18.2直接开平方和配方法(1)

合集下载

一元二次方程的概念和解法(直接开平方法、配方法、公式法)

一元二次方程的概念和解法(直接开平方法、配方法、公式法)

一元二次方程的概念和解法一、学习目标:1、掌握一元二次方程的概念和一般形式,会找出一元二次方程的各项及其系数;2、会用直接开平方法解一元二次方程。

二、旧知回顾与训练:1、什么叫方程?什么叫整式方程?什么叫方程的解?2、什么是一元一次方程?怎样理解方程“元”和“次”的含义?解一元一次方程的方法和步骤是怎样的?3、解方程:12223x x x -+-=-三、新知学习与训练:(一)一元二次方程的概念: 类比一元一次方程的概念得出一元二次方程的概念:只含有___个未知数,并且未知数的最高次数是___ 的 方程叫做一元二次方程。

思考:怎样理解一元二次方程的概念? 方法小结:1、方程必须是整式方程;2、方程中只能有一个未知数,并且未知数的最高次数只能为二次;3、方程化简后含未知数的二次项的系数不能为0。

练习:下列方程中,哪些是关于x 的一元二次方程?(1)250x -= ; (22x -= ;(3)21230x x+-=; (4)330x x -=; (5)230x xy +-=; (6)-x 2=0; (7)x (5x -2)=x (x +1)+4x 2 。

(二) 一元二次方程的一般形式:类比一元一次方程的一般形式得出一元二次方程的一般形式: 。

其中__、___、___分别叫做二次项、一次项和常数项; 、分别叫做二次项系数、一次项系数。

二次项系数、一次项系数、常数项都要包含它前面的符号。

思考:1、一元二次方程的一般形式的结构特征是什么?2、一元二次方程的一般形式:ax 2+bx +c =0(a ≠0)中,为什么“a ≠0”? 3、怎样把一元二次方程整理为一般形式?范例:例1、方程013)2(=+++mx x m m是关于x 的一元二次方程,求m 的值。

例2、把方程3x (x-1)=2(x +1)+8化成一般形式,并写出二次项,一次项系数及常数项?练习:1、下列关于x 的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:032)1(2=++x ax ;023)2(2=+mx x ;0128)1)(3(2=----m mx x m ;(4)(b 2+1)x 2-bx +b =2;(5) 2tx (x -5)=7-4tx 。

2用配方法求解一元二次方程

2用配方法求解一元二次方程

4.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2配方正 确的是 ( )
A.(x-p)2=5
B.(x-p)2=9
C.(x-p+2)2=9 D.(x-p+2)2=5
答案 B ∵x2-6x+q=0可配方为(x-p)2=7,即(x-p)2-7=0,则x2-6x+q=2可配 方为(x-p)2-7=2,即(x-p)2=9.故选B.
的长为
cm.
答案 6
解析 设小矩形的长为x cm,则小矩形的宽为(8-x)cm, 根据题意得x[x-(8-x)]=24. 解得x=6或x=-2(舍去). 故小矩形的长为6 cm.
3.某养牛场的一边靠墙,墙长25 m,另三边用栅栏围成,现有材料可制作 栅栏40 m. (1)养牛场的面积能达到200 m2吗?若能,请求出养牛场的长和宽,若不能, 请说明理由; (2)能围成面积为250 m2的养牛场吗?请说明理由.
一移
通过配成完全平方式来解一元二次方程的方法,叫做配方法 将常数项移到方程等号的右边
步骤
二除 三配 四开
如果二次项系数不是1,将方程两边同时除以二次项系数,将其化为1
方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式 如果方程的右边是一个非负数,就可以直接开平方解方程;如果是一个负数,则原方程
2
程无解,∴不能围成面积为250 m2的养牛场.
一、选择题 1.(2017天津河北汇森中学模拟,8,★★☆)用配方法解下列方程,配方正 确的是 ( ) A.2y2-4y-4=0可化为(y-1)2=4 B.x2-2x-9=0可化为(x-1)2=8 C.x2+8x-9可化为(x+4)2=16 D.x2-4x=0可化为(x-2)2=4 答案 D A.2y2-4y-4=0可化为(y-1)2=3,故错误; B.x2-2x-9=0可化为(x-1)2=10,故错误; C.x2+8x-9=0可化为(x+4)2=25,故错误; D.x2-4x=0可化为(x-2)2=4,故正确.故选D.

直接开平方、配方法、求根公式法、因式分解法解一元二次方程

直接开平方、配方法、求根公式法、因式分解法解一元二次方程

(2019年1月最新最细)2018全国中考真题解析考点汇编☆直接开平方、配方法、求根公式法、因式分解法解一元二次方程一、选择题1.(2018•泰州,3,3分)一元二次方程x2=2x的根是()A、x=2B、x=0C、x1=0,x2=2D、x1=0,x2=﹣2考点:解一元二次方程-因式分解法。

专题:计算题。

分析:利用因式分解法即可将原方程变为x(x﹣2)=0,即可得x=0或x﹣2=0,则求得原方程的根.解答:解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选C.点评:此题考查了因式分解法解一元二次方程.题目比较简单,解题需细心.2.(2018湖北荆州,3,3分)将代数式x2+4x-1化成(x+p)2+q的形式()A、(x-2)2+3B、(x+2)2-4C、(x+2)2-5D、(x+2)2+4 考点:配方法的应用.专题:配方法.分析:根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.解答:解:x2+4x-1=x2+4x+4-4-1=x+22-5,故选C.点评:本题考查了学生的应用能力,解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,难度适中.3.(2018•柳州)方程x2﹣4=0的解是()A、x=2B、x=﹣2C、x=±2D、x=±4考点:解一元二次方程-直接开平方法。

专题:计算题。

分析:方程变形为x2=4,再把方程两边直接开方得到x=±2.解答:解:x2=4,∴x=±2.故选C.点评:本题考查了直接开平方法解一元二次方程:先把方程变形为x2=a(a≥0),再把方程两边直接开方,然后利用二次根式的性质化简得到方程的解.4.(2018•湘西州)小华在解一元二次方程x2﹣x=0时,只得出一个根x=1,则被漏掉的一个根是()A、x=4B、x=3C、x=2D、x=0考点:解一元二次方程-因式分解法。

人教版九年级数学上册一元二次方程的定义与解法(1)

人教版九年级数学上册一元二次方程的定义与解法(1)

(4)
y2
1 2
y
(_14_)_2 _
( y_1__)2 4
它们之间有什么关系?
总结归律:
p 2
p
x px ____ ( x __) 2 方 像程这(样m的-等1号)x两2+边m都x是+整1=式0为,关只于含x有的一一个元未二知次数方(程一则元m)的2,值为(

10×6x2=1500
22
课堂检测
1.将下列方程化成一元二次方程的一般形式,并写出其中的 二次项系数,一次项系数及常数项:
1 5x2 1 4x; 24x2 81;
1 5x2 1 4x
一般式:5x2 4x 1 0.
二次项系数为5,一次项系数-4,常数项-1.
2 4x2 81
一般式:4x2 81 0.
二次项系数为4,一次项系数0,常数项-81.
x2-75x+350=0 ②
x2 x 56 ③
(1)这些方程的两边都是整式 (2)方程中只含有一个未知数 (3)未知数的最高次数是2.
像这样的等号两边都是整式,只含有一个未知数(一元), 并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
知识归纳
一元二次方程的概念 • 像这样的等号两边都是整式, 只含有一个未知数(一元),并且未
x3 5 , x3 5

解一次方程
x1 3 5 ,x2 3 5
新知探究
【例2】用配方法解方程:3x2+8x-3=0
解:两边除以3,
x2 8 x 1 0
3
得:
分析:配方法解一元二次方
移项,得: x2 8 x 1
程的一般步骤:
3
(1)把二次项的系数化为1; (2)把常数项移到等号的右 边;

直接开平方法、配方法

直接开平方法、配方法
根据平方根的定义,可解得 x a ,x a 1 2 这种解一元二次方程的方法叫做开平方法.
2.把一元二次方程的左边配成一个完全平方 式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法. 注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
1 2
1
,x2=

1 2
例2解下列方程: ⑴ (x+1)2= 2 ⑵ (x-1)2-4 = 0 ⑶ 12(3-2x)2-3 = 0
典型例题
分析:第1小题中只要将(x+1)看成是一个 整体,就可以运用直接开平方法求解; 解:(1)∵x+1是2的平方根
∴x+1= 即x1=-1+ 2
2
,x2=-1- 2
直接开平方法
1.什么叫做平方根? 如果一个数的平方等于a,那么这个数就叫 做a的平方根。 用式子表示:
若x2=a,则x叫做a的平方根。记作x=
知识回顾
a
或x= a 2 4 ±3 如:9的平方根是______ 的平方根是______ 5 25 2.平方根有哪些性质? (1)一个正数有两个平方根,这两个平方根是互 为相反数的; (2)零的平方根是零; (3)负数没有平方根。 即x= a
思考:先用配方法解下列方程: (1) x2-2x-1=0 (2) x2-2x+4=0 (3) x2-2x+1=0 然后回答下列问题: (1)你在求解过程中遇到什么问题?你是怎样 处理所遇到的问题的? (2)对于形如x2+px+q=0这样的方程,在 什么条件下才有实数根?
1.一般地,对于形如x2=a(a≥0)的方程,
配方时, 等式两边同时加上的是一次项系数一 半的平方
例1 解下列方程
(1) 8 x 1 0 x ( 2) 2 ( 3) 3

21.2.1配方法(第一课时)直接开平方法(人教版初中数学)

21.2.1配方法(第一课时)直接开平方法(人教版初中数学)

21.2.1配方法(第一课时)配方法是基本形式———直接开平方法(一)教学目标1.知识技能(1)理解一元二次方程降次的转化思想,会用直接开平方法解简单的一元二次方程.(2)会利用直接开平方法解形如x 2=p (p ≥0)的一元二次方程,然后迁移到解(mx+n )2=p (p ≥0)型的一元二次方程.2.过程方法通过观察思考,根据实际问题,向学生渗透知识来源于生活,获得一元二次方程的解法 “直接开平方法”.3.情感态度通过探究活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性以及数学结论的确定性.(二)教学重难点1.重点:运用直接开平方法解形如(mx+n )2=p (p ≥0)的方程,领会降次转化的数学思想.2.难点:通过根据平方根的意义解形如x 2=p (p ≥0)的方程,将知识迁移到根据平方根的意义解(mx+n )2=p (p ≥0)的方程.(三)教学过程设计一、复习旧知:1.平方根的意义:2.说下列各数的平方根:9、81、0、8、1.5、916、34.3.判断下列方程是否是一元二次方程:(1)a 2−b 2=3; (2)1x +x 2=3;(3)2x 2+3=x −5; (4)3(x 2+2)=3x 2−2x +5.设计意图:课前准备二、探究新知1.探究一:出示问题1:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完了10同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设计意图:以学生身边的实际问题展开讨论,突出数学与现实的联系,培养学生自学的能力.让学生独立完成列方程的过程,对于部分学生可以给予一定帮助,鼓励同学互相帮助.解题过程:(1)审题;(2)设未知数正方体的棱长为x;(3)找等量关系,列方程:10×6×x2=1500;(4)解方程:10×6×x2=1500化简得x2=25根据平方根的意义,得x=±5既x1=5,x2=−5.检验5和-5是方程的两个根,因为棱长不能说负值,所以盒子的棱长为5cm.小结:(1)将方程转化为x2=p形式;(2)直接开平方将一元二次方转化成一元一次方程;(3)分别解这两个一元一次方程得出方程的两个解.2.探索二:(1)一元二次方程(x+3)2=5、4x2=9与x2=25的形式有何联系;(2)对比x2=25的解题过程,求解(x+3)2=5、4x2=9;(3)分析上述方程在形式和解法上的异同之处。

一元二次方程的解法(直接开平方、因式分解)

一元二次方程的解法(直接开平方、因式分解)
解法的比较 与选择
直接开平方与因式分解的比较
直接开平方
适用于方程有重根或可以通过移项整理成平方项系数为正数的情况。计算简单, 但适用范围有限。
因式分解
适用于所有一元二次方程,但需要一定的技巧和经验,对于复杂的一元二次方 程可能较难操作。
不同解法的适用范围
直接开平方法
引力问题
在引力问题中,一元二次方程可以 用来描述万有引力定律,如求解天 体之间的引力等。
在实际生活中的应用
经济问题
一元二次方程在经济中有着广泛 的应用,例如求解最优价格、最
大利润等。
金融问题
在金融领域中,一元二次方程可 以用来描述复利、保险等问题。
交通问题
在交通领域中,一元二次方程可 以用来描述车辆行驶的轨迹、速
避免错误
在因式分解过程中,需要 注意符号和运算的准确性, 避免出现错误。
检验
因式分解后需要进行检验, 确保分解结果是正确的。
03 一元二次方程解法的应用
在数学中的应用
代数问题
一元二次方程是代数中常见的基本方 程,通过解一元二次方程可以解决代 数问题,如求解未知数、证明不等式 等。
几何问题
函数与导数
在配方过程中,要保 证等式的平衡和等价 变换。
开平方时要注意正负 号的取舍,根据方程 的系数和判别式的符 号确定。
02 一元二次方程的因式分解
定义与性质
定义
因式分解是将一个多项式表示为 几个整式的积的形式。
性质
因式分解是整式乘法的逆运算, 即如果多项式等于几个整式的积 ,则这些整式是多项式的因式。
因式分解的步骤
01
02
03
提取公因式
将多项式中的公因子提取 出来,形成几个整式的积。

18.2一元二次方程的解法求根公式法(沪科版)

18.2一元二次方程的解法求根公式法(沪科版)

在一元二次方程 ax2 bx c 0 (a 0)
中,如果b2-4ac<0,那么方程无实数根,这是
由于
b2 4ac无意义
概念巩固
1.把方程4-x2=3x化为ax2+bx+c=0(a≠0) 形式为_x_2___3_x 4 0 , b2-4ac=_2_5_
2.用公式法解方程3x2+4=12x,下列代入公式正
∴ x 3 1 21
∴x1=-1,x2=-2
典型例题
例2 用公式法解下列方程: ⑵ 2x2-7x = 4 (3) x2=3x-8
分析:第2小题要先将方程化为一般形式再用求根公式求解。
解(2)移项,得2x2-7x-4=0 ∵a=2,b=-7,c=-4
b2-4ac=49-4×2×(-4)=81>0

方程ax2+bx+c = 0(a≠0)呢?
解:因为a≠0 ,所以方程两边都除以a,得
x2 b x c 0 aa
移项,得 x2 b x c aa
配方,得 x2 2 • b • x ( b )2 c ( b )2
2a
2a
a 2a
即 (x b )2 b2 4ac
2a
4a2
想一想:即
确的是( D )
A.x= 12 144 12 2
12 144 12
B.x=
2
C.x=12 144 12 D.x= 12 144 48
2
6
=
典型例题
例1 用公式法解下列方程: ⑴ x2+3x+2 = 0 ⑵ 2x2-7x = 4 (3) x2=3x-8
解(1)∵a=1,b=3,c=2
b2-4ac=32-4×1×2=1>0

作业设计

九上 一元二次方程 含义 解方程(直接开平方、配方法、公式法、因式分解法) 分类含答案

九上 一元二次方程 含义 解方程(直接开平方、配方法、公式法、因式分解法) 分类含答案

①4x2=3x;②(x2-2)2+3x-1=0;③13x2+4x-33=0;④x2=0;⑤1x =2;⑥6x(x+5)=6x2.A.1个B.2个C.3个D.4个2.若关于x的一元二次方程ax2+bx+3=0(a≠0)的解是x=1,则2014-a-b的值是 ( ) A.2018 B.2008 C.2014 D.20123.把一元二次方程(x-5)(x+5)+(2x-1)2=0化成一般形式后所得的一元二次方程是( )A.5x2-4x+6=0 B.5x2-2x+1=0 C.x2-5=0 D.5x2-4x-4=04.若m是方程x2-2014x-1=0的根,则(m2-2014m+3) (m2-2014m+4)的值为 ( )A.16 B.12 C.20 D.305.有一个面积为16 cm2的梯形,它的一条底边长为3 cm,另一条底边长比它的高长1 cm,若设这条底边长为x cm,依据题意,列出方程整理后得 ( )A.x2+2x-35=0 B.x2+2x-70=0C.x2-2x-35=0 D.x2-2x+70=06.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为_______,二次项系数为_______,一次项系数为_______,常数项为_______.7.当m_______时,方程(m2-1)x2-mx+5=0不是一元二次方程.8.关于x的一元二次方程(a-1)x2+x+a-1=0的一个根是0,则实数a的值为_______.9.已知,如图所示的图形的面积为24,根据图中的条件,可列出方程_______.10.一元二次方程ax2+bx+c=0,若x=1是它的一个根,A.B.C.D.8.一元二次方程16x2=25的根为x1=_______,x2=_______.9.当k_______时,关于x的方程x2=k有实数解,它的解是_______.10.规定一种新运算a*b=a2-2b,如1*2=-3.若x*(-2)=6,则x=_______.11.方程(m2-2)x2+3x-1=0是关于x的一元二次方程,则m的取值范围为_______.12.一元二次方程(2x一1)2=(3-x)2的解是_______.13.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则= .14.用直接开平方法解下列方程:(1)2x2-8=0 (2)(y-5)2-36=0 (3) (x-1)(x+1)=1(4)(x+3)(x-3)=6 (5)(2x-1)2=(2-1)2(6)(x-1)2=(2x+3)2 (7)(3x-1)2=1.962.D3.B4.B5.A6.A7.38.4 2 -5 529.492324p2p10.16 ±2311.-812.2313.(1)x1=8,x2=-2 (2)x1=12,x2=-1 (3) x1=2313+,x2=2313-(4).x1=8,x2=0;(5)x1=3a+2b,x2=3a-2b.14. -415.m2-8m+17=(m-4)2+1不等于0.所以无论m取何值,二次项系数不为016.(1) 当x=0、1、2时,1993,, 444(2) 当x 取任意值时,多项式的值总是正值(3)当x =3时,多项式的值最小,最小值是1417.赞同小明的观点知识点3 根据一元二次方程根的判别式确定方程根的情况(重点)我们把 叫做一元二次方程02=++c bx ax (0≠a )的根的判别式。

九年级第一次课讲义一元二次方程的定义,直接开平方,配方法

九年级第一次课讲义一元二次方程的定义,直接开平方,配方法

第1次课讲义-一元二次方程的定义、直接开平方、配方法一元二次方程的认识一、一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.注意:要想判断一个方程是不是一元二次方程,首先要做到熟记一元二次方程的定义:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程;再次需要注意的是要对方程进行简单的化简整理.二、一元二次方程的一般形式一元二次方程的一般形式是()200ax bx c a ++=≠.其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.例1.下列方程中,关于x 的一元二次方程有( )①20x =;②20ax bx c ++=23-=;④20a a x +-=;⑤()21402m m x x -++=;⑥21113x x +=2=;⑧()2219x x +=-. A .2个 B .3个 C .4个 D .5个练习1.1 有下列关于x 的方程:①20ax bx c +=+,②()340x x -=,③230x y +-=,④212x x +=,⑤3380x x +=-,⑥215702x x -+=,⑦()()2251x x x -+=-.其中是一元二次方程的有( )个 A .2B .3C .4D .5在利用一元二次方程的定义求字母的值时,特别要注意0a ≠的条件,这是在做题过程中容易忽视的知识点.也就是说我们不仅要使方程的最高次是二次的,同时要保证这个二次项是存在的,即二次项系数0a ≠.例2.已知:方程()||1310m m x mx ---+=是关于x 的一元二次方程,则m 的值为( )A .3m =±B .3m =C .3m =或1m =-D .1m =-练习2.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1 B .﹣1 C .±1 D .不能确定在判断一个含有字母参数的方程是什么方程时,一定要严格按照该方程的定义来判断. 例3.方程()()211310m m x m x +++--=;(1)m 取何值时是一元二次方程;(2)m 取何值时是一元一次方程.练习3.1 已知关于x 的方程()2210m m x x ++-=.(1)当m 为何值时是一元一次方程;(2)当m 为何值时是一元二次方程.在利用一元二次方程的一般式判断二次项系数、一次项系数和常数项时,一定要先将已知的一元二次方程化简后再进行判断,同时要注意其前面的符号.例4.一元二次方程2342x x -=-的二次项系数、一次项系数、常数项分别为( )A .3,﹣4,﹣2B .3,﹣2,﹣4C .3,2,﹣4D .3,﹣4,0练习4.1 方程22650x x -=-的二次项系数、一次项系数、常数项分别为( ) A .6、2、5 B .2、﹣6、5 C .2、﹣6、﹣5 D .﹣2、6、5练习4.2 关于x 的一元二次方程()()()33215x x a x a -+-+=的一次项系数是( )A .8aB .8a -C .2aD .79a -一元二次方程的解使一元二次方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.已知一个数是方程的解,只需将这个数代入到方程中得到一个等式即可.例5. 关于x 的一元二次方程()22110a x x a -++=-的一个根是0,则a 的值为( ) A .1B .﹣1C .1或﹣1D .12练习5.1 如果2是方程230x x k +=-的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2练习 5.2 我们知道方程2230x x +-=的解是11x =,23x =-,现给出另一个方程()()22322330x x +++-=,它的解是( )A .11x =,23x =B .11x =,23x =-C .11x =-,23x =D .11x =-,23x =-不解方程,可以通过化简,用整体代入求值。

人教版数学九年级上册22一元二次方程的解法-基础版1直接开平方配方法

人教版数学九年级上册22一元二次方程的解法-基础版1直接开平方配方法

第12章第2节一元二次方程的解法11.直接开平方法定义:方程左边是含有X 的完全平方式,右边是非负数,可以直接降次,转 化为两个一元一次方程,分别解两个一元一次方程,得出原方程的解。

平方根定义:若X 2 = a ,则X 叫a 的平方根,记作X = ±%,a (a > 0)。

3 .直接开平方法的使用条件: ①方程左边是含有未知数的完全平方的形式; ②方程右边是非负数。

4 .直接开平方法的各种形式:@(X + a )2 = p (p > 0)— X =±','p -a;④(ax + m )2 = (bx + n )2 — ax +m = ±(bx + n )。

5 .直接开方法的步骤:①左边开方;②右边先写“ 土 ”,再开方。

(如果有系数,对系数也要 开方)6 .易错点:①直接开方时,遗漏负的平方根;②遇字母不讨论范围。

题型一一: X 2 = p (p > 0)— X = 士 J p口例题一元二次方程X 2 = 1的解是( ) A. x = 1 B. x = -1C. x = 1, x = —1D. x = 0口练习1.方程X 2 = 4的解是()2.直接开平方法的理论根据 是:平方根的定义。

① X 2 = p (p > 0)— X = 士 W p ;③(mX + n )2 = p (p > 0)— X = -^A. x = 4, x = —4B. x = x = 22 .方程x 2 —3 = 0的根是( ) A. x = 3 B. x =3, x =- 33 . 一元二次方程:x 2= 9的解是( C. x 1 = 2,x 2 = —2 D. x 1 = 4,x 2 = 1C. x = v 3)D. x = J3,x =- J3D. 9题型二:(x + a )2 3 = p T x = ± %pp - a口例题方程(x + 2l = 4的根是( )A. x 1=4, x 2= - 4B. x 1=0, x 2= - 4口练习(mx + n \ = p f mx + n 二±4 P T x =-_n mC. x 1=0, x 2=2D. x 1=0, x 2=4A.x 『6, x 2= - 6 B. x I =x 2= - 6 C. x 『-3, x 2= - 9 D. x 『3, x 2= - 9D. x 『-1, x 2=5D x 1 =-7'2 -1, x 2 =-V2 +1题型三:(ax + m)2=(bx + n)2口例题方程Q - 2、=(2 x + 3)的根是(口练习1 .用直接开平方的方法解方程(2x +1) = x 2做法正确的是(2 .用直接开平方的方法解方程Q x +1] = 36做法正确的是(3 .方程(2x + 3、— 25 = 0的根为4 .方程(2x + 51 = 0的解是§知识小结 方法进行求解一元二次方程的方法。

2.2.1 配方法——直接开平方法(一) (1)

2.2.1 配方法——直接开平方法(一) (1)
活动
一:
创设
情境
导入
新课
【课堂引入】
[复习导入]如果一个数的平方等于a,那么这个数就叫作a的平方根.用式子表示:若x2=a,则x叫作a的平方根.记作x=±,即x=或x=-.
如:9的平方根是±3,的平方根是±.
平方根有下列性质:(1)一个正数有两个平方根,这两个平方根互为相反数;(2)零的平方根是零;(3)负数没有平方根.
情感态度
通过直接开平方法的教学,培养学生转化的数学思想和积极思维的能力.
教学重点
会用直接开平方法解一元二次方程.
教学难点
理解直接开平方法与平方根的定义的关系.
教学步骤
师生活动
设计意图
回顾
若一个数的平方等于9,则这个数是________;若一个数的平方等于7,则这个数是________.一个正数有几个平方根?它们具有怎样的关系?
A.x1=-6,x2=-1B.x1=0,x2=5
C.x1=-3,x2=5D.x1=-6,x2=2
活动
四:
课堂
总结
反思
【ห้องสมุดไป่ตู้堂训练】
1.教材P31练习中的T1,T2.
2.教材P41习题2.2中的T1.
【知识网络】
【教学反思】
活动
三:
开放
训练
体现
应用
【应用举例】
例1[教材P30例1]解方程:4x2-25=0.
讲评策略:根据直接开平方法解一元二次方程的一般步骤,先化方程为x2=,再利用开平方的方法求解.
变式一方程(1-x)2=2的根是()
A.x1=-1,x2=3B.x1=1,x2=-3
C.x1=1-,x2=1+D.x1=-1,x2=+1

2.2 用直接开平方与配方法求解一元二次方程(解析版

2.2 用直接开平方与配方法求解一元二次方程(解析版

双清课堂2020-2021学年九年级数学上册章节同步(北师大版)2.2 用直接开平方与配方法求解一元二次方程堂清知识点一元二次方程的解法:有直接开方法、配方法、公式法、因式分解法.(1)直接开方法适用形式:x 2=p 、(x +n )2=p 或(mx +n )2=p 。

(2)配方法:套用公式a 2+2ab +b 2=(a +b )2;a 2-2ab +b 2=(a -b )2,配方法解一元二次方程的一般步骤是:①化简——把方程化为一般形式,并把二次项系数化为1;②移项——把常数项移项到等号的右边;③配方——两边同时加上b 2,把左边配成x 2+2bx +b 2的形式,并写成完全平方的形式;④开方,即降次;⑤解一次方程.日清典型习题一、选择题1.(2020·湖北省初三期中)一元二次方程290x -=的根为( )A .x =3B .x =-3C .x 1=3,x 2=-3D .x =9【答案】C2.(2019·深圳市光明区实验学校初三月考)用配方法解方程2420x x -+=,下列配方法正确的是( )A .2(2)2x -=B .2(22)x +=C .2(2)2x -=-D .2(26)x -=【答案】A3.(2020·福建省初一月考)已知方程240x x q -+=可以配方成 2()5x p -=的形式,那么q 的值是( )A .-2B .-1C .1D .2【答案】B4.(2020·山东省中考真题)将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( )A .4-,21B .4-,11C .4,21D .8-,69【答案】A5.(2020·扬州市梅岭中学初二期中)关于代数式 −x 2+4x -2 的取值,下列说法正确的是( )A .有最小值-2B .有最大值2C .有最大值−6D .恒小于零【答案】B二、填空题6.(2020·江苏省中考真题)方程(x +1)2=9的解是_________.【答案】2或-47.(2020·温州外国语学校初二月考)代数式2241x x -+的最小值为__________.【答案】﹣18.(2020·扬州市江都区第三中学初一期中)若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.【答案】-79.(2019·辽宁省初三月考)如果方程240x x n ++=可以配方成2()3x m +=,那么2018()m n -=___【答案】110.(2018·山东省初三期末)对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{min = ________;若{}22min (1)1x x -=,,则x =________.【答案】 2或-1.三、解答题11.(1)解方程:4(x +3)2=25(x -2)2(2)解方程:x 2﹣4x ﹣5=0(用配方法)【答案】(1)解:4(x +3)2=25(x -2)2,开方得:2(x +3)=±5(x -2),解得:x 1=163,x 2=47(2)解:方程变形得:x 2﹣4x =5,即x 2﹣4x +4=9,变形得:(x ﹣2)2=9,开方得:x ﹣2=3或x ﹣2=﹣3,解得:x 1=5,x 2=﹣1.12.(2020·河北省初三一模)对关于x 的二次三项式249x x -+进行配方得2()x m n ++,(1)填空:m = ,n = ;(2)当x 为何值时,此二次三项式得值为7.【答案】(1)2249(2)5x x x -+=-+,∴25m n =-=,,故答案为:-2,5;(2)由题意可得,2497x x -+=,即2(2)57x -+=,∴2(2)2x -=,∴2x -=解得:1222x x =+=13.(2020·黑龙江省初二期末)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 是△ABC 中最长的边,求c 的取值范围.【答案】解:∵满足a 2+b 2=10a +8b -41,∴a 2-10a +25+b 2-8b +16=0,∴(a -5)2+(b -4)2=0,∵(a -5)2≥0,(b -4)2≥0,∴a -5=0,b -4=0,∴a =5,b =4;∴5-4<c <5+4,∵c 是最长边,∴5<c <9.14.(2020·渠县崇德实验学校初一期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∴(x +2)2+1≥1,∴x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ;(2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值;(3)比较代数式:x 2﹣1与2x ﹣3的大小.【答案】解:(1)x 2﹣4x +5=(x ﹣2)2+1;(2)x 2﹣4x +y 2+2y +5=0,(x ﹣2)2+(y +1)2=0,则x ﹣2=0,y +1=0,解得x =2,y =﹣1,则x +y =2﹣1=1;(3)x 2﹣1﹣(2x ﹣3)=x 2﹣2x +2=(x ﹣1)2+1,∵(x ﹣1)2≥0,∴(x ﹣1)2+1>0,∴x 2﹣1>2x ﹣3.15.(2020·江苏省初一期中)阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x æö-+ç÷èø是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.【答案】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x æö-+=-+ç÷èø;(2)∵x 2+y 2-6x +10y +34=x 2-6x +9+y 2+10y +25=(x -3)2+(y +5)2=0,∴x -3=0,y +5=0,∴x =3,y =-5,∴3x -2y =3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+=22213(2)(1)024a b b c æö-+-+-=ç÷èø∴102a b -=,3(2)04b -=,10c -=∴1a =,2b =,1c =,则4a b c ++=。

182直接开平方和配方法(1)

182直接开平方和配方法(1)

解一元二次方程:直接开平方法m d 2问题1一桶油漆可刷的面积为1500,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?5552515001021226-==±=∴==⨯x x x x x xdm ,即,由此可得列方程,设正方体的棱长为经检验,5和-5是方程的根,但是棱长不能是负值,所以正方体的棱长为5dm.这种解法叫做什么?直接开平方法课本练习•用直接开平方法解下列方程:(1)(2)(3)(4)225x =20.810x -=23(1)48x +=22(2)40x --=?296522)12(=++=-x x x 方程及怎样解方程把此方程“降次”,转化为两个一元一次方程.________________,_______,__________229621223====+++x x x x x 方程的根为得,进行降次,这个方程可以化成,的左边是完全平方形式方程)(.22p n mx p x p p n mx x ±=+±===+或那么可得的形式,或如果方程能化成)(23±=+x 23+-23--化成两个一元一次方程m 2m 2问题2要使一块矩形场地的长比宽多6m,并且面积为16 , 场地的长和宽应各是多少?解:设场地的宽xm,长(x+6)m,根据矩形面积为16 ,列方程X(x+6)=161662=-+x x 即怎样解?.2;2)()(222222b a b ab a b a ab ab -+=+-=++完全平方公式:___)(___)(___)(___)(22222222____21)4(_____5)3(_____8)2(_____2)1(-+-+=+-=++=+-=++y yy y x x x x y y x x )(25225填一填14)(412411242?的流程怎样想一想解方程01662=-+x x 01662=-+x x 移项1662=+x x 两边加上32,使左边配成的形式222b bx x ++22231636+=++x x 左边写成完全平方形式2532=+)(x 降次53±=+x 5353-=+=+x x ,8221-==x x ,:得以上解法中,为什么在方程两边加9?加其他数行吗?1662= +xx像上面那样,通过配成完全平方形式来解一元二次方程的方法,叫做配方法.例1 解下列方程1 222()x-4x-1=0()2x-3x-1=0配方法的步骤:1.移项,把带有X的都挪到左边2.左右两边都加上一个数的平方3.左边凑成平方,之后使用直接开平方法挂机赚钱QJ3ZB496FZO8。

解一元二次方程(直接开平方、配方法、配方法的应用)(解析版)

解一元二次方程(直接开平方、配方法、配方法的应用)(解析版)

解一元二次方程(直接开平方、配方法、配方法的应用)【知识梳理】一.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.二.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.三、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【考点剖析】题型一、用直接开平方法解一元二次方程例1.解方程(1)3x 2-24=0; (2)5(4-3n)2=320.【答案与解析】(1)把方程变形为3x2=24,x2=8.开平方,得原方程的根为x=或x=-.(2)原方程可化为(4-3n)2=64, 2222()a ab b a b ±+=±所以有4-3n=8或4-3n=-8.所以,原方程的根为n=-或n=4.【总结升华】应当注意,形如=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.例2.解方程(x-3)2=49.【答案与解析】把x-3看作一个整体,直接开平方,得x-3=7或x-3=-7.由x-3=7,得x=10.由x-3=-7,得x=-4.所以原方程的根为x=10或x=-4.【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.【变式1】用直接开平方法求下列各方程的根:(1)x2=361;2;(3)5a2-1=0;(4)-8m2+36=0.【答案】(1)∵x2=361,∴x=19或x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴y=6或y=-6.(3)∵5a2-1=0,5a2=1,a2=,∴a=或a=-.(4)∵-8m2+36=0,-8m2=-36,m2=,∴m=或m=-.【变式2】解方程:4(x+3)2=25(x﹣2)2.【答案】解:4(x+3)2=25(x﹣2)2,开方得:2(x+3)=±5(x﹣2),解得:,.题型二、用配方法解一元二次方程例3.用配方法解方程x2-7x-1=0.【答案与解析】将方程变形为x2-7x=1,两边加一次项的系数的一半的平方,得x2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x=+或x=-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行:(1)把形如ax2+bx+c=0(a≠0)的方程中二次项的系数化为1;(2)把常数项移到方程的右边;(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n≥0)的方程;(4)用直接开平方的方法解此题.【变式】用配方法解方程.(1)x2-4x-2=0; (2)x2+6x+8=0.【答案】(1)方程变形为x2-4x=2.两边都加4,得x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6.解这个方程,得x-2=或x-2=-.于是,原方程的根为x =2+或x =2-. (2)将常数项移到方程右边x2+6x =-8.两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x =-2或x =-4.例4.用配方法解方程:22330x x −−=. 【答案与解析】解:∵22330x x −−=, ∴233022x x −−= ∴23993216162x x −+=+ , ∴2333416x ⎛⎫−= ⎪⎝⎭∴1233,44x x +== .【总结升华】原方程的二次项系数不为1,必须先化成1,才能配方.配方时,方程左右两边同时加上一次项系数一半的平方,配成的形式,然后用直接开平方法求解即可.【变式】 用配方法解方程 (1)2x 2+3=5x (2)【答案】(1) ()()20x m n n +=≥20x px q ++=2235x x +=2253x x −=−. (2)①当时,此方程有实数解, ;②当时,此方程无实数解.例5.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数 【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.例6.用配方法说明: 代数式 x 2+8x+17的值总大于0. 【答案与解析】 25322x x −=−2225535()()2424x x −+=−+251()416x −=5144x −=±123,12x x ==20x px q ++=222()()22p p x px q ++=−+224()24p p q x −+=240p q −≥12x x ==240p q −<221078M a b a =+−+2251N a b a =+++M N −22221078(51)M N a b a a b a −=+−+−+++2222107851a b a a b a =+−+−−−−29127a a =−+291243a a =−++2(32)30a =−+>x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x 取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.【变式1】求代数式 x 2+8x+17的最小值【答案】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x2+8x+17的最小值是1.【变式2】用配方法证明的值小于0.【答案与解析】 证明:. ∵ ,∴ ,即.故的值恒小于0. 【总结升华】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明.本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致.【变式3】求证:代数式3x 2﹣2x+4的值不小于. 【答案】 解:3x2﹣2x+4=3(x2﹣x+)﹣+4=3(x ﹣)2+ 21074x x −+−22271074(107)410410x x x x x x ⎛⎫−+−=−+−=−−− ⎪⎝⎭27494910410400400x x ⎛⎫=−−+−− ⎪⎝⎭274910420400x ⎡⎤⎛⎫=−−−−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=−−+−=−−− ⎪ ⎪⎝⎭⎝⎭2710020x ⎛⎫−−≤ ⎪⎝⎭271111002040x ⎛⎫−−−< ⎪⎝⎭210740x x −+−<21074x x −+−11323191313113∵3(x ﹣)2≥0,∴3(x ﹣)2+≥,即代数式3x2﹣2x+4的值不小于.例7.已知2226100a b a b +−++=,求100123a b −⋅−⋅的值.【思路点拨】采用配方法求出,a b 的值,代入计算即可得到答案.【答案与解析】解:由题意可得:2221690a a b b −++++=()()22130a b −++=∴10a −=,30b +=∴1,3a b ==−将1,3a b ==−代入得:(11002133213−⨯−⨯−=+=【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.例8.若实数满足,则)A.B.C.D.【答案】C ; 【解析】对已知等式配方,得,∴..故选C.【总结升华】本例是配方法在求值中的应用,将原等式左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 1313113113113x y ,224250x y x y +−−+=132+3+3−2210x y −+−=2()()21x y ==,3====+【变式】(1)2x 2+6x −3的最小值是 ;(2)−x 2+4x +5的最大值是 .【答案】(1); 所以2x 2+6x −3的最小值是 (2)所以−x 2+4x +5的最大值是9.例9. 分解因式:.【答案与解析】.【总结升华】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.【过关检测】一、单选题 1.(广东清远·九年级统考期末)将方程2420x x ++=配方后,原方程变形为( )A .2(22)x +=B .2(4)3x +=C .2(2)3x +=−D .2(2)5x +=−【答案】A【分析】用配方法解一元二次方程即可.【详解】解:由题意知,方程2420x x ++=配方后,方程变形为2(22)x +=, 故选:A . 【点睛】本题考查了配方法解一元二次方程.解题的关键在于正确的运算.2.(2023·河北衡水·统考二模)某数学兴趣小组四人以接龙的方式用配方法解一元二次方程,每人负责完成一个步骤,如图所示,老师看后,发现有一位同学所负责的步骤是错误的,则这位同学是( )222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+−=+−=++−−=+−⎢⎥⎣⎦152−22222245(4)5(422)5(2)9x x x x x x x −++=−−+=−−+−+=−−+42221x x ax a +++−42221x x ax a +++−4222221x x x ax a =+−++−4222212x x x ax a =++−−+()()2221x x a =+−−()()22(1)(1)x x a x x a =++−+−+A .甲B .乙C .丙D .丁【答案】D 【分析】根据配方法解一元二次方程的步骤即可得出结果.【详解】解:228=0x x −−228x x −=22181x x −+=+()219x −=∴13x −=±解得:124,2x x ==−,丁同学是错的,故选:D .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法解一元二次方程的步骤是解题的关键. 3.(2023·贵州贵阳·统考一模)解一元二次方程2420x x =++时,配方后得到方程()22x c +=,则c 等于( )A .6B .4C .2D .2− 【答案】C【分析】先把常数项移到方程右侧,再把方程两边加上4,然后把方程左边写成完全平方的形式,从而求得c.【详解】解:2420x x ++=,242x x ∴+=−, 2442x x ∴++=,()222x ∴+=,2c ∴=. 故选:C .【点睛】本题主要考查了解一元二次方程的配方法,熟练掌握用配方法解一元二次方程的一般步骤是解答关键.4.(2023·北京东城·统考一模)用配方法解一元二次方程2630x x ++=时,将它化为2()x m n +=的形式,则m n −的值为( ) A .6− B .3− C .0 D .2【答案】B 【分析】由2630xx ++=,配方可得()236x +=,进而可得m n ,的值,然后代入m n −,计算求解即可.【详解】解:∵2630x x ++=,∴2696x x ++=,∴()236x +=,∴3m =,6n =, ∴3m n −=−, 故选:B .【点睛】本题考查了配方法解一元二次方程,代数式求值.解题的关键在于正确的配方求出m n ,的值. 5.(2023·江苏扬州·统考一模)已知2240y x −+=,则222x y x ++的最小值是( ) A .8 B .8− C .9− D .9【答案】A【分析】由已知得224y x =−,注意x 的取值范围,代入222x y x ++再配方,利用非负数的性质即可求解. 【详解】解:∵2240y x −+=,∴224y x =−,且240x −≥即2x ≥,∴2222422x y x x x x +=−+++ 2448x x +=+−()228x =+−, ∵()220x +≥,2x ≥∴当2x =时,222x y x ++的最小值是8,故选:A .【点睛】本题考查的是配方法的应用,非负数的性质,代数式求值,掌握完全平方公式及确定x 的取值范围是解决问题的关键.6.(2022·山东德州·统考中考真题)已知2P x x =−,2Q x =−为任意实数,则P Q −的值( ) A .大于0 B .等于0C .小于0D .无法确定【答案】A【分析】根据整式的加减化简,然后根据配方法得出P Q −()2=110x −+>,即可求解.【详解】解:∵2P x x =−,2Q x =−∴P Q −()()222222110x x x x x x =−−−=−+=−+> ∴P Q −的值大于0, 故选:A .【点睛】本题考查了整式的加减,配方法的应用,非负数的性质,熟练掌握配方法是解题的关键.【答案】D【分析】先二次项化系数为1,将常数项移到方程的右边,然后方程两边同时加上一次项系数的一半,即可求解.【详解】解:221210x x −+=二次项化系数为1得:21602x x −+=移项得:2162x x −=−配方得:216992x x −+=−整理得:()21732x −=故选:D .【点睛】本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.二、填空题8.(2022秋·广东佛山·九年级校考期中)一元二次方程2450x x −−=配方后得()2x m n −=,则m n +的值为 _____. 【答案】11【分析】移项后,方程两边同时加上一次项系数一半的平方进行配方,然后可得m 、n 的值,再进行计算即可.【详解】解:移项得245x x −=,配方得24454xx −+=+,即()229x −=,∴2m =,9n =, ∴11+=m n , 故答案为:11.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.9.(2022秋·广东梅州·九年级统考期中)代数式2613a a −+可化为()2269434a a a −++=−+;无论a 取何值()230a −≥,所以()a −+≥2344,即()234a −+有最小值为4.仿照上述思路,代数式248a a −+−的最大值为__________. 【答案】4−【详解】解:248a a −+−()2444a a =−−+−()224a =−−−,∵无论a 取何值,都有()220a −≥,∴()2244a −+≥, ∴()2244a −−−≤−,即()224a −−−有最大值4−,∴248a a −+−的最大值为4−,故答案为:4−.【点睛】本题主要考查了配方法的应用,正确理解题意是解题的关键.【答案】 16 4 36 6【分析】(1)所填的常数项为一次项系数一半的平方; (2)所填的常数项为一次项系数一半的平方;(3)所填的常数项为一次项系数一半的平方,运用配方法的运算方法,也可以直接利用完全平方公式:222)2(a ab b a b ±+=±得出结论.【详解】解:(1)22816(4)x x x ++=+.故答案为:①16; (2)22933()42x x x −+=−故答案为:②94;(3)221236(6)x x x −+=−故答案为:③36,④6.【点睛】此题主要考查了配方法的应用,解题的关键是掌握配方的过程中应注意不能改变原式的大小. 11.(2021秋·陕西渭南·九年级统考阶段练习)用配方法将方程220x x +=进行配方得___________.【答案】2(1)1x +=【分析】在左右两边同时加上一次项系数2的一半的平方,即可求解.【详解】解:220x x +=,方程两边加上1,2211x x ++=,即()2x 11+=,故答案为:()2x 11+=.【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.12.(2023·全国·九年级专题练习)一元二次方程2820x x −−=,配方后可变形为 ____.【答案】()2418x −=【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:282x x −=,281618x x −+=,()2418x −=,故答案为:()2418x −=.【点睛】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.13.(2022秋·全国·九年级专题练习)当=a _____时,代数式269a a −−有最小值为______. 【答案】 3 18−【分析】根据偶次方的非负性可知2(3)0a −≥,当30a −=时有最小值,进而可求解. 【详解】解:2269(3)18a a a −−=−−, 2(3)0a −≥∴当30a −=时代数式269a a −−取得最小值,最小值为18−,即3a =时,代数式269a a −−的最小值为18−,故答案为:3;18−.【点睛】本题主要考查了配方法、偶次方的非负性,掌握偶次方的非负性是解题的关键.14.(2022秋·江苏盐城·九年级校考阶段练习)已知实数a ,b 满足1b a =+,则代数式2265a b a +−+的最小值等于__________. 【答案】3【分析】将1b a =+代入代数式,根据配方法即可求解. 【详解】解:∵1b a =+∴2265a b a +−+()22165a a a =++−+247a a =−+()223a =−+,∵()220a −≥, ∴()2233a −+≥,故答案为:3.【点睛】本题考查了配方法的应用,掌握配方法是解题的关键.15.(2023秋·辽宁丹东·九年级校考期中)将方程2890x x −−=化为()2x h k +=形式,则h =______,k =______.【答案】 4− 25【分析】把常数项移到等号的右边,等式两边同时加上一次项系数一半的平方,配成完全平方公式即可.【详解】解:∵2890x x −−=,∴289x x −=,配方得2816916x x −+=+,即()2425x −=,∴4h =−,25k =, 故答案为:4−,25.【点睛】本题考查配方法解一元二次方程,解题时要注意步骤,选择用配方法解一元二次方程时,先将常数1,然后进行配方.16.(2022秋·福建宁德·九年级统考阶段练习)若将方程261x x +=化为()210x m +=,则m =___________. 【答案】3【分析】此题实际上是利用配方法解方程.配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:在方程261x x +=的两边同时加上一次项系数的一半的平方,得222631+3x x ++=,配方,得2310x +=().所以,=3m . 故答案为:3.【点睛】本题考查了解一元二次方程——配方法.掌握配方法解是解题的关键.17.(2023·浙江台州·统考一模)已知点(),A a b 在一次函数21y x =−图象上,则23a b ++的最小值为______. 【答案】1 【分析】将点(),A a b 代入一次函数解析式得出,21b a =−,代入代数式,根据配方法即可求解.【详解】解:∵点(),A a b 在一次函数21y x =−图象上,∴21b a =−∴23a b ++2213a a =+−+2211a a =+++()2111a =++≥故答案为:1.【点睛】本题考查了一次函数的性质,配方法的应用,熟练掌握以上知识是解题的关键.【答案】4【分析】将22326x y x +=适当变形得到用含有x 的代数式表示22x y +的形式,再利用配方法变形后,根据x 的取值范围即可解答.【详解】解:∵22326x y x +=,∴()22226x y x x +=−+,∴222211923(3)222x y x x x +=−+=−−+,∵22326x y x +=,22362x xy −+∴=,∵20y ≥23602x x −+∴>∴02x ≤≤ ∴当2x =时22x y+的最大值为()21923422−−+=.故答案为4.【点睛】本题主要考查了代数式的极值、配方法等知识点,利用配方法对式子灵活变形是解题的关键. 三、解答题19.(2022秋•江都区期中)解方程:(1)4x 2=49; (2)(2x ﹣1)2﹣25=0. 【分析】(1)首先将方程整理为x2=,再利用平方根的意义直接开方求解即可;(2)首先将方程整理为(2x ﹣1)2=25的形式,再利用平方根的意义直接开方求解即可. 【解答】解:(1)4x2=49, x2=,∴,∴x1=,x2=﹣; (2)(2x ﹣1)2﹣25=0, (2x ﹣1)2=25, ∴2x ﹣1=±5, ∴x1=3,x2=﹣2.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a (a ≥0);ax2=b (a ,b 同号且a ≠0);(x+a )2=b (b ≥0);a (x+b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”. 20.(2023·全国·九年级专题练习)用配方法解方程:2410x x ++=【答案】12x =−22x =−【分析】先利用配方法得到()223x +=,然后利用直接开平方法解方程.【详解】解:2410x x ++=,移项得:241x x +=−,配方得:24414xx ++=−+,即()223x +=,开平方得:2x +=解得:12x =−22x =−.【点睛】本题考查了运用配方法解一元二次方程,熟练掌握解一元二次方程的方法步骤是解题的关键. 21.(2022秋·贵州黔西·九年级校联考阶段练习)先阅读,后解题. 已知2226100m m n n ++−+=,求m 和n 的值.解:将左边分组配方:()()2221690.m m n n +++−+=即22(1)(3)0m n ++−=.2(1)0m +≥,2(3)0n −≥,且和为0,2(1)0m ∴+=且2(3)0n −=,1m ∴=−,3n =.利用以上解法,解下列问题:(1)已知:224250x x y y ++−+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+−且ABC 为直角三角形,求c . 【答案】(1)2x =−,1y =(2)5c =或c =【分析】1()由题意把等式变形为非负数的和等于0的形式,利用非负数的性质即可求解; 2()由题意把等式变形为非负数的和等于0的形式,求得a b 、的值,然后根据勾股定理可求解.【详解】(1)解:∵224250x x y y ++−+=,()()2244210xx y y +++−+=,即()()22210x y ++−=,∵()220x +≥,()10y −≥2,且()()22210x y ++−=,∴()220x +=且()210y −=,2x ∴=−,1y =;(2)解:∵228625a b a b +=+−,方程变形为()()22430a b −+−=,∴()240a −≥,()230b −≥,∴4a =,3b =,ABC 为直角三角形,∴当4a =,3b =是直角边时,则5c =;当4a =是斜边,3b =是直角边时,则c =5c ∴=或c =【点睛】本题主要考查配方法的应用及勾股定理,熟练掌握配方法的应用及勾股定理是解题的关键.【答案】(1)见解析(2)t=32,S 最大值【分析】(1)仿照例题,利用配方求解即可.(2)先求s ,再利用配方求最值即可.【详解】(1)证明:(1)247y x x =−+2443x x =−++()223x =−+.∵()220x −≥.∴033y ≥+=.∴0y >.∴y 是正数.(2)解:∵2AP t =,CQ =,62PC t =−.0t ⎛ ⎝≤ ∴12S PC CQ =⋅ ()1622t =−2=+)23t t =− 232t ⎫=−⎪⎭ ∵2302t ⎛⎫−≥ ⎪⎝⎭.∴当32t =时,S【点睛】本题考查利用配方求最值,正确配方是求解本题的关键. 23.(2022秋·广西柳州·九年级统考期中)阅读材料数学课上,韦老师在求代数式245x x −+的最小值时,利用公式()2222a ab b a b ±=±+,对式子作如下变形∶()2224544121x x x x x −+=−++=−+,∵()220x −≥,∴()2211x −+≥当2x =时,()2211x −+=,∴当2x =时,()221x −+有最小值1,即245x x −+的最小值为1.通过阅读,解决下列问题∶(1)当x =___________时,代数式()2254x −+有最小值为___________ (2)代数式 221x x ++的最小值为___________(3)当x 取何值时,代数式263x x −++的有最大或最小值,并求出最大或最小值.【答案】(1)5,4(2)0(3)当3x =时,263x x −++有最大值,最大值是12【分析】(1)由22(5)0x −…可得()22544x −+≥,从而判断它在5x =时取最小值; (2)配方可得2(1)x +,根据2(1)0x +…,即可得出结论; (3)提取1−,然后配方得2(3)12x −−+,根据2(3)0x −−…可得结论. 【详解】(1)解:(1)22(1)0x −…, ()22544x −+≥∴,当5x =时,取到等号,∴当5x =时,22(1)4x −+有最小值,最小值为:4;故答案为5,4;(2)解:2221(1)x x x ++=+,当=1x −时,221x x ++有最小值,最小值为:0;故答案为0;(3)解:263x x −++2(69)93x x =−−+++2(3)12x =−−+,2(3)0x −−…,2(3)1212x ∴−−+…,当3x =时,取到等号,∴当3x =时,263x x −++有最大值,最大值为12.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.【答案】(1)2ax b +(2)①240b ac −≥,②ba −;c a(3)见解析【分析】(1)根据完全正确平方公式求解即可;(2)根据二次根式有意义条件求解即可;(3)用配方法解方程即可求出方程的解,再分别代入计算即可12x x +与12x x 计算即可求解.【详解】(1)解:∵2222444a x abx b ac b +++=,∴()2242c a b b x a =−+;(2)解:①一元二次方程()200ax bx c a ++=≠有实根的条件是:240b ac −≥;②12x x +2b b b a a −−==−,12x x =()2224b a −−=244ac c a a −=−=;(3)解:2410x x −−=,241x x −=,24414x x −+=+,()225x −=,2x −=12x =22x =∴12224x x +=,(22122221x x ==−=−.【点睛】本题考查用配方法解一元二次方程,熟练掌握解一元二次方程—配方法是解题的关键. 时,22x y +=时,22x y +=时,x 时,x 【答案】(1)=(2)222x y xy +≥,理由见解析;(3)代数式224+x x 的最小值为8.【分析】(1)求得2218x y +=,218xy =,得到222x y xy +=; (2)结合完全平方的非负性即可解答;(3)利用归纳的结论即可求解.【详解】(1)解:当3x =,3y =时,2218x y +=,218xy =,222x y xy ∴+=, 故答案为:=;(2)解:222x y xy +≥,理由如下,∵2222()0x xy y x y −+=−≥,∴222x y xy +≥;(3)解:∵222x y xy +≥,∴22224428x x x x +≥⋅=,∴代数式224+x x 的最小值为8. 【点睛】本题考查了配方法的应用,利用完全平方非负数的性质是解题关键.()212122⨯++= ()3131232⨯+++= 1234+++=(1)第4个图形对应的等式为______;【答案】(1)()515123452⨯+++++=(2)10【分析】(1)根据图形规律第四个图形多一行5个的点,直接列式即可得到答案;(2)根据题意找到图形点数规律列式求解即可得到答案;【详解】(1)解:由题意可得,第四个图形总点数可列为:()515123452⨯+++++=, 故答案为:()515123452⨯++++=; (2)解:由题意可得,每一个图形的行数比个数多1,每行的数字从1开始逐渐加1,∴第n 个图形的点数为:(1)(11)(1)(2)1234.....(1)22n n n n n n ++++++++++++==,∴()()12662n n ++=, 整理得+−=231300n n ,解得110n =,213n =−(舍去),∴n 的值为10;【点睛】本题考查图形规律问题及解一元二次方程,解题的关键是根据题意找到图形规律.。

沪科版八年级数学下册第1课时 直接开平方法、配方法课件

沪科版八年级数学下册第1课时 直接开平方法、配方法课件

总结
当 n > 0 时,方程(x + m)2 = n 的两根为 x1= n – m, x2 = – n – m.
当 n =1 = x2 = –m.
当 n < 0 时,方程(x + m)2 = n 无实数根.
思考
怎样解为上什节么问在题方1程中两得边到的方程 x2 + 2x – 1 = 0? 把常数同项时移加到上等数号“右1边”,得 x2 + 2x = 1. 对等号而左不边是配其方他,数得?x2 + 2x + 1 = 1 + 1.
(2)y2 + 5y +( 5)2 =(y + 5)2;
(3)x2 –
5
x
2 +(
5)2 =(x –
2
)5 2;
2 (4)x2 + px +(
p)42 =(x +
2
)p2 24.
交流 根据上面的例题,请你归纳出用配方
法解一般一元二次方程应有的步骤. 其中,最 关键的是配哪一项,这一项怎样确定?
①移项,二次项系数化为 1; ②左边配成完全平方式; ③左边写成完全平方形式; ④降次; ⑤解一次方程.
解(2)先把 x2 的系数变为 1,即把原方程两边
同除以 2,得
x2 3 x 1 =0 22
移项,得 x2 3 x = 1.
22
配方,得(x 3)2 = 17.
4 16
开平方,得 x 3 = 17.
4
4
所以原方程的根是 x1 = 17 ,3 x2 =
44
17 . 3
44
练习
填空
(1)x2 – 8x +( 4)2 =(x – )4 2;

直接开平方配方法求根公式法因式分解法解一元二次方程

直接开平方配方法求根公式法因式分解法解一元二次方程

(20XX年1月最新最细)2011全国中考真题解析考点汇编☆直接开平方、配方法、求根公式法、因式分解法解一元二次方程一、选择题1.(2011•泰州,3,3分)一元二次方程x2=2x的根是()A、x=2B、x=0C、x1=0,x2=2D、x1=0,x2=﹣2考点:解一元二次方程-因式分解法。

专题:计算题。

分析:利用因式分解法即可将原方程变为x(x﹣2)=0,即可得x=0或x﹣2=0,则求得原方程的根.解答:解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选C.点评:此题考查了因式分解法解一元二次方程.题目比较简单,解题需细心.2.(2011湖北荆州,3,3分)将代数式x2+4x-1化成(x+p)2+q的形式()A、(x-2)2+3B、(x+2)2-4C、(x+2)2-5D、(x+2)2+4考点:配方法的应用.专题:配方法.分析:根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.解答:解:x2+4x-1=x2+4x+4-4-1=x+22-5,故选C.点评:本题考查了学生的应用能力,解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,难度适中.3.(2011•柳州)方程x2﹣4=0的解是()A、x=2B、x=﹣2C、x=±2D、x=±4考点:解一元二次方程-直接开平方法。

专题:计算题。

分析:方程变形为x2=4,再把方程两边直接开方得到x=±2.解答:解:x2=4,∴x=±2.故选C.点评:本题考查了直接开平方法解一元二次方程:先把方程变形为x2=a(a≥0),再把方程两边直接开方,然后利用二次根式的性质化简得到方程的解.4.(2011•湘西州)小华在解一元二次方程x2﹣x=0时,只得出一个根x=1,则被漏掉的一个根是()A、x=4B、x=3C、x=2D、x=0考点:解一元二次方程-因式分解法。

2、直接开平方法与配方法

2、直接开平方法与配方法

直接开平方法与配方法知识精讲:1、利用直接开平方法解下列方程(1)0812=-x ;(2)06442=-x ;(3)()2532=-x ;(4)()163242=-y方法总结:2、若()253222=-+b a ,求22b a +的值。

方法总结:3、若一元二次方程)0(2>=ab b ax 的两根为=-+ab m m 则与,421_______. 方法总结:*4、对于)0(02≠=+a b ax 型的一元二次方程:(1)当a,b 满足何条件时,方程有实数解?并求出此实数解;(2)当a,b 满足何条件时,方程无解,为什么?5、用配方法解下列方程(1)、0242=+-x x (2)、01262=--x x (3)、()()152222=+-+x x方法总结:6、当x 取何值时,代数式7622+-x x 有最小值,求出此最小值方法总结:7、若,01326422=+-+++-z y y x x 求()zxy 的值。

方法总结:变式:已知a,b,c 是△ABC 的三边长,且0222=---++ac bc ab c b a 。

试判断△ABC 的形状。

*用配方法解关于x 的方程)0(02≠=++a c bx ax经典练习:1、利用直接开平方法解下列方程(1)()1632=-x (2)()31132=+x (3)()()22212-=-x x2、若方程()______,,31212=====-b a x x b a x 则与的解是3、用配方法解方程:(1)542=+x x (2)08422=--x x4、对任意实数x ,多项式322+-x x 的值一定是( )A 、非负数B 、正数C 、负数D 、无法确定5、当x 取何值时,代数式53122---x x 有最大值,求出最大值。

6、把方程,21)(0322=+=+-m x p x x 配方,得到(1)求常数m,p 的值;(2)求此方程的解。

7、已知实数x 满足012122=⎪⎭⎫ ⎝⎛+++x x x x ,求x x 1+的值8、有n 个方程:0820282208222222=-+⋯⋯=⨯-⨯+=-+n nx x x x x x ;;;,小静同学解第一个方程的步骤为:()2,46315314913912282121222-==±=±=+=+=++=+x x x x x x x x x 、;、;、;、;、;、 (1)小静从第___步开始错误(2)用配方法解第n 个方程。

第二讲 直接开平方法

第二讲        直接开平方法

第二讲 直接开平方法、配方法、公式法知识点一解一元二次方程的基本思想就是:将一元二次方程降次,变成一元一次方程再求解。

这和解二元一次方程组的消元思想类似。

知识点二 直接开平方法解一元二次方程若()02≥=a a x ,则x 叫做a 的平方根,表示为a x ±=,这种解一元二次方程的方法叫做直接开平方法。

(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是m nc x -±=。

知识点三 配方法解一元二次方程时,在方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种方法叫做配方,配方后就可以用直接开平方法了,这样解一元二次方程的方法叫做配方法。

知识点四 一元二次方程根的判别式一元二次方程()002≠=++a c bx ax 根的判别式 △=ac b 42-,运用根的判别式,不解方程,就可以判定一元二次方程的根的情况:△=ac b 42-﹥0⇒方程有两个不相等的实数根; △=ac b 42-=0⇒方程有两个相等的实数根; △=ac b 42-﹤0⇒方程没有实数根;知识点五 一元二次方程的求根公式一元二次方程()002≠=++a c bx ax 的求根公式是:a ac b b x 242-±-=。

配套练习:一、选择题:1.下列方程中,不能用直接开平方法的是( )A. 230x -= B. 2(1)40x --=C. 220x x += D. 22(1)(21)x x -=+2. 下列说法中正确的是( )A. 方程24x =两边开平方,得原方程的解为 2x =B. 3x =是方程29x =的根,所以得根是3x =C. 方程2250x -=的根是5x =±D. 方程232640x x -+=有两个相等的根 3.已知0a ≠,方程2229160a x b -=的解是_____A. 169b x a =B.43b x a =C.43bx a=± D.2243b x a =±4. 方程220(0)x m m +=<的根为_____A.2m-B.2-C.2±D.2±5. 若2(1)10x +-=,则x 得值等于_____A. 1±B. 2±C. 0或2D. 0或-26.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对7.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-1 8.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=29.用配方法解方程x 2+4x=10的根为( )A .2.-2..10.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数11.一元二次方程x 2-2x-m=0可以用公式法解,则m=( ). A .0 B .1 C .-1 D .±112.用公式法解方程4y 2=12y+3,得到( )A .y=32-± B .y=32±.y=32± D .y=32-± 13.已知a 、b 、c 是△ABC 的三边长,且方程a (1+x 2)+2bx-c (1-x 2)=0的两根相等,•则△ABC 为( )A .等腰三角形B .等边三角形C .直角三角形D .任意三角形14.不解方程,判断所给方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有( )A .0个B .1个C .2个D .3个二、填空题:1.当x =________时,分式293x x -+无意义;当x =________时,分式293x x -+的值为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X(x+6)=16
即 x 6 x 16 0
2
怎样解?
完全平方公式:
a a
2
2ab b (a b) ;
2 2
2
2ab b (a b) .
2 2
填一填
1 1 (1) x 2 x _____ ( x ___)
2
2
2
4 ( x ___) (2) x 8 x _____ 4 5 5 2 2 ( ) (3) y 5 y _____ ( y ___) 2 2
2 2
2
2
( 4) y
2
2 1 (1) 1 y ____ ( y ___) 4 4 2
2
x x 16 0 想一想解方程x 6 6 x 16 0的流程怎样?
2
2
x 6 x 16
2
移项
两边加上32,使左边配成
x 2bx b 的形式
2 2
x 6 x 3 16 3
如果方程能化成 x p或 mx n) p的形式, (
2 2
那么可得x p或mx n p .
化成两个一 元一次方程
问题2
要使一块矩形场地的长比宽多6m,并且 2 面积为16 m , 场地的长和宽应各是多少?
,列方程
解:设场地的宽xm,长(x+6)m,根据矩形面积 2
为16mLeabharlann 即 x1 5, 2 5 x
经检验,5和-5是方程的根,但是棱长不能是负值, 所以正方体的棱长为5dm.
课本练习
• 用直接开平方法解下列方程:
(1) x 25
2
x2 0.81 0 (2)
(3) 3( x 1) 48
2
2( x 2)2 4 0 (4)
把此方程“降次”, 转化为两个一元 一次方程
例1 解下列方程
(1)x -4x-1=0 (2)2x -3x-1=0
2
2
配方法的步骤: 1.移项,把带有X的都挪到左边 2.左右两边都加上一个数的平方 3.左边凑成平方,之后使用直接开平方法
解一元二次方程:
直接开平方法
问题1 一桶油漆可刷的面积为1500 d m ,李林用这桶
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
2
设正方体的棱长为xdm, 列方程10 6 x 1500
2
由此可得 x 25
2
x 5,
这种解法叫做什么? 直接开平方法
怎样解方程 (2 x 1) 5及
2
方程 x 6 x 9 2 ?
2
方程 x 6 x 9 2的左边是完全平方形式,
2 2
这个方程可以化成 x 3 2,进行降次, ( )
x 3 _______, 得 __________ 2
3 2 方程的根为 x1 3 2 x2 __________ ______, .
2 2
2
(x 3) 25
2
左边写成完全平方形式 降次
x 3 5
x 3 5, x 3 5
得 : x 2, x 8
1 2
以上解法中,为什么在方程 x 两边加9?加其他数行吗?
2
6 x 16
像上面那样,通过配成完全平方形式来解一 元二次方程的方法, 叫做配方法.
相关文档
最新文档