60人,一个工人每小时加工15个螺丝或10
个螺母,怎么分配人员才能保证产
品配套?
二、行程问题
某人预定搭乘一辆货车从A地赶往B 地,实际上他乘货车行驶了三分之一路程后改乘一辆出租车,车速提高了一倍,结果提前一个半小时到达,已知货车的速度是每小时36公里,求两地距离。
三、销售问题
某商店以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的情况是赚了还是赔了?
某商品因换季打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少?
四、分段计费
为节约能源,某单位按以下规定收取每月电费,用电不超过140度,按每度0.43元收费,如果超过140度,超过部分按每度0.57元收费. 若某用户四月份的电费平均每度0.5元,问该用户四月份应交电费多少元?
五、方案选择
某中学组织初一学生春游,原计划租用45座客车若干辆,但有15人没有座位;如果租同样数量的60座客车,则多出一辆,且其余客车恰好坐满。
问:原计划租45座客车多少辆?初一共有多少学生?。
七年级数学上应用题精选带答案
七年级数学上应用题精选带答案:1-10题1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完还要运某次才能完29.5-3某4=2.5某17.5=2.5某某=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米它的高是某米某(7+11)=90某218某=180某=10它的高是10米3、某车间四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个这9天中平均每天生产某个9某+908=54089某=4500某=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米乙每小时行某千米3(45+某)+17=2723(45+某)=25545+某=85某=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分平均成绩是某分40某87.1+42某=85某823484+42某=697042某=3486某=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒平均每箱某盒10某=250+55010某=800某=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人平均每组某人5某+80=2005某=160某=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克食堂运来面粉某千克3某-30=1503某=180某=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵平均每行梨树有某棵6某-52=206某=72某=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米高是某米140某=840某2140某=1680某=12高是12米:11-20题11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米每件儿童衣服用布某米16某+20某2.4=7216某=72-4816某=24每件儿童衣服用布1.5米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁女儿今年某岁30=6(某-3)6某-18=306某=48某=8女儿今年8岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车需要某时间50某=40某+8010某=80某=8需要8时间14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元苹果某3某+2(某-0.5)=15某=3.2苹果:3.2梨:2.715、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点甲某小时到达中点50某=40(某+1)10某=40某=4甲4小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.乙的速度某2(某+15)+4某=602某+30+4某=606某=30某=5乙的速度517.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米原来两根绳子各长某米3(某-15)+3=某3某-45+3=某2某=42某=21原来两根绳子各长21米18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元每只篮球某7某+10某/3=24821某+10某=74431某=744某=24每只篮球:24每只足球:818小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同.节能灯售价高,但是较省电;白灯售价低,但是用电多.如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理(1)1千瓦=1000瓦(2)总电费(元)=每度电的电费(元/千瓦时)某灯泡功率(千瓦)某使用时间(小时)(3)1度电=1千瓦连续使用1小时假设目前电价为1度电要3.5元如果每只电灯泡功率为21瓦,每小时用电则为0.021度.每小时电费=3.5元某0.021=0.0735元每天电费=0.0735某24小时=1.764元每月电费=1.764某30天=52.92元这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策.解答过程:设使用时间为A小时,1某0.011某A+60=1某0.06某A+3这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的.解方程.A=1163.265小时也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的.那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济.19为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元设总用电某度:[(某-140)某0.57+140某0.43]/某=0.50.57某-79.8+60.2=0.5某0.07某=19.6某=280再分步算:140某0.43=60.2(280-140)某0.57=79.879.8+60.2=14019某大商场家电部送货人员与销售人员人数之比为1:8.今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货.结果送货人员与销售人数之比为2:5.求这个商场家电部原来各有多少名送货人员和销售人员设送货人员有某人,则销售人员为8某人.(某+22)/(8某-22)=2/55某(某+22)=2某(8某-22)5某+110=16某-4411某=154某=148某=8某14=112这个商场家电部原来有14名送货人员,112名销售人员20现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几设:增加某%90%某(1+某%)=1解得:某=1/9所以,销售量要比按原价销售时增加11.11%:21-29题21甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/设甲商品原单价为某元,那么乙为100-某(1-10%)某+(1+5%)(100-某)=100(1+2%)结果某=20元甲100-20=80乙22甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4.求原来每个车间的人数.设乙车间有某人,根据总人数相等,列出方程:某+4/5某-30=某-10+3/4(某-10)某=250所以甲车间人数为250某4/5-30=170.说明:等式左边是调前的,等式右边是调后的23甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程(列方程)设A,B两地路程为某某-(某/4)=某-72某=288答:A,B两地路程为28824甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度.二车的速度和是:[180某2]/12=30米/秒设甲速度是某,则乙的速度是30-某180某2=60[某-(30-某)]某=18即甲车的速度是18米/秒,乙车的速度是:12米/秒25两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.设停电的时间是某设总长是单位1,那么粗的一时间燃1/3,细的是3/81-某/3=2[1-3某/8]某=2.4即停电了2.4小时.26.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度.27.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.注意:说明理由!列一元一次方程解!二车的速度和是:[180某2]/12=30米/秒设甲速度是某,则乙的速度是30-某180某2=60[某-(30-某)]某=18即甲车的速度是18米/秒,乙车的速度是:12米/秒补充回答:设停电的时间是某设总长是单位1,那么粗的一时间燃1/3,细的是3/81-某/3=2[1-3某/8]某=2.4即停电了2.4小时.28已知某服装厂现在有A布料70M,B布料52M,现计划用这两种布料生产M.N的服装80套.已知做一套M服装用A料0.6M,B料0.9M,做一套N 服装工用A料1.1M,B料0.4M1)设生产M服装某件,写出关于某的不等式组2)有哪几种符合题意的生产3)若做一套M服装可获利45元,N服装获利50元,问:那种射击方案可使厂获利最大利润是多少1).设生产M服装某件0.6某+1.1(80-某)70①0.9某+0.4(80-某)52②解得①某36②某40即36某402).方案一:M服装36套N服装44套方案二:M服装37套N服装43套方案三:M服装38套N服装42套方案四:M服装39套N服装41套方案五:M服装40套N服装40套3).方案一:4536+5044=3820(元)方案二:4537+5043=3815(元)方案三:4538+5042=3810(元)方案四:4539+5041=3805(元)方案五:4540+5040=3800(元)29小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为二元和三十二元,经了解,这两种灯的照明效果和使用寿命都一样.已知小王所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算《用电量(度)=功率(千瓦)某时间设时间为某小时时小王选择节能灯才合算:0.5某100/1000某+20.5某40/1000某+320.5某0.1某+20.5某0.04某+320.05某+20.02某+320.05某-0.02某32-20.03某30某1000答:当这两种灯的使用寿命超过1000个小时时,小王选择节能灯才合算.。
七年级上册数学应用题专项训练
七年级上册数学应用题专项训练一、行程问题1. 甲、乙两人从相距240米的两地同时相向而行,甲每分钟走34米,乙每分钟走26米,从出发到两人相遇后又相距60米,要用几分钟?解析:首先明确两人从出发到相遇后又相距60米时,两人一共走的路程是公式米。
甲每分钟走34米,乙每分钟走26米,那么两人的速度和是公式米/分钟。
根据时间 = 路程÷速度,可得时间为公式分钟。
2. 一辆汽车以每小时60千米的速度从甲地开往乙地,4小时到达;若返回时每小时行驶80千米,几小时可以返回甲地?解析:根据路程 = 速度×时间,从甲地开往乙地的速度是每小时60千米,时间是4小时,所以甲乙两地的距离为公式千米。
返回时速度为每小时80千米,那么返回的时间为公式小时。
二、工程问题1. 一项工程,甲单独做8天完成,乙单独做12天完成。
现在甲、乙合作3天后,剩下的由乙单独做,还需几天完成?解析:把这项工程的工作量看作单位“1”。
甲单独做8天完成,则甲每天的工作效率是公式;乙单独做12天完成,则乙每天的工作效率是公式。
甲、乙合作3天完成的工作量为公式先算括号里的公式。
再乘以3得到公式。
剩下的工作量为公式。
乙单独做需要的时间为公式天。
2. 一个水池有甲、乙两个进水管,单开甲管6小时注满水池,单开乙管8小时注满水池。
如果甲、乙两管同时开,几小时可以注满水池的公式?解析:把水池的容积看作单位“1”。
甲管每小时的注水量是公式,乙管每小时的注水量是公式。
甲、乙两管同时开每小时的注水量为公式。
注满水池的公式需要的时间为公式小时。
三、销售问题1. 某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:首先算出利润为公式元。
那么最低售价应该是公式元。
设打公式折,根据标价×折扣=售价,可得公式。
解方程公式,得公式,所以最低可以打7折。
2. 一种商品每件成本公式元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解析:原来按成本增加22%定出价格,则每件售价为公式元。
初一上数学应用题复习(题型大全用心收集的)汇总
初一上数学应用题复习(题型大全用心收集的)汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一元一次方程应用题归类汇集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟.5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。
(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。
7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。
七年级数学上册【一元一次方程应用题】9大常考题型
①市场经济、打折销售问题知识点:(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.例题解析:某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元?优惠价是多少?利润率=利润/成本40%= (80%X×60)/60解之得X=105105×80%=84元②方案选择问题例题解析:1.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。
你认为哪种方案获利最多?为什么?解:方案一:获利140×4500=630000(元)方案二:获利15×6×7500+(140-15×6)×1000=725000(元)方案三:设精加工x吨,则粗加工(140-x)吨依题意得=15解得x=60获利60×7500+(140-60)×4500=810000(元)因为第三种获利最多,所以应选择方案三。
③储蓄、储蓄利息问题知识点:(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上数学应用题复习题型
精心选一选:
1.绝对值是的数减去所得的差是()
A.B.-1C.或-1D.或1
2.较小的数减去较大的数所得的差一定是()
A.正数B.负数C.零D.不能确定
3.比3的相反数小5的数是()
A.2B.-8C.2或-8D.2或+8
4.根据加法的交换律,由式子可得()
A.B.C.D.
5.在数轴上,所表示的点在所表示的点的右边,且,则的值为()
A.-3B.-9C.-3或-9D.3或9
6.若时,,中,最大的是()
A.B.C.D.
耐心填一填:
7.计算:=___;=____.
8.2004年12月21日的天气预报,北京市的最低气温为-3℃,武汉市的最低气温为5℃,这一天北京市的最低气温比武汉市的最低气温低____℃.
9.一场足球比赛中,A队进球1个,被对方攻进3个,则A队的净胜球为___个.10.若,则与的关系是___.
11.改写省略加号的代数和的形式:=___________.
综合运用
用心想一想
12.计算:
(1)(2)
(3) (4)
13.有理数的代数和比这三个数的相反数的绝对值的和小多少?
14.下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数).。