平面直角坐标系精选压轴题提高题

合集下载

2021年七年级数学《平面直角坐标系》综合运用压轴题集

2021年七年级数学《平面直角坐标系》综合运用压轴题集

2021年七年级数学《平面直角坐标系》综合运用压轴题集学校: ___________ 姓名: __________ 班级:___________ 考号:___________1.如图口,在平而直角坐标系中,A(a,O), C(b,4),且满足(" + 4)'+J^ = 0,过C作丄x轴于B.(1)求三角形ABC的面积;(2)若线段AC与)'轴交于点0(0,2),在轴上是否存在点P,使得三角形ABC和三角形QCP的而积相等, 若存在,求出P 点坐标:若不存在,请说明理由.(3)若过B作BD//AC交〉'轴于D,且AE, DE分别平分ZC4B,乙ODB ,如图口,求ZAED的度数.2.如图二,在平而直角坐标系中,等边AABC的顶点A,B的坐标分别为(5,0), (9,0),点D是*轴正半轴上一个动点,连接CD,将AAG)绕点C逆时针旋转60。

得到MCE,连接DE.(2)如图二,当D在线段AB上运动时,△3DE的周长随D点的移动而变化,求岀△3DE的最小周长.(3)当MDE是直角三角形时,直接写出点D的坐标.3・如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(・4. 2). (1, -4),且ADZx轴,交y轴于M点,AB交x轴于N.(1)求B. D两点坐标和长方形ABCD的而积:(2)—动点P从A出发(不与A点重合),以]个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接2MP、0P,请直接写出二AMP、匚MPO、UPON之间的数量关系:(3)是否存在某一时刻t,使三角形AMP的而积等于长方形面积的丄?若存在,求t的值并求此时点P的坐标:4 •如图1,在平而直角坐标系中,点人〃的坐标分别为&©0), B(b,O),且满足la + 31+Ja —2方+ 7=0,现同时将点A B分别向左平移2个单位长度,再向上平移2个单位长度•分别得到点4B的对应点C,D ,连接AC ,(1)请求出CD两点的坐标:(2)如图2,点P是线段ACk的一个动点,点Q是线段CD的中点,连接PQ, PO,当点P在线段AC上移动时(不与人C重合),请找出ZPQD, ZOPQ, ZBOP的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的而积相等?若存在直接写出点M的坐标: 若不存在,试说明理由.5・如图1, C点是第二象限内一点,CB丄y轴于3,且B(O,b)是轴正半轴上一点,A仏0)是x轴负半x轴上一点,且0+2|+©-3丁=0, S四咖固°眈=9・(1) A < _____ )> B ( ______)(2)如图2,设D为线段OB上一动点,当4D丄AC时,ZODA的角平分线与ZCAE的角平分线的反向延长线交于点几求ZAPD的度数:(注:三角形三个内角的和为180 )(3)如图3,当D点在线段OB上运动时,作DW丄AQ交CB于M2BMD2DA O的平分线交于N ,当D点在运动的过程中,上/V的大小是否变化?若不变,求出其值;若变化,请说明理由.6.如图.在平而直角坐标系中,已知A(仏0), 3(00),其中a"满足J7TT + (b —3)2=0.(2)若在第三象限内有一点用含川的式子表示△ASM的面积:3(3)在(2)条件下,当/n = --时,点P是坐标轴上的动点,当满足A PSM的而积是△ASM的而积的2倍时, 求点P的坐标.27.如图,4(04), C仏0), E(C-18)2+|2^-14|=0,将点C向上平移7个单位长度再向左平移4个单位长图1 图2(1)求点A,点点C的坐标:(2)若点P从点C以2个单位长度/秒的速度沿CO方向移动,同时点Q从点0以每秒1个单位长度的速度沿04方向移动,设移动的时间为/秒(0</<7).二李超在解题过程中发现:P, 0移动过程中四边形QOPB的而积与移动的时间/无关.你同总她的结论吗?请说明理由;二是否存在一段时间,使S四边形。

七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)

七年级下册数学培优训练  平面直角坐标系综合问题(压轴题)
(1)求C点坐标;
(2)设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交与点P,求∠APD的度数?
(3)当D点在线段OB上运动时,作DM⊥AD交CB于M,∠BMD,∠DAO的平分线交于N,则D点在运动的过程中∠N的大小是否变化,若不变,求出其值;若变化,请说明理由。
【例7】在平面直角坐标系中,点B(0,4),C(-5,4),点A是x轴负半轴上一点,S四边形AOBC=24.
(1)线段BC的长为,点A的坐标为;
(2)如图1,EA平分∠CAO,DA平分∠CAH,CF⊥AE点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;
(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分 ,ON平分 ,BN交ON于N,请依题意画出图形,给出 与 之间满足的数量关系式,并说明理由.
(4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;
【例3】如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).
(1)求△ABC的面积;
(2)若把△ABC向下平移2个单位长度,再向右平移3个单位长度,得到△ ,请你在图中画出△ ;
(3)若点A、C的位置不变,当点P在y轴上什么位置时,使 ;
(4)若点B、 C的位置不变,当点Q在x轴上什么位置时,使 .
【例4】如图1,在平面直角坐标系中,于B.
(1)求三角形ABC的面积;
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;
(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.

初中数学平面直角坐标系提高题与常考题和培优题(含解析)-

初中数学平面直角坐标系提高题与常考题和培优题(含解析)-

初中数学直角坐标系提高题与常考题和培优题(含解析)一.选择题(共12小题)1.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.42.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)3.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0) B.(3,﹣3)C.(3,﹣1)D.(﹣1,3)5.对于任意实数m,点P(m﹣2,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣57.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2 B.3 C.4 D.59.如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2) C.(﹣3,﹣6)D.(﹣3,4)10.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)11.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5),如果一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣1,) B.(﹣,﹣1)C.(,﹣1) D.(,1)12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3) C.(5,﹣3)D.(﹣5,3)二.填空题(共13小题)13.点P(3,﹣2)到y轴的距离为个单位.14.点P(x﹣2,x+3)在第一象限,则x的取值范围是.15.线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为.16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.17.将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.18.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.19.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是.20.定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有个.21.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是;当走完第2016步时,棋子所处位置的坐标是.22.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.23.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.24.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.25.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.三.解答题(共15小题)26.在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)27.在如图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?28.求图中四边形ABCD的面积.29.在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.30.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.31.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?32.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.已知:如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动).(1)写出B点的坐标();(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.35.如图,某校七年级的同学从学校O点出发,要到某地P处进行探险活动,他们先向正西方向走8千米到A处,又往正南方向走4千米到B处,又折向正东方向走6千米到C处,再折向正北方向走8千米到D处,最后又往正东方向走2千米才到探险处P,以点O为原点,取O点的正东方向为x轴的正方向,取O点的正北方向为y轴的正方向,以2千米为一个长度单位建立直角坐标系.(1)在直角坐标系中画出探险路线图;(2)分别写出A、B、C、D、P点的坐标.36.已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.37.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积”为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.38.如图,在平面直角坐标系中,原点为O,点A(0,3),B(2,3),C(2,﹣3),D(0,﹣3).点P,Q是长方形ABCD边上的两个动点,BC交x轴于点M.点P从点O出发以每秒1个单位长度沿O→A→B→M的路线做匀速运动,同时点Q 也从点O出发以每秒2个单位长度沿O→D→C→M的路线做匀速运动.当点Q 运动到点M时,两动点均停止运动.设运动的时间为t秒,四边形OPMQ的面积为S.(1)当t=2时,求S的值;(2)若S<5时,求t的取值范围.39.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d (P,Q)=.40.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…C n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,C n,D n;(3)请求出四边形A5B5C5D5的面积.初中数学直角坐标系提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2017•河北一模)已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.【点评】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.2.(2016•柳州)如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)【分析】根据平面直角坐标系以及点的坐标的定义写出即可.【解答】解:点P的坐标为(3,﹣2).故选A.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中点的表示是解题的关键.3.(2016•临夏州)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值,根据不等式的性质,可得到答案.【解答】解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用点的坐标得出不等式是解题关键.4.(2017•禹州市一模)已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0) B.(3,﹣3)C.(3,﹣1)D.(﹣1,3)【分析】根据平移的性质,以及点A,B的坐标,可知点A的横坐标加上了4,纵坐标减小了1,所以平移方法是:先向右平移4个单位,再向下平移1个单位,根据点B的平移方法与A点相同,即可得到答案.【解答】解:∵A(﹣1,0)平移后对应点A′的坐标为(1,﹣3),∴A点的平移方法是:先向右平移2个单位,再向下平移3个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(1,2)平移后B′的坐标是:(3,﹣1).故选:C.【点评】本题考查了坐标与图形的变化﹣平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5.(2016•乌鲁木齐)对于任意实数m,点P(m﹣2,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【解答】解:A、当点在第一象限时,解得2<m<3,故选项不符合题意;B、当点在第二象限时,解得m<3,故选项不符合题意;C、当点在第三象限时,,不等式组无解,故选项符合题意;D、当点在第四象限时,解得m>0,故选项不符合题意.故选C.【点评】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.6.(2016•台湾)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x 坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣5【分析】先求出A、B、C三点的横坐标的和为﹣1+0+5=4,纵坐标的和为﹣4﹣1+4=﹣1,再把它们相减即可求得a﹣b之值.【解答】解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.故选:A.【点评】考查了点的坐标,解题的关键是求得a和b的值.7.(2016•滨州)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)【分析】由题目中A点坐标特征推导得出平面直角坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了.【解答】解:∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2).故选:C.【点评】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y 轴.8.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.(2016•盐城校级一模)如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2) C.(﹣3,﹣6)D.(﹣3,4)【分析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【解答】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(2016•安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(2016•临澧县模拟)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5),如果一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣1,) B.(﹣,﹣1)C.(,﹣1) D.(,1)【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.【解答】解:∵>1∴这个点的坐标为(,﹣1)故选C.【点评】本题考查了点的坐标和对新定义的阅读理解,准确找出这个点与限变点的横、纵坐标与a的关系即可.12.(2016•高新区一模)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3) C.(5,﹣3)D.(﹣5,3)【分析】根据f(a,b)=(﹣a,b).g(a,b)=(b,a).h(a,b)=(﹣a,﹣b),可得答案.【解答】解:f(g(h(﹣3,5)))=f(g(3,﹣5)=f(﹣5,3)=(5,3),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b).g(a,b)=(b,a).h (a,b)=(﹣a,﹣b)是解题关键.二.填空题(共13小题)13.(2017春•海宁市校级月考)点P(3,﹣2)到y轴的距离为3个单位.【分析】求得3的绝对值即为点P到y轴的距离.【解答】解:∵|3|=3,∴点P(3,﹣2)到y轴的距离为3个单位,故答案为:3.【点评】本题主要考查了点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.14.(2016•衡阳)点P(x﹣2,x+3)在第一象限,则x的取值范围是x>2.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.【点评】此题主要考查了点的坐标,正确得出关于x的不等式组是解题关键.15.(2017•涿州市一模)线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为(3,3)或(3,﹣7).【分析】由线段AB的长度结合点A、B的坐标即可得出关于x的含绝对值符号的一元一次方程,解之即可得出x值,由此即可得出点B的坐标.【解答】解:∵线段AB的长为5,A(3,﹣2),B(3,x),∴|﹣2﹣x|=5,解得:x1=3,x2=﹣7,∴点B的坐标为(3,3)或(3,﹣7).故答案为:(3,3)或(3,﹣7).【点评】本题考查了坐标与图形性质、两点间的距离公式以及含绝对值符号的一元一次方程,根据两点间的距离公式找出关于x的含绝对值符号的一元一次方程是解题的关键.16.(2016•黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.17.(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2016•鞍山二模)已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为(﹣1,﹣1).【分析】根据第三象限点的坐标性质得出a的取值范围,进而得出a的值,即可得出答案.【解答】解:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴,解得:2<a<3.5,故a=3,则点P坐标为:(﹣1,﹣1).故答案为:(﹣1,﹣1).【点评】此题主要考查了点的坐标,正确得出a的取值范围是解题关键.19.(2016•山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).【分析】根据双塔西街点的坐标可知:1号线起点所在的直线为x轴,根据桃园路的点的坐标可知:2号线起点所在的直线为y轴,建立平面直角坐标系,确定太原火车站的点的坐标.【解答】解:由双塔西街点的坐标为(0,﹣1)与桃园路的点的坐标为(﹣1,0)得:平面直角坐标系,可知:太原火车站的点的坐标是(3,0);故答案为:(3,0)【点评】本题考查了利用坐标确定位置,解题的关键就是确定坐标原点和x、y 轴的位置.20.(2016•厦门校级模拟)定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有4个.【分析】首先根据“距离坐标”的含义,可得“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,然后根据到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个,据此解答即可.【解答】解:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,因为到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个.故答案为:4.【点评】此题主要考查了点的“距离坐标”的含义以及应用,考查了分析推理能力,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2.21.(2016•汕头校级自主招生)在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是(9,2);当走完第2016步时,棋子所处位置的坐标是(2016,672).【分析】设走完第n步时,棋子所处的位置为点P n(n为自然数),根据走棋子的规律找出部分点P n的坐标,根据坐标的变化找出变化规律“P3n+1(3n+1,n),P3n+2(3n+3,n),P3n+3(3n+3,n+1)”,依此规律即可得出结论.【解答】解:设走完第n步时,棋子所处的位置为点P n(n为自然数),观察,发现规律:P1(1,0),P2(3,0),P3(3,1),P4(4,1),…,∴P3n+1(3n+1,n),P3n+2(3n+3,n),P3n+3(3n+3,n+1).∵8=3×2+2,∴P8(9,2).∵2016=3×671+3,∴P 2016(2016,672).故答案为:(9,2);(2016,672).【点评】本题考查了规律型中的点的坐标变化,解题的关键是找出变化规律“P 3n +1(3n +1,n ),P 3n +2(3n +3,n ),P 3n +3(3n +3,n +1)”.本题属于中档题,难度不大,解决该题型题目时,根据点的变化找出变化规律是关键.22.(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P 1,P 2,P 3,…,均在格点上,其顺序按图中“→”方向排列,如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,﹣1),P 5(﹣1,﹣1),P 6(﹣1,2)…根据这个规律,点P 2016的坐标为 (504,﹣504) .【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P 2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P 2016的在第四象限的角平分线上,∵点P 4(1,﹣1),点P 8(2,﹣2),点P 12(3,﹣3),∴点P 2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.23.(2016•三明)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是(20,0).【分析】根据图形分别求出n=3、6、9时对应的点的坐标,可知点P3n(n,0),将n=20代入可得.【解答】解:∵P3(1,0),P6(2,0),P9(3,0),…,∴P3n(n,0)当n=20时,P60(20,0),故答案为:(20,0).【点评】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=3、6、9时对应的点的对应的坐标是解题的关键.24.(2016•金华模拟)在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(0,﹣2).【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2016÷10=201…6,∴细线另一端在绕四边形第202圈的第6个单位长度的位置,即CD中间的位置,点的坐标为(0,﹣2),故答案为:(0,﹣2).【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2016个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.25.(2016•乐亭县一模)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是(2016,0).【分析】观察动点P运动图象可知,运动次数为偶数时,P点在x轴上,比较其横坐标与运动次数发现规律,根据规律即可解决问题.【解答】解:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等,∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).故答案为:(2016,0).【点评】本题考查了点的坐标以及数的变化,解题的关键是发现“当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等”这已变化规律.本题属于基础题,难度不大,解题时可先看求什么?根据所求再去寻找规律能够简化很多.三.解答题(共15小题)26.(2016春•黄埔区期末)在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)【分析】根据平面直角坐标系中点的表示方法找出各点的位置即可.【解答】解:如图所示.【点评】本题考查了点坐标,熟练掌握平面直角坐标系中的点的表示方法是解题的关键.27.(2016秋•商河县校级月考)在如图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?【分析】从图形中找到各点对应的横纵坐标,从而进行求解.【解答】解:各点的坐标为:A(﹣4,4)、B(﹣3,0)、C(﹣2,﹣2)、D(1,﹣4)、E(1,﹣1)、F(3,0)、G(2,3),点B和点F关于y轴对称,且关于原点对称.【点评】本题考查了在平面直角坐标系中确定点的坐标,是一道简单的基础题.28.(2017春•滨海县月考)求图中四边形ABCD的面积.【分析】由图可得:四边形ABCD的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积,即可解答.【解答】解:如图,S四边形ABCD=S矩形EFGH﹣S△AEB﹣S△AHD﹣S△BFC﹣S△CDG==25.【点评】本题考查了坐标与图形性质,解决本题的关键是结合图形四边形ABCD 的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积.29.(2016春•垦利县期末)在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列不等式组求出m 的取值范围,再根据m是整数解答即可.【解答】解:∵点A(2m﹣7,m﹣5)在第四象限,∴解得:.∵m为整数,∴m=4.∴.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).。

七年级下学期压轴题(平面直角坐标系的综合题)含答案

七年级下学期压轴题(平面直角坐标系的综合题)含答案

七年级下学期压轴题(平面直角坐标系的综合题)1、如图,在长方形ABCD 中,边AB=8,BC=4,以点O 为原点,OA ,OC 所在的直线为y 轴和x 轴,建立直角坐标系.(1)点A 的坐标为(0,4),则B 点坐标为( ) ,C 点坐标为( ) ;(2)当点P 从C 出发,以2单位/秒速度向CO 方向移动(不过O 点),Q 从原点O 出发以1单位/秒速度向OA 方向移动(不过A 点),P ,Q 同时出发,在移动过程中,四边形OPBQ 的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1)∵长方形ABCD 中,AB=8,BC=4, ∴CD=AB=8,∴B (8,4),C (8,0);故答案为:(8,4),(8,0);(2)设运动时间为t ,则CP=2t ,AQ=4-t , S 四边形OPBQ=S 矩形ABCD-S △ABQ-S △BPC , =4×8-1/2×8(4-t )-1/2×4t , =32-16+4t-4t , =16,所以,四边形OPBQ 的面积不变,为16.2、如图,在平面直角坐标系中,已知A (0,a )、B (b ,0)、C (b ,c )三点,其中a 、b 、c 满足关系式|a-2|+(b-3)2+4-c =0, (1)求a 、b 、c 的值;(2)如果在第二象限内有一点⎪⎭⎫ ⎝⎛21,m P ,请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由。

解:(1)a-2=0,a=2;b-3=0,b=3;c-4=0,c=4;(2)过点p 作PD ⊥y 轴于点D= ×2×3+ ×2×(-m)=3-m ;(3)存在点P 使四边形ABOP 的面积为△AOP 的面积的两倍 因为所以 ,即3-m=2×( ×2×3),解得m=-3所以P(-3, ).3、如图,△ABC 的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0). (1)求△ABC 的面积;(2)若点P (0,m )在y 轴上,试用含m 的代数式表示三角形ACP 的面积; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使S △ACP =2S △ABC ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使S △BCQ =2S △ABC .4、如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+2)2+02-b,过C 作CB ⊥x 轴于B . (1)求△ABC 的面积.(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数.(3)在y 轴上是否存在点P ,使得△ABC 和△ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.解:(1)∵(a+2)2+√b-2=0, ∴a=2=0,b-2=0, ∴a=-2,b=2, ∵CB ⊥AB∴A (-2,0),B (2,2),C (2,0), ∴三角形ABC 的面积=1/2×2×4=4;(2)解:∵CB ∥y 轴,BD ∥AC ,∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°, 过E 作EF ∥AC ,如图①, ∵BD ∥AC , ∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=1/2∠CAB=∠1,∠4=1/2∠ODB=∠2,∴∠AED=∠1+∠2=1/2(∠CAB+∠ODB )=45°;(3)解:①当P 在y 轴正半轴上时,如图②, 设P (0,t ),过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴, ∵S △APC=S 梯形MNAC-S △ANP-S △CMP=4, ∴4(t-2+t)/2-t-(t-2)=4,解得t=3, ②当P 在y 轴负半轴上时,如图③∵S △APC=S 梯形MNAC-S △ANP-S △CMP=4 ∴4(-t+2-t)/2+t-(2-t )=4,解得t=-1, ∴P (0,-1)或(0,3).5.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积(2)在y 轴上是否存在一点P ,连接PA ,PB ,使=,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.(1)依题意知,将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,故C 、D 两点点y 值为2. 所以点C ,D 的坐标分别为C (0,2),D(4,2) , 四边形ABDC 的面积S 四边形ABDC =CO ×AB=2×4=8(2)(2)在y 轴上是否存在一点P ,使S △PAB=S 四边形ABDC .理由如下: 设点P 到AB 的距离为h ,S △PAB=×AB ×h=2h ,由S △PAB=S 四边形ABDC ,得2h=8, 解得h=4,∴P (0,4)或(0,-4).(3)①是正确的结论,过点P 作PQ ∥CD , 因为AB ∥CD ,所以PQ ∥AB ∥CD (平行公理的推论)∴∠DCP =∠CPQ ,∵∠BOP =∠OPQ(两直线平行,内错角相等), ∴∠DCP +∠BOP =∠CPQ +∠OPQ =∠CPO所以==1.6.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足(a-2b )2+|b-2|=0.(1)则C 点的坐标为 ;A 点的坐标为 . (2)已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是(1,2),设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP =S △ODQ ?若存在,请求出t 的值;若不存在,请说明理由;(3)点F 是线段AC 上一点,满足∠FOC=∠FCO ,∠OEC=∠CAO+∠ACE ,点G 是第二象限中一点,连OG ,使得∠AOG=∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OECACEOHC ∠∠+∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.解:(1)∵(a-2b )2+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0);故答案为(2,0),(0,4).(2)如图1中,由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=21OP•yD=21(2-t)×2=2-t,S△DOQ=21OQ•xD=21×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1;(3)OECACEOHC∠∠+∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴OECACEOHC∠∠+∠=241)41(2414421=∠+∠∠+∠=∠+∠∠+∠+∠+∠.7.在平面直角坐标系中,△ABC 的三个顶点坐标为A (4,-1),B (1,4),C (1,-1). (1)请画出△ABC ,并画出△ABC 向左平移6个单位长度后得到的图形△A 1B 1C 1; (2)点P 是线段AB 上的一动点,连接A 1P ,B 1P ,求证:∠BB 1P +∠AA 1P =∠A 1PB 1; (3)在坐标轴上是否存在一点D ,使得△BCD 的面积是△ACD 面积的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)△ABC ,△A 1B 1C 1如图所示:(2)如图,过点P 作PQ ∥AA 1交A 1B 1于点Q ,连接BB 1,AA 1,∴PQ ∥AA 1,PQ ∥BB 1,∴∠BB 1P =∠B 1PQ ,∠AA 1P =∠A 1PQ , ∴∠BB 1P +∠AA 1P =∠A 1PB 1; (3)假设存在,分情况讨论:①当点D 在y 上时,设点D (0,m ),则15=51=22BCD S ⨯⨯△,1=312ACD S m ⨯⨯+△,∴5=2=312BCD ACD S S m +=△△, 解得:116m =-,2116m =-,此时点D 的坐标为(0,16-)或(0,116-);②当点D 在x 轴上时,设点D (m ,0),则1=512BCD S m ⨯⨯-△,13=31=22ACD S ⨯⨯△,∴5=2=132BCD ACD S S m -=△△,解得:1115m =,215m =-, 此时点D 的坐标为(115,0)或(15-,0); 综上所述,存在点D 的坐标为(0,16-)或(0,116-)(115,0)或(15-,0)。

2021年七年级数学《平面直角坐标系》压轴题集

2021年七年级数学《平面直角坐标系》压轴题集

2021年七年级数学《平面直角坐标系》压轴题集1.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.52.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m23.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)4.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)5.如图所示,一只电子跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是()A.(5,6)B.(6,0)C.(6,3)D.(3,6)二.填空题(共1小题)6.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).三.解答题(共29小题)7.已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).(1)求△ABC的面积是多少?(2)若点A、C的位置不变,当点P在y轴上时,且S△ACP=2S△ABC,求点P的坐标?(3)若点B、C的位置不变,当点Q在x轴上时,且S△BCQ=2S△ABC,求点Q的坐标?8.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S四边形ABOC,若存在,请求出t值,若不存在,请说明理由.9.在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2).(1)如图1,求△ABC的面积.(2)若点P的坐标为(m,0),①请直接写出线段AP的长为(用含m的式子表示);②当S△P AB=2S△ABC时,求m的值.(3)如图2,若AC交y轴于点D,直接写出点D的坐标为.10.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.11.在平面直角坐标系中,D(0,﹣3),M(4,﹣3),直角三角形ABC的边与x轴分别相交于O、G两点,与直线DM分别交于E、F点,∠ACB=90°.(1)将直角三角形如图1位置摆放,如果∠AOG=46°,则∠CEF=;(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由.(3)将直角三角形ABC如图3位置摆放,若∠GOC=140°,延长AC交DM于点Q,点P是射线GF上一动点,探究∠POQ,∠OPQ与∠PQF的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).12.已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)点M在x轴上,求M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求M的坐标;(3)点M到y轴的距离为2,求M的坐标.13.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.14.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠P AD=y°,∠BP A=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.15.已知点P(﹣3a﹣4,2+a),解答下列各题:(1)若点P在x轴上,则点P的坐标为;(2)若Q(5,8),且PQ∥x轴,则点P的坐标为;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2019+2019的值.16.已知A(4,0),点B在x轴上,且AB=5.(1)直接写出点B的坐标;(2)若点C在y轴上,且S△ABC=10,求点C的坐标.(3)若点D(a﹣3,a+2),且S△ABD=15,求点D的坐标.17.已知点P(3m+6,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,3),且与x轴平行的直线上.18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;(2)若点M在x轴上,且S△ACM=S△ABC,试求点M的坐标.19.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.20.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接P A,PB,使S△P AB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.21.如图①,在平面直角坐标系中,点O为坐标原点,点A在x轴负半轴上,点B在y轴正半轴上,且点A(a,0),B(0,b)满足+(a+2b)2=0,点C在第二象限,CA⊥x轴于点A,且CA=AO,点D为线段OA上的一个动点.(1)求A点以及B点的坐标;(2)连接BD,过点D作ED⊥DB交直线CA于点E.①当∠OBD=60°时,求∠AED的度数;②若∠AED、∠DBO的平分线的交点为点P,试求∠P的度数;(3)如图②,当点D刚好运动到线段OA的中点时,连接CD,此时在y轴上是否存在点M,使S△MAO=S△MCD,若存在,求出点M的坐标,若不存在,试说明理由.22.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b ﹣3)2=0,(c﹣5)2≤0.(1)求a、b、c的值.(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形APOB的面积.(3)在(2)的条件下,是否存在点P,使四边形AOBC的面积是四边形APOB的面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由.23.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.24.如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2)(1)求S四边形ABCO;(2)求S△ABC;(3)在x轴上是否存在一点P,使S△P AB=10?若存在,请求点P坐标.25.已知:如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动).(1)写出B点的坐标();(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.26.如图,在平面直角坐标系,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使S△COM=△ABC的面积,求出点M的坐标;②在坐标轴的其他位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标为.27.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.28.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b ﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.29.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0.(1)则C点的坐标为;A点的坐标为.(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ?若存在,请求出t的值;若不存在,请说明理由(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.30.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.31.在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0(1)求a、b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.32.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.33.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.34.△ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)△ABC由△A′B′C′经过怎样的平移得到?答:.(3)若点P(x,y)是△ABC内部一点,则△A'B'C'内部的对应点P'的坐标为;(4)求△ABC的面积.35.如图,△A′B′C′是△ABC经过平移得到的,△ABC三个顶点的坐标分别为A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)(1)请写出三角形ABC平移的过程;(2)写出点A′,C′的坐标;(3)求△A′B′C′的面积.。

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。

2022-2023学年江苏八年级数学上学期压轴题精练专题08 平面直角坐标系(含详解)

2022-2023学年江苏八年级数学上学期压轴题精练专题08 平面直角坐标系(含详解)

2022-2023学年苏科版数学八年级上册压轴题专题精选汇编专题08 平面直角坐标系考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________ 题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·句容期末)如图,Rt AOB Rt CDA ≌ ,且点A 、B 的坐标分别为 (10)(02)B -,,, ,则 OD 长是( )A .3-B .5C .4D .32.(2分)(2021八上·毕节期末)如图,在平面直角坐标系中,()10A , , ()01B , ,以点A 为圆心,AB 为半径画弧,交x 轴正半轴于点C ,点C 表示的实数介于( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间3.(2分)(2021八上·河南期末)在一次“寻宝”游戏中,寻宝人已经找到两个标志点()23A ,和()11B -,,并且知道藏宝地点的坐标是()42,,则藏宝处应为图中的( )A .点MB .点NC .点PD .点Q4.(2分)(2021八上·南京期末)在平面直角坐标系中,点A 的坐标为()13,.作点A 关于x 轴的对称点,得到点1A ,再将点1A 向左平移2个单位长度,得到点2A ,则点2A 所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.(2分)(2021八上·胶州期末)在平面直角坐标系中,已知点P (2a ﹣4,a+3)在x 轴上,则点(﹣a+2,3a ﹣1)所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限6.(2分)(2021八上·雨城期中)如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(4,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A .(0,2)B .(﹣4,0)C .(0,﹣2)D .(4,0)7.(2分)(2021八上·鞍山期末)在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0)、(0,﹣5),若平面内存在一点C ,使△ABC 是等腰直角三角形,则下列C 点坐标错误的是( ) A .(﹣8,﹣3)B .(﹣5,﹣8)C .(2,3)D .(5,﹣3)8.(2分)(2020八上·龙岩期末)在平面直角坐标系中,已知 ()10A , , ()5,0B ,若点 ()C m n , 在第一象限,且 ABC ∆ 为等腰直角三角形,则正确所有点 C 的 n 值之和是( ) A .10B .6C .4D .29.(2分)(2019八上·北京期中)平面直角坐标系中,已知A (2,0),B (0,2)若在坐标轴上取C 点,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .4B .6C .7D .810.(2分)(2018八上·佳木斯期中)如图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动一个单位至点A 1(-1,1),紧接着第2次向右跳动2个单位至点A 2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2017次跳动至点A 2017的坐标是( )A .B .C .D .评卷人 得 分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021八上·南京期末)如图,在平面直角坐标系中, 5AB AC == ,点B ,C 的坐标分别是 ()52,, ()58, ,则点A 的坐标是 .12.(2分)(2021八上·毕节期末)如图,在平面直角坐标系中,长方形AOBC 的边OB 、OA 分别在x 轴、y 轴上,点D 在边BC 上,将该长方形沿AD 折叠,点C 恰好落在边OB 上的E 处.若点()08A , ,点 ()100B ,,则点D 的坐标是 .13.(2分)(2021八上·林州期末)在平面直角坐标系中,已知()00A ,,()30B ,,()12C ,,若BAD ABC ≌,则点D 的坐标为 .14.(2分)(2021八上·峄城期末)如图,()60A ,,()20C -,,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为 .15.(2分)(2021八上·本溪期末)在平面直角坐标系中,点A 坐标为()43,,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为 .16.(2分)(2020八上·柯桥月考)如图,平面直角坐标系中,已知点P (2,2),C 为y 轴正半轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线OP 交于点A ,且BD =4AD ,直线CD 与直线OP 交于点Q ,则点Q 的坐标为 .17.(2分)(2020八上·丹东期中)如图,在平面直角坐标系中,将 ABO ∆ 沿 x轴向右滚动到 11AB C ∆ 的位置,再到 112A B C ∆ 的位置…依次进行下去,若已知点 ()3,0A , ()0,4B ,则点 99A 的坐标为 .18.(2分)(2020八上·金华月考)直线y=-2x+2交x轴于点A ,交y 轴于点B ,若点C 在第一象限,且 ABC 是等腰直角三角形,则点C 的坐标是19.(2分)(2020八上·慈溪期末)如图,在平面直角坐标系中, (0,3)B , (4,1)A ,点 C 是第一象限内的点,且ABC 是以 AB 为直角边的等腰直角三角形,则点 C 的坐标为 . 20.(2分)(2019八上·泰州月考)如图,已知点C (1,0),直线y=-x+7与两坐标轴分别交于A,B 两点,D,E 分别是AB, OA 上的动点,则△CDE 周长的最小值是 .评卷人 得 分三.解答题(共9小题,满分60分)21.(4分)(2020八上·江苏月考)如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.22.(5分)(2020八上·平川期中)如图,在平面直角坐标系中,A (-2,0),C (2,2),过C 作CB ⊥x 轴于B ,在y 轴上是否存在点P ,使得 ABC 和 ABP的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由.23.(5分)(2020八上·蜀山月考)若点( 1m - , 32m - )在第二象限内,求m 的取值范围24.(7分)(2021八上·双流月考)对于平面直角坐标系xOy 中的点P(a ,b),若点 P ' 的坐标为(a+kb ,ka+b)(其中k 为常数,且k≠0),则称点 P ' 为点P 的“k 属派生点”,例如:P(1,4)的“2属派生点”为 P ' (1+2×4,2×1+4),即 P ' (9,6).(1)(1分)点P(﹣2,3)的“2属派生点” P ' 的坐标为 ; (2)(3分)若点P 的“4属派生点” P ' 的坐标为(2,﹣7),求点P 的坐标;(3)(3分)若点P 在y 轴的正半轴上,点P 的“k 属派生点”为 P ' 点,且线段P P ' 的长度为线段OP 长度的3倍,求k 的值.25.(5分)(2019八上·太原期中)如图,已知一次函数 132y x =- 的图象与 x 轴, y 轴分别交于A ,B 两点,点 C(-4, n) 在该函数的图象上,连接OC .求点A ,B 的坐标和 OAC ∆ 的面积.26.(5分)(2019八上·同安期中)如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上,∠OAB =30°.(Ⅰ)若点C 在y 轴上,且△ABC 为以AB 为腰的等腰三角形,求∠BCA 的度数;(Ⅰ)若B (1,0),沿AB 将△ABO 翻折至△ABD .请根据题意补全图形,并求点D 的横坐标.27.(8分)(2019八上·南山期末)对于平面直角坐标系xOy 中的点P (a ,b ),若点P′的坐标为(a+kb ,ka+b )(其中k 为常数,且k≠0),则称点P′为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6). (1)(1分)点P (﹣2,3)的“3属派生点”P′的坐标为 ; (2)(3分)若点P 的“5属派生点”P′的坐标为(3,﹣9),求点P 的坐标;(3)(4分)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P′点,且线段PP′的长度为线段OP 长度的2倍,求k 的值.28.(10分)(2021八上·咸安期末)在平面直角坐标系中,已知 ()3,0A - , ()0,3B ,点 C 为 x 轴正半轴上一动点,过点 A 作 AD BC ⊥ 交 y 轴于点 E .(1)(3分)如图①,若点C 的坐标为 ()2,0 ,试求点E 的坐标;(2)(3分)如图②,若点C 在x 正半轴上运动,且 3OC < ,其它条件不变,连接 OD ,求证: OD 平分 ADC ∠ ;(3)(4分)若点C 在x 轴正半轴上运动,当 AD CD OC -= 时,求 OCD ∠ 的度数.29.(11分)(2020八上·三台期中)如图,在平面直角坐标系中,点A 的坐标为(2,0),以OA 为边在第四象限做等边△AOB ,点C 为x 轴正半轴一动点(OC > 2),连接BC ,以BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .(1)(3分)试问△OBC与△ABD全等吗?并证明你的结论;(2)(4分)随着点C位置的变化,∠AEO是否会发生变化?若没有变化,求出∠AEO的度数;若有变化,请说明理由.(3)(4分)若在x轴上有一动点P,使△PAE是等腰三角形,请直接写出满足条件的P点坐标.2022-2023学年苏科版数学八年级上册压轴题专题精选汇编专题08 平面直角坐标系考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·句容期末)如图,Rt AOB Rt CDA ≌ ,且点A 、B 的坐标分别为 (10)(02)B -,,, ,则 OD 长是( )A .3-B .5C .4D .3 【答案】D【完整解答】解:∵A (-1,0),B (0,2), ∴OA=1,OB=2, ∵△AOB ≌△CDA , ∴OB=AD=2, ∴OD=AD+AO=2+1=3. 故答案为:D.【思路引导】根据点A 、B 的坐标可得OA=1,OB=2,根据全等三角形的对应边相等可得OB=AD=2,然后根据OD=AD+AO 进行计算.2.(2分)(2021八上·毕节期末)如图,在平面直角坐标系中,()10A , , ()01B , ,以点A 为圆心,AB 为半径画弧,交x 轴正半轴于点C ,点C 表示的实数介于( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间【答案】B【完整解答】解:∵点A ,B 的坐标分别为(1,0),(0,1), ∴1OA = , 1OB = ,在 Rt AOB 中,由勾股定理得:AB ===,∴AC AB ==,∴1OC =+,∴点C 的坐标为 ()1 ,<<即 12<< ,∴23<< ,即点C 的表示的实数介于2和3之间, 故答案为:B.【思路引导】由A 、B 的坐标,可得OA=1,OB=1,利用勾股定理求出AB 的长,根据同圆的半径相等可得AC 的长,再由OC=OA+AC 求出OC 的长,即得点C 表示的数,最后根据估算无理数的大小及不等式的性质即可得出答案.3.(2分)(2021八上·河南期末)在一次“寻宝”游戏中,寻宝人已经找到两个标志点()23A ,和()11B -,,并且知道藏宝地点的坐标是()42,,则藏宝处应为图中的( ) A .点M B .点N C .点P D .点Q 【答案】B【完整解答】解:∵点A (2,3)和B (1,-1), ∴坐标原点的位置如下图:∵藏宝地点的坐标是(4,2)∴藏宝处应为图中的:点N.故答案为:B.【思路引导】根据点A、B的坐标可知:将点B向左移动一个单位长度,再向上移动一个单位长度后的对应点作为坐标原点,确定平面直角坐标系,再描出(4,2)的点即可判断.4.(2分)(2021八上·南京期末)在平面直角坐标系中,点A的坐标为()13,.作点A关于x轴的对称点,得到点1A,再将点1A向左平移2个单位长度,得到点2A,则点2A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【完整解答】解:∵点A的坐标为(1,3),点A1是点A关于x轴的对称点,∴点A1的坐标为(1,-3).∵点A2是将点A1向左平移2个单位长度得到的点,∴点A2的坐标为(-1,-3),∴点A2所在的象限是第三象限.故答案为:C.【思路引导】利用关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可得到点A1的坐标;再利用点的坐标平移规律:纵坐标上加下减,横坐标左减右加,可得到平移后的点A2的坐标,由此可得到点A2所在的象限.5.(2分)(2021八上·胶州期末)在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【完整解答】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故答案为:D.【思路引导】根据x轴上的点坐标的特征可得a+3=0,求出a的值,即可得到点(﹣a+2,3a﹣1)为(5,-10),再根据点坐标与象限的关系求解即可。

平面直角坐标系找规律压轴及平行线解答题压轴题

平面直角坐标系找规律压轴及平行线解答题压轴题

七下平行线,平面直角坐标系压轴题一.填空题(共13小题)1.已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y轴的距离为5,则点N的坐标为.2.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为.3.如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此五边形沿着x轴向右滚动,则滚动过程中,经过点(75,0)的是(填A、B、C、D或E).4.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.5.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),AB=5.对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.6.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3,P4,…,P2008的位置,则P2008的坐标为.实用文案7.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.8.如图,将边长为2的等边三角形沿x轴正方向连续翻折2012次,依次得到点P1,P2,P3…P2012.则点P2012的坐标是.9.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为.11.如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为.实用文案12.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.13.如图,在平面直角坐标系上有点A(1,0),点A第一次向左跳动至点A1(﹣1,1),第二次向右跳动至点A2(2,1),第三次向左跳动至点A3(﹣2,2),第四次向右跳动点A4(3,2),…,依次规律跳动下去,点A第2017次跳动至点A2017的坐标是.二.解答题(共27小题)14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4()∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)实用文案∵∠1=∠BHP,∠2=∠DFP()∴∠HMF=∠BHP +∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.15.如图1,直线m∥n,点B、F在直线m上,点E、C在直线n上,连结FE并延长至点A,连结BA和CA,使∠AEC=∠BAC.(1)求证:∠BFA+∠BAC=180°;(2)请在图1中找出与∠CAF相等的角,并加以证明;(3)如图2,连结BC交AF于点D,作∠CBF和∠CEF的角平分线交于点M,若∠ADC=α,请直接写出∠M的度数(用含α的式子表示)16.已知直线AB∥CD,M,N分别是AB,CD上的点.(1)若E是AB,CD内一点.实用文案①如图甲所示,请写出∠BME,∠DNE,∠MEN之间的数量关系,并证明.②如图乙所示,若∠1=∠BME,∠2=∠DNE,请利用①的结论探究∠F与∠MEN的数量关系.(2)若E是AB,CD外一点.①如图丙所示,请直接写出∠EMB,∠END,∠E之间的数量关系.②如图丁所示,已知∠BMP=∠EMB,在射线MP上找一点G,使得∠MGN=∠E,请在图中画出点G的大致位置,并求∠ENG:∠GND的值.17.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.18.小明在学习了“平行线的判定和性质”知识后,对下面问题进行探究:在平面内,直线AB∥CD,E为平面内一点,连接BE、CE,根据点E的位置探究∠B和∠C、∠BEC的数量关系.(1)当点E分别在如下图①、图实用文案②和图③所示的位置时,请你直接写出三个图形中相应的∠B和∠C、∠BEC的数量关系:图①中:;图②中:,图③中:.(2)请在以上三个结论中选出一个你喜欢的结论加以证明.(3)运用上面的结论解决问题:如图④,AB∥CD,BP平分∠ABE,CP平分∠DCE,∠BEC=100°,∠BPC的度数是.(直接写出结果,不用写计算过程)19.如图1,AC平分∠DAB,∠1=∠2.(1)试说明AB与CD的位置关系,并予以证明;(2)如图2,当∠ADC=120°时,点E、F分别在CD和AC的延长线上运动,试探讨∠E和∠F的数量关系;(3)如图3,AD和BC交于点G,过点D作DH∥BC交AC于点H,若AC⊥BC,问当∠CDH为多少度时,∠GDC=∠ADH.20.已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;实用文案(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F ,则=.21.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.22.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,实用文案第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).23.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.24.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.实用文案(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.25.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.26.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,实用文案求∠EBC的度数.27.如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.28.已知,∠AOB=90°,点C在射线OA上,CD∥OE.(1)如图1,若∠OCD=120°,求∠BOE的度数;(2)把“∠AOB=90°”改为“∠AOB=120°”,射线OE沿射线OB平移,得O′E,其他条件不变,(如图2所示),探究∠OCD、∠BO′E的数量关系;(3)在(2)的条件下,作PO′⊥OB垂足为O′,与∠OCD的平分线CP 交于点P,若∠BO′E=α,请用含α的式子表示∠CPO′(请直接写出答案).实用文案29.如图1.将线段AB平移至CD,使A与D对应,B与C对应,连AD、BC.(1)填空:AB与CD的关系为,∠B与∠D的大小关系为(2)如图2,若∠B=60°,F、E为BC的延长线上的点,∠EFD=∠EDF,DG平分∠CDE交BE于G,求∠FDG.(3)在(2)中,若∠B=α,其它条件不变,则∠FDG=.30.已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横实用文案线上填上答案即可)31.数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠PAB、∠PCD的关系,并说明你探究的结论的正确性.推广延伸:(2)①如图2,已知AA1∥BA3,请你猜想∠A1、∠B1、∠B2、∠A2、∠A3的关系,并证明你的猜想;②如图3,已知AA1∥BA n,直接写出∠A1、∠B1、∠B2、∠A2、…∠B n﹣1、∠A n的关系.拓展应用:(3)①如图4,若AB∥EF,用含α,β,γ的式子表示x,应为A.α+β+γ B.β+γ﹣α C.180°﹣α﹣γ+β D.180°+α+β﹣γ②如图5,AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.32.已知,直线AB∥CD(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成实用文案立,请证明;如果不成立,请写出你的猜想,并证明.33.阅读下列材料并填空:(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?我们知道,两点确定一条直线.平面上有2个点时,可以画条直线,平面内有3个点时,一共可以画条直线,平面上有4个点时,一共可以画条直线,平面内有5个点时,一共可以画条直线,…平面内有n个点时,一共可以画条直线.(2)迁移:某足球比赛中有n个球队(n≥2)进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?有2个球队时,要进行场比赛,有3个球队时,要进行场比赛,有4个球队时,要进行场比赛,…那么有20个球队时,要进行场比赛.34.若∠C=α,∠EAC+∠FBC=β实用文案(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=.(用α、β表示)35.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.36.已知AB∥CD,点P在直线AB、CD之间,连接AP、CP.(1)探究发现:(填空)填空:如图1,过P作PQ∥AB,实用文案∴∠A+∠1=°()∵AB∥CD(已知)∴PQ∥CD()∴∠C+∠2=180°结论:∠A+∠C+∠APC=°;(2)解决问题:①如图2,延长PC至点E,AF、CF分别平分∠PAB、∠DCE,试判断∠P 与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=100°,分别作BN∥AP,DN∥PC,AM、DM分别平分∠PAB,∠CDN,则∠M的度数为(直接写出结果).37.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD 与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.38.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a实用文案所夹的锐角∠1=∠2.(1)如图2,一束光线m射到平面镜a上,被a 反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)在(1)中m∥n,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?(4)如图3,两面镜子的夹角为α°(0<α<90)时,进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系.直接写出答案..39.已知EF∥MN,一直角三角板如图放置.∠ACB=90°.(1)如图1,若∠1=60°,则∠2=度;(2)如图2,若∠1=∠B﹣20°.则∠2=度;(3)如图3,延长AC交直线MN于D,GH平分∠CGN,DK平分∠ADN 交GH于K,问∠GKD是否为定值,若是求值,不是说明理由.40.已知AD∥CE,点B为直线AD、CE所确定的平面内一点.(1)如图1所示,求证:∠ADB=∠B+∠BFE.(2)如图2,FG平分∠BFE,DG交FG于点G交BF于点H,且∠BDG:∠ADG=2:1,∠B=20°,∠DGF=30°,求∠BHD的度数.实用文案1.(﹣5,2)或(5,2);2. (1,3)或(5,1)3. B;4.(8,3),(5,0);5.(8052,0)6.(2007,1)7. 45.8.(4023,).9.(5,﹣5).10.(﹣5,13).11.(14,10);12.(32,3),(64,0); 13.(﹣1009,1009)七下平行线,平面直角坐标系压轴题参考答案与试题解析一.填空题(共13小题)1.已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y轴的距离为5,则点N的坐标为(﹣5,2)或(5,2).【分析】根据点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,可得点M的纵坐标和点N的纵坐标相等,由点N到y轴的距离为5,可得点N的横坐标的绝对值等于5,从而可以求得点N的坐标.【解答】解:∵点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,∴点M的纵坐标和点N的纵坐标相等.∴y=2.∵点N到y轴的距离为5,∴|x|=5.得,x=±5.∴点N的坐标为(﹣5,2)或(5,2).故答案为:(﹣5,2)或(5,2).【点评】本题考查坐标与图形的性质,解题的关键是明确与x轴平行的直线上所有点的纵坐标相等,到y轴的距离是点的横坐标的绝对值.2.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为(1,3)或(5,1).【分析】分两种情况①当A平移到点C时,②当B平移到点C时,分别利用平移中点的变化规律求解即可.实用文案【解答】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1).【点评】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此五边形沿着x轴向右滚动,则滚动过程中,经过点(75,0)的是B(填A、B、C、D或E).【分析】根据点(75,0)的横坐标是5的倍数,而该正五边形滚动5次正好一周,由此可知经过(5,0)的点经过(75,0),找到经过(5,0)的点即可.【解答】解:∵C、D两点坐标分别为(1,0)、(2,0).∴按题中滚动方法点E经过点(3,0),点A经过点(4,0),点B经过点(5,0),∵点(75,0)的横坐标是5的倍数,而该正五边形滚动5次正好一周,∴可知经过(5,0)的点经过(75,0),∴点B经过点(75,0).故答案为:B.【点评】本题考查了正多边形和圆及坐标与图形性质,解题的关键是了实用文案解正五边形滚动5次正好一个轮回,并由此判断经过点(75,0)的点就是经过(5,0)的点.4.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是(8,3);点P2014的坐标是(5,0).【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2014除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3),(5,0).【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.5.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为(8052,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一实用文案个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).故答案为:(8052,0).【点评】本题是对点的坐标变化规律的考查了,难度不大,仔细观察图形,得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.6.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3,P4,…,P2008的位置,则P2008的坐标为(2007,1).【分析】根据图形得出点的坐标变化规律,再根据规律对2008 变形,得出结论.【解答】解:根据规律P1(1,1),P2(2,0)=P3 ,P4(3,1),P5(5,1),P6(6,0)=P7,P8(7,1)…每4个一循环,可以判断P2008坐标在502次循环后与P4坐标纵坐标一致,坐标应该是(2007,1)故答案为:(2007,1)【点评】本题主要考查了对正方形的性质,坐标与图形性质等知识点的理解和掌握,体现了由特殊到一般的数学方法,这一解答问题的方法在考查本节的知识点时经常用到,是在研究特例的过程中总结规律.7.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为45.实用文案【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2012个点是(45,13),所以,第2012个点的横坐标为45.故答案为:45.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.8.如图,将边长为2的等边三角形沿x轴正方向连续翻折2012次,依次得到点P1,P2,P3…P2012.则点P2012的坐标是(4023,).【分析】根据等边三角形的性质易求得P1的坐标为(1,);在等边三角形翻折的过程中,P点的纵坐标不变,而每翻折一次,横坐标增加2个单位(即等边三角形的边长),可根据这个规律求出点P2012的坐标.【解答】解:易得P1(1,);而P1P2=P 2P3=2,∴P2(3,),P3(5,);依此类推,P n(1+2n﹣2,),即P n(2n﹣1,);实用文案当n=2012时,P2012(4023,).故答案为:(4023,).【点评】考查了规律型:点的坐标.解答此类规律型问题时,通常要根据简单的条件得到一般化规律,然后根据规律求特定的值.9.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,﹣5).【分析】由=5易得A20在第四象限,根据A4的坐标,A8的坐标,A12的坐标不难推出A20的坐标.【解答】解:∵=5,∴A20在第四象限,∵A4所在正方形的边长为2,A4的坐标为(1,﹣1),同理可得:A8的坐标为(2,﹣2),A12的坐标为(3,﹣3),∴A20的坐标为(5,﹣5),故答案为:(5,﹣5).【点评】本题考查坐标与图形的性质,解题关键是首先找出A20所在的象限.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为(﹣5,13).【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第90个点实用文案的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【解答】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(﹣1,3),共3个,…,依此类推,纵坐标是n的共有n个坐标,1+2+3+…+n=,当n=13时,=91,所以,第90个点的纵坐标为13,(13﹣1)÷2=6,∴第91个点的坐标为(﹣6,13),第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点评】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.11.如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为(14,10).【分析】应先判断出第102个数在第几行,第几列,再根据分析得到的规律求解.【解答】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n 个数.则n 列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为105=1+2+3+…+14,则第102个数一定在第14列,由下到上是第11个数.因而第102个点的坐标是(14,10).故答案填:(14,10).【点评】本题考查了学生阅读理解并总结规律的能力,解决的关键是能正确找出题目中点的规律.实用文案12.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是(32,3),B5的坐标是(64,0).【分析】寻找规律求解.【解答】解:A、A1、A2…A n都在平行于X轴的直线上,点的纵坐标都相等,所以A5的纵坐标是3;这些点的横坐标有一定的规律:A n=2n.因而点A5的横坐标是25=32;B、B1、B2…B n都在x轴上,B5的纵坐标是0;这些点的横坐标也有一定的规律:B n=2n+1,因而点B5的横坐标是B5=25+1=64.∴点A5的坐标是(32,3),点B5的坐标是(64,0).故答案分别是:(32,3),(64,0).【点评】考查X轴上的点的特征与平行于X轴的直线上点的特点.注意数形结合思想在此的应用,找到点的变化规律是解题的关键.13.如图,在平面直角坐标系上有点A(1,0),点A第一次向左跳动至点A1(﹣1,1),第二次向右跳动至点A2(2,1),第三次向左跳动至点A3(﹣2,2),第四次向右跳动点A4(3,2),…,依次规律跳动下去,点A第2017次跳动至点A2017的坐标是(﹣1009,1009)..【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2018次跳动至点的坐标是(1010,1009),实用文案第2017次跳动至点A2017的坐标是(﹣1009,1009).故答案为:(﹣1009,1009).【点评】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二.解答题(共27小题)14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4(两直线平行,内错角相等)∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP(角平分线定义)∴∠HMF=∠BHP +∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.【分析】(1)根据两直线平行,内错角相等,以及角平分线定义进行判断即可;(2)先根据HP⊥EF,AB∥CD,得到∠EHP+∠DFP=90°,再根据(1)中结论即可得到∠HMF的度数;(3)先根据题意得到∠NFQ=90°﹣∠FNQ,再根据FN平分∠HFE,FM平分∠EFD,即可得出∠HFD=2∠NFQ,最后根据∠EHF+∠HFD=180°,即可得出∠EHF=2∠FNQ.【解答】解:(1)由MQ∥CD,得到∠1=∠3,∠2=∠4,其依据为:两直线平行,内错角相等;实用文案。

平面直角坐标系压轴题24170精编版

平面直角坐标系压轴题24170精编版

1、、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0)。

(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADEBCES S?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为(用含n 的式子表示)2、、如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,斜边AB 与y 轴交于点C.(1)若∠A=∠AOC ,求证:∠B=∠BOC ;xy OCBAFA O C ByxA yxO C B(2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB=∠EOB ,∠OAE=∠OEA ,求∠A 度数;(3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P.当△ABO 绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问∠P 的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.3、如图,y 轴的负半轴平分∠AOB , P 为y 轴负半轴上的一动点,过点P 作x 轴的平行线分别交OA 、OB 于点M 、N.(1)如图1, MN ⊥y 轴吗?为什么?(2)如图2,当点P 在y 轴的负半轴上运动到AB 与y 轴的交点处,其他条件都不变时,等式∠APM=21(∠OBA -∠A )是否成立?为什么?xy OEDCBAPMF xy OCBAMNADBCb 21aE βαMaADBCbF HQ(3)当点P 在y 轴的负半轴上运动到图3处(Q 为BA 、NM 的延长线的交点),其他条件都不变时,试问∠Q 、∠OAB 、∠OBA 之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.4、.已知直线a ∥b ,点A 在直线a 上,点B 、C 在直线b 上,点D 在线段BC 上.(1)如图1,AB 平分∠MAD ,AC 平分∠NAD ,DE ⊥AC 于E ,求证:∠1=∠2.(5分)(2)若点F 为线段AB 上不与A 、B 重合的一动点,点H 在AC 上,FQ 平分∠AFD 交AC于Q ,设∠HFQ =x °,(此时点D 为线段BC 上不与点B 、C 重合的任一点),问当α、β、x 之间满足怎样的等量关系时,FH ∥a (如图2)?试写出α、β、x 之间满足的某种等量关系,并以此为条件证明FH ∥a .(5分)AOBQMPNyx 图37、如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足02)22ba(,过C作CB⊥x轴于B.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE、DE分别平分∠CAB、∠ODB,如图2求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.yACxO ByACxO BEDyACxO B图1图2 备用图8、在平面直角坐标系中,点)0,(a A ,)0,(b B ,),0(c C ,且满足342c b a ,过点C 作x MN //轴,D 是MN上一动点. (1)求ABC 的面积;(2)如图1,若点D 的横坐标为-3,AD 交OC 于E ,求点E 的坐标;(3)如图2,若B 35AD,P 是A D 上的点,Q 是射线DM 上的点,射线QG平分PQM ,射线PH 平分APQ ,//PF QG ,请你补全图形,并求HPF ADN的值.9、(12分)如图,直角坐标系中,C 点是第二象限一点,CB ⊥y 轴于B ,且B (0,b )是y 轴正半轴上一点,A (a ,0)是x 轴负半轴上一点,且2230a b ,S 四边形AOBC =9。

七年级下学期压轴题(平面直角坐标系的综合题)含答案

七年级下学期压轴题(平面直角坐标系的综合题)含答案

七年级下学期压轴题(平面直角坐标系的综合题)含答案七年级下学期压轴题(平面直角坐标系的综合题)1、如图,在长方形ABCD中,边AB=8,BC=4,以点O为原点,OA,OC所在的直线为y轴和x轴,建立直角坐标系.1) 点A的坐标为(2,4),则B点坐标为(10,4),C点坐标为(10,0);2) 当点P从C出发,以2单位/秒速度向CO方向移动(不过O点),Q从原点O出发以1单位/秒速度向OA方向移动(不过A点),P,Q同时出发,在移动过程中,四边形OPBQ的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1) a-2=0,a=2;b-3=0,b=3;c-4=0,c=4;故答案为:A(2,4),B(10,4),C(10,0);2) 设运动时间为t,则CP=2t,AQ=4-t。

S四边形OPBQ=S矩形ABCD-S△ABQ-S△BPC。

4×8-1/2×8(4-t)-1/2×4t。

32-16+4t-4t。

16。

所以,四边形OPBQ的面积不变,为16.2、如图,在平面直角坐标系中,已知A(2,a)、B(b,0)、C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)^2+c-4=0。

1) 满足条件的解为a=2,b=3,c=4;2) 四边形ABOP的面积为:S△ABC-1/2×(b-2)×|a-2|;3) 当m=0时,S△ACP=2S△ABC,此时P的坐标为(2,0);4) 当x=b/2时,S△BCQ=2S△ABC。

3、如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).1) △ABC的面积为5;2) 三角形ACP的面积为:1/2×(a-1)×|m|;3) 当m=10时,S△ACP=2S△ABC,此时点P的坐标为(1,10);4) 当x=-3时,S△BCQ=2S△ABC。

4、如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)^2+b-2=4,过C作CB⊥x轴于B.解:由(a+2)^2+b-2=4得b=6-2a-a^2.因为BC⊥x轴,所以CB的斜率为0,即CB的方程为y=2.代入b=6-2a-a^2得a^2+2a-2=0,解得a=-1±√3.所以A的坐标为(-1+√3,0)或(-1-√3,0),C的坐标为(1-√3,2)或(1+√3,2)。

七下培优训练三平面直角坐标系综合问题压轴题

七下培优训练三平面直角坐标系综合问题压轴题

七(下)培优训练(三)平面直角坐标系综合问题(压轴题)培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP 的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD.图2(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;(4)在y轴上是否存在一点P,使线段AB平移至线段PQ 时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACP ABC S S =;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B .(1)求三角形ABC的面积;(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP 的面积相等,若存在,求出P点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3).(1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG=∠EDF ;A(-2,0)B(0,-3)y x(3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24.图1yxHOFEDACB(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0)单位,再向右平移1D 连结AC ,BD .(1)求点C ,D 的坐标及四边形(2)在y 轴上是否存在一点P ,连结PA ,PB ,使S △PAB =S △PDB ,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC(2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADEBCES S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)2+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN⊥x轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P从B点出发以每秒1个单位的速度沿BA方向运动,同时动点Q从C点出发也以每秒1位的速度沿y轴正半轴方向运动(当P点运动到A点时,两点都停止运动)。

七年级下册数学培优训练平面直角坐标系综合问题(压轴题)

七年级下册数学培优训练平面直角坐标系综合问题(压轴题)

(1) 如图 1,直接写出图中相等的线段,平行的线段;(2) 如图 2,若线段 AB 移动到 CD , C 、D 两点恰好都在坐标轴上,求 C 、D 的坐标;(3) 若点 C 在 y 轴的正半轴上,点 D 在第一象限内,且 S △ ACD =5,求 C 、D 的坐标;培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例 1】如图,在平面直角坐标中, A(0,1) ,B(2, 0), C ( 2, 1.5).(1)求△ ABC 的面积; (2)如果在第二象限内有一点P ( a , 0.5),试用 a 的式子表示四边形 ABOP 的面积;(3)在( 2)的条件下,是否存在这样的点 P ,使四边形 ABOP 的面积与△ ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yCA POBx【例 2】在平面直角坐标系中,已知A ( -3, 0),B ( -2, -2),将线段 AB 平移至线段 CD .y y yyDDAAA O CO CxAOOxxxB BB 图 1B图2图3图4(4)在y 轴上是否存在一点P,使线段AB 平移至线段PQ 时,由A、B、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P、Q 的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).(1)求△ABC 的面积;(2)若把△ABC 向下平移 2 个单位长度,再向右平移 3 个单位长度,得到△A B C ,请你在图中画出△ A B C ;(3)若点A、C 的位置不变,当点P 在y 轴上什么位置时,使S V ACP 2S V ABC ;(4)若点B、C 的位置不变,当点Q 在x 轴上什么位置时,使S V BCQ 2 S V ABC .【例4】如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a2) 2b 2 0 ,过C 作CB⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过 B 作BD ∥AC 交y 轴于D ,且AE,DE 分别平分∠ CAB,∠ ODB ,如图2,求∠ AED 的度数;(3)在y 轴上是否存在点P,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)(1)在坐标系中,画出此四边形;(2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P,使S△PBC=50 ,若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2,0), B 点坐标为(0,-3).(1) 作图,将△ABO 沿x 轴正方向平移 4 个单位,得到△DEF ,延长ED 交y 轴于 Cy 点,过O 点作OG⊥CE ,垂足为G;(2) 在(1)的条件下,求证: ∠COG=∠EDF ;A(-2,0)0 xB(0,-3)(3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B(0,4),C(-5,4),点 A 是x 轴负半轴上一点,S 四边形AOBC=24.yD C B EFH A Ox图1(1)线段BC 的长为,点 A 的坐标为;(2)如图1,EA 平分∠ CAO,DA 平分∠ CAH ,CF⊥AE 点F,试给出∠ ECF 与∠ DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP、OP,BN 平分CBP ,ON 平分AOP,BN 交ON 于N,请依题意画出图形,给出BPO与BNO之间满足的数量关系式,并说明理由.【例8】在平面直角坐标系中,OA=4,OC=8,四边形ABCO 是平行四边形.yyA BA BQxxO P CO C(1)求点 B 的坐标及的面积S四边形ABCO ;(2)若点P 从点 C 以2 单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1 单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为S四边形OQBP SAQB ,SBPC ,是否存在某个时间,使SAQB =,若存在,求出t 的值,若不存在,试说明理由;3(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A,B 的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移 2 个单位,再向右平移 1 个单位,分别得到点A,B 的对应点C,D 连结AC,BD .yy(1) 求点C,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;C D C DA-1 oB A B3 x -1o 3 x(2)在y 轴上是否存在一点P,连结PA,PB,使S△PAB=S△PDB ,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;(3)若点Q 自O 点以0.5 个单位/s 的速度在线段AB 上移动,运动到 B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?yDCA B-1 o Q 3 x (4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?yB【例10】在直角坐标系中,△ABC 的顶点A(—2,0),B(2,4),C(5,0).(1)求△ ABC 的面积A O C x(2)点 D 为y 负半轴上一动点,连BD 交x 轴于E,是否存在点 D 使得S ADE S BCE ?若存在,请求出点 D 的坐标;若不存在,请说明理由.(3)点F(5,n)是第一象限内一点,,连BF,CF,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为(用含n 的式子表示)yBFA O C x【例 2】如图,在平面直角坐标系中,已知点A ( -5,0),B ( 5.0), D (2, 7),( 1)求 C 点的坐标;(2)动点 P 从 B 点出发以每秒 1 个单位的速度沿 BA 方向运动,同时动点 Q 从 C 点出发也以每秒 1 位的速度沿 y轴正半轴方向运动(当P 点运动到 A 点时,两点都停止运动) 。

七下平面直角坐标系压轴题

七下平面直角坐标系压轴题

七下平面直角坐标系压轴题一、什么是平面直角坐标系?平面直角坐标系是数学中研究二维几何图形的重要工具,它由两条垂直的数轴构成,分别称为x轴和y轴。

两条轴的交点称为原点O,它是平面直角坐标系的起点。

x轴和y轴上的数值称为坐标,用来表示平面上的点的位置。

二、平面直角坐标系的特点1.正交性: x轴和y轴相互垂直,构成直角。

2.方向性: x轴从左向右延伸,y轴从下向上延伸。

3.单位长度: x轴单位长度和y轴单位长度可以不同。

三、平面直角坐标系的基本概念1.坐标轴: x轴和y轴构成的直线。

2.坐标轴分割点:坐标轴上的等距点,用来表示坐标。

3.坐标:平面上的点在x轴和y轴上的投影长度。

平面直角坐标系中,x轴的坐标用x表示,y轴的坐标用y表示,一个点的坐标表示为(x, y)。

4.坐标轴上的正半轴和负半轴: x轴上大于0的一半叫做x轴的正半轴,小于0的一半叫做x轴的负半轴;y轴同理。

四、平面直角坐标系中的图形在平面直角坐标系中,可以用坐标表示图形上的点,在此基础上可以绘制出各种几何图形。

常见的几何图形包括:1.点:坐标系中的一个点可以表示为(x, y)。

2.线段:由两个点A(x1, y1)和B(x2, y2)确定,可以用两点间的距离和两点间的直线方程表示。

3.直线:由一条线段无限延伸而成,可以用一般式方程、斜截式方程或点斜式方程表示。

4.圆:以平面上一点为圆心,另一点到圆心的距离为半径所得的图形。

五、平面直角坐标系中的运算在平面直角坐标系中,可以进行坐标运算,如加减乘除、距离计算等。

常见的坐标运算包括:1.坐标加减法:将两个点的坐标进行相应维度上的加减。

2.坐标乘除法:将点的坐标按比例进行放大或缩小。

3.点与点的距离:通过勾股定理计算两点间的距离。

六、平面直角坐标系的应用平面直角坐标系在数学中有广泛的应用,常见的应用场景有:1.几何图形的绘制:平面直角坐标系可以用来绘制和分析各种几何图形,如直线、圆、多边形等。

2.方程的解析:平面直角坐标系可以帮助我们解析并可视化各种方程,如一元一次方程、二元一次方程等。

平面直角坐标系压轴题

平面直角坐标系压轴题

平面直角坐标系压轴题Last revision on 21 December 2020U 、在直角坐标系中,AABC 的顶点A (—2, 0) , B 2 4) , C (5, 0)。

(1)求△ABC 的面积 (2)点D 为y 负半轴上一动点,连BD 交X 轴于巳 是否存在点 存在,请求出点D 的坐标;若不存在,请说明理由― A 0 —► C X (3)点F (5, n)是第一象限内一点…连BF, CE G 是x 轴上一点,若△ABG 的面 积等于四边形ABDC 的面积,则点G 的坐标为(用含绸式子表示) B …. 7、、如图,在平面直角坐标系中,△AOB 是直角三角形,乙AOB|=90 斜边AB 与y 轴交 于点C. (1)若乙A 二乙AOC,求证:乙B 二乙BOC ; A ⑵延长AB 交X 轴于点E 过0作0D 丄AB.且乙 F数; (3)如图,OF 平分乙A0汕 乙BCO 的平分线交F0的陡恸 (斜边AB 与y 轴正半轴始终相交于点C).在⑵的条笳下;AE 二乙0EAC 求乙A度B4举0( E、叽辔0她点旋转时改变若不变,请求其度数;若改变,请说明理由・ 3、如图,y 轴的负半轴平分乙AOB, P 为y 轴负半轴王 C占 O件都不可乙F 的度数瞽发生,\^怎『作*轴的平行(1)如图1, MN 丄y 轴吗为什么 Jy (2)如图2, 当点P 在y 轴的负半轴上运动到AB 与y7 V 变时,等式rAPM=i (Z0BA- ZA)是否成立为什么 厶线分别交0A 、0B 于点N. (3)当点P 在y 轴的负半轴上运动到图3处(Q 为 NM 的延长线的交点),其他条件都不变时,试问乙Q 、 OAB.乙OBA 之间是否存在某种数量关系若存在,请写 图】图2X BA 、关系式,并加以证明;若不存在,请说明理由.农.已知直线Gib 、点A 在直线"上 点C 在直纟(1)如图1, AB 平分ZM4D 4C 平分ZNAD DE 丄/⑵若点F 为线段AB 上不与久B 重合的吗玄臣y\ X丄Q MPN上.・(5分)E 图3的任一点),问 B D C "当久X •之间满足怎样的等量关系时,FH//a (如图2)试写出久卩、X 之间满足4C 于0设ZHFQ=x\ (此时点D 为线段BC 的某种等量关系,并以此为条件证明FH//a . (5分)7、如图1’在平面直角坐标系中,A(6 a + 2)2+J 方-2=0’ 过 C 作CB 丄X 轴于B . AM求三角形ABC 的面积, 若过B 作BD 〃AC 交y 轴于D 且AE 、DE 分别平分乙CAB 、Z0DB,如图2求乙AED的度数- 在y 轴上是否存在点巳 使得三角形ABC和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由・ 8、在平面!1:角坐标系中■点A(G 0), B(b® ⑴求 a —2 + b + ^ = - (的面无 C(0,c),且满足 ,过点C 作MN//X 轴 D 是hd C—动点•y 创-如图]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档