最新高考物理带电物体在电场中的运动

合集下载

考点34 电容器 带电粒子在电场中的运动(核心考点精讲精练)(学生版)备战2025年高考物理一轮复习

考点34 电容器 带电粒子在电场中的运动(核心考点精讲精练)(学生版)备战2025年高考物理一轮复习

考点34 电容器带电粒子在电场中的运动1. 高考真题考点分布题型考点考查考题统计选择题电容器2024年浙江卷、甘肃卷、辽宁卷选择题带电粒子在电场中直线运动2024年江西卷选择题带电粒子在电场中圆周运动2024年河北卷2. 命题规律及备考策略【命题规律】高考对电容器的考查较为频繁,但对带电粒子在电场中运动几乎每年都考,并且特别容易与磁场相结合,考查电磁组合场和叠加场问题,题目难度相对较大。

【备考策略】1.理解和掌握电容的定义式和决定式,会处理分析电容器的动态问题。

2.能够利用动力学、功能观点处理带电粒子在电场中的直线运动和抛体运动。

【命题预测】重点关注带电粒子在电磁场中的运动问题,特别是计算题。

一、电容器的电容1.电容器(1)组成:在两个相距很近的平行金属板中间夹上一层绝缘物质——电介质,就组成一个最简单的电容器。

(2)带电荷量:一个极板所带电荷量的绝对值。

(3)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能。

②放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能。

(4)击穿电压与额定电压①击穿电压:电容器两极板间的电压超过某一数值时,电介质将被击穿,电容器损坏,这个极限电压称为电容器的击穿电压。

②额定电压:电容器外壳上标的工作电压,也是电容器正常工作所能承受的最大电压,额定电压比击穿电压低。

2.电容(1)定义电容器所带的电荷量Q与电容器两极板之间的电势差U之比,叫作电容器的电容。

(2)定义式:C =QU。

(3)物理意义:表示电容器储存电荷本领大小的物理量。

(4)单位:法拉(F),1 F =1×106 μF =1×1012 pF 。

3.平行板电容器(1)决定因素:正对面积,相对介电常数,两板间的距离。

(2)决定式:C =εr S4πkd 。

二、带电粒子在电场中的运动1.加速(1)在匀强电场中,W =qEd =qU =12mv 2-12mv 02。

带电粒子在电场中的运动(直线、偏转、交变电场、力学观点、能量观点、动量观点)(原卷版)25年高考物理

带电粒子在电场中的运动(直线、偏转、交变电场、力学观点、能量观点、动量观点)(原卷版)25年高考物理

带电粒子在电场中的运动(直线、偏转、交变电场、力学观点、能量观点、动量观点)建议用时:75分钟带电粒子在电场中的运动(直线、偏转、交变电场、力学A.滑块动能增加4JC.由于放上滑块电机多消耗电能为2.(2024·广西贵港·模拟预测)A .D 点电势为6VB .电场强度大小为400V 3C .粒子过C 点时的速度与初速度方向间夹角的正切值为D .粒子过C 点时的速度大小为A .物体达到最大速度的时间Eq f mk-B .物体达到的最大速度为()202Eq f mk-A .滑块在b 点的加速度一定为0A .平移后油滴将做匀加速直线运动B .平移后电场强度大于C .平移后下板和上板之间的电势差大小为A .()T 8030cos N F q =-A.小球从O到N机械能守恒B.从O到M与从M到N,小球的动能的增加量相同,且小球是一定从C.从O到N小球的机械能减少,重力势能减小D.小球所受电场力方向一定竖直向上,所以匀强电场的方向也一定竖直向上A.L:d=2:1B.U1:U1=2:1C.微粒穿过图中电容器区域的速度偏转角度的正切值为D.仅改变微粒的质量或者电荷数量,微粒在电容器中的运动轨迹不变A.电场强度的大小2252v EkL =B.电场强度的方向垂直于初速度3v方向C.a、b两点间的电势差为27abv Uk=A.两球第一次碰撞到发生第二次碰撞的时间间隔为B.两球第n次碰撞到发生第A.板长和板间距之比为2:1B.板长和板间距之比为3:1C.电子穿过两板后获得的最大动能和最小动能之比为16:D.电子穿过两板后获得的最大动能和最小动能之比为6:5A.粒子在C点时的速度大小为B.粒子在C点时的速度大小为C.粒子从P点运动到C点的时间为D.粒子从P点运动到C点的时间为A.在运动过程中,电势能先增加后减少B.在P点的电势能大于在C.在M点的机械能等于在D.从M点运动到A.2E E=C.粒子由A到C的时间为16107LkEA.若小球恰能在竖直平面内绕B.若小球在竖直平面内绕OC.若将细线剪断,再将小球在D.若将小球在A点由静止开始释放,则小球沿18.(2024·福建宁德·三模)如图甲所示,“L”型绝缘不带电木板B静止在水平地面上,电荷量6q-210C=´的滑块A静止在木板左端,木板上表面P点左侧粗糙,右侧光滑且固定连接一轻质弹簧,弹簧左端与P点对齐,滑块和木板粗糙面间的动摩擦因数μ1=0.5,木板和地面间的动摩擦因数μ2=0.2。

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x 2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y 当322a y y =y =98a 时,H 有最大值由于98a<2a,所以H的最大值H max=94a,粒子射入磁场的位置为y=98a-2a=-78a2.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cos2d R a R L≥+=;min(632)3LTvπ=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则012qv B mvR=由几何关系:222113()()22L LR R=+-解得0mvBqL=(2)粒子P 从O 003L v t =01122y L v t = 解得033y v v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得23L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min 06323L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W4.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .5.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y .速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥6.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos o=52L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o=037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158Lv 则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.7.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径;(2)粒子从y 轴正半轴上射入电场的纵坐标范围;(3)带电粒子打到荧光屏上的位置与Q 点的最远距离.【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm【解析】【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm(3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0ty =212at 代入数据解得:x=2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ, 000tan 2y qE x v m v y v v θ⋅=== 所以:H =(x 0﹣x )tan θ=(x 0﹣2y )•2y由数学知识可知,当(x 0﹣2y )=2y 时,即y =4.5cm 时H 有最大值所以H max =9cm8.如图,PQ 分界线的右侧空间有一垂直纸面向里、磁感应强度为B 的匀强磁场。

2023届高考物理一轮复习:带电物体在电场中直线运动

2023届高考物理一轮复习:带电物体在电场中直线运动

带电物体在电场中直线运动1.如图所示,轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角。

已知小球所带电荷量,,匀强电场的场强,取重力加速度,sin37°=0.6,cos37°=0.8,求:(1)小球所受静电力F的大小;(2)求剪断细绳后2s末小球的速度大小。

2.如图所示,一带电量为+Q的点电荷固定在C点,一质量为m、可视为点电荷的带电小球从C点正上方距离C点H处的A点由静止释放,下落到离C点的高度为r时小球达到最大速度v。

(1)小球的带电量为多少?(2)小球从开始释放至达到最大速度过程中电场力做了多少功?小球的电势能变化了多少?3.如图所示,在水平向左的匀强电场中,质量为m、带电量为q的小球从A点沿直线运动到B点。

AB与电场线之间的夹角为,不计空气阻力,则下列说法正确的是()A.小球可能带正电B.小球一定带负电C.小球受到的电场力与重力相同D.小球沿AB做匀速直线运动4.如图所示,一质量为、电荷量为的小球在电场强度为、区域足够大的匀强电场中,以初速度沿在竖直面内做匀变速直线运动。

与水平面的夹角为,重力加速度为,且,则()A.电场方向竖直向上B.小球运动的加速度大小为C.小球上升的最大高度为D.若小球在初始位置的电势能为零,则小球电势能的最大值为5.互相正对的平行金属板、带等量的异种电荷,倾斜固定放置,一个带电小球(可看成点电荷)从一块金属板的边缘附近由静止释放沿图中水平虚线运动通过电场区域,两板间的电场可看成匀强电场,则下列判断正确的是()A.小球一定带正电B.小球一定从点运动到点C.小球受到的电场力和重力大小相等D.小球的电势能一定减小6.如图所示,在电场强度大小为E的匀强电场中,将一个质量为m、电荷量为q的带正电小球从O点由静止释放,小球沿直线OA斜向下运动,直线OA与竖直方向的夹角为θ。

已知重力加速度为g,不计空气阻力。

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。

整个空间存在电场强度E =100N/C 的水平向左的匀强电场。

现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。

求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。

【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。

-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。

此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。

高中物理专题-带电体在电场中的运动

高中物理专题-带电体在电场中的运动
位移为l,进入偏转电场时的速度为0 ,粒子质量为m,带电
量为q,则:
1
粒子经加速电场加速后有:1 = 2 02
2
d

v

在偏转电场中,根据牛顿第二定律有: 2 =
粒子在偏转电场运动时间: =

0



则粒子在偏转电场中的侧位移: = =

即粒子的侧位移与粒子质量和电荷量无关,故侧位移之比为
故粒子末速度竖直方向分量: = =
又有粒子末速度水平方向分量: = 0

所以: = =


02

0



=
粒子竖直方向位移: =
1
2

2
=

v
2
202

根据几何关系有:− ′ = tan

联立上述表达式得: ′ = 2 ,即 ′ 为l的中点。
(1)偏转电场的场强大小为: =


(1)
离子所受电场力: =
(2)

离子的加速度为: =
(3)

由式解得: =
(4)

设离子的质量为m,初速度为0 ,离子射出电场的时间t为: =
0
1
射出电场的偏转距离y为: = 2 2
由式解得: =
2
202
用能量观点解决带电体在电场中的运动
(1)带电的物体在电场中具有一定的电势能,同时还可能具有动能和重力势能等,用能量的观点处理问题是一种
简便的方法。处理这类问题,首先要进行受力分析以及各力作功情况分析,再根据做功情况选择合适的规律列式
求解。常用的规律有动能定理和能量定恒定律。

带电粒子(带电体)在电场中的平衡、运动--2024年高考物理大题突破(解析版)

带电粒子(带电体)在电场中的平衡、运动--2024年高考物理大题突破(解析版)

大题 带电粒子(带电体)在电场中的平衡、运动带电粒子的运动时而像落体运动时而像抛体运动还有的像“圆周运动”总之考察带电粒子的运动本质还是在考察传统的经典运动模型,但由于电场力的性质以及电场能的性质的加持之下这类问题变得更灵活多变个富有物理思想,因此在高考中的出镜率非常高,所以备考中应引起足够重视。

带电粒子(带电体)在电场中的平衡1(2023·吉林·二模)用两根长度均为L 的绝缘细线各系一个小球,并悬挂于同一点。

已知两小球A 、B 质量均为m ,当它们带上等量同种电荷时,两细线与竖直方向的夹角均为θ,如图所示。

若已知静电力常量为k ,重力加速度为g 。

求:(1)小球所带的电荷量;(2)在空间中施加一匀强电场,同时撤去B 球,仍使A 球保持不动,求所加电场强度E 的最小值。

【思路分析】根据受力分析结合共点力平衡的求解方法来求解电荷量;应用矢量三角形来求解电场强度的最小值。

【答案】(1)q =2L sin θmg tan θk ;(2)E min =12L kmg tan θ,方向垂直绳子斜向左上方【详解】(1)对小球A 受力分析,其受重力、库仑力、绳子的拉力三个力而平衡,其受力分析如图所示可知重力与库仑力的合力大小与绳子拉力大小相等、方向相反、合力为零,则有F 库mg =tan θ而F 库=kq 2(2L sin θ)2联立解得q =2L sin θmg tan θk(2)在空间中施加一匀强电场,同时撤去B 球,仍使A 球保持不动,则可知小球受重力、绳子的拉力、电场力这三个力而平衡,做出小球A 三力平衡的矢量三角形如图所示显然,当电场力与绳子的拉力垂直时电场力有最小值,其最小值为F 电min =mg sin θ即E min q =mg sin θ解得E min =12Lkmg tan θ方向垂直于绳子斜向左上方。

1(23-24高三上·河北·阶段练习)如图所示,水平向右的匀强电场中,绝缘丝线一端固定悬挂于O 点,另一端连接一带负电小球,小球质量为m ,电荷量为Q 。

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。

M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。

高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点3,0P L⎛⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.【答案】(1)23BLqm(2221BLq32203BE EvB+⎛⎫⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111vqv B mr=由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=- 由以上各式解得:425v gR =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为425V Rg =,方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v v ve v mθϕϕ==-+;(2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+则()1122211sin sin 2v e v mθθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+4.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.5.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==- 电场力做功W=40 J6.如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。

高中物理压轴题05 带电粒子在电场中运动(解析版)

高中物理压轴题05 带电粒子在电场中运动(解析版)

压轴题05带电粒子在电场中的运动1.本专题是电场的典型题型,包括应用静电力的知识解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于电场的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:电场力的性质、电场力能性质、带电粒子在电场中的平衡、加速、偏转等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型静电场的性质,电容器的动态分析,电场中的图像问题,带电粒子在电场中的运动问题,力电综合问题等。

考向一:静电场力的性质1.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)表达式:F=k q1q2r2,式中k=9.0×109N·m2/C2,叫做静电力常量.(3)适用条件:真空中的点电荷.①在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式;②当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷.(4)库仑力的方向:由相互作用的两个带电体决定,且同种电荷相互排斥,异种电荷相互吸引.(5)应用库仑定律的四条提醒a.在用库仑定律公式进行计算时,无论是正电荷还是负电荷,均代入电量的绝对值计算库仑力的大小.b.两个点电荷间相互作用的库仑力满足牛顿第三定律,大小相等、方向相反.c.库仑力存在极大值,由公式F=k q1q2r2可以看出,在两带电体的间距及电量之和一定的条件下,当q1=q2时,F最大.d.对于两个带电金属球,要考虑金属球表面电荷的重新分布.2.电场强度的三个公式的比较电场强度――――→点电荷电场E =k Q r 2―――→任何电场E =F q ―――→匀强电场E =U d ――→叠加平行四边形定则3.电场强度的计算与叠加在一般情况下可由上述三个公式计算电场强度,但在求解带电圆环、带电平面等一些特殊带电体产生的电场强度时,上述公式无法直接应用。

第8章 第4讲 带电粒子在电场中的偏转 2023年高考物理一轮复习(新高考新教材)

第8章 第4讲 带电粒子在电场中的偏转    2023年高考物理一轮复习(新高考新教材)

第4讲 带电粒子在电场中的偏转目标要求 1.掌握带电粒子在电场中的偏转规律.2.会分析带电粒子在电场中偏转的功能关系.考点一 带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动 (1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿静电力方向做匀加速直线运动 ①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22md v 02③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 021.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12m v 02在偏转电场偏移量y =12at 2=12·qU 1md ·(l v 0)2偏转角θ,tan θ=v y v 0=qU 1lmd v 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Ud y ,指初、末位置间的电势差.考向1 带电粒子在匀强电场中的偏转例1 如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷(带电荷量与质量的比值)之比是( )A .1∶2B .2∶1C .1∶8D .8∶1 答案 D解析 粒子在水平方向上做匀速直线运动,a 、b 两粒子的水平位移大小之比为1∶2,根据x =v 0t ,知时间之比为1∶2.粒子在竖直方向上做匀加速直线运动,根据y =12at 2,y 之比为2∶1,则a 、b 的加速度之比为8∶1.根据牛顿第二定律知,加速度a =qEm ,加速度大小之比等于比荷之比,则两电荷的比荷之比为8∶1,故D 正确,A 、B 、C 错误.例2 如图所示,一电荷量为q 的带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直.粒子从Q 点射出电场时,其速度方向与电场线成30°角.已知匀强电场的宽度为d ,方向竖直向上,P 、Q 两点间的电势差为U (U >0),不计粒子重力,P 点的电势为零.则下列说法正确的是( )A .粒子带负电B .带电粒子在Q 点的电势能为qUC .P 、Q 两点间的竖直距离为d2D .此匀强电场的电场强度为23U3d答案 D解析 由题图可知,带电粒子的轨迹向上弯曲,则粒子受到的静电力方向竖直向上,与电场方向相同,所以该粒子带正电,故A 错误;粒子从P 点运动到Q 点,静电力做正功,为W =qU ,则粒子的电势能减少了qU ,P 点的电势为零,可知带电粒子在Q 点的电势能为-qU ,故B 错误;Q 点速度的反向延长线过水平位移的中点,则y =d 2tan 30°=32d ,电场强度大小为E =U y =23U 3d ,故D 正确,C 错误.考向2 带电粒子在组合场中的运动例3 如图所示,虚线左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L ,电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏.现将一电子(电荷量e ,质量为m )无初速度放入电场E 1中的A 点,最后打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角的正切值; (3)电子打到屏上的点B 到O 点的距离. 答案 (1)3mLEe(2)2 (3)3L 解析 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1, 由牛顿第二定律得:a 1=E 1e m =EemL 2=12a 1t 12 电子进入电场E 2时的速度为:v 1=a 1t 1从进入电场E 2到打到屏上,电子水平方向做匀速直线运动,时间为:t 2=2Lv 1电子从释放到打到屏上所用的时间为: t =t 1+t 2 解得:t =3mL Ee(2)设粒子射出电场E 2时平行电场方向的速度为v y ,由牛顿第二定律得:电子在电场E 2中的加速度为:a 2=E 2e m =2Eemv y =a 2t 3 t 3=Lv 1电子刚射出电场E 2时的速度方向与AO 连线夹角的正切值为tan θ=v yv 1解得: tan θ=2(3)带电粒子在电场中的运动轨迹如图所示:设电子打到屏上的点B 到O 点的距离为x ,由几何关系得:tan θ=x32L ,联立得:x =3L .考点二 带电粒子在重力场和电场复合场中的偏转例4 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t2.重力加速度为g ,求:(1)电场强度的大小; (2)B 运动到P 点时的动能. 答案 (1)3mgq(2)2m (v 02+g 2t 2)解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ① 12a (t 2)2=12gt 2② 解得E =3mg q③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④且有v 1t2=v 0t ⑤h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2).例5 (多选)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.重力加速度为g .由此可见( )A .带电小球所受静电力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等 答案 AD解析 带电小球从A 到C ,设在进入电场前后两个运动过程水平分位移分别为x 1和x 2,竖直分位移分别为y 1和y 2,经历的时间分别为t 1和t 2,在电场中的加速度为a ,从A 到B 过程小球做平抛运动,则有x 1=v 0t 1,从B 到C 过程,有x 2=v 0t 2,由题意有x 1=2x 2,则得t 1=2t 2,即小球从A到B是从B到C运动时间的2倍,y1=12gt12,将小球在电场中的运动看成沿相反方向的类平抛运动,则有y2=12at22,根据几何知识有y1∶y2=x1∶x2,解得a=2g,根据牛顿第二定律得F-mg=ma=2mg,解得F=3mg,C错误,A正确;由于在电场中轨迹向上弯曲,加速度方向必定向上,合力向上,说明静电力方向向上,所以小球带负电,B错误;根据速度变化量Δv=at,则得AB过程速度变化量大小为Δv1=gt1=2gt2,BC过程速度变化量大小为Δv2=at2=2gt2,所以小球从A到B与从B到C的速度变化量大小相等,D正确.考点三带电粒子在交变电场中的偏转1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形.当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性.2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段求解带电粒子运动的末速度、位移等.3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的临界条件.4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间极短,带电粒子穿过电场时可认为是在匀强电场中运动.例6图甲是一对长度为L的平行金属板,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直.在t=0时刻,一带电粒子沿板间的中线OO′垂直电场方向射入电场,2t0时刻粒子刚好沿下极板右边缘射出电场.不计粒子重力.则()A.粒子带负电B.粒子在平行板间一直做曲线运动C.粒子射入电场时的速度大小为L2t0D.若粒子射入电场时的速度减为一半,射出电场时的速度垂直于电场方向答案 C解析 粒子向下偏转,可知粒子带正电,选项A 错误;粒子在平行板间在0~t 0时间内做曲线运动;在t 0~2t 0时间内不受任何力,则做直线运动,选项B 错误;粒子在水平方向一直做匀速运动,可知射入电场时的速度大小为v 0=L2t 0,选项C 正确;若粒子射入电场时的速度减为一半,由于粒子在电场中受向下的静电力,有向下的加速度,射出电场时有沿电场方向的速度,则射出电场时的速度不可能垂直于电场方向,选项D 错误.例7 在图甲所示的极板A 、B 间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T ,现有一电子以平行于极板的速度v 0从两板中央OO ′射入.已知电子的质量为m ,电荷量为e ,不计电子的重力,问:(1)若电子从t =0时刻射入,在半个周期内恰好能从A 板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t =0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能从OO ′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大? 答案 见解析解析 (1)由动能定理得e U 02=12m v 2-12m v 02解得v =v 02+eU 0m. (2)t =0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A 极板方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运动,再经过半个周期,电子在电场方向上的速度减小到零,此时的速度等于初速度v 0,方向平行于极板,以后继续重复这样的运动;要使电子恰能平行于极板飞出,则电子在OO ′方向上至少运动一个周期,故极板长至少为L =v 0T .(3)若要使电子从OO ′平行于极板飞出,则电子在电场方向上应先加速、再减速,反向加速、再减速,每阶段时间相同,一个周期后恰好回到OO ′上,可见应在t =T 4+k ·T2(k =0,1,2,…)时射入,极板间距离要满足电子在加速、减速阶段不打到极板上,设两板间距为d ,由牛顿第二定律有a =eU 0md ,加速阶段运动的距离s =12·eU 0md ⎝⎛⎭⎫T 42≤d 4, 解得d ≥TeU 08m,故两极板间距至少为T eU 08m. 课时精练1.(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球( )A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小 答案 BC解析 对小球受力分析,小球受重力、静电力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A 错误,B 正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,选项C 正确,D 错误.2.(多选)如图,竖直放置的平行金属板带等量异种电荷,一不计重力的带电粒子从两板中间以某一初速度平行于两板射入,打在负极板的中点,以下判断正确的是( )A .该带电粒子带正电B .该带电粒子带负电C .若粒子初速度增大到原来的2倍,则恰能从负极板边缘射出D .若粒子初动能增大到原来的2倍,则恰能从负极板边缘射出 答案 AC解析 粒子向右偏转,故粒子受向右的静电力,所以粒子带正电,选项A 正确,B 错误;若粒子初速度增大到原来的2倍,由于水平方向的加速度不变,可知粒子运动时间不变,由x =v t 可知竖直位移变为2倍,则恰能从负极板边缘射出,选项C 正确,D 错误.3.如图所示,平行板电容器上极板带正电,从上极板的端点A 点释放一个带电荷量为+Q (Q >0)的粒子,粒子重力不计,以水平初速度v 0向右射出,当它的水平速度与竖直速度的大小之比为1∶2时,恰好从下端点B 射出,则d 与L 之比为( )A .1∶2B .2∶1C .1∶1D .1∶3 答案 C解析 设粒子从A 到B 的时间为t ,粒子在B 点时,竖直方向的分速度为v y ,由类平抛运动的规律可得L =v 0t ,d =v y2t ,又v 0∶v y =1∶2,可得d ∶L =1∶1,选项C 正确.4.(多选)(2021·全国乙卷·20)四个带电粒子的电荷量和质量分别为(+q ,m )、(+q ,2m )、(+3q ,3m )、(-q ,m ),它们先后以相同的速度从坐标原点沿x 轴正方向射入一匀强电场中,电场方向与y 轴平行.不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是( )答案 AD解析 带电粒子在匀强电场中做类平抛运动,加速度为a =qEm,由类平抛运动规律可知,带电粒子在电场中运动时间为t =lv 0,离开电场时,带电粒子的偏转角的正切值为tan θ=v y v x =at v 0=qElm v 02,因为四个带电的粒子的初速度相同,电场强度相同,水平位移相同,所以偏转角只与比荷有关,(+q ,m )粒子与(+3q ,3m )粒子的比荷相同,所以偏转角相同,轨迹相同,且与(-q ,m )粒子的比荷也相同,所以(+q ,m )、(+3q ,m )、(-q ,m )三个粒子偏转角相同,但(-q ,m )粒子与上述两个粒子的偏转角方向相反,(+q ,2m )粒子的比荷比(+q ,m )、(+3q ,3m )粒子的比荷小,所以(+q ,2m )粒子比(+q ,m )(+3q ,3m )粒子的偏转角小,但都带正电,偏转方向相同,故A 、D 正确,B 、C 错误.5.(多选)质子和α粒子(氦核)分别从静止开始经同一加速电压U 1加速后,垂直于电场方向进入同一偏转电场,偏转电场电压为U 2.两种粒子都能从偏转电场射出并打在荧光屏MN 上,粒子进入偏转电场时速度方向正对荧光屏中心O 点.下列关于两种粒子运动的说法正确的是( )A .两种粒子会打在屏MN 上的同一点B .两种粒子不会打在屏MN 上的同一点,质子离O 点较远C .两种粒子离开偏转电场时具有相同的动能D .两种粒子离开偏转电场时具有不同的动能,α粒子的动能较大 答案 AD解析 两种粒子在加速电场中做加速运动,由动能定理得qU 1=12m v 02-0,偏转电场中,设板长为L ,平行于极板方向:L =v 0t ,垂直于极板方向:a =qE m =qU 2md ,y =12at 2,离开偏转电场时速度的偏转角为α,有tan α=v y v 0=at v 0,联立以上各式得y =U 2L 24dU 1,tan α=U 2L2dU 1,偏移量y和速度偏转角α都与粒子的质量m 、电荷量q 无关,所以偏移量y 相同,速度方向相同,则两种粒子打在屏MN 上同一点,故A 正确,B 错误;对两个粒子先加速后偏转的全过程,根据动能定理得qU 1+qU 2′=E k -0,因α粒子的电荷量q 较大,故离开偏转电场时α粒子的动能较大,C 错误,D 正确.6.(多选)如图所示,在竖直向上的匀强电场中,有两个质量相等、带异种电荷的小球A 、B (均可视为质点)处在同一水平面上.现将两球以相同的水平速度v0向右抛出,最后落到水平地面上,运动轨迹如图所示,两球之间的静电力和空气阻力均不考虑,则()A.A球带正电,B球带负电B.A球比B球先落地C.在下落过程中,A球的电势能减少,B球的电势能增加D.两球从抛出到各自落地的过程中,A球的动能变化量比B球的小答案AD解析两球在水平方向都做匀速直线运动,由x=v0t知,v0相同,则A运动的时间比B的长,竖直方向上,由h=12at2可知,竖直位移相等,运动时间长的加速度小,则A所受的合力比B 的小,所以A所受的静电力向上,带正电,B所受的静电力向下,带负电,故A正确.A运动的时间比B的长,则B球比A球先落地,故B错误.A所受的静电力向上,静电力对A 球做负功,A球的电势能增加.B所受的静电力向下,静电力对B球做正功,B球的电势能减少,故C错误.A所受的合力比B的小,A、B沿合力方向位移相同,则A所受的合力做功较少,由动能定理知两球从抛出到各自落地过程中A球的动能变化量小,故D正确.7.如图,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s,竖直边ad长为h.质量均为m、带电荷量分别为+q和-q的两粒子,由a、c两点先后沿ab 和cd方向以速率v0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v0等于()A.s22qEmh B.s2qEmh C.s42qEmh D.s4qEmh答案 B解析两粒子轨迹恰好相切,根据对称性,两粒子的轨迹相切点一定在矩形区域的中心,并且两粒子均做类平抛运动,根据运动的独立性和等时性可得,在水平方向上:s2=v 0t ,在竖直方向上:h 2=12at 2=12Eq m t 2,两式联立解得:v 0=s2qEmh,故B 正确,A 、C 、D 错误. 8.(2020·浙江7月选考·6)如图所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30° 答案 C解析 粒子在电场中只受静电力,F =qE ,方向向下,如图所示.粒子的运动为类平抛运动. 水平方向做匀速直线运动,有x =v 0t竖直方向做初速度为0的匀加速直线运动,有y =12at 2=12·qE m t 2yx=tan 45° 联立解得t =2m v 0qE ,故A 错误.v y =at =qE m ·2m v 0qE =2v 0,则速度大小v =v 02+v y 2=5v 0,tan θ=v 0v y =12,则速度方向与竖直方向夹角θ≠30°,故B 、D 错误;x =v 0t =2m v 02qE ,与P 点的距离s =xcos 45°=22m v 02qE,故C 正确.9.如图所示,一种β射线管由平行金属板A 、B 和平行于金属板的细管C 组成.放射源O 在A 极板左端,可以向各个方向发射不同速度、质量为m 的β粒子(电子).若极板长为L ,间距为d ,当A 、B 板加上电压U 时,只有某一速度的β粒子能从细管C 水平射出,细管C 离两板等距.已知元电荷为e ,则从放射源O 发射出的β粒子的这一速度为( )A.2eUmB.L d eU mC.1deU (d 2+L 2)mD.L deU 2m答案 C解析 从细管C 水平射出的β粒子反方向的运动为类平抛运动,水平方向有L =v 0t ,竖直方向有d 2=12at 2,且a =qU md .从A 到C 的过程有-12qU =12m v 02-12m v 2,q =e ,以上各式联立解得v=1deU (d 2+L 2)m,选项C 正确. 10.(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列说法中正确的是(已知重力加速度为g )( )A .两极板间电压为mgd2qB .板间电场强度大小为2mgqC .整个过程中质点的重力势能增加mg 2L 2v 02D .若仅增大两极板间距,则该质点不可能垂直打在M 上 答案 BC解析 据题分析可知,质点在平行金属板间轨迹应向上偏转,做类平抛运动,飞出电场后,轨迹向下偏转,才能最后垂直打在M 屏上,前后过程质点的运动轨迹有对称性,如图所示:则两次偏转的加速度大小相等,根据牛顿第二定律得qE -mg =ma ,mg =ma ,解得E =2mg q ,由U =Ed 得两极板间电压为U =2mgdq ,故A 错误,B 正确;质点在电场中向上偏转的距离y=12at 2,t =L v 0,解得y =gL 22v 02,故质点打在屏上的位置与P 点的距离为s =2y =gL 2v 02,整个过程中质点的重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQεr S可知,板间场强不变,质点在电场中受力情况不变,则运动情况不变,仍垂直打在M 上,故D 错误.11.如图所示,圆心为O 、半径为R 的圆形区域内有一个匀强电场,场强大小为E 、方向与圆所在的面平行.PQ 为圆的一条直径,与场强方向的夹角θ=60°.质量为m 、电荷量为+q 的粒子从P 点以某一初速度沿垂直于场强的方向射入电场,不计粒子重力.(1)若粒子到达Q 点,求粒子在P 点的初速度大小v 0.(2)若粒子在P 点的初速度大小在0~v 0之间连续可调,则粒子到达圆弧上哪个点电势能变化最大?变化了多少? 答案 (1)3qER 2m (2)圆弧上最低点 -3qER2解析 (1)粒子做类平抛运动,设粒子从P 点运动到Q 点的时间为t ,加速度为a , 则水平方向有:2R sin θ=v 0t 竖直方向有:2R cos θ=12at 2由牛顿第二定律得qE =ma 联立解得v 0=3qER2m(2)粒子到达圆弧上最低点电势能变化最大 ΔE p =-qEd d =R +R cos θ解得ΔE p =-3qER2,负号表示电势能减少.12.如图所示,板长L =30 cm 的两金属板A 、B 平行正对,板间距离d =2 cm ,A 、B 间接u =91sin (100πt ) V 交流电源.持续均匀的电子束以速度v 0=3×107 m/s 沿着A 板射入电场,若电子与金属板接触会被吸收,但对板间电压的影响可忽略.已知电子质量m =0.91×10-30kg ,电子电荷量q =1.6×10-19C ,不计重力.求:(1)交流电源的周期和电子穿过板间的时间; (2)电子从B 板边缘飞出电场时的板间电压; (3)求飞出电场的电子占飞入电场的电子的百分比. 答案 (1)0.02 s 10-8 s (2)45.5 V (3)16.7%解析 (1)交流电源电压的变化周期T =2πω=2π100π=0.02 s电子沿极板方向的分速度不变,穿过板间的时间t =L v 0=0.303×107s =10-8 s(2)穿过板间的时间远远小于交流电源电压的变化周期,可以认为电子穿过板间时两板之间为匀强电场,电子从B 板边缘飞出电场, 有E =U dF =qE a =F m d =12at 2 联立解得U =45.5 V(3)电子有半个周期向上偏转,被金属板A 吸收,另外半个周期内部分电子能飞出电场 由于45.591=12,arcsin 12=π6所以这半个周期内有13时间内有电子飞出电场,在一个完整的周期内,有16的电子飞出电场,占比16.7%.13.如图甲所示,两水平平行金属板A 、B 间距为d ,在两板右侧装有荧光屏MN (绝缘),O 为其中点.在两板A 、B 上加上如图乙所示的电压,电压最大值为U 0.现有一束带正电的离子(比荷为k ),从两板左侧中点以水平初速度v 0连续不断地射入两板间的电场中,所有离子均能打到荧光屏MN 上,已知金属板长L =2v 0t 0,忽略离子间相互作用和荧光屏MN 的影响,则在荧光屏上出现亮线的长度为( )A .kdU 0t 02B.kU 0t 022dC.kU 0t 02dD.3kU 0t 022d答案 C解析 离子在两板间运动,沿水平方向做匀速运动,运动时间t =Lv 0=2t 0,所有离子运动时间都等于电场变化的周期,作出各个时刻射入电场的离子在板间沿静电力方向上运动的v y -t 图像,如图所示,由图像可知,离子离开两板间时沿电场方向的速度v y 均相同,v y -t 图像中图线与t 轴围成的面积表示沿电场方向的位移,由图像可知0时刻进入电场的离子沿电场方向的位移最大,t 0时刻进入电场的离子沿电场方向的位移最小.电压为U 0时,离子在电场中运动的加速度a =qU 0md =kU 0d ,离子离开两板间时沿电场方向的速度为v y =at 0=kU 0t 0d ,由图像面积可得,离子沿电场方向运动的最大位移y max =12(t 0+2t 0)at 0=3kU 0t 022d ,离子沿电场方向运动的最小位移为y min =12t 0·at 0=kU 0t 022d ,屏上亮线的长度为Δy =y max -y min =kU 0t 02d,C 正确.。

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。

等效法处理带电物体在电场中的多种运动(解析版)-2024年高考物理答题技巧

等效法处理带电物体在电场中的多种运动(解析版)-2024年高考物理答题技巧

等效法处理带电物体在电场中的多种运动一.应用技巧1.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法--概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积2.模型分类1“等效重力场”中的直线运动例:如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30°,大小:g =gcos30°带电小球沿绳做初速度为零,加速度为g 的匀加速运动S AB=2L cos30°①S AB=12g t2②由①②两式解得t=3L g2“等效重力场”中的抛体类运动例:如图所示,在电场强度为E的水平匀强电场中,以初速度为v0竖直向上发射一个质量为m、带电量为+q的带电小球,求小球在运动过程中具有的最小速度.建立等效重力场如图所示,等效重力加速度g设g 与竖直方向的夹角为θ,则g =g cosθ其中arcsinθ=qE (qE)2+(mg)2则小球在“等效重力场”中做斜抛运动v x=v0sinθv y=v0cosθ当小球在y轴方向的速度减小到零,即v y=0时,两者的合速度即为运动过程中的最小速度v min=v x=v0sinθ=v0qE (mg)2+(qE)23“等效重力场”中的单摆类模型例:如图所示,在沿水平方向的匀强电场中有一固定点O,用一根长度L=0.4m的绝缘细绳把质量为m= 0.10kg、带有正电荷的金属小球悬挂在O点,小球静止在B点时细绳与竖直方向的夹角为θ=37º.现将小球拉至位置A使细线水平后由静止释放:建立“等效重力场”如图所示,“等效重力加速度”g ,方向:与竖直方向的夹角30°,大小:g =gcos37°=1.25g由A、C点分别做绳OB的垂线,交点分别为A'、C',由动能定理得带电小球从A点运动到C点等效重力做功mg (LOA −LOC)=mg L(cosθ−sinθ)=12mv2C代入数值得v C≈1.4m/s当带电小球摆到B点时,绳上的拉力最大,设该时小球的速度为v B,绳上的拉力为F,则mg (L−L sinθ)=12mv2B①F−mg =m v2BL②联立①②两式子得F=2.25N4“等效重力场”中的圆周运动类模型例:如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一质量为m的带正电,电量为q=3mg3E小球,要使小球能安全通过圆轨道,在O点的初速度应为多大?运动特点:小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受到重力、电场力,轨道作用力,且要求能安全通过圆轨道.对应联想:在重力场中,小球先在水平面上运动,重力不作功,后在圆轨道上运动的模型:过山车.等效分析:如图所示,对小球受电场力和重力,将电场力与重力合成视为等效重力mg ,大小mg =(qE)2+(mg)2=23mg3,tgθ=qEmg=33,得θ=30°,于是重效重力方向为垂直斜面向下,得到小球在斜面上运动,等效重力不做功,小球运动可类比为重力场中过山车模型.规律应用:分析重力中过山车运动,要过圆轨道存在一个最高点,在最高点满足重力当好提供向心力,只要过最高点点就能安全通过圆轨道.如果将斜面顺时针转过300,就成了如图3-3所示的过山车模型,最高点应为等效重力方向上直径对应的点B,则B点应满足“重力”当好提供向心力即:mg =mv2B R假设以最小初速度v0运动,小球在斜面上作匀速直线运动,进入圆轨道后只有重力作功,则根据动能定理:−mg 2R=12mv2B−12mv20解得:v0=103gR3二、实战应用(应用技巧解题,提供解析仅供参考)1如图所示,平行板电容器上极板MN与下极板PQ水平放置,一带电液滴从下极板P点射入,恰好沿直线从上极板N点射出。

【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

【答案】(1) E mg q
(2) xCN 7L
(3)
t总=(3
3 4
)
2L g
【解析】
(1)小物体无初速释放后在重力、电场力的作用下做匀加速直线运动,小物体刚好沿切线 无碰撞地进入圆管内,故小物体刚好沿 PA 连线运动,重力与电场力的合力沿 PA 方向;又
PA AC L ,故 tan 450 qE ,解得: E mg
6.如图所示,一根光滑绝缘细杆与水平面成 α=30°角倾斜固定.细杆的一部分处在场强 方向水平向右的匀强电场中,场强 E=2 3 ×104N/C.在细杆上套有一个带负电的小球, 带电量为 q=1×10﹣5C、质量为 m=3×10﹣2kg.现使小球从细杆的顶端 A 由静止开始沿杆 滑下,并从 B 点进入电场,小球在电场中滑至最远处的 C 点.已知 AB 间距离 x1=0.4m,g =10m/s2.求: (1)小球通过 B 点时的速度大小 VB; (2)小球进入电场后滑行的最大距离 x2; (3)试画出小球从 A 点运动到 C 点过程中的 v﹣t 图象.
解得:小球抛出时的初速度
v0
23 3
m
s
(2)在
B
点时, sin60
vy vB
,则 vB
43 3
m s
小球在
A
点时, FN
qE
mg
m
vA2 R
,解得: vA
3ms
小球从 B 到 A 过程,由动能定理得: (mg qE)(R Rcos ) Wf
1 2
mvA2
1 2
mvB2
解得:小球从 B 到 A 的过程中克服摩擦所做的功Wf
mg qE ma ,解得:小球的加速度
a mg qE 210 1103 104 m / s2 5m / s2

最新高考物理带电粒子在电场中的运动题20套(带答案)

最新高考物理带电粒子在电场中的运动题20套(带答案)

最新高考物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。

该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。

某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。

【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。

(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。

从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压.【答案】(1)负电,2043mv R kq ;23mdv 【解析】(1)粒子进入圆管后受到点电荷Q 的库仑力作匀速圆周运动,粒子带正电,则知O 处点电荷带负电.由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度为:003303v v v cos ==︒ …①在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q带负电且满足22Qq vk mR R=…②由①②得:243mv RQkq=(2)粒子射出电场时速度方向与水平方向成30°tan 30°=yvv…③v y=at…④qUamd=…⑤Ltv=…⑥由③④⑤⑥得:22003033mdv tan mdvUqL qL︒==3.如图所示,虚线MN左侧有一场强为E1=E的匀强电场,在两条平行的虚线MN和PQ之间存在着宽为L、电场强度为E2=2E的匀强电场,在虚线PQ右侧距PQ为L处有一与电场E2平行的屏.现将一电子(电荷量为e,质量为m,重力不计)无初速度地放入电场E1中的A点,最后电子打在右侧的屏上,A点到MN的距离为2L,AO连线与屏垂直,垂足为O,求:(1) 电子到达MN时的速度;(2) 电子离开偏转电场时偏转角的正切值tanθ;(3) 电子打到屏上的点P′到点O的距离.【答案】(1)eELvm=L.【解析】【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .4.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围;(3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO ′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 0﹣2y )•2y由数学知识可知,当(x 0﹣2y )=2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm5.水平面上有一个竖直放置的部分圆弧轨道,A 为轨道的最低点,半径OA 竖直,圆心角AOB 为60°,半径R=0.8m ,空间有竖直向下的匀强电场,场强E=1×104N/C 。

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:4v =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为4V =方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=L v =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t 2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=代入解得 12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得2 21221 L qE nEvn md n B=-⋅++v0=4.00.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3、4)第二种情况:L=n(2v0t+2Rsinα)+v0t+2Rsinα把2mdtqE=、R=mvqB、v1=vsinα、12qEdvm=代入解得2(1)21221L qE n Evn md n B+=-⋅++v0=3.20.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3).3.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P运动到Q点所经历的时间之比.【答案】22B qLEm=;2BEttπ=【解析】【分析】【详解】(1)粒子在磁场中做匀速圆周运动,以v0表示粒子在P点的初速度,R表示圆周的半径,则有2vqv B mR=由于粒子在Q点的速度垂直它在p点时的速度,可知粒子由P点到Q点的轨迹为14圆周,故有2R=以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=4.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bht E= (2)2222225m g m g x q B q B ≤≤ (3)22211528m g y x q B =-+【解析】(1)粒子恰能在xoy 平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv =洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y 轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg =+,()()225qE mg mg v +==则v 在y 方向上分量大小sin 2y qE E mgv v vBqv B qBθ==== 因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x 轴为h 处所用的时间2y h Bh qhB t v E mg===; (2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgE q=,则电场力''F qE mg ==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin 2mqE mg mE m gx R B q q BqE mg θ+====+ 当改变电场时粒子所在处于粒子第一次打在x 轴上的位置之间的距离为2R 时,第一次打在x 轴上的横坐标最大,()()()()()()22222222222222[]25sin mqE mg m qE mg Rm g x qEB q Eq BqE mg θ++====+ 所以从O 点射出的所有粒子第一次打在x 轴上的坐标范围为12x x x ≤≤,即2222225m g m gx q B q B≤≤ (3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x ,y )满足速率'v v =,则根据动能定理有()2211222qEx mgy mv m v --=--,3222231528m g qEx mgy mv q B --=-=-, 所以22211528m gy x q B=-+ 点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.5.图中是磁聚焦法测比荷的原理图。

高中物理知识点分类归纳-带电粒子在电场中的运动

高中物理知识点分类归纳-带电粒子在电场中的运动

带电粒子在电场中的运动(1)带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.(2)带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动:Vx =V0,L=V0 t.平行于场强方向做初速为零的匀加速直线运动:(3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.(4)带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容 -----(1)定义:电容器的带电荷量跟它的两板间的电势差的比值(2)定义式:[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。

(3)单位:法拉(F),1F=106 μF,1μF=10 6pF.(4)平行板电容器的电容:.在分析平行板电容器有关物理量变化情况时,往往需将结合在一起加以考虑,其中C=反映了电容器本身的属性,是定义式,适用于各种电容器;,表明了平行板电容器的电容决定于哪些因素,仅适用于平行板电容器;若电容器始终连接在电池上,两极板的电压不变.若电容器充电后,切断与电。

新高考备战2024年高考物理抢分秘籍11带电粒子在电场中的直线偏转交变电场中运动的综合问题教师届

新高考备战2024年高考物理抢分秘籍11带电粒子在电场中的直线偏转交变电场中运动的综合问题教师届

秘籍11带电粒子在电场中的直线、偏转、交变电场中运动的综合问题一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动。

(2)匀强电场中,粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。

2.用动力学观点分析a =qE m ,E =Ud,v 2-v 02=2ad (匀强电场)。

3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02。

非匀强电场中:W =qU =E k2-E k1。

二、带电粒子在电场中的偏转运动1.求解电偏转问题的两种思路以示波管模型为例,带电粒子经加速电场U 1加速,再经偏转电场U 2偏转后,需再经历一段匀速直线运动才会打到荧光屏上而显示亮点P ,如图所示。

(1)确定最终偏移距离OP 的两种方法方法1:方法2:(2)确定粒子经偏转电场后的动能(或速度)的两种方法2.带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22mdv 02③离开电场时的偏转角:tan θ=v y v 0=qUlmdv 023.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 02,在偏转电场偏移量y =12at 2=12·qU 1md ·(lv 0)2偏转角θ,tan θ=v y v 0=qU 1lmdv 02,得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d y 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.三、带电粒子在交变电场中的运动1.交变电场中的直线运动U-t 图像v-t 图像运动轨迹2.交变电场中的偏转(带电粒子重力不计)【题型一】带电粒子在电场中的直线运动【典例1】(2024·湖南长沙·一模)如图所示,阴极K 发射的电子(初速度可视为零)经电压为0U 的电场加速后,从A 板上的小孔进入由A 、B 两平行金属板组成的电容为C 的电容器中,开始时B 板不带电,电子到达B 板后被吸收。

2025高考物理总复习带电粒子在电场中运动的综合问题

2025高考物理总复习带电粒子在电场中运动的综合问题

0

又 t1= t2


联立解得
故在
4 5
9
t1= T= T
25
25
7
0~50 T
时间内发出的粒子均可打到 B 上,所以一个周期内发出的粒子打
7
到 B 上所占百分比约为 η=50 ×100%=14%。

归纳总结
带电粒子在交变电场中运动的研究类型和方法及注意问题
类型:通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形。
大小为2 =
23,sin 37°=0.6,cos 37°=0.8。求:
(1)物块第一次到达B点时的速度大小v1以及B、C两点间的距离x;
(2)小球过P点时的速度大小v以及S、C两点间的距离L;
(3)小球的质量。
2
答案 (1)gt1 10g1 -23R
(2)
5
2
9
R
5
(3)3m
解析 (1)物块从 A 点运动到 B 点的过程,根据牛顿第二定律有
解得

d=2
0


=
2 0 2
T
9
(3)若

φ=4φ0,d=5
2 0

,t0=2 ,设经过 t1 时间向上加速运动、再经过 t2 时间向

上减速运动的粒子恰好能打在 B 金属板上,粒子沿垂直金属板方向的运动有
1
2
0
·

2
·1 +
0
1
·
t1·
t2
2

·

·2 2 =d
行分析与研究。这类问题中常用到的基本规律有运动学公式、牛顿定律、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电物体在电场中的运动1、研究带电物体在电场中运动的两条主要途径带电物体在电场中的运动,是一个综合力和能量的力学问题,研究的方法与质点动力学相同(仅仅增加了电场力),它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动能定理、功能原理等力学规律.研究时,主要可以按以下两条途径分析: (1)力和运动的关系——牛顿第二定律根据带电物体受到的电场力和其它力,用牛顿第二定律求出加速度,结合运动学公式确定带电物体的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况. (2)功和能的关系——动能定理根据电场力对带电物体所做的功,引起带电物体的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电物体的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.2、研究带电物体在电场中运动的两类重要方法 (1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电物体的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g 值的变化等. (2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题切入点或简化计算.044.盐城市2008届六所名校联考试题10.如图所示,在绝缘水平面上固定两个等量同种电荷A 、B ,在AB 连线上的P 点由静止释放一带电滑块,则滑块会由静止开始一直向右运动到AB 连线上的另一点M 而停下。

则以下判断正确的是 ( C D ) A .滑块一定带的是与A 、B 异种的电荷B .滑块的电势能一定是先减小后增大C .滑块的动能与电势能之和一定减小D .AP 间距一定小于BM 间距050.江苏省盐城市07-08学年度第二次调研考试2.如图甲所示,水平面绝缘且光滑,弹簧左端固定,右端连一轻质绝缘挡板,空间存在着水平方向的匀强电场,一带电小球在电场力和挡板压力作用下静止。

若突然将电场反向,则小球加速度的大小随位移x 变化的关系图像可能是图乙中的 ( A )053.08年(一)2.如右图所示,三个质量相同,带电荷量分别为+q 、-q 和0的小液滴a 、b 、c ,从竖直放置的两板中间上方由静止释放,最后从两板间穿过,轨迹如图所示,则在穿过极板的过程中 ( A D ) A .电场力对液滴a 、b 做的功相同 B .三者动能的增量相同C .液滴a 电势能的增加量等于液滴b 电势能的减少量D .重力对三者做的功相同E A B C D003.南京师大物理之友电学综合(一)3.如图所示,在光滑绝缘水平面上的M 、N 两点各放有一个电荷量分别为+q 和+2q 的完全相同的金属球A 、B 。

在某时刻,使A 、B 以相等的初动能E 开始沿同一直线相向运动(这时它们的动量大小均为P ),若它们在碰撞过程中无机械能损失,碰后又各自返回。

它们返回M 、N 两点时的动能分别为E 1和E 2,动量大小分别为P 1和P 2,则下列结论正确的是:( A ) A .E 1=E 2>E ,P 1=P 2>P B .E 1=E 2=E ,P 1=P 2=PC .碰撞一定发生在M 、N 连线中点的左侧D .两球不可能同时返回到M 、N 两点解:两球碰前的库仑力为222r q k F =, 两球碰后的库仑力为F r q .k F >='22252它们返回M 、N 两点过程中电场力做功大于碰前电场力做的功,动能增大,动量也增大。

由于两球在同一时刻的加速度相同,碰撞一定发生在M 、N 连线的中点,碰后同时返回 到M 、N 两点,003.南京师大物理之友电学综合(一) 6.如图所示,在场强大小为E 的匀强电场中,一根不可伸长的绝缘细线一端拴一个质量为m 电荷量为q 的带负电小球,另一端固定在O 点。

把小球拉到使细线水平的位置A ,然后将小球由静止释放,小球沿弧线运动到细线与水平成θ=60°的位置B 时速度为零。

以下说法正确的是 ( B C ) A .小球重力与电场力的关系是Eq mg 3= B .小球重力与电场力的关系是mg Eq 3=C .球在B 点时,细线拉力为mg T 3=D .球在B 点时,细线拉力为T =2Eq解:从A 到B 由动能定理得mgl sin60°-qEl (1-cos60°)=0 mg Eq 3=∴由圆周运动规律得 06060=-- cos qE sin mg T mg T 3=∴004.南京师大物理之友电学综合(二) 11、如图所示,在O 点处放置一个正电荷。

在过O 点的竖直平面内的A 点,自由释放一个带正电的小球,小球的质量为m 、电荷量为q 。

小球落下的轨迹如图中虚线所示,它与以O 为圆心、R 为半径的圆(图中实线表示)相交于B 、C 两点,O 、C 在同一水平线上,∠BOC =30°,A 距离OC 的竖直高度为h 。

若小球通过B 点的速度为v ,则下列说法中正确的是 ( B D ) A .小球通过C 点的速度大小是gh 2 B .小球通过C 点的速度大小是gR v +2 C .小球由A 到C 电场力做功是221mv -mgh D . 小球由A 到C 机械能的损失是221)2(mv R h mg --解:B 、C 两点电势相等, B →C 电场力不做功。

由动能定理, B →C, 1/2 mv C 2 -1/2 mv 2 =mgRsin 30° ∴ v C 2 =v 2+gR小球由A 到C 机械能的损失即克服电场力做功是ΔE =mgh -1/2 m v C 2=mg (h -R /2) - 1/2 mv 2004.南京师大物理之友电学综合(二) 20、物理学家密立根早在1911年曾经以下述著名的油滴实验推断自然界存在基本电荷,并推出了基本电荷的电量,其实验过程如下:水平放置的两平行绝缘金属板间距为 d ,在上极板的中间开一小孔,使质量为 m 的微小带电油滴从这个小孔落到极板中,忽略空气浮力,当极板上没加电压时,由于空气阻力大小与速度大小成正比,(设比例系数为 k 且 k >0)经过一段时间后即可观察到油滴以恒定的速率 V 1 在空气中缓慢降落。

+q +2q B(1)极板上加电压 u 时可见到油滴以恒定的速率 V 2 缓慢上升。

试求油滴所带电量 q (用d 、u 、k 、V 1、V 2 等已知量表示)。

(2)在极板上不加电压时,油滴在极板内以恒定的速率 V 1 下降时,移动某一定值的竖直距离所需时间为 t 1 ,加了电压 u 后以恒定速率 V 2 上升同一竖直距离所需时间为 t 2,然后又把电压撤除,使所考察的油滴又降落,并在极板内照射 x 射线以改变它的带电量,再在极板上加上同样的电压 u ,重复上述操作测定油滴上升的时间,即可发现)t t (2111+始终是0.00535s -1的整数倍,由此可断定:一定存在基本电荷,若已知:d =2×10-2m , m =3.2×10-16kg , t 1=11.9s u =25V , g =9.8m /s 2,试计算基本电荷的带电量(取两位有效数字) 解:(1)由题意得: 1kV mg = ① 油滴在电场中缓慢上升时:2kV mg duq+= ② 由①②解得 u)V V (dk q 21+= ③(2)由题意知: 2211t V t V = ④0053501121.n t t ⨯=+ (n 为整数) ⑤ ①②③④⑤式可解得n .udmgt q 0053501⨯=⑥ 显然:粒子所带电量为).u dmgt (0053501⨯的整数倍。

∴ 基本电荷的带电量 C 1061005350191-⨯=⨯=..udmgt e031.上海市静安区07-08学年第一学期期末检测8.如图所示,在光滑水平桌面上有一半径为R 的圆,O 为圆心,AB 为直径,桌面所在空间有水平方向的匀强电场(场强为E )。

现将一电量为+q 的带电微粒,以相同的动能从A 点沿桌面射出,因射出方向不同,微粒将通过圆上的不同点,其中到达C 点时微粒的动能最大。

已知∠BAC =37°, 则电场方向与AC 的夹角θ= ;若微粒从A 点沿桌面且与电场垂直的方向射出,微粒恰能通过C 点,则射出时的初动能为 。

答: 37°,0.18EqR ;031.上海市静安区07-08学年第一学期期末检测12、如图所示,由相同绝缘材料组成的斜面AB 和水平面BC ,质量为m 的小滑块由A 静止开始释放,它运动到C 点时的速度为v 1 (v 1≠0),最大水平位移为S 1;现给小滑块带上正电荷,并在空间施加竖直向下的匀强电场,仍让小滑块由A 静止开始释放,它运动到C 点时的速度为v 2,最大水平位移为S 2,忽略在B 点因碰撞而损失的能量,水平面足够长,以下判断正确的是 ( A D ) A 、v 1<v 2, B 、v 1≥v 2,C 、S 1≠S 2,D 、S 1=S 2。

065.2008年南京一中高三第三次模拟8.如图所示,在足够大的光滑水平绝缘桌面上,有两个带电小球A 、B ,现分别给两球一定的初速度,使其在桌面上运动,两者距离始终保持不变,则( C D )A BC .O37 B ACA .A 、B 一定带同种电荷,速度大小均不变 B .A 、B 一定带同种电荷,加速度大小均不变C .A 、B 一定带异种电荷,速度始终与两球连线方向垂直D .A 、B 一定带异种电荷,两球的速度大小与其质量成反比044.盐城市2008届六所名校联考试题14.如图甲所示,电荷量为q =1×10-4C 的带正电的小物块置于绝缘水平面上,所在空间存在方向沿水平向右的电场,电场强度E 的大小与时间的关系如图乙所示,物块运动速度与时间t 的关系如图丙所示,取重力加速度g =10m/s 2。

求(1)前2秒内电场力做的功。

(2)物块的质量。

(3)物块与水平面间的动摩擦因数。

解:(1)F=E 1q=3N (1分) 2212==at s m (1分) W =FS (1分) W = 6(J )(2分) (2)a =1m/s 2 (1分) E 2q =μmg (1分) E 1q - E 2q =ma (1分) m =1kg (2分) (3)μ= 0.2 (2分)015.扬州市期中模拟试卷16. 如图所示,一根长L =1.5m 的光滑绝缘细直杆MN ,竖直固定在场强为E =1.0×105N/C 、与水平方向成θ=30°角的倾斜向上的匀强电场中。

相关文档
最新文档