高考物理电场精讲精练等效法解决带电体在复合场中运动问题

合集下载

等效法处理重力场和电场的复合场问题(最新整理)

等效法处理重力场和电场的复合场问题(最新整理)

等效法处理重力场和电场的复合场问题教学目标(一)知识与技能1.了解带电粒子在匀强电场中的运动——只受电场力,带电粒子做匀变速运动。

2.重点掌握物理中等效代换法3.把物体在重力场中运动的规律类比应用到复合场中分析解决问题。

(二)过程与方法培养学生综合运用力学和电学知识,分析解决带电粒子在复合场中的运动的能力。

(三)情感态度与价值观1.渗透物理学方法的教育:复合场与重力场类比。

2.培养学生综合分析问题的能力,体会物理知识的实际应用。

重点:带电粒子在复合场(重力场与电场)中的运动规律 难点:复合场的建立。

教学过程:复习提问:重力、电场力做功的特点?(强调类比法)我们今天就研究重力和电场力的这个相同点!一、等效法二、1、振动对称性:如图所示,在水平方向的匀强电场中的O 点,用长为l 的轻、软绝缘细线悬挂一质量为m 的带电小球,当小球位于B 点时处于静止状态,此时细线与竖直方向(即OA 方向)成θ角.现将小球拉至细线与竖直方向成2θ角的C 点,由静止将小球释放.若重力加速度为g ,则对于此后小球的受力和运动情况,下列判断中正确的是EE重力环境对比:小球在A —B —C 之间往复运动,则α 、β的关系为:A .α = βB .α > βA .小球所受电场力的大小为mg tan θB .小球到B 点的速度最大C .小球可能能够到达A 点,且到A 点时的速度不为零D .小球运动到A 点时所受绳的拉力最大2、“竖直上抛运动”在竖直向下的匀强电场中,以V 0初速度竖直向上发射一个质量为q 的带正电小球,求上升的最大高度。

3、“单摆”摆球质量为m ,带电量为+q ,摆线为绝缘细线,摆长为L 场强为E ,求单摆振动的周期。

g’=+g,所以T=2π=2m qE'g L 4、“竖直平面圆周运动”水平向右的匀强电场中,用长为R 的轻质细线在O A 处,AO 的连线与竖直方向夹角为370V 0,小球便在竖直面内运动,为使小球能在竖直面内完成圆周运动,这个初速度V 静止时对球受力分析如右图0=mg,43BAV 0初速度竖直m )最高点的最小速)为使小球能在竖“等效”场力G’==mg22)(Fmg 45与T 反向“等效”场加速度g’=g45与重力场相类比可知: 小球能在竖直面内完成圆周运动的临界速度位置在AO 连线B 处, 且最小的V B =Rg '从B 到A 运用动能定理: G’2R=m V 0 2-- m V B 22121mg2R=m V 0 2-- m gR 45212145 V 0 =25gR5、类平抛运动水平放置带电的两平行金属板,相距d,质量为mq ,仍以电性?,带电后,应根据极板电性不同分两种情况讨论(1)若上极板带正电,下极板带负电(如图a )微粒水平方向仍作匀速直线运动时间为t 重力和电场力均向下,竖直位移s=1/2(g+qU/md) t 微粒不再射出电场,则s>d/2,解得U>mgd/q.(2)若上极板带负电,下极板带正电(如图b )重力环境对比:平抛运动规律:分析方法上同,只是此时电场力向上,竖直位移s=1/2(qU/md-g) t 2,要使微粒不再射出电场,则s>d/2,解得U>3mgd/q.由于微粒不带电时能射出电场,故当重力大于电场力时,微粒一定能射出,满足条件。

高考物理带电粒子在复合场中的运动试题经典及解析

高考物理带电粒子在复合场中的运动试题经典及解析

一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:2.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t 时间内收集到的离子个数为N ,总电荷量Q = It Q = Nq M =" Nm" =(3)由以上分析可得:R =设m /为铀238离子质量,由于电压在U±ΔU 之间有微小变化,铀235离子在磁场中最大半径为:R max =铀238离子在磁场中最小半径为:R min =这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max <R min 即:< 得:<<其中铀235离子的质量m = 235u (u 为原子质量单位),铀238离子的质量m ,= 238u 则:<解得:<0.63%3.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。

高考物理一轮复习讲义带电粒子在复合场中的运动

高考物理一轮复习讲义带电粒子在复合场中的运动

课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。

高考物理专题——带电粒子在复合场中运动的实例分析(解析版)

高考物理专题——带电粒子在复合场中运动的实例分析(解析版)

2021年高考物理一轮复习考点全攻关专题 ——带电粒子在复合场中运动的实例分析(解析版)专题解读:1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题、压轴题的信心.3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒定律)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律). 命题热点一:质谱仪的原理和分析 1.作用测量带电粒子质量和分离同位素的仪器. 2.原理如图所示(1)加速电场:qU =12mv 2;(2)偏转磁场:qvB =mv 2r ,l =2r ;由以上两式可得r =1B 2mUq, m =qr 2B 22U ,q m =2U B 2r 2.例1 质谱仪可利用电场和磁场将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示,虚线上方有两条半径分别为R 和r (R >r )的半圆形边界,分别与虚线相交于A 、B 、C 、D 点,圆心均为虚线上的O 点,C 、D 间有一荧光屏.虚线上方区域处在垂直纸面向外的匀强磁场中,磁感应强度大小为B .虚线下方有一电压可调的加速电场,离子源发出的某一正离子由静止开始经电场加速后,从AB 的中点垂直进入磁场,离子打在边界上时会被吸收.当加速电压为U 时,离子恰能打在荧光屏的中点.不计离子的重力及电、磁场的边缘效应.求: (1)离子的比荷;(2)离子在磁场中运动的时间;(3)离子能打在荧光屏上的加速电压范围.【答案】 (1)8UB 2R +r2(2)πB R +r28U(3)U R +3r 24R +r2≤U ′≤U 3R +r 24R +r2【解析】(1)由题意知,加速电压为U 时,离子在磁场区域做匀速圆周运动的半径r 0=R +r2洛伦兹力提供向心力,qvB =m v 2r 0在电场中加速,有qU =12mv 2解得:q m =8UB 2R +r2(2)离子在磁场中运动的周期为T =2πmqB在磁场中运动的时间t =T2解得:t =πBR +r 28U(3)由(1)中关系,知加速电压和离子轨迹半径之间的关系为U ′=4U R +r2r ′2若离子恰好打在荧光屏上的C 点,轨道半径r C =R +3r4U C =U R +3r 24R +r2若离子恰好打在荧光屏上的D 点,轨道半径r D =3R +r4U D =U 3R +r 24R +r2即离子能打在荧光屏上的加速电压范围:U R +3r24R +r 2≤U ′≤U 3R +r 24R +r2.变式1】 (2019·福建龙岩市5月模拟)质谱仪的原理如图所示,虚线AD 上方区域处在垂直纸面向外的匀强磁场中,C 、D 间有一荧光屏.同位素离子源产生a 、b 两种电荷量相同的离子,无初速度进入加速电场,经同一电压加速后,垂直进入磁场,a 离子恰好打在荧光屏C 点,b 离子恰好打在D 点.离子重力不计.则( )A .a 离子质量比b 的大B .a 离子质量比b 的小C .a 离子在磁场中的运动时间比b 的长D .a 、b 离子在磁场中的运动时间相等 【答案】B【解析】设离子进入磁场的速度为v ,在电场中qU =12mv 2,在磁场中Bqv =m v 2r ,联立解得:r =mv Bq =1B2mUq,由题图知,b 离子在磁场中运动的轨道半径较大,a 、b 为同位素,电荷量相同,所以b 离子的质量大于a 离子的质量,所以A 错误,B 正确;在磁场中运动的时间均为半个周期,即t =T 2=πmBq ,由于b 离子的质量大于a 离子的质量,故b 离子在磁场中运动的时间较长,C 、D 错误.命题热点二:回旋加速器的原理和分析1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次. 3.最大动能:由qv m B =mv m 2R 、E km =12mv m 2得E km =q 2B 2R 22m ,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关. 4.总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E kmqU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U.例2 (多选)(2019·山东烟台市第一学期期末)如图所示是回旋加速器的示意图,其核心部分是两个D 形金属盒,分别与高频交流电源连接,两个D 形金属盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D 形金属盒处于垂直于盒底的匀强磁场中,下列说法中正确的是( )A .加速电压越大,粒子最终射出时获得的动能就越大B .粒子射出时的最大动能与加速电压无关,与D 形金属盒的半径和磁感应强度有关C .若增大加速电压,粒子在金属盒间的加速次数将减少,在回旋加速器中运动的时间将减小D .粒子第5次被加速前、后的轨道半径之比为5∶ 6 【答案】BC【解析】粒子在磁场中做圆周运动,由牛顿第二定律得:qv m B =m v m 2R ,解得:v m =qBRm ,则粒子获得的最大动能为:E km =12mv m 2=q 2B 2R 22m ,知粒子获得的最大动能与加速电压无关,与D 形金属盒的半径R 和磁感应强度B 有关,故A 错误,B 正确;对粒子,由动能定理得:nqU =q 2B 2R 22m ,加速次数:n =qB 2R 22mU ,增大加速电压U ,粒子在金属盒间的加速次数将减少,粒子在回旋加速器中运动的时间:t =n 2T =n πmqB 将减小,故C正确;对粒子,由动能定理得:nqU =12mv n 2,解得v n =2nqUm,粒子在磁场中做圆周运动,由牛顿第二定律得:qv n B =m v n 2r n ,解得:r n =1B 2nmU q ,则粒子第5次被加速前、后的轨道半径之比为:r 4r 5=45,故D 错误.变式2 (多选)(2019·福建龙岩市3月质量检查)回旋加速器是加速带电粒子的装置,如图所示.其核心部件是分别与高频交流电源两极相连接的两个D 形金属盒(D 1、D 2),两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,D 形盒的半径为R .质量为m 、电荷量为q 的质子从D 1半盒的质子源(A 点)由静止释放,加速到最大动能E km 后经粒子出口处射出.若忽略质子在电场中的加速时间,且不考虑相对论效应,则下列说法正确的是( )A .质子加速后的最大动能E km 与交变电压U 大小无关B .质子在加速器中的运行时间与交变电压U 大小无关C .回旋加速器所加交变电压的周期为πR2mE kmD .D 2盒内质子的轨道半径由小到大之比为1∶3∶5∶… 【答案】ACD【解析】质子在回旋加速器中做圆周运动,洛伦兹力提供向心力,有qvB =m v 2r ,则v =qBrm ,当r =R 时,质子有最大动能:E km =12mv m 2=q 2B 2R 22m ,知质子加速后的最大动能E km 与交变电压U 大小无关,故A 正确;质子离开回旋加速器时的动能是一定的,与加速电压无关,由T =2πmqB 可知相邻两次经过电场加速的时间间隔不变,获得的动能为qU ,故电压越大,加速的次数n 越少,在加速器中的运行时间越短,故B 错误;回旋加速器所加交变电压的周期与质子在D 形盒中运动的周期相同,由T =2πm qB ,R =mv m qB ,E km =12mv m 2知,T=πR2mE km,故C 正确;质子每经过1次加速电场动能增大qU ,知D 2盒内质子的动能由小到大依次为qU 、3qU 、5qU …,又r =mv qB =2mE kqB ,则半径由小到大之比为1∶3∶5∶…,故D 正确.命题热点四:电场与磁场叠加的应用实例共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,qvB =qE .1.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.如图所示(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =EB .(3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量. (4)速度选择器具有单向性.例3 如图所示是一速度选择器,当粒子速度满足v 0=EB 时,粒子沿图中虚线水平射出;若某一粒子以速度v 射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是( )A .粒子射入的速度一定是v >EBB .粒子射入的速度可能是v <EBC .粒子射出时的速度一定大于射入速度D .粒子射出时的速度一定小于射入速度 【答案】B 2.磁流体发电机(1)原理:如图所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在B 、A 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)电源电动势U :设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q Ul =qvB ,即U =Blv .(4)电源内阻:r =ρlS .(5)回路电流:I =Ur +R.例4 (2019·福建三明市期末质量检测)磁流体发电机的原理如图所示.将一束等离子体连续以速度v 垂直于磁场方向喷入磁感应强度大小为B 的匀强磁场中,可在相距为d 、面积为S 的两平行金属板间产生电压.现把上、下板和电阻R 连接,上、下板等效为直流电源的两极.等离子体稳定时在两极板间均匀分布,电阻率为ρ.忽略边缘效应及离子的重力,下列说法正确的是( )A .上板为正极,a 、b 两端电压U =BdvB .上板为负极,a 、b 两端电压U =Bd 2vρS RS +ρdC .上板为正极,a 、b 两端电压U =BdvRSRS +ρdD .上板为负极,a 、b 两端电压U =BdvRSRd +ρS【答案】C【解析】根据左手定则可知,等离子体射入两极板之间时,正离子偏向a 板,负离子偏向b 板,即上板为正极;稳定时满足U ′d q =Bqv ,解得U ′=Bdv ;根据电阻定律可知两极板间的电阻为r =ρdS ,根据闭合电路欧姆定律:I =U ′R +r ,a 、b 两端电压U =IR ,联立解得U =BdvRSRS +ρd ,故选C.3.电磁流量计。

备考2024届高考物理一轮复习讲义第九章静电场专题十三带电体在电场中运动的综合问题题型3“等效法”在

备考2024届高考物理一轮复习讲义第九章静电场专题十三带电体在电场中运动的综合问题题型3“等效法”在

题型3 “等效法”在复合场中的运用1.等效重力场物体仅在重力场中的运动是最常见、最基本的运动,但是物体处在匀强电场和重力场中的运动就会变得复杂一些.此时可以将重力场与电场“合二为一”,用一个全新的“复合场”来代替,可形象称之为“等效重力场”.2.等效重力场的相关知识点及解释等效重力场⇔重力场、电场叠加而成的复合场等效重力⇔重力、电场力的合力等效重力加速度⇔等效重力与物体质量的比值等效“最低点”⇔物体自由时能处于稳定平衡状态的位置等效“最高点”⇔物体做圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能⇔等效重力大小与物体沿等效重力场方向“高度”的乘积3.举例研透高考明确方向7.[多选]如图所示,空间存在一竖直向下的匀强电场,电场强度为E.该空间有一带电小球用绝缘细线悬挂在O点,可在竖直平面内做完整的变速圆周运动,且小球运动到最高点时,细线受到的拉力最大.已知带电小球的质量为m,带电荷量为q,细线长为l,重力加速度为g,则(BD)A.小球带正电B.电场力大于重力C.小球运动到最低点时速度最大D.小球运动过程的最小速度为√(qE-mg)lm解析因为小球运动到最高点时,细线受到的拉力最大,可知重力和电场力的合力(等效重力)方向向上,则电场力方向向上,且电场力大于重力,小球带负电,故A错误,B正确;因重力和电场力的合力方向向上,可知小球运动到最高点时速度最大,故C 错误;由于等效重力竖直向上,所以小球运动到最低点时速度最小,最小速度满足qE -mg =m v min 2l,即v min =√(qE −mg )lm,故D 正确.8.如图所示,空间有一水平向右的匀强电场,半径为r 的绝缘光滑圆环固定在竖直平面内,O 是圆心,AB 是竖直方向的直径.一质量为m 、电荷量为+q (q >0)的小球套在圆环上,并静止在P 点,OP 与竖直方向的夹角θ=37°.不计空气阻力,已知重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)电场强度E 的大小;(2)若要使小球从P 点出发能做完整的圆周运动,小球初速度的大小应满足的条件.答案 (1)3mg 4q(2)不小于√5gr解析 (1)当小球静止在P 点时,小球的受力情况如图所示, 则有qEmg =tan θ,所以E =3mg 4q(2)小球所受重力与电场力的合力F =√(mg )2+(qE )2=54mg .当小球做圆周运动时,可以等效为在一个“重力加速度”为54g 的“重力场”中运动.若要使小球能做完整的圆周运动,则小球必须能通过图中的Q 点.设当小球从P 点出发的速度为v min 时,小球到达Q 点时速度为零,在小球从P 运动到Q 的过程中,根据动能定理有-54mg ·2r =0-12m v min 2,所以v min =√5gr ,即小球的初速度应不小于√5gr .方法点拨等效法求解电场中圆周运动问题的解题思路1.求出重力与电场力的合力F 合,将这个合力视为一个“等效重力”. 2.将a =F 合m视为“等效重力加速度”. 3.找出等效“最低点”和等效“最高点”.4.将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解.。

高考物理电倡讲精练“等效法”解决带电体在复合场中运动问题

高考物理电倡讲精练“等效法”解决带电体在复合场中运动问题

“等效法”解决带电体在复合场中运动问题[方法概述等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法.例如我们学习过的等效电阻、分力与合力、合运动与分运动等都体现了等效思维方法.常见的等效法有“分解”、“合成”、“等效类比”、“等效替换”、“等效变换”、“等效简化”等,从而化繁为简,化难为易带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是高中物理教学中一类重要而典型的题型.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则能避开复杂的运算,过程比较简捷.[方法应用]求出重力与电场力的合力,将这个合力视为一个“等效重力”将a视为“等效重力加速度”.将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解.例题1在水平向右的匀强电场中,有一质量为m、带正电的小球,用长为l的绝缘细线悬挂于O点,当小球静止时,细线与竖直方向夹角为θ,小球位于B点,A点与B点关于O点对称,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大?(2)小球在B点的初速度多大?解析如图所示,小球所受到的重力、电场力均为恒力,二力的合力为F=mgcos θ.重力场与电场的叠加场为等效重力场,F为等效重力,小球在叠加场中的等效重力加速度为g′=gcos θ,其方向斜向右下,与竖直方向成θ角.小球在竖直平面内做圆周运动的过程中,只有等效重力做功,动能与等效重力势能可相互转化,其总和不变.与重力势能类比知,等效重力势能为E p=mg′h,其中h为小球距等效重力势能零势能点的高度.(1)设小球静止的位置B 点为零势能点,由于动能与等效重力势能的总和不变,则小球位于和B 点对应的同一直径上的A 点时等效重力势能最大,动能最小,速度也最小.设小球在A 点的速度为v A ,此时细线的拉力为零,等效重力提供向心力,则mg ′=m v 2A l得小球的最小速度为v A =glcos θ(2)设小球在B 点的初速度为v B ,由能量守恒得12mv 2B =12mv 2A +mg ′·2l 将v A 的数值代入得v B =5gl cos θ 答案 (1)A 点速度最小gl cos θ(2) 5gl cos θ过关检测1.如图所示,一条长为L 的细线上端固定,下端拴一个质量为m 的电荷量为q 的小球,将它置于方向水平向右的匀强电场中,使细线竖直拉直时将小球从A 点静止释放,当细线离开竖直位置偏角α=60°时,小球速度为0.(1)求:①小球带电性质;②电场强度E .(2)若小球恰好完成竖直圆周运动,求从A 点释放小球时应有的初速度v A 的大小(可含根式).解析:(1)①根据电场方向和小球受力分析可知小球带正电.②小球由A 点释放到速度等于零,由动能定理有0=EqL sin α-mgL (1-cos α),解得E =3mg 3q. (2)将小球的重力和电场力的合力作为小球的等效重力G ′,则G ′=2 33mg ,方向与竖直方向成30°角偏向右下方. 若小球恰能做完整的圆周运动,在等效最高点.m v 2L =2 33mg 12mv 2-12mv 2A =-2 33mgL (1+cos 30°)联立解得v A =2gL (3+1)答案:见解析2.如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于电场强度为E 、方向水平向右的匀强电场中.现有一个质量为m 的小球,带正电荷量为q =3mg 3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?解析:小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的“等效最高点”(D 点)满足“等效重力”刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12mv 2D -12mv 20 解得v 0=10 3gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3. 答案:v ≥103gR 3。

带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。

2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。

针对性的专题训练,可以提高同学们解决难题、压轴题的信心。

3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。

物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。

带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。

解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。

其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。

涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。

问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。

二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。

广东省高三一轮复习新高考用“等效法”处理带电粒子在电场和重力场中的运动

广东省高三一轮复习新高考用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动1、如图,空间中存在大小为E =2.50 ×104N/C 、方向水平向右的的匀强电场,匀强电场中有一半径为r =0.1m 的光滑绝缘圆轨道,圆心为O ,轨道平面竖直且与电场方向平行。

a 、b 为轨道直径的两端,该直径与电场方向平行。

一电荷为q =+4.0×10-5C 、质量m =0.1kg 的小球(可视为质点)沿轨道内侧小球从a 点以某一初速度v a 向下运动,恰好能通过最高点c 。

取重力加速度g =10m/s 2,求:(1)小球从a 运动到b 过程中电势能的变化量;(2)小球在a 点对轨道的压力N ;(3)找出小球在轨道上运动过程中速度最大的位置。

2、如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)3、如图所示,在沿水平方向的匀强电场中有一固定点O,用一根长度为L=0.4 m的绝缘细线把质量为m =0.20 kg,带有q=6.0×10-4 C正电荷的金属小球悬挂在O点,小球静止在B点时细线与竖直方向的夹角为θ=37°.已知A、C两点分别为细线悬挂小球的水平位置和竖直位置,求:(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)A、B两点间的电势差U AB.(2)将小球拉至位置A使细线水平后由静止释放,小球通过最低点C时细线对小球的拉力F的大小.(3)如果要使小球能绕O点做完整的圆周运动,则小球在A点时沿垂直于OA方向运动的初速度v0的大小.4、如图,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E=10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.5、如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C 点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m。

高中物理复习 带电粒子在复合场中的运动

高中物理复习 带电粒子在复合场中的运动
目录
角度
带电粒子在叠加场中的运动
例 2 (2023·安徽高三联考)如图 3 所示,第一象限内存在水平向右的匀强电场,电 场强度大小为 E=mqvL20,第二象限内存在垂直纸面向外的匀强磁场,第三象限内
存在垂直纸面向外的匀强磁场及竖直向上的匀强电场,电场强度大小为 2E。
现有一质量为 m、电荷量为-q(q>0)的带负电粒子从 x 轴上的 A 点以初速度 v0
1234
目录
1、链接高考真题
2.(多选)(2023·海南卷,13)如图7所示,质量为m,带电荷量为+q的带电粒子,
从坐标原点O以初速度v0沿x轴方向射入第一象限内的电、磁场区域,在0<y<y0、 0<x<x0(x0、y0为已知量)区域内有竖直向上的匀强电场,在x>x0区域内有垂直纸面 向里、大小为B的匀强磁场,控制电场强度E(E值有多种可能),可让粒子从NP射
粒子射出磁场时与射入磁场时运动方向间的夹角 θ 与粒子在磁场中运动轨迹
所对应的圆心角相等,由几何关系可得
tan
θ2=Rr =
3 3
故 θ=60°。
题 干
目录
(3)根据几何关系,磁场圆绕O′点顺时针旋转,当O点转到M点,粒子在磁场中 的运动轨迹相应的弦为磁场圆的直径时,粒子在磁场中的运动时间最长。作 出粒子在磁场中的运动轨迹及相应的弦,标出改变后的磁场圆的圆心M,如图 乙所示。
垂直于 x 轴射入电场,经 y 轴上的 P 点(图中未画出)进入第二象限。已知第二、
三象限内磁场的磁感应强度大小均为 B=mqvL0,A 点坐标为L2,0,不计粒子重
力。求:
(1)P点的坐标;
(2)粒子第一次进入第三象限的横坐标; (3)粒子第一次在第三象限运动过程中与x轴的最远距离。

等效法求解带电体在电场中的运动问题

等效法求解带电体在电场中的运动问题

等效法求解带电体在电场中的运动问题
李翔
【期刊名称】《中学生数理化:高考理化》
【年(卷),期】2017(0)10X
【摘要】求解带电体在电场中的运动问题时,不管是否需要考虑重力等其他外力的作用,我们都可以采用'等效法'来处理。

下面就通过两道例题来展现'等效法'的具体应用过程,以帮助同学们更好地理解和运用这种方法求解带电体在电场中的运动问题。

一、不考虑重力等其他外力在不考虑重力等其他外力的情况下,可以将静电力直接等效成重力,将带电体在电场中的运动等效成在重力场中的运动。

例1如图1所示。

【总页数】1页(P46-46)
【关键词】运动问题;等效重力场;等效法;带电体
【作者】李翔
【作者单位】云南省曲靖市会泽县茚旺高级中学
【正文语种】中文
【中图分类】G634.7
【相关文献】
1.例析求解带电体在电场中的运动的方法 [J], 王平水
2.带电体在电场中运动问题的求解 [J], 徐小林
3.1.带电体在电场中运动问题的求解(高二、高三) [J], 沈为民
4.求解带电体在电场中运动问题的几种方法 [J], 华兴恒
5.带电体在电场中的运动易错问题剖析 [J], 杨倩倩
因版权原因,仅展示原文概要,查看原文内容请购买。

正交分解法和等效法处理带电体在复合场中的运动问题-学易试题君之每日一题君2019年高考物理一轮复习

正交分解法和等效法处理带电体在复合场中的运动问题-学易试题君之每日一题君2019年高考物理一轮复习

1 / 7
10月2日 正交分解法和等效法处理带电体在复合场中的运动问题 高考频度:★★★☆☆
难易程度:★★★☆☆
如图所示,在光滑、绝缘的水平桌面上固定放置一光滑、绝缘的挡板ABCD ,AB 段为直线挡板,BCD 段是半径为R 的圆弧挡板,挡板处于场强为E 的匀强电场中,电场方向与圆直径MN 平行。

现有一带电荷量为q 、质量为m 的小球由静止从挡板内侧上的A 点释放,并且小球能沿挡板内侧运动到D 点抛出,则
A .小球运动到N 点时,挡板对小球的弹力一定为零
B .小球运动到N 点时,挡板对小球的弹力一定大于Eq
C .小球运动到M 点时,挡板对小球的弹力一定为零
D .小球运动到C 点时,挡板对小球的弹力一定大于mg
【参考答案】B
【试题解析】小球运动到N 点时,电场力方向水平向右,小球水平方向的合力提供圆周运动向心力,故挡板对小球的弹力大于电场力qE ,故A 错误、B 正确;小球运动到M 点时水平方向的合力提供圆周运动向心力,故当小球所受电场力不等于小球圆周运动的向心力时,挡板对小球的作用力不为0,故C 错误;当小球在点C 时的速度大于0,小球竖直方向所受弹力提供小球圆周运动向心力,整个轨道是在水平面上,而不是竖直平面,所以C 点弹力与重力无法比较,故D 错误。

【名师点睛】小球从静止A 点释放,能沿挡板内侧运动到D 点抛出,知小球在AB 段的合力方向沿AB 向下,则电场力方向水平向右,小球一定带正电;小球在圆轨道内运动的过程中,在M 、N 点合力提供向心力,在C 点,轨道的弹力提供向心力,由于整个轨道是在水平面上,所以C 点弹力与重力无法比较。

等效法处理带电物体在电场中的多种运动(解析版)-2024年高考物理答题技巧

等效法处理带电物体在电场中的多种运动(解析版)-2024年高考物理答题技巧

等效法处理带电物体在电场中的多种运动一.应用技巧1.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法--概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积2.模型分类1“等效重力场”中的直线运动例:如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30°,大小:g =gcos30°带电小球沿绳做初速度为零,加速度为g 的匀加速运动S AB=2L cos30°①S AB=12g t2②由①②两式解得t=3L g2“等效重力场”中的抛体类运动例:如图所示,在电场强度为E的水平匀强电场中,以初速度为v0竖直向上发射一个质量为m、带电量为+q的带电小球,求小球在运动过程中具有的最小速度.建立等效重力场如图所示,等效重力加速度g设g 与竖直方向的夹角为θ,则g =g cosθ其中arcsinθ=qE (qE)2+(mg)2则小球在“等效重力场”中做斜抛运动v x=v0sinθv y=v0cosθ当小球在y轴方向的速度减小到零,即v y=0时,两者的合速度即为运动过程中的最小速度v min=v x=v0sinθ=v0qE (mg)2+(qE)23“等效重力场”中的单摆类模型例:如图所示,在沿水平方向的匀强电场中有一固定点O,用一根长度L=0.4m的绝缘细绳把质量为m= 0.10kg、带有正电荷的金属小球悬挂在O点,小球静止在B点时细绳与竖直方向的夹角为θ=37º.现将小球拉至位置A使细线水平后由静止释放:建立“等效重力场”如图所示,“等效重力加速度”g ,方向:与竖直方向的夹角30°,大小:g =gcos37°=1.25g由A、C点分别做绳OB的垂线,交点分别为A'、C',由动能定理得带电小球从A点运动到C点等效重力做功mg (LOA −LOC)=mg L(cosθ−sinθ)=12mv2C代入数值得v C≈1.4m/s当带电小球摆到B点时,绳上的拉力最大,设该时小球的速度为v B,绳上的拉力为F,则mg (L−L sinθ)=12mv2B①F−mg =m v2BL②联立①②两式子得F=2.25N4“等效重力场”中的圆周运动类模型例:如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一质量为m的带正电,电量为q=3mg3E小球,要使小球能安全通过圆轨道,在O点的初速度应为多大?运动特点:小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受到重力、电场力,轨道作用力,且要求能安全通过圆轨道.对应联想:在重力场中,小球先在水平面上运动,重力不作功,后在圆轨道上运动的模型:过山车.等效分析:如图所示,对小球受电场力和重力,将电场力与重力合成视为等效重力mg ,大小mg =(qE)2+(mg)2=23mg3,tgθ=qEmg=33,得θ=30°,于是重效重力方向为垂直斜面向下,得到小球在斜面上运动,等效重力不做功,小球运动可类比为重力场中过山车模型.规律应用:分析重力中过山车运动,要过圆轨道存在一个最高点,在最高点满足重力当好提供向心力,只要过最高点点就能安全通过圆轨道.如果将斜面顺时针转过300,就成了如图3-3所示的过山车模型,最高点应为等效重力方向上直径对应的点B,则B点应满足“重力”当好提供向心力即:mg =mv2B R假设以最小初速度v0运动,小球在斜面上作匀速直线运动,进入圆轨道后只有重力作功,则根据动能定理:−mg 2R=12mv2B−12mv20解得:v0=103gR3二、实战应用(应用技巧解题,提供解析仅供参考)1如图所示,平行板电容器上极板MN与下极板PQ水平放置,一带电液滴从下极板P点射入,恰好沿直线从上极板N点射出。

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。

所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。

1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。

初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。

已知OA=OC=d。

则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。

高考物理带电粒子在复合场中的运动解题技巧及练习题

高考物理带电粒子在复合场中的运动解题技巧及练习题

一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。

一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。

已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。

(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。

【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。

【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=- 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='- 联立以上两个方程可得35m /s<230m /s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围32m 23m 2x '≤<2.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动【答案】min B =v θ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得B ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min B =⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v mθ=⑧由⑦⑧式得v θ=⑨3.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS 的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2v qvB m r=,解得,粒子轨道半径:v r qBπ=, min1v r qBπ=,2112r r =, 由几何知识得:(r 1+r 2)sin φ=r 2,r 1+r 1cos φ=h ,解得:min 962)qBhv m=(﹣; (3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(92)22h x -≥,()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m=,n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=(﹣. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.4.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东)【答案】(1)32lmt qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =① 211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.5.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【来源】【市级联考】广东省广州市2019届高三12月调研测试理科综合试题物理试题【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R=解得0cos qBdvm θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.6.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【来源】【市级联考】陕西省咸阳市2019届高三模拟检测(三)理综物理试题【答案】(1)12mg E q =,2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE q=微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE =求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d = 1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=7.如图甲所示,在xOy 平面内有足够大的匀强电场E ,在y 轴左侧平面内有足够大的磁场,磁感应强度B 1随时间t 变化的规律如图乙所示,选定磁场垂直纸面向里为正方向。

2020年高考物理备考:带电粒子,带电体在电场中运动的综合问题

2020年高考物理备考:带电粒子,带电体在电场中运动的综合问题

2020年高考物理备考:带电粒子(带电体)在电场中运动的综合问题1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现.2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题.3.用到的知识:受力分析、运动分析、能量观点.【带电粒子在电场中的运动】1.分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题.2.受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略.一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用.【用能量观点处理带电体的运动】对于受变力作用的带电体的运动,必须借助能量观点来处理.即使都是恒力作用的问题,用能量观点处理也常常更简捷.具体方法常有两种:1.用动能定理处理思维顺序一般为:(1)弄清研究对象,明确所研究的物理过程.(2)分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功.(3)弄清所研究过程的始、末状态(主要指动能).(4)根据W=ΔE k列出方程求解.2.用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:(1)利用初、末状态的能量相等(即E1=E2)列方程.(2)利用某些能量的减少等于另一些能量的增加列方程.3.两个结论(1)若带电粒子只在电场力作用下运动,其动能和电势能之和保持不变.(2)若带电粒子只在重力和电场力作用下运动,其机械能和电势能之和保持不变.一带电粒子在交变电场中的运动1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等. 2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解). (2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究). 3.思维方法(1)注重全面分析(分析受力特点和运动规律):抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件. (2)从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.(3)注意对称性和周期性变化关系的应用.【例题1】 (2019·山东省日照市二模)图甲为两水平金属板,在两板间加上周期为T 的交变电压u ,电压u 随时间t 变化的图线如图乙所示.质量为m 、重力不计的带电粒子以初速度v 0沿中线射入两板间,经时间T 从两板间飞出.下列关于粒子运动的描述错误的是( )A .t =0时入射的粒子,离开电场时偏离中线的距离最大B .t =14T 时入射的粒子,离开电场时偏离中线的距离最大C .无论哪个时刻入射的粒子,离开电场时的速度方向都水平D .无论哪个时刻入射的粒子,离开电场时的速度大小都相等 【答案】 B【解析】 粒子在电场中运动的时间是相同的;t =0时入射的粒子,在竖直方向先加速,然后减速,最后离开电场区域,故t =0时入射的粒子离开电场时偏离中线的距离最大,选项A 正确;t =14T 时入射的粒子,在竖直方向先加速,然后减速,再反向加速,最后反向减速离开电场区域,故此时刻射入的粒子离开电场时速度方向和中线在同一直线上,选项B 错误;因粒子在电场中运动的时间等于电场变化的周期T ,根据动量定理,竖直方向电场力的冲量的矢量和为零,故所有粒子离开电场时的竖直方向分速度为零,即最终都垂直电场方向射出电场,离开电场时的速度大小都等于初速度,选项C 、D 正确.【例题2】(多选)(2018·河北省衡水中学二调)如图甲所示,两水平金属板间距为d ,板间电场强度的变化规律如图乙所示.t =0时刻,质量为m 的带电微粒以初速度v 0沿中线射入两板间,0~T3时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g .关于微粒在0~T 时间内运动的描述,正确的是( )A .末速度大小为2v 0B .末速度沿水平方向C .重力势能减少了12mgdD .克服电场力做功为mgd 【答案】 BC【解析】 因0~T 3时间内微粒匀速运动,故E 0q =mg ;在T 3~2T3时间内,微粒只受重力作用,做平抛运动,在t =2T 3时刻的竖直速度为v y 1=gT 3,水平速度为v 0;在2T3~T 时间内,由牛顿第二定律得2E 0q -mg =ma ,解得a =g ,方向向上,则在t =T 时刻,v y 2=v y 1-g T3=0,粒子的竖直速度减小到零,水平速度为v 0,选项A 错误,B 正确;微粒的重力势能减小了ΔE p =mg ·d 2=12mgd ,选项C 正确;从射入到射出,由动能定理得12mgd -W 电=0,可知克服电场力做功为12mgd ,选项D 错误.二 用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图3所示,则F 合为等效重力场中的“重力”,g ′=F 合m为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【例题1】 (2018·闽粤期末大联考)如图所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度为L =0.4 m 的绝缘细线把质量为m =0.20 kg ,带有q =6.0×10-4 C 正电荷的金属小球悬挂在O 点,小球静止在B 点时细线与竖直方向的夹角为θ=37°.已知A 、C 两点分别为细线悬挂小球的水平位置和竖直位置,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)(1)A 、B 两点间的电势差U AB .(2)将小球拉至位置A 使细线水平后由静止释放,小球通过最低点C 时细线对小球的拉力F 的大小.(3)如果要使小球能绕O 点做完整的圆周运动,则小球在A 点时沿垂直于OA 方向运动的初速度v 0的大小.【答案】 (1)-400 V (2)3 N (3)21 m/s【解析】 (1)带电小球在B 点静止受力平衡,根据平衡条件得:qE =mg tan θ, 得:E =mg tan θq =0.20×10×tan 37°6.0×10-4V/m =2.5×103 V/m 由U =Ed 有:U AB =-EL (1-sin θ)=-2.5×103×0.4×(1-sin 37°) V =-400 V. (2)设小球运动至C 点时速度为v C ,则: mgL -qEL =12mv C 2解得:v C = 2 m/s在C 点,小球所受重力和细线的合力提供向心力: F -mg =m v C 2L ,联立解得:F =3 N.(3)分析可知小球做完整圆周运动时必须通过B 点关于O 点的对称点,设在该点时小球的最小速度为v ,则: mg cos θ+qE sin θ=mv 2L-mgL cos θ-qEL (1+sin θ)=12mv 2-12mv 02联立解得:v 0=21 m/s.【例题2】(2019·安徽省皖南八校第二次联考)如图,一质量为m 1=1 kg ,带电荷量为q =+0.5 C 的小球以速度v 0=3 m/s ,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m ,两极板间距为0.5 m ,不计空气阻力,小球飞离极板后恰好由A 点沿切线落入竖直光滑圆弧轨道ABC ,圆弧轨道ABC 的形状为半径R <3 m 的圆截去了左上角127°的圆弧,CB 为其竖直直径,在过A 点竖直线OO ′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g =10 m/s 2)求:(1)两极板间的电势差大小U ;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R 的取值应满足的条件. 【答案】 (1)10 V (2)3 m>R ≥2518 m 或R ≤2563 m【解析】 (1)在A 点,竖直分速度v y = v 0tan 53°=4 m/s带电粒子在平行板中运动时间t =Lv 0=0.2 sv y =at ,得a =20 m/s 2 又mg +E ′q =ma E ′=Ud,得U =10 V(2)在A 点速度v A =v 0cos 53°=5 m/s①若小球不超过圆心等高处,则有 12mv A 2≤(mg +qE )R cos 53° 得R ≥2518 m故3 m>R ≥2518m②若小球能到达最高点C ,则有 12mv 2A =(mg +qE )R ·(1+cos 53°)+12mv C 2 在C 点:mg +Eq ≤m v C 2R可得v C ≥(mg +qE )Rm联立解得:R ≤2563m故圆弧轨道半径R 的取值条件为: 3 m>R ≥2518 m 或R ≤2563m三 电场中的力电综合问题1.力学规律(1)动力学规律:牛顿运动定律结合运动学公式. (2)能量规律:动能定理或能量守恒定律. 2.电场规律(1)电场力的特点:F =Eq ,正电荷受到的电场力与场强方向相同. (2)电场力做功的特点:W AB =FL AB cos θ=qU AB =E p A -E p B . 3.多阶段运动在多阶段运动过程中,当物体所受外力突变时,物体由于惯性而速度不发生突变,故物体在前一阶段的末速度即为物体在后一阶段的初速度.对于多阶段运动过程中物体在各阶段中发生的位移之间的联系,可以通过作运动过程草图来获得.【例题1】(2019·全国3卷24题)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点。

高考物理带电粒子在复合场中的运动常见题型及答题技巧及练习题

高考物理带电粒子在复合场中的运动常见题型及答题技巧及练习题

一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

高中物理带电粒子在复合场中的运动解题技巧

高中物理带电粒子在复合场中的运动解题技巧

高中物理带电粒子在复合场中的运动解题技巧带电粒子在复合场中的运动解题技巧求解这一类问题,一方面我们要依据次序对题目上给出的运动过程进行分段剖析,将复杂的问题分解为一个一个的简单熟习的物理模型,另一方面我们也要全面正确剖析有关过程中功能关系的变化,弄清楚各个状态之间的能量变化,便于我们依据动能定理或许能量守恒定律写方程。

在对带电粒子在每个场中的运动状况剖析时,要特别注意粒子在场与场交接处的运动状况,因为这一般是一个临界状态,必定要剖析清楚现在粒子的速度大小和方向以及相应的地点关系,这往常关于进入另一个场中的运动有决定性的影响 !还有一些是两场共存或许是三场共存的问题,这些运动会更为复杂,可是他实质上是一个力学识题,只需我们掌握的相应的规律,利使劲学识题的研究思路和基本规律,都是能够顺利战胜的!关于带电粒子在电场、磁场、复合场中运动时,重力是否考虑分三种状况:(1)关于微观粒子,如电子、质子、离子等,因为其重力一般状况下与电场力或磁场力对比太小,能够忽视 ; 而关于一些实质物体,如带电小球、液滴、金属块等一般应该考虑其重力 .(2)在题目中有明确说明能否要考虑重力的,这种状况按题目要求办理比较正规,也比较简单.(3)不可以直接判断能否要考虑重力的,在进行受力剖析与运动剖析时,要联合运动状态确立能否要考虑重力.种类一、分其余电场与磁场带电粒子在电场中的加快运动能够利用牛顿第二定律联合匀变速直线运动规律,或许从电场力做功角度出发求出粒子进入下一个场的速度。

关于带电粒子在电场中的偏转,要利用类平抛运动的规律,依据运动的合成与分解,联合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再联合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。

带电粒子垂直进入匀强磁场,其运动状况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动状况,重点是确立粒子飞入点和飞出点的地点以及速度方向,再利用几何关系确立圆心和半径。

2025高考物理总复习带电粒子在电场中运动的综合问题

2025高考物理总复习带电粒子在电场中运动的综合问题

0

又 t1= t2


联立解得
故在
4 5
9
t1= T= T
25
25
7
0~50 T
时间内发出的粒子均可打到 B 上,所以一个周期内发出的粒子打
7
到 B 上所占百分比约为 η=50 ×100%=14%。

归纳总结
带电粒子在交变电场中运动的研究类型和方法及注意问题
类型:通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形。
大小为2 =
23,sin 37°=0.6,cos 37°=0.8。求:
(1)物块第一次到达B点时的速度大小v1以及B、C两点间的距离x;
(2)小球过P点时的速度大小v以及S、C两点间的距离L;
(3)小球的质量。
2
答案 (1)gt1 10g1 -23R
(2)
5
2
9
R
5
(3)3m
解析 (1)物块从 A 点运动到 B 点的过程,根据牛顿第二定律有
解得

d=2
0


=
2 0 2
T
9
(3)若

φ=4φ0,d=5
2 0

,t0=2 ,设经过 t1 时间向上加速运动、再经过 t2 时间向

上减速运动的粒子恰好能打在 B 金属板上,粒子沿垂直金属板方向的运动有
1
2
0
·

2
·1 +
0
1
·
t1·
t2
2

·

·2 2 =d
行分析与研究。这类问题中常用到的基本规律有运动学公式、牛顿定律、

专题47 带电粒子在复合场中的运动-高考全攻略之备战2018年高考物理考点一遍过 含解析 精品

专题47 带电粒子在复合场中的运动-高考全攻略之备战2018年高考物理考点一遍过 含解析 精品

一、带电粒子在组合场中运动的分析方法1.正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析。

2.确定带电粒子的运动状态,注意运动情况和受力情况的结合。

3.对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理。

4.画出粒子运动轨迹,灵活选择不同的运动规律。

二、带电粒子在叠加场中运动的分析方法1.带电体在叠加场中运动的归类分析(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动。

②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒。

(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动。

②若电场力和洛伦兹力不平衡,则带电体做复杂的曲线运动,可用动能定理求解。

(3)电场力、磁场力、重力并存①若三力平衡,带电体做匀速直线运动。

②若重力与电场力平衡,带电体做匀速圆周运动。

③若合力不为零,带电体可能做复杂的曲线运动,可用能量守恒定律或动能定理求解。

2.带电粒子(带电体)在叠加场中运动的分析方法(1)弄清叠加场的组成。

(2)进行受力分析。

(3)确定带电粒子的运动状态,注意运动情况和受力情况的结合。

(4)画出粒子运动轨迹,灵活选择不同的运动规律。

①当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解。

②当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解。

③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。

④对于临界问题,注意挖掘隐含条件。

(5)记住三点:能够正确对叠加场中的带电粒子从受力、运动、能量三个方面进行分析①受力分析是基础:一般要从受力、运动、功能的角度来分析。

这类问题涉及的力的种类多,含重力、电场力、磁场力、弹力、摩擦力等;②运动过程分析是关键:包含的运动种类多,含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动以及其他曲线运动;③根据不同的运动过程及物理模型,选择合适的定理列方程(牛顿运动定律、运动学规律、动能定理、能量守恒定律等)求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“等效法”解决带电体在复合场中运动问题[方法概述]
1等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法.例如我们学习过的等效电阻、分力与合力、合运动与分运动等都体现了等效思维方法.常见的等效法有“分解”、“合成”、“等效类比”、“等效替换”、“等效变换”、“等效简化”等,从而化繁为简,化难为易.2带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是高中物理教学中一类重要而典型的题型.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则能避开复杂的运算,过程比较简捷.
[方法应用]
1求出重力与电场力的合力,将这个合力视为一个“等效重力”.
2将a视为“等效重力加速度”.
3将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解.
例题1在水平向右的匀强电场中,有一质量为m、带正电的小球,用长为l的绝缘细线悬挂于O点,当小球静止时,细线与竖直方向夹角为θ,小球位于B点,A点与B点关于O点对称,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:
(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大?
(2)小球在B点的初速度多大?
解析如图所示,小球所受到的重力、电场力均为恒力,二力的合力为F=
mg
cos θ
.重
力场与电场的叠加场为等效重力场,F为等效重力,小球在叠加场中的等效重力加速度为g′

g
cos θ
,其方向斜向右下,与竖直方向成θ角.小球在竖直平面内做圆周运动的过程中,
只有等效重力做功,动能与等效重力势能可相互转化,其总和不变.与重力势能类比知,等效重力势能为E p=mg′h,其中h为小球距等效重力势能零势能点的高度.
(1)设小球静止的位置B 点为零势能点,由于动能与等效重力势能的总和不变,则小球位于和B 点对应的同一直径上的A 点时等效重力势能最大,动能最小,速度也最小.设小球
在A 点的速度为v A ,此时细线的拉力为零,等效重力提供向心力,则mg ′=m v 2A l 得小球的最小速度为v A = gl cos θ
(2)设小球在B 点的初速度为v B ,由能量守恒得
12mv 2B =12
mv 2A +mg ′·2l 将v A 的数值代入得v B =
5gl cos θ 答案 (1)A 点速度最小
gl cos θ (2) 5gl cos θ
过关检测 1.如图所示,一条长为L 的细线上端固定,下端拴一个质量为m 的电荷量为q 的小球,将它置于方向水平向右的匀强电场中,使细线竖直拉直时将小球从A 点静止释放,当细线离开竖直位置偏角α=60°时,小球速度为0.
(1)求:①小球带电性质;②电场强度E .
(2)若小球恰好完成竖直圆周运动,求从A 点释放小球时应有的初速度v A 的大小(可含根式).
解析:(1)①根据电场方向和小球受力分析可知小球带正电.
②小球由A 点释放到速度等于零,由动能定理有
0=EqL sin α-mgL (1-cos α),解得E =3mg 3q
. (2)将小球的重力和电场力的合力作为小球的等效重力G ′,则G ′=2 33
mg ,方向与竖直方向成30°角偏向右下方.
若小球恰能做完整的圆周运动,在等效最高点.
m v 2L =2 33
mg 12mv 2-12mv 2A =-2 33
mgL (1+cos 30°)
联立解得v A = 2gL (3+1)
答案:见解析
2.如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于电场强度为E 、方向水平向右的匀强电场中.现有一个质量为m 的小球,带正电荷量为q =
3mg 3E
,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?
解析:小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,
大小为mg ′= (qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33
,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.
因要使小球能安全通过圆轨道,在圆轨道的“等效最高点”(D 点)满足“等效重力”刚
好提供向心力,即有:mg ′=mv 2D R
,因θ=30°与斜面的倾角相等,由几何关系知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:
-2mg ′R =12mv 2D -12
mv 20 解得v 0=
10 3gR 3
,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3
. 答案:v ≥ 103gR 3。

相关文档
最新文档