2014-2016年新课标高中数学(理科)试卷双向细目表
什么是双向细目表
什么是双向细目表?双向细目表一、试卷编制的具体步骤1、进行总体构思,确定试卷的目标要求明确考试的目的(为什么考)和性质:是期前预备性(摸底、预测、分组)的,或者是期中形成性(诊断、激励)的,还是期末总结性(评定)的;根据考试目的确定考试的内容、范围和要求(合格标准)。
2、拟订命题计划,设计多项细目表命题计划包括两项内容:一是编制试题的原则和要求,说明试题类型、编制试题和组配试卷的要求;二是规定试卷中试题的分布,即具体考试内容中各部分试题的数量分布和所占比例。
根据《课程标准》、《考试大纲》、教材、考试目的、性质与要求,设计好试卷多项细目表,这是试卷编制的依据。
3、选择题型,实施编制4、编选和审查试题,组编试卷5、检查、修改、试做、复核、调整、编制标准答案和评分标准二、试卷命题双向细目表(一)为什么在编制试卷时需要制定双向细目表原因之一:命题双向细目表是设计试卷的蓝图。
它使题工作避免盲目性而具有计划性,使命题者明确测验的目标,把握试题的比例与分量,提高命题的效率和质量。
原因之二:它对于审查试题的效度也有重要的指导意义。
命题双向细目表包括两个维度(双向)的表格,反映测验内容、测验目标、题型与难度之间的关系。
(二)什么是双向细目表所谓“双向细目表”,实际上就是教材内容和学习结果两个维度,其中一维反映教学的内容,另一维反映学生的学习水平。
目前在“学习水平”这一维,普遍采用布卢姆等人关于认知领域教育目标的分类,即把学习结果或认知水平分为“知识、理解、应用、分析、综合、评价”六种水平。
教材内容这一维则根据具体学科内容加以确定。
双向细目表是在命题中根据考试的目的和要求制定的测试内容和目标的具体计划,并以图表形式详细、明确地列出各项内容的量化指标,用以规范、指导编题和制卷。
案例1:高考文综Ⅱ卷政治试题双向细目表案例2:高三月考数学试题双向细目表马鞍山市二十二中学2010届高中教学质量第一次月考数学试卷双向细目表(理科)高三数学第一次月考目的:检查前一阶段复习效果考试范围:第一次月考前已复习完成的内容,必修3和选修2-3中的概率和统计、排列组合、二项式定理、选修4-1极坐标和参数方程。
高中数学必修一、二双向细目表
理解函数的概念,了解构成函数的要素,会求一些简单函数的定义域和值域;会用恰当方法表示函数。
5、函数的性质
理解函数的单调性,最大(小)值,及其几何意义,了解函数奇偶性的含义,能运用函数图象理解和研究函数的性质。
第二章基本初等函数
1、指数函数
了解指数函数模型的实际背景,理解有理指数幂的含义,掌握幂的运算,理解指数函数的概念和意义及性质。
3、几种不同增长的函数模型
利用计算工具,比较指数函数,对数函数,幂函数间的增长差异,并体会不同函数模型增长的含义。
4、函数模型的应用实例
通过收集一些社会生活中普遍使用的函数模型的实例,了解函数模型的广泛应用。
高一数学备课组Leabharlann 数学必修一双向细目表第一章集合与函数的概念
1、集合的含义与表示
了解集合的含义,体会元素与集合的属于关系,能运用集合语言描述不同的具体问题。感受集合语言的意义及作用。
2、集合间的基本关系
理解集合间包含与相等的含义,能识别给定集合的子集。
3、集合的基本运算
理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
2、对数函数
理解对数的概念及其运算性质,掌握对数函数图象和性质
3、幂函数
了解幂函数的概念,掌握五种幂函数的图象及其性质
第三章函数的应用
1、方程的根与函数零点的关系
结合二次函数的图象,判断意愿二次方程根的存在性及根的个数,了解函数零点与方程根的联系。
2、用二分法求近似解
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解。
高中数学命题-双向细目表
0.8
恒成立
√
选择8
4
0.75
函数概念(多选)
√
选偶性
√
选择10
4
0.45
指数运算
√
填空11
4
0.9
复合函数
√
填空12
4
0.8
分数指数幂
√
填空13
4
0.8
最值应用问题
√
填空14
4
0.6
定义运算
√
填空15
4
0.4
集合简单运算
√
解答16
15
0.85
函数最值、单调
√
解答17
15
0.8
集合运算
√
解答18
15
0.7
函数性质、图像
√
解答19
15
0.5
函数性质简单运用
√
解答20
15
0.47
函数性质综合运用
√
解答21
15
0.35
能力考查目标说明:
1、识记:对知识的记忆和辨识;
2、理解:对知识、原理、概念、方法的领会判断及简单应用;
3、应用:在识记、理解的基础上,对相对单一的知识、原理、概念、方法、规律进行推理、加工并做出判断、得出结论;
4、分析与综合:对明确的多方面、多层次的知识、原理、概念、方法、规律、信息进行综合分析、加工并得出结论、做出明确阐述;
5、创造性应用:调用已有的各方面知识、技能创造性地解决设定的目标和问题。
检测双向细目表
高级数学学科命题人审核人
检测内容(考点)
能力考查目标
题型
题号
分值
设计难度
(参考)如何编制双向细目表
如何编制双向细目表?2012-06-21 12:26:57| 分类:默认分类| 标签:|字号大中小订阅双向细目表【网络整理】双向细目表2011-12-26 06:04:09| 分类:教育驿站| 标签:|字号大中小订阅一、什么是双向细目表?简单来说,双向细目表是测验编制的计划书、蓝图和命题的依据。
它是以能力层次和学习内容为两个轴,分别说明各项测评目标。
建立双向细目表可以帮助命题者理清能力层次和学习内容的关系,以确保测验能反映考察的内容,并能够真正评量到预期之学习结果。
新课程命题,根据要求制作多项细目表(包括题型、题号、分值、内容标准、科学探究、能力要求、预估难度、题目来源等)。
二、试题形成的理论上的要求与过程:制定细目表——审阅与答辩——提出修正意见、修改细目表——首命题——调整——形成试题。
由此可以看出,细目表是命制试题的计划书,决定了整套试题能否实现预期目标。
三、命题细目表与教学的关系:看起来,双(多)向细目表离我们一线教师很远,它是命题组的需要考虑的事,再具体一些是命题责任人需要考虑的事。
平时出卷时,几乎也没有老师会去做一个细目表后再命题。
再深入的思考一下,命题细目标离我们又很近。
说“近”的原因之一是:要用在细目表的规划下制作出的试卷来考察我们的学生,检测我们的劳动成果,如果我们能了解命题细目表的制作过程,那我们的教学就会更有的放矢。
其二,虽说我们出卷不做细目表,但是老师在出题的时候总有计划的,想考些什么?练些什么?怎么考(练)?总不会将数学卷子出上作文,高中单元测试考初中的内容,或者是将没学的内容放到单元测试卷中。
出卷人脑子中总有个形,所以出来的卷子才不会出格;只是没有正规出题那么细,那么严格。
四、命题细目表的实践——经历命题过程:想做细目表必须实践,而实践必须是对教师的教学有至关重要的作用,促进教师研究、改进教学。
试题卷形成过程:明确意图(依据教学要求、学生学习实际、引导教学为主)——老师命题——再研意图(提出改进意见稿,大动结构,更换试题)——修改(教师)——交流再修改(共同修改)——定稿(这样命一套题教师能受到很大的锻炼,但是比教研员自己命题流程长、耗时多、耗精力大。
近三年全国理科数学试卷双向细目表
17
递推数列
数列(证明 数列求通项 等比,不等 求和 式)
18
19
四棱锥(线面 面面垂直、 五面体(面 正态分布与 平行和已知 概率均值 异面直线成 面垂直,二 期望 二面角求体 (茎叶图) 角 面角) 积) 概率与统计 求回归直线 面面交线、 三棱柱 回归方程 、随机变量 的方程 线面角 的分布列
近三年全国理科数学试卷双向细目表 题号
1 2 3 4 5 6 7 8 9 10 2014(卷 Ⅰ) 选择题 2014(卷 Ⅱ) 选择题 2015(卷 Ⅰ) 选择题 2015(卷 Ⅱ) 选择题 2016(卷 Ⅰ) 选择题 2016(卷 Ⅱ) 选择题 2016(卷 Ⅲ) 选择题 集合(交集) 复数(除法 运算) 向量夹角公 式 平均数、统 计图 同角三角函 数间的基本 关系倍角公 幂函数的图 象与性质 (比较大 程序框图 余弦定理 三视图(面 积) 三棱柱的内 切球及体积
复数几何意 集合(交集) 集合(交集) 复数乘除、 集合交集 集合(交集) 义 模 三角变换 复数(除法 复数(乘法 复数相等求 复数(求 集合(并集) (和差角公 运算) 运算) 模) 参数 式) 向量的模与 统计(柱形 等差数列及 平面向量的 函数奇偶性 坐标运算、 数量积 图) 其运算 命题的否定 数量积 圆的方程、 概率(独立 等比数列性 双曲线 解三角形 几何概型 点到直线的 重复实验) 质 距离公式 双曲线(向 分段函数求 双曲线的性 计数原理、 古典概型 概率 量) 质 组合 值 三视图及球 三视图,空 三角函数的 三视图(体 的表面积与 间几何体的 定义与图象 积比) 圆锥体积 三视图 体积 体积 函数图像与 三角函数的 程序框图 程序框图 平面向量 图象变换与 性质 圆 对称性 三角恒等变 已知切线求 三角函数图 指数与对数 程序框图, 直到型循环 换 参数 像单调区间 程序框图 函数的性质 结构 线性规划与 线性规划求 程序框图与 三角恒等变 命题 最大值 换 程序框图 球的表面积 算法案例 抛物线 抛物线求面 积 二项式 函数图像 抛物线的性 质 几何概型
什么是双向细目表
什么是双向细目表?双向细目表一、试卷编制的具体步骤1、进行总体构思,确定试卷的目标要求明确考试的目的(为什么考)和性质:是期前预备性(摸底、预测、分组)的,或者是期中形成性(评定)的;根据考试目的确定考试的内容、范围和要求(合格标准)。
2、拟订命题计划,设计多项细目表命题计划包括两项内容:一是编制试题的原则和要求,说明试题类型、编制试题和组配试卷的要求体考试内容中各部分试题的数量分布和所占比例。
根据《课程标准》、《考试大纲》、教材、考试目的、性质与要求,设计好试卷多项细目表,这是3、选择题型,实施编制4、编选和审查试题,组编试卷5、检查、修改、试做、复核、调整、编制标准答案和评分标准二、试卷命题双向细目表(一)为什么在编制试卷时需要制定双向细目表原因之一:命题双向细目表是设计试卷的蓝图。
它使题工作避免盲目性而具有计划性,使命题者明量,提高命题的效率和质量。
原因之二:它对于审查试题的效度也有重要的指导意义。
命题双向细目表包括两个维度(双向)的型与难度之间的关系。
(二)什么是双向细目表所谓“双向细目表”,实际上就是教材内容和学习结果两个维度,其中一维反映教学的内容,另一维水平”这一维,普遍采用布卢姆等人关于认知领域教育目标的分类,即把学习结果或认知水平分为价”六种水平。
教材内容这一维则根据具体学科内容加以确定。
双向细目表是在命题中根据考试的目的和要求制定的测试内容和目标的具体计划,并以图表形式详用以规范、指导编题和制卷。
案例1:高考文综Ⅱ卷政治试题双向细目表案例2:高三月考数学试题双向细目表马鞍山市二十二中学2010届高中教学质量第一次月考数学试卷双向细目表(理科)高三数学第一次月考目的:检查前一阶段复习效果考试范围:第一次月考前已复习完成的内容,必修3和选修2-3中的概率和统计、排列组合、二程。
命题计划:按照2009年安徽省高考理科试卷的试题类型、试卷结构组配试卷;试卷中试题为第一建议:为了把握好试题方向,所命试题要以近两年的高考原题为参考依据,但是,为了考试公平,过四分之一,可以适当改编,或从各地模拟题中选择,还可以从教材中选择或改编题目。
如何编制双向细目表
双向细目表简介双向细目表(two-way checklist)是一个测量的内容材料维度和行为技能所构成的表格,它能帮助成就测量工具的编制者决定应该选择哪些方面的题目以及各类型题目应占的比例。
双向细目表(Table of specifications)考试命题双向细目表是一种考查目标(能力)和考查内容之间的关联表。
双向细目表的制作应该同课程大纲及考试大纲的相关规定具有一致性。
考核知识内容的选择,要依照教学大纲(考试大纲)的要求,试题范围应覆盖课程的全部内容,既要注意覆盖面,又要选择重点内容,时间以中等学生120分钟能答完为限。
制作双向细目表时,试卷中拟对学生进行考核的“考核知识点”须按章次进行编排;双向细目表中考核知识点的个数须与试卷中涉及的知识点个数相一致。
双向细目表中的能力层次采用“识记”、“ 理解”、“ 应用”、“分析”、“ 综合”、“评价”等作目标分类,体现了对学生从最简单的、基本的到复杂的、高级的认知能力的考核。
每前一目标都是后续目标的基础,即没有识记,就不能有理解;没有识记与理解,就难以应用。
所以一个考核知识点在同一试卷中对应一种题型,原则上只能对应一种能力层次。
特点按照《考试规范》要求,识记、理解类试题须控制在60%以内,并应尽量避免单纯考核记忆水平的题目。
试题的题目类型应根据考试课程的特点和考试目标合理选择,例如填空题、选择题、判断题、名词解释、辨析题、简答题、证明题、计算题、案例分析等。
一份试卷中主观性试题和客观性试题的搭配应合理,且题型种类数应适中。
在双向细目表中不同“能力层次”和不同“题型”下面对应的各列中,应填写各考核知识点在试卷中所占的分值。
不能简单的划“∨”,也不能填写题号和题目个数如何编制双向细目表?一、什么是双向细目表?简单来说,双向细目表是测验编制的计划书、蓝图和命题的依据。
它是以能力层次和学习内容为两个轴,分别说明各项测评目标。
建立双向细目表可以帮助命题者理清能力层次和学习内容的关系,以确保测验能反映考察的内容,并能够真正评量到预期之学习结果。
2014年高考理科数学(新课标II)试卷及详解(word版)
绝密★启用前2014年普通高等学校招生全国统一考试新课标II理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.做选考题时,考生按照题目要求做答,并用2B 铅笔在答题卡上把所选题目的题号涂黑。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}2,1,0{=M ,}023|{2≤+-=x x x N ,则=N M()A 、}1{B 、}2{C 、}1,0{D 、}2,1{2.设复数1z ,2z 在复平面内对应点关于虚轴对称,i z +=21,则=21z z()A 、5-B 、5C 、i +-4D 、i --4 3.设向量a ,b 满足10||=+b a,6||=-b a ,则=⋅b a()A 、1B 、2C 、3D 、5 4.钝角三角形ABC 的面积是21,AB=1,BC=2,则AC=()A 、5B 、5C 、2D 、15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A 、0.8B 、0.75C 、0.6D 、0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ()A 、2717B 、95 C 、2710D 、317.执行下边的程序框图,如果输入的x ,t 均为2, 则输出的S= ( )A 、4B 、5C 、6D 、78.设曲线)1ln(+-=x ax y 在点(0,0)处的切线方程为x y 2=,则=a( )A 、0B 、1C 、2D 、39.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥--≤+-≤-+05301307y x y x y x ,若y x z +=2的最大值为( )A 、10B 、8C 、3D 、210.设F 为抛物线C :x y 32=的焦点,过F 且倾角为30的直线交C 于A ,B 两点,O 为坐标原点,则△ABC 的面积为( )A 、433 B 、839C 、3263D 、49 11. 直三棱柱111C B A ABC -中,90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为()A 、101B 、52C 、1030D 、22 12.设函数mxx f πsin3)(=,若存在)(x f 的极值点0x 满足22020)]([m x f x <+,则m 的取值范围是( )A 、),6()6,(+∞--∞B 、),4()4,(+∞--∞C 、),2()2,(+∞--∞D 、),1()1,(+∞--∞第Ⅱ卷本卷包括必考题和选考题两部分。
近三年高考(2014-2016)数学(理)试题分项版解析:专题04+三角函数与解三角形(解析版)
三年高考(2014-2016)数学(理)试题分项版解析第四章 三角函数与解三角形一、选择题1. 【2016高考新课标1卷】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( ) (A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线0x x = 对称,则()0f x A = 或()0f x A =-.2. 【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D 【解析】试题分析:由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数()sin()f x A ωx φ=+的图象平移变换中要注意人“ω”的影响,变换有两种顺序:一种y sin x =的图象向左平移φ个单位得sin()y x φ=+,再把横坐标变为原来的1ω倍,纵坐标不变,得sin()y ωx φ=+的图象,另一种是把y sin x =的图象横坐标变为原来的1ω倍,纵坐标不变,得sin y ωx =的图象,向左平移φω个单位得sin()y ωx φ=+的图象.3. 【 2014湖南9】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( ) A.56x π=B.712x π=C.3x π=D.6x π= 【答案】A【考点定位】三角函数图像 辅助角公式 定积分【名师点睛】有关定积分的题目主要是根据定积分的有关公式结合定积分的几何性质进行正确求解即可,有关三角函数对称轴的求解主要是根据整体方法求解对称轴,三角函数辅助角公式化简三角函数问题是主要是根据有关辅助角具体形式进行恰当的变换即可.4. 【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )(A (B (C )- (D )-【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC ==,AB =.由余弦定理,知222222cos210AB AC BC A AB AC +-===-⋅,故选C . 考点:余弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.5.【2015高考山东,理3】要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin 4sin 4312y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭ 的图象,只需将函数sin 4y x = 的图象向右平移12π个单位.故选B. 【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.6. 【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( ) (A )725(B )15 (C )15- (D )725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.考点:三角恒等变换.【名师点睛】三角函数的给值求值,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.7. 【2014高考陕西版理第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π 【答案】B 【解析】试题分析:由周期公式2T w π=,又2w =,所以函数()cos(2)6f x x π=-的周期22T ππ==,故选B .考点:三角函数的最小正周期.【名师点晴】本题主要考查的是余弦函数的最小正周期,属于容易题.解题时只要正确记忆正弦函数、预先函数的最小正周期周期公式2T wπ=,就不会出现错误 8. 【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C【考点定位】三角函数的图象与性质.【名师点晴】本题主要考查的是三角函数的图象与性质,属于容易题.解题时一定要抓住重要字眼“最大值”,否则很容易出现错误.解三角函数求最值的试题时,我们经常使用的是整体法.本题从图象中可知sin 16x πϕ⎛⎫+=-⎪⎝⎭时,y 取得最小值,进而求出k 的值,当sin 16x πϕ⎛⎫+= ⎪⎝⎭时,y 取得最大值. 9. 【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B 【解析】试题分析:由题意,将函数2sin 2y x =的图像向左平移12π个单位得2s i n 2()2s i n (2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.10.【2014新课标,理4】钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B【名师点睛】本题主要考查了三角形的面积公式,余弦定理,本题属于基础题,解决本题的关健在于公式的准确与熟练,注意题目条件:三角形是钝角三角形.11. 【2016高考新课标3理数】若3tan 4α= ,则2cos 2sin 2αα+=( )(A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.12. 【2014四川,理3】 为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( ) A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A 【解析】试题分析:1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A. 【考点定位】三角函数图象的变换.【名师点睛】本题考查三角函数图象变换、性质、辅助角公式和诱导公式等基础知识,纵向伸缩或平移是对于y 而言,即 ()()g x kg x →或()()g x g x k →+;横向伸缩或平移是相对于x 而言,即()()g x g x ω→(纵坐标不变,横坐标变为原来的1ω倍),()()g x g x a →+(0a >时,向左平移a 个单位;0a <时,向右平移a 个单位).13. 【2015高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()s i n (2)2B y x π=+ ()s i n 2c o s 2C y xx =+ ()s i n c o sD y x x =+【答案】A【解析】对于选项A ,因为2sin 2,2y x T ππ=-==,且图象关于原点对称,故选A. 【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.14.【2015高考新课标1,理2】o o o o sin 20cos10cos160sin10- =( )(A ) (B (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin 30=12,故选D. 【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20°与160°之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.15. 【2014课标Ⅰ,理6】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )【答案】C【解析】如图所示,当02x π≤≤时,在Rt OPM ∆中,cos cos OM OP x x ==.在Rt O M D ∆中,MD =sin OM x 1cos sin sin 22x x x ==;当2x ππ<≤时,在Rt OPM∆中,c o s ()O M O P x xπ=-=-,在R t∆中,MD =s i OM xπ-1c o s s i n s i n2x x x =-=-,所以当0x π≤≤时,()y f x =的图象大致为C .【名师点睛】本题主要考查三角函数的图象与性质和二倍角公式的运用,正确表示函数的表达式是解题的关键,本题很好的考查了考生的利用数形结合综合分析问题的能力,和计算能力.16. 【2014课标Ⅰ,理8】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C【名师点睛】本题考查同角三角函数的基本关系,两角差的正弦公式以及诱导公式的应用,本题在解答过程中一定要注意22ππαβ-<-<, 022ππα<-<,本题考查了考生的对公式的记忆能力,以及运算能力.17.【2015高考新课标1,理8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 【考点定位】三角函数图像与性质【名师点睛】本题考查函数cos()y A x ωϕ=+的图像与性质,先利用五点作图法列出关于ωϕ,方程,求出ωϕ,,或利用利用图像先求出周期,用周期公式求出ω,利用特殊点求出ϕ,再利用复合函数单调性求其单调递减区间,是中档题,正确求ωϕ,使解题的关键.18.【2014年.浙江卷.理4】为了得到函数x x y 3co s 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位答案:D解析:sin 3cos334y x x x π⎛⎫=+=+ ⎪⎝⎭,故只需将y x 向左平移4π个单位.考点:三角函数化简,图像平移.【名师点睛】三角函数图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.19. 【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关 【答案】B 【解析】 试题分析:21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B .考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.20. 【2016年高考北京理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >)个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.t =,s 的最小值为3π 【答案】A 【解析】试题分析:由题意得,1sin(2)432t ππ=⋅-=,故此时'P 所对应的点为1(,)122π,此时向左平移-4126πππ=个单位,故选A.考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换21.【2016高考山东理数】函数f (x )=x +cos x )x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.【2014重庆10】已知A B ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足 C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式一定成立的是( )A.8)(>+c b bcB.()ac a b +>C.126≤≤abcD.1224abc ≤≤【答案】A 【解析】考点:1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.【名师点睛】本题考查了综合应用正弦定理,三角形的面积公式,两角和与差的三角函数,属于难题,根据题目条件熟练运用正弦定理将三角形的边与角互化是解决问题的关键.23. 【2015高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A 、1 B 、2 C 、3 D 、4 【答案】C 【解析】 由已知,3co s(10sin()5παπα-=-33cos cos sin sin1010sin cos cos sin55ππααππαα+-33costan sin1010tan cossin55ππαππα+=-33cos 2tan sin105102tan cossin555ππππππ+=- 33cos cos2sin sin 510510sincos55ππππππ+==155(cos cos )(cos cos )210101010sin 25πππππ++-3cos 103cos 10ππ==,选C .【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用.24.【2015高考安徽,理10】已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<- 【答案】A【解析】由题意,()()sin (0,0,0)f x x A ωϕωϕ=A +>>>,22||T πππωω===,所以2ω=,则()()sin 2f x x ϕ=A +,而当23x π=时,2322,32k k Z ππϕπ⨯+=+∈,解得2,6k k Zπϕπ=+∈,所以()si n 2(0)6fx x A π⎛⎫=A +> ⎪⎝⎭,则当2262x k πππ+=+,即,6x k k Z ππ=+∈时,()f x 取得最大值.要比较()()()2,2,0f f f -的大小,只需判断2,2,0-与最近的最高点处对称轴的距离大小,距离越大,值越小,易知0,2与6π比较近,2-与56π-比较近,所以,当0k =时,6x π=,此时|0|0.526π-,|2| 1.476π-,当1k =-时,56x π=-,此时5|2()|0.66π---,所以(2)(2)(0)f f f <-<,故选A.【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出ω,通过最值判断出ϕ,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.25.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=,则AC = ( )(A )1(B )2(C )3(D )4【答案】A 【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.29.【2014辽宁理9】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 【答案】B考点:函数sin()y A x ωϕ=+的性质.【名师点睛】本题考查三角函数图象的变换、三角函数图象和性质、复合函数的单调性.其易错点是平移方向与“+、-”混淆.本题是一道基础题,重点考查三角函数图象的变换、三角函数图象和性质等基础知识,同时考查考生的计算能力. 本题是教科书及教辅材料常见题型,能使考生心理更稳定,利于正常发挥.30. 【2015湖南理2】将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π【答案】D. 【解析】试题分析:向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min3x x π-=,∴632πϕπϕπ=⇒=-,故选D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以)sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.31. 【2015陕西理6】“sin cos αα=”是“cos 20α=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【考点定位】1、二倍角的余弦公式;2、充分条件与必要条件.【名师点晴】本题主要考查的是二倍角的余弦公式和充分条件与必要条件,属于容易题.解题时一定要注意p q ⇒时,p 是q 的充分条件,q 是p 的必要条件,否则很容易出现错误.充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化.二、填空题.1. 【2014高考北京理第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 . 【答案】π 【解析】试题分析:由)(x f 在区间]2,6[ππ上具有单调性,且)6()2(ππf f -=知,函数)(x f 的对称中心为)0,3(π,由)32()2(ππf f =知函数)(x f 的对称轴为直线127)322(21πππ=+=x ,设函数)(x f 的最小正周期为T , 所以,6221ππ-≥T ,即32π≥T ,所以43127T =-ππ,解得π=T . 考点:函数)sin()(ϕω+=x A x f 的对称性、周期性,容易题.【名师点睛】本题考查三角函数图象与性质,本题属于中等难度选填题,有关三角函数图象与性质及三角函数图像变换问题常在高考题目中出现,但本题重点考查函数图像的对称轴和对称中心以及对称轴和对称中心与周期性的关系,这样的考法并不多见,事实上,函数图象有两轴、两心、或一轴一心都会联想到函数的周期性,备考模拟题经常见到,但高考题偶尔遇到,不是很多.2. 【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin A C=.【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc+-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.3. 【2014高考广东卷.理.12】在ABC ∆中,角A .B .C 所对应的边分别为a .b .c ,已知b Bc C b 2cos cos =+,则=ba. 【答案】2.【解析】cos cos 2b C c B b += ,由边角互化得sin cos sin cos 2sin B C C B B +=, 即()sin 2sin B C B +=,即sin 2sin A B =,所以22aa b b=⇒=. 【考点定位】本题考查正弦定理中的边角互化思想的应用以及两角和的三角函数,属于中等题.【名师点晴】本题主要考查的是正弦定理和两角和的正弦公式,属于中等题.解题时要弄清楚是求边还是求角, 否则很容易出现错误.解本题需要掌握的知识点是正弦定理、两角和的正弦公式和三角函数的诱导公式,即2R sin sin sin Ca b c===A B (其中R 为C ∆AB 外接圆的半径),()sin sin cos cos sin αβαβαβ+=+,()sin sin παα-=.4. 【2015高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a =1sin 2B =,6C =π,则b = . 【答案】1. 【解析】因为1sin 2B =且()0,B π∈,所以6B π=或56B π=,又6C π=,所以6B π=,23A B C ππ=--=,又a =由正弦定理得sin sin a bA B=sin sin36bπ=解得1b =,故应填入1.【考点定位】三角形的内角和定理,正弦定理应用.【名师点睛】本题主要考查三角形的内角和定理、运用正弦定理解三角形,属于容易题,解答此题要注意由1sin 2B =得出6B π=或56B π=时,结合三角形内角和定理舍去56B π=. 5. 【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则t a nt a n t a nA B C的最小值是 ▲ . 【答案】8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识6. 【2014江苏,理5】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 . 【答案】6π. 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【名师点晴】从交点得到等量关系:关于ϕ的复角的三角函数式的值.由于值是特殊角的三角函数值,所以本题“给值求角”,根据角的范围,确定角.7. 【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 【考点定位】两角差正切公式【名师点晴】善于发现角之间的差别与联系,合理对角拆分,完成统一角和角与角转换的目的是三角函数式的求值的常用方法. 三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.8. 【2014江苏,理14】若ABC ∆的内角满足sin 2sin A B C =,则cos C 的最小值是 .【答案】4.【名师点晴】如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.利用基本不等式求最值,需注意一正二定三相等的条件.9. 【2014新课标,理14】函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.【答案】1 【解析】由题意知:()()()s i n 22s i n cf x xx ϕϕϕ=+-+=()()sin[]2sin cos x x ϕϕϕϕ++-+ =()sin cos x ϕϕ++()cos sin x ϕϕ+-()2sin cos x ϕϕ+=()cos sin x ϕϕ+-()sin cos x ϕϕ+=()sin[]x ϕϕ+-=sin x ,即()sin f x x =,因为x R ∈,所以()f x 的最大值为1. 【名师点睛】本题考查了三角恒等变形公式,三角函数sin()y A x B ωφ=++的性质,属于基础题目,根据三角恒等变形公式将已知函数的解析式化为sin()y A x B ωφ=++的形式即可.10. 【2016高考江苏卷】定义在区间[0,3]π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 ▲ . 【答案】7【解析】由1sin 2cos cos 0sin 2x x x x =⇒==或,因为[0,3x π∈,所以3551317,,,,,,,2226666x πππππππ=共7个 考点:三角函数图像【名师点睛】求函数图像交点个数,可选用两个角度:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解,二是数形结合,分别画出函数图像,数交点个数,此法直观,但对画图要求较高,必须准确,尤其明确增长幅度.11.【2016高考新课标3理数】函数sin y x x =的图像可由函数sin y x x=的图像至少向右平移_____________个单位长度得到. 【答案】32π考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.12. 【2014四川,理13】如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67 ,30 ,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈ ,cos670.39≈ ,sin 370.60≈ ,cos370.80≈ ,1.73≈)【答案】60 【解析】试题分析:92AC =,46cos 67AB = ,sin 37,60sin 30sin 37sin 30AB BC AB BC =∴=≈. 【考点定位】解三角形.【名师点睛】在三角形中,已知两角一边时可以使用正弦定理解三角形.13. 【2015高考四川,理12】=+ 75sin 15sin .【考点定位】三角恒等变换及特殊角的三角函数值.有sin cos )a b αααϕ+=+.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有sin cos )a b αααϕ+=+.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.14. 【2014课标Ⅰ,理16】已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则ABC ∆面积的最大值为____________.【解析】由2=a ,且()C b c B A b s i n )()s i n (s i n 2-=-+,故(ab)(s i n A+-=-,又根据正弦定理,得(a b)()(c b)a b c +-=-,化简得,222b c a bc +-=,故222b c a 1cosA 2bc 2+-==,所以0A 60=,又22b c 4bc bc +-=≥,故1S bcsinA 2BAC ∆=≤ 【名师点睛】本题主要考查正弦定理和余弦定理的应用,以及基本不等式的应用,熟练掌握正弦定理和余弦定理的应用,以及基本不等式的应用是解决这类问题的关键,本题主要考查考生的计算能力.15.【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB的取值范围是 .【答案】【考点定位】正余弦定理;数形结合思想【名师点睛】本题考查正弦定理及三角公式,作出四边形,发现四个为定值,四边形的形状固定,边BC 长定,平移AD ,当AD 重合时,AB 最长,当CD 重合时AB 最短,再利用正弦定理求出两种极限位置是AB 的长,即可求出AB 的范围,作出图形,分析图形的特点是找到解题思路的关键.16. 【2014年.浙江卷.理17】如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值答案:9解析:由勾股定理可得,20BC =,过P 作'PP BC ⊥,交BC 于'P ,连结'AP ,则'tan 'PP AP θ=,设'BP x =,则'20CP x =-,由30BCM ∠=︒得,)''tan 30203PP CP x =︒=-,在直角'ABP中,'AP =)2020tan 3x x θ--==,令20x y -=,()()21225202'x x x y -+--⋅⋅===,令'0y =得,454x =-,代入20tan x θ-=得,20tan x θ-==tan θ. 考点:解三角形,求最值.【名师点睛】本题主要考查了解直角三角形的有关问题,根据所给条件构造直角三角形,运用勾股定理求解直角边长,然后运用导数有关性质解决所求角正切的最值问题.17.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为s i n s i na bA B =, 所以sin 21sin 13a Bb A ==. 考点: 三角函数和差公式,正弦定理.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.。
2014年高考真题——理科数学(新课标Ⅱ)解析版
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}考点:交集及其运算.专题:集合.分析:求出集合N的元素,利用集合的基本运算即可得到结论.解答:解:∵N={x|x2﹣3x+2≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5C.﹣4+i D.﹣4﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的几何意义求出z2,即可得到结论.解答:解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A点评:本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5考点:平面向量数量积的运算.专题:平面向量及应用.分析:将等式进行平方,相加即可得到结论.解答:解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.点评:本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1考点:余弦定理.专题:三角函数的求值.分析:利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B 为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.解答:解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.点评:此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45考点:相互独立事件的概率乘法公式.专题:概率与统计.分析:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.解答:解:设随后一天的空气质量为优良的概率为p,则有题意可得0.75×p=0.6,解得p=0.8,故选:A.点评:本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π.切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7考点:程序框图.专题:算法和程序框图.分析:根据条件,依次运行程序,即可得到结论.解答:解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解答:解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.点评:本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8C.3D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB 的面积为()A.B.C.D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.解答:解:由y2=3x,得2p=3,p=,则F().∴过A,B的直线方程为y=,即.联立,得.设A(x1,y1),B(x2,y2),则,.∴==.故选:D.点评:本题考查直线与圆锥曲线的关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:空间位置关系与距离.分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解答:解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC 的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.点评:本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)考点:正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:由题意可得,f(x0)=±,且=kπ+,k∈z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.解答:解:由题意可得,f(x0)=±,且=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.点评:本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.考点:二项式系数的性质.专题:二项式定理.分析:在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.解答:解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.考点:三角函数的最值;两角和与差的余弦函数;两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.解答:解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.点评:本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).考点:函数奇偶性的性质;函数单调性的性质.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.解答:解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)点评:本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:画出图形即可得到结果.解答:解:由题意画出图形如图:∵点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,∴圆心到MN的距离为1,要使MN=1,才能使得∠OMN=45°,图中M′显然不满足题意,当MN垂直x轴时,满足题意,∴x0的取值范围是[﹣1,1].故答案为:[﹣1,1].点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.考点:数列的求和;等比数列的性质.专题:证明题;等差数列与等比数列.分析:(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.解答:证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,<=,∴当n=1时,成立,当n≥2时,++…+1+…+==<.∴对n∈N+时,++…+<.点评:本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱柱P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AF至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.解答:(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AF至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AF=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.点评: 本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013年份代号t 1 2 3 4 5 6 7人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.考点:线性回归方程.专题:计算题;概率与统计.分析: (Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b 的值,再求出a 的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t 的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.解答:解:(Ⅰ)由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∴===0.5,=﹣=4.3﹣0.5×4=2.3.∴y 关于t 的线性回归方程为=0.5t+2.3; (Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得: =0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.点评: 本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F 1,F 2分别是C :+=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b .考点: 椭圆的应用.专题: 圆锥曲线中的最值与范围问题.分析: (1)根据条件求出M 的坐标,利用直线MN 的斜率为,建立关于a ,c 的方程即可求C 的离心率; (2)根据直线MN 在y 轴上的截距为2,以及|MN|=5|F 1N|,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.解答: 解:(1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c ,当x=c 时,y=,即M (c ,),若直线MN 的斜率为, 即tan ∠MF 1F 2=,即b 2==a 2﹣c 2, 即c 2﹣﹣a 2=0, 则, 解得e=. (Ⅱ)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故=4,即b 2=4a ,由|MN|=5|F 1N|,解得|DF 1|=2|F 1N|,设N (x 1,y 1),由题意知y 1<0,则,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.点评:本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数发是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).考点:利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g'(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.解答:解:(Ⅰ)由f(x)得f'(x)=e x+e﹣x﹣2,即f'(x)≥0,当且仅当e x=e﹣x即x=0时,f'(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g'(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x﹣2b+2).①∵e x+e﹣x≥2,e x+e﹣x+2≥4,∴当2b≤4,即b≤2时,g'(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即时,g'(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)由(Ⅱ)知,.当b=2时,由,得;当时,有,由,得.所以ln2的近似值为0.693.点评:1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC 的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.考点:与圆有关的比例线段;相似三角形的判定.专题:选作题;几何证明.分析:(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.解答:证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.点评:本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程ρ=2cosθ,θ∈[0,].(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.考点:参数方程化成普通方程;利用导数研究曲线上某点切线方程;圆的参数方程.专题:坐标系和参数方程.分析:(Ⅰ)半圆C的极坐标方程化为直角坐标方程为(x﹣1)2+y2=1,令x﹣1=cosα∈[﹣1,1],y=sinα,可得半圆C的参数方程.(Ⅱ)由题意可得直线CD和直线l平行.设点D的坐标为(1+cosα,sinα),根据直线CD和直线l的斜率相等求得cotα的值,可得α的值,从而得到点D的坐标.解答:解:(Ⅰ)半圆C的极坐标方程ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,化为直角坐标方程为(x﹣1)2+y2=1,x∈[0,2]、y∈[0,1].令x﹣1=cosα∈[﹣1,1],y=sinα,α∈[0,π].故半圆C的参数方程为,α∈[0,π].(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,∴直线CD和直线l平行,故直线CD和直线l斜率相等.设点D的坐标为(1+cosα,sinα),∵C(1,0),∴=,解得tanα=,即α=,故点D的坐标为(,).点评:本题主要考查把极坐标方程化为直角坐标方程,把直角坐标方程化为参数方程,注意参数的范围,属于基础题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.解答:解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<≤3.综上可得,a的取值范围(,).点评:本题主要考查绝对值三角不等时,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题目:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45 6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f (x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题目:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M 是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题目:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=﹣.∴S△OAB=S△OAF+S△OFB=×|y1﹣y2|==×=.故选:D.【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5F:空间位置关系与距离.【分析】画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2>m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2>m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题目:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N+时,++…+<.【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M 是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.祝福语祝你马到成功,万事顺意!。
双向细目表【模板】
双向细目表简介双向细目表(two-way checklist)是一个测量的内容材料维度和行为技能所构成的表格,它能帮助成就测量工具的编制者决定应该选择哪些方面的题目以及各类型题目应占的比例。
双向细目表(Table of specifications)考试命题双向细目表是一种考查目标(能力)和考查内容之间的关联表。
双向细目表的制作应该同课程大纲及考试大纲的相关规定具有一致性。
考核知识内容的选择,要依照教学大纲(考试大纲)的要求,试题范围应覆盖课程的全部内容,既要注意覆盖面,又要选择重点内容,时间以中等学生120分钟能答完为限。
制作双向细目表时,试卷中拟对学生进行考核的“考核知识点”须按章次进行编排;双向细目表中考核知识点的个数须与试卷中涉及的知识点个数相一致。
双向细目表中的能力层次采用“识记”、“ 理解”、“ 应用”、“分析”、“ 综合”、“评价”等作目标分类,体现了对学生从最简单的、基本的到复杂的、高级的认知能力的考核。
每前一目标都是后续目标的基础,即没有识记,就不能有理解;没有识记与理解,就难以应用。
所以一个考核知识点在同一试卷中对应一种题型,原则上只能对应一种能力层次。
特点按照《考试规范》要求,识记、理解类试题须控制在60%以内,并应尽量避免单纯考核记忆水平的题目。
试题的题目类型应根据考试课程的特点和考试目标合理选择,例如填空题、选择题、判断题、名词解释、辨析题、简答题、证明题、计算题、案例分析等。
一份试卷中主观性试题和客观性试题的搭配应合理,且题型种类数应适中。
在双向细目表中不同“能力层次”和不同“题型”下面对应的各列中,应填写各考核知识点在试卷中所占的分值。
不能简单的划“∨”,也不能填写题号和题目个数如何编制双向细目表?一、什么是双向细目表?简单来说,双向细目表是测验编制的计划书、蓝图和命题的依据。
它是以能力层次和学习内容为两个轴,分别说明各项测评目标。
建立双向细目表可以帮助命题者理清能力层次和学习内容的关系,以确保测验能反映考察的内容,并能够真正评量到预期之学习结果。
高中考试《命题双向细目表》介绍及填写要求(讲稿)
考试《命题双向细目表》介绍及填写要求一、试卷的编制程序试卷的编制程序主要分为:确定考试目标、制定命题细目表、编选试题、组配成卷、试卷难度猜测、试答全部试题、制定标准答案和评分细则七个步骤。
考试目标包括考试内容、考查目的和各种量化指标(例如,试卷难度比例、考试时间、分值分配等)。
制定命题双向细目表要依据《课程标准》规定的考试内容、考试范围和教科书中涉及的各项知识所要求把握的程度来确定试题的分布范围、难易程度、重点、难点,要全面反映考试内容,保证试卷对考试内容的覆盖率,对试题的数量以及难度比例的确定要适当,既要考虑大部分学生考试成绩达标,又要考虑不同水平学生的成绩能拉开距离。
编选试题要依据命题原则,紧扣命题内容,围绕命题双向细目表,严格选择材料,进行编选试题。
同时要在编制试题过程中同步写出每一道试题的答案,以便发现问题并及时纠正。
编选试题还应留意以下三个方面内容:①、题目内容、考试水平、试题难度应符合细目表;②、题目叙述简练、清楚、内容正确无误,符合科学性;③、编选试题的数量要比最后确定的试题数量多一些,以备筛选。
组配试卷试题拟好或选取好后要按填空题、选择题、解答题的顺序排列,每大题又按先易后难的顺序编排,形成梯度,组配成卷,并编拟好指导语。
猜测难度组卷完成后,根据前面猜测的试题的难度,估算学生各题的得分,从而估得全卷得分,由此估算全卷难度。
再结合考试目的,适当调整若干试题的难度、试题类型、试卷结构,使全卷试题的难度系数达到与考试目的的难度系数相符。
试答试题命题结束后,命题教师必须对试题进行试答,并记录答题时间。
一般情况下,用于实际考试的时间,为命题教师试答时间的三倍。
根据试答试题的情况和答题的实际时间,对试题内容做最后一次调整。
制定标准答案及评分细则参考答案应具体明确,正确无误,各层次的分值要标明。
试题赋分根据试题难度和答题时间进行分配,试题难度较大,需花较长时间解答的,分值应大些。
二、如何制定命题双向细目表制作考试命题双向细目表,是命题工作的一个重要环节。
试卷命题双向细目表
试卷命题双向细目表知识内容选择题填空题解答题考 查 内 容总 分 值难度 系数题 次分 值 题 次 分 值 题 次 分 值 集合、简易逻辑简易逻辑 1,3 8 集合的运算集合的运算 充分必要条件充分必要条件8 0.9+0.7 不等式不等式 6 4 13 6 基本不等式基本不等式 线性规划线性规划10 0.7+0.6 函数与方程函数与方程 5 4 17 4 函数图像性质、函数图像性质、 零点、恒成立零点、恒成立8 0.75+0.6 导数及应用导数及应用 10 4 20 15 4导数及应用导数及应用 23 0.6+0.7 三角函数三角函数4 4 18 14 图像与性质图像与性质 解三角形解三角形18 0.6+0.7 平面向量平面向量 9 4 基向量思想基向量思想 向量几何意义向量几何意义4 0.5 数列数列 15 6 22 15 等比等差数列等比等差数列 数列求和数列求和21 0.7+0.6 立体几何立体几何 7 4 14 6 19 15 线面位置、三视图、线面角、面面角25 0.7+0.7 +0.6 解析几何解析几何 8 4 11 4 21 15 双曲线离心率双曲线离心率 直线与圆锥曲线直线与圆锥曲线23 0.6+ 0.6+0.6 计数原理与古典概率、二项式定理定理 12 16 10 概率,离散型随机变量及其分布列变量及其分布列10 0.8+0.6 复数复数 2 4 复数概念复数概念 4 0.95 小结小结 10题 40分 7题 36分 5题 74分高中数学高中数学150 0.65 2018年高考模拟卷数学卷考试时间120分钟 满分150分本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至3页,非选择题部分3至4页。
页。
考生注意:考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
高中数学双向细目表
70 分
难度系数0.68 基础题 稍难题 难题
统 计 与 概 率
第 8 页,共 9 页
统
计
与
编
概
号
率
知识内容
高中数学知识点考试双向细目表
知识与技能
过程与方法
题型
分值
了解 理解 掌握
灵活 应用
经历 体验 探索 选择题 填空题 解答题
60分
20分
70 分
难度系数0.68 基础题 稍难题 难题
课 题 学 习
√
20 证面面平行和面面垂直
√√
21
证线面平行及求线面所成角, 二面角
√
22 函数基本性质的综合运用
√√
√ √
√
√ √ √ √ √ √ √ √ √
√ √ √ √
√ √ √ √
√
√
难度系数0.68
基础题 稍难题 难题
√ √
√
√ √ √ √
√ √ √ √ √ √ √ √ √ √ √ √ √
√
√
第 1 页,共 9 页
经历 体验 探索 选择题 填空题 解答题
60分
20分
70 分
难度系数0.68 基础题 稍难题 难题
图
标
形 与
坐
图
第 7 页,共 9 页
编 号
图 形 与 证 明
知识内容
高中数学知识点考试双向细目表
知识与技能
过程与方法
题型
分值
了解 理解 掌握
灵活 应用
经历 体验 探索 选择题 填空题 解答题
60分
20分
了解 理解 掌握
灵活 应用
经历 体验 探索 选择题 填空题 解答题60分Fra bibliotek20分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数相等求参数 统计(柱形图)
命题的否定 概率(独立重复实 验) 双曲线(向量)
等比数列性质 分段函数求值 三视图 圆 程序框图 球的表面积 函数图像 双曲线 导数不等式
圆锥体积 平面向量 三角函数图像单调区 间 程序框图 二项式 三视图 函数不等式求参数范 围
13 14 15 16
二项式 推理问题 向量的夹角 解三角形
直线与圆的位置关 系
正余弦定理及三角形 面积公式
等差数列的的性质, 等比数列的定义与通 前 项和公式,对数 项及前项和 的运算
五面体(面面垂直, 条件概率,随机变量 线性相关与线性回归 二面角) 的分布列、期望 方程的求法与应用 概率与统计、随机变 线面垂直的判定、二 四棱锥(线面平行和 量的分布列 面角 线面角) 椭圆的性质,直线与 抛物线(定义及轨迹 椭圆(求方程和最值) 椭圆的位置关系 求法) 三角恒等变换、导数 函数的单调性、极值 函数导数(零点) 的计算、三角函数的 与最值 有界性
二项式定理 三角函数的最大值 函数性质解不等式 圆上点坐标范围
函数奇偶性求参数 椭圆与圆 线性规划 解三角形
平面向量 线性规划 二项式 数列求和(递推)
17
递推数列
数列(证明等比,不 等式) 四棱锥(线面平行和 已知二面角求体积) 求回归直线的方程 椭圆 导数(单调性,最 值,估值)
数列求通项求和
解三角形
2014-2016年新课标全国理科数学试卷双向细目表
2014(卷Ⅰ) 2014(卷Ⅱ) 2015(1 2 3 4 5 6 7 8 9 10 11 12 集合(交集) 复数(除法运算) 函数奇偶性 双曲线 古典概型 三角函数的定义与图 象 程序框图 三角恒等变换 线性规划与命题 抛物线 零点求参数范围 三视图 集合(交集) 复数(乘法运算) 向量的模与数量积 解三角形 概率 三视图(体积比) 程序框图 已知切线求参数 线性规划求最大值 抛物线求面积 三棱柱中求异面直线 夹角 极值求参数范围 复数乘除、模 三角变换(和差角公 式) 集合交集
18 19 20 21
正态分布与期望 三棱柱 椭圆 导数(切线求参数, 证明不等式)
面面垂直、异面直线 概率均值(茎叶图) 成角 回归方程 抛物线(存在性问 题) 函数导数(切线零 点) 面面交线、线面角 直线与椭圆(探讨 性) 导数单调性不等式
数学试卷双向细目表
2016(卷Ⅰ) 2016(卷Ⅱ) 2016(卷Ⅲ)
指数与对数函数的性 程序框图,直到型循 质 环结构 程序框图与算法案例 抛物线的性质 平面的截面问题 三角函数的性质 三角恒等变换 几何概型 双曲线的性质.离心 率 函数图象的性质
计数原理的应用
向量的数量积及坐标 三角函数和差公式, 运算 线性规划 正弦定理 二项式定理 空间中的线面关系 平移及三角变换 等比数列及其应用 线性规划 推理 导数的几何意义 奇偶性及导数
集合(交集) 复数(求模) 等差数列及其运算 几何概型 双曲线的性质
复数几何意义 集合(并集) 平面向量的坐标运算 、数量积 圆的方程、点到直线 的距离公式 计数原理、组合
集合(交集) 复数(除法运算) 向量夹角公式 平均数、统计图 同角三角函数间的基 本关系倍角公式
三视图及球的表面积 三视图,空间几何体 幂函数的图象与性质 与体积 的体积 (比较大小) 函数图像与性质 三角函数的图象变换 与对称性 程序框图 余弦定理 三视图(面积) 三棱柱的内切球及体 积 椭圆方程与几何性质