九年级数学(上)单元评估试卷

合集下载

人教版九年级上册数学各单元测试卷及答案(全套)

人教版九年级上册数学各单元测试卷及答案(全套)

第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( ) A.12x x ==B .10x =,2x =-C.1x =2x =-D.1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

度第一学期人教版九年级数学上册_第24章_圆_单元评估测试卷

度第一学期人教版九年级数学上册_第24章_圆_单元评估测试卷

度第一学期人教版九年级数学上册_第24章_圆_单元评估测试卷第24章 圆 单元评价测试卷考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 10 小题 ,每题 3 分 ,共 30 分 〕1.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20∘,那么∠DBC 为〔 〕 A.30∘ B.35∘ C.40∘ D.45∘2.⊙O 的半径为3,圆心O 到直线L 的距离为2,那么直线L 与⊙O 的位置关系是〔 〕 A.相交 B.相切 C.相离 D.不能确定3.如图,AB 为⊙O 的一条固定直径,自左半圆上一点C ,作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点E ,当点C 在左半圆〔不包括A ,B 两点〕上移动时,关于点E 的说法: ①到CD 的距离一直不变;②位置一直不变;③一直平分DB^;④位置随点C 的移动而移动,正确的选项是〔 〕A.①②B.②③C.②D.④ 4.如图,A 、B 、C 是⊙O 上的三点,∠B =75∘,那么∠AOC 的度数是〔 〕 A.150∘ B.140∘ C.130∘ D.120∘ 5.假定六边形的边心距为2√3,那么这个正六边形的半径为〔 〕A.1B.2C.4D.2√36.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,假定它的外形是以O 为圆心的圆的一局部,路面AB =12米,净高CD =9米,那么此圆的半径OA =( ) A.122米 B.132米 C.142米 D.152米7.如下图,△ABC 中,AB <AC <BC .求作:一圆的圆心O ,使得O 在BC 上,且圆O 与AB 、AC 皆相切.以下四种作法中,哪一种是正确的〔 〕 A.作BC 的中点O B.作∠A 的平分线交BC 于O 点C.作AC 的中垂线,交BC 于O 点D.自A 点作不时线垂直BC ,交BC 于O 点8.如图,在扇形OAB 中,∠AOB =90∘,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延伸线上,假定正方形CDEF 的边长为2,那么图中阴影局部的面积为〔 〕 A.π−2 B.2π−2 C.4π−4 D.4π−89.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .假定∠B =60∘,AC =3,那么CD 的长为〔 〕 A.6 B.2√3 C.√3 D.3 10.如图,AB 是⊙O 的直径,AB =6,点M 在⊙O 上,∠MBA =20∘,N 是MA ^的中点,P 是直径AB 上的一动点,假定AN =1,那么△PMN 周长的最小值为〔 〕 A.3 B.4 C.5 D.6 二、填空题〔共 10 小题 ,每题 3 分 ,共 30 分 〕11.在Rt △ABC 中,∠C =90∘,AC =2cm ,BC =4cm ,假定以C 为圆心,以2cm 为半径作圆,那么点A 在⊙C________;点B 在⊙C________;假定以AB 为直径作⊙O ,那么点C 在⊙O________.12.如图,⊙O 的直径CD ⊥AB ,∠A =30∘,那么∠D =________.13.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为BD^的中点.假定∠A =40∘,那么∠B =________度.14.如图,AB 是⊙O 的直径,点C ,D 是圆的三等分点,AC ,BD 的延伸线交于点E ,假定CE =2,那么⊙O 中阴影局部的面积为________.15.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧区分交于点M ,N ,量得OM =8cm ,ON =6cm .那么该圆玻璃镜的直径是________cm . 16.半径等于6cm 的圆内有长为6cm 的弦,那么此弦所对的圆周角的度数为________. 17.如图,正三角形AMN 与正五边形ABCDE 内接于⊙O ,那么∠BOM 的度数是________.18.如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,假定∠DAB=65∘,那么∠OCD=________.19.如图,AB为⊙O的直径,AB=30,正方形DEFG的四个顶点区分在半径OA、OC 及⊙O上,且∠AOC=45∘,那么正方形DEFG的面积为________.20.如图:在Rt△ABC中,∠ACB=90∘,AC=12,BC=5,在AB的同侧,区分以AB、BC、AC为直径作三个半圆,那么图中阴影局部的面积为________.三、解答题〔共 6 小题,每题 10 分,共 60 分〕21.如图,AB和CD是⊙O的两条弦,且AB⊥CD,衔接OC,作∠OCD的平分线交⊙O于P,衔接PA、PB,求证:PA=PB.22.如图,AB=AC,D为AB^的中点,G为AC^的中点,求证:DE=GF.23.如图,在△ABC中,∠ABC=90∘,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,假定AE=2cm,AD=4cm.(1)求:⊙O的直径BE的长;(2)计算:△ABC的面积.24.如图,⊙O中,AB为直径,CD为⊙O的切线,交AB的延伸线于点D,∠D=30∘.(1)求∠A的度数;(2)假定点F在⊙O上,CF⊥AB,垂足为E,CF=4√3,求图中阴影局部的面积.〔结果保管π〕25.,如图,在⊙O中,AB是直径,AD // OC.(1)求证:BC=CD;(2)过O作OE⊥AD,假定AE=3,∠OAC=30∘,求⊙O的半径.26.如图,AB是⊙O的直径,把AB分红几条相等的线段,以每条线段为直径区分画小圆,设AB=a,那么⊙O的周长l=πa.计算:(1)把AB分红两条相等的线段,每个小圆的周长l2=12πa=12l;(2)把AB分红三条相等的线段,每个小圆的周长l3=________;(3)把AB分红四条相等的线段,每个小圆的周长l4=________;(4)把AB分红n条相等的线段,每个小圆的周长l n=________.结论:把大圆的直径分红n条相等的线段,以每条线段为直径区分画小圆,那么每个小圆周长是大圆周长的________.请仿照下面的探求方法和步骤,计算推导出每个小圆面积与大圆面积的关系.答案1.B2.A3.C4.A5.C6.B7.B8.A9.D10.B11.上外上12.30∘13.7014.43π−√315.1016.30∘或150∘17.48∘18.40∘19.4520.3021.证明:∵OC=OP,∴∠1=∠2.∵CP平分∠OCD,∴∠2=∠3,∴∠3=∠1,∴CD // OP,∵CD⊥AB,∴OP⊥AB.∴AP^=BP^,∴PA=PB.22.证明:衔接OA,∵D为AB^的中点,G为AC^的中点,∴OD⊥AB,OG⊥AC,∴AE=12AB,AF=12AC.∵AB=AC,∴AE=AF.在Rt△AOE与Rt△AOF中,∵{AE=AFOA=OA,∴Rt△AOE≅Rt△AOF(HL),∴DE=GF.23.解:(1)∵AD是切线,AEB是圆的割线,∴AD2=AE⋅AB=AE(AE+BE),解得BE=6cm;(2)∵∠B=90∘,∴CB也是圆的切线,∵CD也是圆的切线,那么有CD=BC,在Rt△ABC中,由勾股定理知,AB2+BC2=AC2即82+BC2=(4+BC)2,解得BC=6cm,∴S△ABC=12AB⋅BC=24cm2.24.解:(1)衔接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90∘,∴∠DOC=90∘−∠D=90∘−30∘=60∘,∵OA=OC,∴∠A=∠OCA,而∠DOC=∠A+∠OCA,∴∠A=12∠DOC=30∘;(2)∵CF⊥AB,∴CE=EF=12CF=2√3,在Rt△OCE中,∵tan∠OCE=CEOE=tan60∘,∴OE=√33CE=2,∴OC+2OE=4,∴图中阴影局部的面积=S扇形BOC−S△OCE=60⋅π⋅42360−12×2×2√3=83π−2√3.25.(1)证明:衔接BC,CD,∵AD // OC,∴∠OCA=∠CAD,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴BC^=CD^,∴BC=CD;(2)解:∵OE⊥AD,∴∠AEO=90∘,∵∠OAC=30∘,∴∠OAE=60∘,∴∠AOE=30∘,∵AE=3,∴OA=2AE=6.∴⊙O的半径是6.26.解:13l14l1nl1n。

九年级数学上册单元评价检测(3)

九年级数学上册单元评价检测(3)

数学九年级上册单元评价检测(三)第二十三章(45分钟 100分)一、选择题(每小题4分,共28分)1.(2020·河北中考)下列图形中,既是轴对称图形又是中心对称图形的是( )【解析】选C.选项B、选项C和选项D是轴对称图形;选项A、选项C是中心对称图形,所以既是轴对称图形又是中心对称图形的是选项C.2.已知m<0,则点P(m2,-m+3)关于原点的对称点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选C.∵m<0,∴m2>0,-m+3>0,即点P在第一象限,所以点Q在第三象限.【变式训练】若点P(m,-m+3)关于原点的对称点Q在第三象限,那么m的取值范围是( )A.0<m<3B.m<0C.m>0D.m≥0【解析】选A.∵点Q在第三象限,∴点P在第一象限,即解得0<m<3.3.△ABC绕点A按顺时针方向旋转了60°,得到△AEF,则下列结论一定正确的是( )A.∠BAE=60°B.EF=BCC.AC=AFD.∠EAF=60°【解析】选B.如果点B和点E是对应点,则选项A、选项B和选项C是正确的;如果点B和点F是对应点,则选项B是正确的,所以,无论是哪一种情况,选项B一定正确.【特别提醒】利用分类讨论思想,分析点B的对应点,点B可能和点E对应,还有可能和点F对应,做题时,常常忽略了其中的一种情况.4.已知点A(x,y-4)与点B(1-y,2x)关于原点对称,则y x的值是( )A.2B.1C.4D.8【解析】选A.根据题意,列方程组,得解得则y x=21=2.5.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC 于点E,F,下面的结论:(1)点E和点F,点B和点D是关于中心O的对称点.(2)直线BD必经过点O.(3)四边形DEOC与四边形BFOA的面积必相等.(4)△AOE与△COF成中心对称,其中正确的个数为( )A.1B.2C.3D.4【解析】选D.△ABC与△CDA关于点O对称,则AB=CD,AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F,点B和点D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(4)△AOE与△COF成中心对称,正确.所以正确的个数为4.6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点AB.点BC.点CD.点D【解析】选B.根据对应点到旋转中心的距离相等,可知旋转中心在对应点连线的垂直平分线上,作图可以得到对应点连线的交点为点B.7.(2020·日照模拟)在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕点A 旋转180°,点C落在C′处,则C,C′两点之间的距离是( )A.2B.4C.2D.无法计算【解题指南】本题涉及的两个知识点1.两个图形关于某一点成中心对称,对应点的连线经过对称中心,且被对称中心平分.2.在直角三角形中,30°所对的直角边等于斜边的一半.【解析】选B.在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2AB=2;又∵点C 和点C′关于点A对称,即点C,A,C′在同一直线上,且CC′=2AC=4.二、填空题(每小题5分,共25分)8.一个正方形绕它的中心旋转后如果能和原来的图形重合,那么它至少要旋转 .【解析】正方形绕它的中心旋转90n°(n为正整数)后都能够与原来的图形重合,所以它至少要旋转90°.答案:90°9.如图所示,将△ABC绕点A按逆时针旋转30°后,得到△ADC′,则∠ABD的度数是 .。

九年级数学上册 各单元综合测试题及答案5套

九年级数学上册 各单元综合测试题及答案5套

人教版九年级数学上册第二十一章综合测试卷02一、选择题(每小题5分,共40分)1.将方程2324664x x x x +-+=+()化为一元二次方程的一般形式后,其二次项系数和一次项系数分别为()A .3-,6-B .3,6C .3,6-D .3,2-2.方程2353x x x -=-()()的根是()A .52x =B .3x =C .13x =,22x =D .12x =-,23x =-3.(2014·广东)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为()A .94m >B .94m <C .94m =D .94m -<4.若一元二次方程()200ax bx c a ++=≠中的0a b c ++=,则该方程必有一根为()A .0B .1C .1-D .1±5.下列方程没有实数根的是()A .2423x x +=()B .2510x x --=()C .2100x x -=D .2924160x x -+=6.若1x ,2x 是一元二次方程210160x x ++=的两根,则12x x +的值是()A .10-B .10C .16-D .167.经计算整式1x +与4x -的积为234x x --,则一元二次方程2340x x --=的根为()A .11x =-,24x =-B .11x =-,24x =C .11x =,24x =D .11x =,24x =-8.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x ,可列方程为()A .22 0161 1 500x -=()B .21 5001 2 160x +=()C .21 50012160x -=()D .21 500 1 5001 1 50012 160x x ++++=()()二、填空题(每小题5分,共15分)9.已知关于x 的方程220x x k ++=的一个根是1-,则k =_________.10.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则m 的值为_________.11.若|1|0b -=,且关于x 的一元二次方程20kx ax b ++=有实数根,则k 的取值范围是_________.三、解答题(共45分)12.(15分)用适当的方法解下列方程.(1)2270x x --=;(2)22570x x --=;(3)(1)(3)12x x -+=.13.(10分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?14.(10分)已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.15.(10分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件.批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x 元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价/元8040销售量/件200(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?第二十一章综合测试答案解析1.【答案】D 【解析】化成一般形式为23220x x --=.2.【答案】C 【解析】用因式分解法求解即可。

湘教版九年级数学上《第一章反比例函数》单元评估检测试卷(有答案)

湘教版九年级数学上《第一章反比例函数》单元评估检测试卷(有答案)

湘教版九年级数学上册第一章反比例函数单元评估检测试卷一、单选题(共10题;共30分)1.下列函数中,变量y是x的反比例函数的是()A. y=1x2B. y=-1xC. y=2x+3D. y=1x-12.反比例函数y=kx的图象经过点A(−1, 2),则当x>1时,函数值y的取值范围是()A. B. C. D.3.反比例函数y=-15x的图像在( )A. 第一、二象限B. 第二、三象限C. 第一、三象限D. 第二、四象限4.若反比例函数y= kx图象经过点(5,﹣1),该函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限5.下列四个点,在反比例函数y=6x图象上的是()A. (2,-3)B. (2,3)C. (-1,6)D. (-12,3)6.若A(a,b),B(a-2,c)两点均在函数y=1x的图象上,且a<0,则b与c的大小关系为()A. b>cB. b<cC. b=cD. 无法判断7.对于反比例函数y=3x,下列说法正确的是A. 图象经过点(1,﹣3)B. 图象在第二、四象限C. x>0时,y随x的增大而增大D. x<0时,y随x增大而减小8.在同一平面直角坐标系中,函数y=x+k与y= kx(k为常数,k≠0)的图象大致是()A. B. C. D.9.已知点A(x1,3)、B(x2,6)都在反比例函数y=−3x的图象上,则下列关系式一定正确的是()A. x1<x2<0B. x1<0<x2C. x2<x1<0D. x2<0<x110.如图,函数y1=k1x与y2=k2x的图象相交于点A(1,2)和点B,当y1>y2时的自变量x的取值范围是()A. x>1B. ﹣1<x<0C. ﹣1<x<0或x>1D. x<﹣1或0<x<1二、填空题(共10题;共30分)11.若反比例函数y=k的图象经过点(﹣1,2),则k的值是________.x12.如图,反比例函数y= 2的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面x积等于________个面积单位.13.如图,它是反比例函数y= m−5图象的一支,根据图象可知常数m的取值范围是x________.(k>0)上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴14.如图,A、B是双曲线y=kx于点C,若S△AOC= 2√6.则k的值是________.15.已知晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是________ .(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长16.如图,点A、B在反比例函数y= kx线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.17.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F的图象上,OA=1,OC=6,则正方形ADEF的边长为________.在AB上,点B、E在反比例函数y= kx18.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数y= 3x (x >0),y=﹣6x (x >0)的图象交于A 点和B 点,若C 为y 轴任意一点.连接AB 、BC ,则△ABC 的面积为________.19.如图,点A 是双曲线y= 1x (x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线交双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,对四边形ABCD 的面积的变化情况,小明列举了四种可能:①逐渐变小;②由大变小再由小变大;③由小变大再由大变小;④不变.你认为正确的是________.(填序号)20.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC=60°,顶点C 的坐标为(m, 3√3 ),反比例函数y =kx 的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是________三、解答题(共9题;共60分)21.已知y =y 1−y 2,y 1与x 成反比例,y 2与(x −2)成正比例,并且当x=-1时,y=-15,当x=2时,y= 32;求y 与x 之间的函数关系式.22.如图所示,Rt △AOB 中,∠AOB=90°,OA=10,点B 在反比例函数y=12x 图象上,且点B 的横坐标为3. (1)求OB 的长;(2)求过点A的双曲线的解析式.23.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=12x的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.24.反比例函数y=kx 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=kx的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=kx的图象上,求t的值.25.已知A(﹣4,2),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向上平移n个单位长度,交y轴于点C,若S△ABC=12,求n的值.26.如图,已知反比例函数y = mx的图象经过点A(1,-3),一次函数y =kx +b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.试确定点B的坐标.27.如图,Rt△ABO的顶点A是双曲线y=kx 与直线y=−x−(k+1)在第二象限的交点,AB⊥x轴于B且S△ABO= 32。

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

北师大版九年级数学上册(1-3)单元试卷(含答案)第一章检测试卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12 B.9 C.6 D.3(第1题)(第4题)(第6题)2.下列命题为真命题的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形3.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A .15B .14C .13D .3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB =BC 时,它是菱形;②当AC⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .8 2B .4 2C .8D .67.如图,每个小正方形的边长为1,A ,B ,C 是正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接OB.若∠DAC=28°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°(第7题)(第8题)(第9题)(第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF 10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题)(第12题)(第13题)13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题)(第16题)(第17题)(第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD 交BD于点E,则DE=________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC 于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF 是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.6.C7.C 8.C9.D点拨:如图,由折叠得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE =AF =5, ∴BE=AE 2-AB 2=52-42=3.过点F 作FM⊥BC 于点M ,则EM =5-3=2.在Rt △EFM 中,根据勾股定理得EF =EM 2+FM 2=22+42=20=25,则选项C 正确.∵AF=5,EF =25,∴AF≠EF.故选项D 错误.(第9题)10.D 点拨:∵四边形ABCD 是正方形,∴∠PAE =∠MAE =45°. ∵PM ⊥AC ,∴∠PEA =∠MEA .又∵AE =AE ,∴根据“ASA”可得△APE ≌△AME .故①正确.由①得PE =ME ,∴PM =2PE .同理PN =2PF .又易知PF =BF ,四边形PEOF 是矩形,∴PN =2BF ,PM =2FO .∴PM +PN =2FO +2BF =2BO =BD .故②正确.在Rt△PFO 中,∵FO 2+PF 2=PO 2,而PE =FO ,∴PE 2+PF 2=PO 2.故③正确.二、11.90° 点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12. 13.120°(第14题)14.22.5° 点拨:如图,由四边形ABCD 是正方形,可知∠CAD =12∠BAD=45°. 由FE⊥AC,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE =AD ,AF =AF , ∴Rt △AEF≌Rt △ADF(HL ).∴∠FAD=∠FAE=12∠CAD=12×45°=22.5°.15.10 16.2-117.20 点拨:点N 是BC 的中点,点E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN∥MC ,NF∥ME,EN =12MC ,FN =12MB.又易知MB =MC ,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD =12得AM =6.在Rt △ABM 中,由勾股定理得BM =10.因为点E 是BM 的中点,所以EM =5.所以四边形ENFM 的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC , ∴∠AOE=∠COF=90°,OA =OC. ∵AD∥BC,∴∠OAE=∠OCF. ∴△AOE≌△COF(ASA ). ∴AE=CF.又∵AE∥CF,∴四边形AECF 是平行四边形. ∵EF⊥AC,∴四边形AECF 是菱形. 20.(1)证明:∵DE∥AC,CE∥BD, ∴四边形OCED 为平行四边形. ∵四边形ABCD 为矩形,∴OD=OC. ∴四边形OCED 为菱形. (2)解:∵四边形ABCD 为矩形, ∴BO=DO =12BD.∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3.∴S 菱形OCED =2S △OCD =6.21.(1)证明:在△BCE 与△DCF 中, ⎩⎪⎨⎪⎧BC =DC ,∠BCE=∠DCF,CE =CF , ∴△BCE≌△DCF. (2)解:∵△BCE≌△DCF, ∴∠EBC=∠FDC=30°. ∵∠BCD=90°,∴∠BEC=60°. ∵EC=FC ,∠ECF=90°, ∴∠CEF=45°.∴∠BEF=105°.22.(1)证明:∵在矩形ABCD 中,AD∥BC,∠A=∠C=90°, ∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠BDF,∠F=∠A=90°, ∴∠DBC=∠BDF ,∠C=∠F. ∴BE=DE.在△DCE 和△BFE 中, ⎩⎪⎨⎪⎧∠DEC=∠BEF,∠C=∠F,DE =BE , ∴△DCE≌△BFE. (2)解:在Rt △BCD 中, ∵CD=2,∠ADB=∠DBC=30°, ∴BD=4.∴BC=2 3.在Rt △ECD 中,易得∠EDC=30°. ∴DE=2EC. ∴(2EC)2-EC 2=CD 2. ∵CD=2, ∴CE=233.∴BE=BC -EC =433.(第23题)23.(1)证明:如图,连接AC. ∵四边形ABCD 为菱形,∠BAD=120°,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴AC=AB.∴△ABE≌△ACF.∴BE=CF.(2)解:四边形AECF的面积不变.由(1)知△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC. 如图,过A作AM⊥BC于点M,则BM=MC=2,∴AM=AB2-BM2=42-22=2 3.∴S△ABC=12BC·AM=12×4×23=4 3.故S四边形AECF=4 3.24.解:(1)OE=OF.理由如下:∵CE是∠ACB的平分线,∴∠ACE=∠BCE.又∵MN∥BC,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF是∠ACD的平分线,∴∠OCF=∠FCD.又∵MN∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOE =90°,∴AC⊥EF.∴四边形AECF是正方形.(3)不可能理由如下:连接BF,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE不可能为菱形.第二章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程一定是一元二次方程的是( )A .3x 2+2x-1=0 B .5x 2-6y -3=0 C .ax 2-x +2=0 D .3x 2-2x -1=02.一元二次方程5x 2-x =-3,其中二次项系数、一次项系数、常数项分别是( )A .5,-x ,3B .5,-1,-3C .5,-1,3D .5x 2,-1,33.由下表估算一元二次方程x 2+12x =15的一个根的范围,正确的是( )A .1.0<x<1.1B .1.1<x<1.2C .1.2<x<1.3D .14.41<x<15.844.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( )A .2B .1C .-2D .-15.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A .289(1-x)2=256B .256(1-x)2=289C .289(1-2x)=256D .256(1-2x)=2896.下列方程,适合用因式分解法解的是( )A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是( )A.-1或5 B.1 C.5 D.-18.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x -4)=0的根,则这个三角形的周长是( )A.11 B.11或13 C.13 D.以上选项都不正确9.若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过第( )象限.A.四B.三C.二D.一(第10题)10.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于( )A.0.5 cm B.1 cmC.1.5 cm D.2 cm二、填空题(每题3分,共24分)11.若将方程x2-8x=7化为(x-m)2=n,则m=________.12.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是______________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市准备加大对雾霾的治理力度,2015年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.17.对于实数a,b,定义运算“*”a* b=22(),(), a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<例如:4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1*x2=________.(第18题)18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC 边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.20.已知关于x的一元二次方程(m+1)x2-x+m2-3m-3=0有一个根是1,求m的值及另一个根.21.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.22.已知x1,x2是关于x的一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a 的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.23.楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)24.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10cm?(第24题)25.杭州湾跨海大桥通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.D 2.C 3.B 4.D5.A点拨:第一次降价后的价格为289×(1-x)元,第二次降价后的价格为289×(1-x)×(1-x)元,则列出的方程是289(1-x)2=256.6.C7.D8.C9.D10.B点拨:设AC交A′B′于H.∵∠A=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1.即AA′=1 cm.故选B.二、11.412.a<1且a≠013.2 点拨:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1 点拨:由方程x2-4x+3=0,得(x -1)(x -3)=0, ∴x-1=0或x -3=0. 解得x 1=1,x 2=3; 当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a, 解得a =1,经检验,a =1是方程13-1=23+a的解.16.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝ ⎛⎭⎪⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10.经检验.x 1=4,x 2=-10都是分式方程的根,但x =-10不符合题意,故x =4.17.3或-3 点拨:x 2-5x +6=0的两个根为x 1=2,x 2=3或x 1=3,x 2=2.当x 1=2,x 2=3时,x 1*x 2=2×3-32=-3; 当x 1=3,x 2=2时,x 1*x 2=32-2×3=3.18.6 点拨:∵在Rt △ABC 中,∠BAC=90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD=BD =CD =8 2 cm .又∵AP=2t cm ,∴S 1=12AP·BD=12×2t×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE=(82-2t)·2t cm 2.∵S 1=2S 2,∴8t=2(82-2t)·2t.解得t 1=0(舍去),t 2=6. 三、19.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5. 所以x =-b ±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52, x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.20.解:∵(m+1)x 2-x +m 2-3m -3=0有一个根是1, ∴(m+1)·12-1+m 2-3m -3=0.整理,得m 2-2m -3=0,∴(m-3)(m +1)=0.又∵方程(m +1)x 2-x +m 2-3m -3=0为一元二次方程, ∴m+1≠0,∴m-3=0.∴m=3. ∴原方程为4x 2-x -3=0, 解得x 1=1,x 2=-34.∴原方程的另一个根为-34.21.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5, 原方程可变形,得[(x -1)-2][(x -1)+2]=5, 整理,得(x -1)2-22=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2. 22.解:(1)存在.Δ=4a 2-4a(a -6)=24a , ∵一元二次方程有两个实数根, ∴Δ≥0,即a≥0.又∵a-6≠0,∴a≠6.∴a≥0且a≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a .解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24.(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +a a -6+1=-6a -6.∵-6a -6为负整数, ∴实数a 的整数值应取7,8,9,12. 23.解:(1)当x≤5时,y =30.当5<x≤30时,y =30-(x -5)×0.1=-0.1x +30.5. ∴y=⎩⎪⎨⎪⎧30(x≤5,且x 为正整数),-0.1x +30.5(5<x≤30,且x 为正整数).(2)当x≤5时,(32-30)×5=10<25,不合题意. 当5<x≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. ∴该月需售出10辆汽车.(第24题)24.解:(1)设P ,Q 两点从出发开始到x s 时,四边形PBCQ 的面积为33 cm 2,则AP =3x cm ,CQ =2x cm ,所以PB =(16-3x)cm .因为(PB +CQ)×BC×12=33,所以(16-3x +2x)×6×12=33.解得x=5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm .如图,过点Q 作QE⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ). 在Rt △PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245s 时,点P 和点Q 之间的距离是10 cm . 25.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km ,由题意得x +120103=x2,解得x =180.∴A 地经杭州湾跨海大桥到宁波港的路程为180 km . (2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y-1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.第三章达标检测卷 (120分,90分钟)一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A .110B .25C .15D .3102.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是( )A .盖面朝下的频数是55B .盖面朝下的频率是0.55C .盖面朝下的概率不一定是0.55D .同样的试验做200次,落地后盖面朝下的有110次3.两道单选题都含A ,B ,C ,D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A .12B .14C .18D .1164.事件A :打开电视,它正在播广告;事件B :抛掷一枚均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A .P(C)<P(A)=P(B)B .P(C)<P(A)<P(B)C .P(C)<P(B)<P(A)D .P(A)<P(B)<P(C)(第5题)5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( )A .12B .13C .14D .166.王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A .12B .14C .16D .187.同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两个小立方体朝上的数字分别为x ,y ,并以此确定点P(x ,y),那么点P 落在函数y =-2x +9的图象上的概率为( )A .118B .112C .19D .168.在一个不透明的盒子里装有只颜色不同的黑、白两种球共40个.小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小亮得到下表中的数据:则下列结论中正确的是( )A .n 越大,摸到白球的概率越接近0.6B .当n =2 000时,摸到白球的次数m =1 200C .当n 很大时,摸到白球的频率将会稳定在0.6附近D .这个盒子中约有28个白球9.让图中的两个转盘分别自由转动一次(两个转盘均被分成4等份),当转盘停止转动时,两个指针分别落在某两个数所表示的区域内,则这两个数的和是5的倍数或3的倍数的概率等于( )A .316B .38C .916D .131610.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A .14B .25C .23D .59(第9题)(第10题)(第14题)(第18题)二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n=________.13.从8,12,18,32中随机抽取一个根式,化简后与2的被开方数相同的二次根式的概率是________.14.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可以使小灯泡发光,任意闭合其中两个开关,使小灯泡发光的概率为________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他第一次就能走出迷宫的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队.如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色球的概率是35,则在暗盒中随机取出2个球都是白色球的概率是________.18.如图,一个质地均匀的正四面体的四个面上依次标有数-2,0,1,2,连续抛掷两次,朝下一面的数分别是a ,b ,将其作为点M 的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.如图,小明做了A ,B ,C ,D 四张同样规格的硬纸片,它们的背面完全相同,正面分别画有等腰三角形、圆、平行四边形、正方形.小明将它们背面朝上洗匀后,随机抽取两张.请你用列表或画树状图的方法,求小明抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的概率.(第19题)20.一个瓶中装有一些幸运星,小王为了估计这个瓶中幸运星的颗数,他是这样做的:先从瓶中取出20颗幸运星做上记号,然后把这些幸运星放回瓶中,充分摇匀,再从瓶中取出30颗幸运星,发现有6颗幸运星带有记号,请你帮小王估算出原来瓶中幸运星的颗数.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.求:(1)取出纸币的总额是30元的概率;(2)取出纸币的总额可购买一件51元的商品的概率.22.学校实施新课程改革以来,学生的学习能力有了很大的提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第22题)23.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级 (1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?答案一、1.C 2.D 3.D 4.B 5.C6.C点拨:因为后3位由1,7,9这3个数字组成,所以后3位可能的结果有:179,197,719,791,917,971.所以她第一次就输入正确密码的概率是16.故选C . 7.B 点拨:列表如下:∴有36种等可能情况,点P(x ,y)落在y =-2x +9的图象上的有(2,5)(3,3)(4,1)共3种情况,故其概率为336=112. 8.C9.C 点拨:列表如下:所有等可能的情况有16种,其中两个数的和是5的倍数或3的倍数的情况有9种,则P =916,故选C .(第10题)10.B 点拨:如图,正六边形中连接任意两点可得15条线段,其中AC ,AE ,BD ,BF ,CE ,DF 这6条线段的长度为3,∴所求概率为615=25. 二、11.34点拨:随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正)、(正,反)、(反,正)、(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34. 12.10 13.34 14.12 15.1816.38点拨:列表如下:由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38.17.31018.716点拨:列表如下:(第18题)由表格知共有16种等可能的结果,而落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的点有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),共7种,如图,所以点M落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是716 .三、19.解:列表如下:由表格可看出,所有可能出现的结果共有12种,每种结果出现的可能性都相同,其中抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的结果共有2种,故所求概率P =212=16.20.解:设原来瓶中幸运星大约有x 颗,则有20x =630.解得x =100.经检验,符合题意.∴原来瓶中幸运星大约有100颗.21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即10元与20元,10元与50元,20元与50元,并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A)的结果有1种,即10元与20元,所以P(A)=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B)的结果有2种,即10元与50元,20元与50元,所以P(B)=23.22.解:(1)20 (2)补图如图所示.(第22题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2,共有6种等可能的结果,其中,一男一女的有3种,所以恰好选中一名男生和一名女生的概率为36=12.23.解:(1)所求概率P =36=12.(2)游戏公平. 理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.24.解:(1)画树状图如图所示:(第24题)或列表如下:共有6种选购方案:(高档,精装)、(高档,简装)、(中档,精装)、(中档,简装)、(低档,精装)、(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装)、(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13.(3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=32,60x 1+50y 1=1 200. 解得⎩⎪⎨⎪⎧x 1=-40,y 1=72.经检验,不符合题意,舍去.当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子。

九年级数学(上)单元评估试卷(3、5章)

九年级数学(上)单元评估试卷(3、5章)

九年级数学(上)单元评估试卷(3、5章)姓名 班级 成绩一、精心选一选,相信自己的判断!(每小题3分,共30分)1、从1到9这九个自然数中任取一个,既是2的倍数又是3的倍数的概率是( )(A ) 91 (B ) 31 (C ) 21 (D ) 97 2、从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于 ( )(A ) 1 (B )12 (C ) 13 (D )233、下列说法正确的是( )A 、投掷一枚图钉,钉尖朝上、朝下的概率一样B 、投掷一枚均匀的硬币,正面朝上的概率是21 C 、统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是21 D 、投掷一枚均匀的骰子,每一种点数出现的概率都是61,所以每投6次就会出现一次“1点”. 4、关于频率和概率的关系,下列说法正确的是( )A 、频率等于概率B 、当实验次数很大时,频率稳定在概率附近C 、当实验次数很大时,概率稳定在频率附近D 、实验得到的频率与概率不可能相等5、某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( )A 、 1001B 、10001C 、100001D 、100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如右图),从中任意一张是数字3的概率是( )A 、1/6B 、1/3C 、1/2D 、2/37、盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( )A 、 41B 、 31C 、 32D 、 21 8、如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )A 、 21B 、 83C 、 41D 、 31 9、有一实物如图,那么它的主视图是 ( )A B C D10、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A 、10个B 、20个C 、30个D 、无法确定二、耐心填一填:(把答案填放相应的空格里。

九年级数学上册 21—23单元评估 试题

九年级数学上册 21—23单元评估  试题

2.1—2.3单元评估试卷本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

〔考试时间是是:60分钟满分是:120分〕一、选择题〔本大题一一共10小题,每一小题3分,一共30分〕y=(x-2)2+3的顶点坐标是〔〕A、〔-2,3〕B、〔2,3〕C、〔-2,-3〕D、〔2,-3〕2.抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为 ( ) A.y=3x2+3 B.y=3x2-1 C.y=3(x-4)2+3 D.y=3(x-4)2-1y=x2+x+m,当x取任意实数时,都有y>0,那么m的取值范围是〔〕A.m≥14B.m>14C.m≤14D.m<14a<0时,抛物线y=x2+2ax+1+2a2的顶点在( )5.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )y=x2-2x+k的图象经过点〔12,y1〕,〔32,y2〕,那么y1与y2的大小关系为〔〕A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定m为何实数,二次函数y=x2-(2-m)x+m的图象总是过定点( )A.(1,3)B.(1,0)C.(-1,3)D.(-1,0)x2+px+q<0的解集是-3<x<2,那么〔〕A.p=-1,q=6 B.p=1,q=6 C.p=-1,q=-6 D.p=1,q=-6y=x2-8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于12的点P一共有〔〕A.1个 B.2个 C.3个 D.4个10.以下图形都是二次函数y=ax2+bx+a2-1的图象,假设b>0,那么a的值等于〔〕A.152-+B.-1 C.152--D.1二、填空题〔本大题一一共6小题,每一小题4分,一共24分〕11.二次函数的图象开口向上,且顶点在y轴的负半轴上,请你写出一个满足条件的二次函数的表达式____________.y=9x2-px+4与x轴只有一个公一共点,那么不等式9x2-p2<0的解集是__________.13.如图,点P为反比例函数kyx=图像上任意一点,过点P作PA⊥y轴于A,作PB⊥x轴于B,假设四边形PAOB面积等于4,那么k= .y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象,那么y2≥y1时x的取值范围是____ ___.15.有一长方形条幅,长为a m,宽为b m,且a>b>0,四周镶上宽度相等的花边,那么剩余面积S〔m2〕与花边宽度x〔m〕之间的函数关系式为自变量x的取值范围为 .y=ax2+bx+c与直线y=kx+4相交于A〔1,m〕,B〔4,8〕两点,与x•轴交于原点O及点C,在x轴上方的抛物线上存在点D,使得S△OCD=12S△OCB,那么满足要求的点D坐标为______________.三、解答题〔本大题一一共7小题,一共66分〕17.〔6分〕二次函数y=-x2+4x.〔1〕用配方法把该函数化为y=a(x-h)2+k〔其中a、h、k都是常数且a≠0〕的形式,并指出函数图象的对称轴和顶点坐标;〔2〕求这个函数图象与x轴的交点坐标.18.〔8分〕二次函数当x=3时,函数有最大值-1,且函数图象与y轴交于〔0,-4〕,求该二次函数的关系式.19.〔8分〕抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如下图.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+c当x<0时的图象;(3)利用抛物线y=ax2+bx+c的图象,写出x为何值时,y>0.20.〔10分〕如图,二次函数y=21-x 2+bx+c 的图象经过A 〔2,0〕、 B 〔0,-6〕两点。

九年级数学上学期单元评估试卷3

九年级数学上学期单元评估试卷3

九年级数学(上)单元评估试卷第三章 证明(三)(总分:100分;时间: 分) 姓名 学号 成绩 一、精心选一选,相信自己的判断!(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、四边形的四个内角中,最多时钝角有A 1 个B 2 个C 3 个D 4 个 2、四边形具有的性质是A 对边平行B 轴对称性C 稳定性D 不稳定性 3、一个多边形的每一个外角都等于720,则这个多边形的边数是A 四边B 五边C 六边D 七边 4、下列说法不正确的是A 平行四边形对边平行B 两组对边平行的四边形是平行四边形C 平行四边形对角相等D 一组对角相等的四边形是平行四边形 5、一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为 A ︒30 B ︒45 C ︒60 D ︒75 6、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是 A 2 对 B 3对 C 4对 D 5 对 7、 菱形具有而平行四边形不具有的性质是A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直. 8、 平行四边形各内角的平分线围成一个四边形,则这个四边形一定是 A. 矩形; B. 平行四边形; C. 菱形; D. 正方形9、 如图,在等腰梯形ABCD 中,AB ∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是A. 4a cm ;B. 5a cm ;C.6a cm ;D. 7a cm ;10、等边三角形的一边上的高线长为cm 32,那么这个等边三角形的中位线长为 A cm 3 B cm 5.2 C cm 2 D cm 4 二、耐心填一填:(把答案填放相应的空格里。

每小题3分,共24分)。

11. 如图,在 ABCD 中,对角线相交于点O ,AC ⊥CD , AO = 3,BO = 5,则CO =_____,CD=______,AD =________ABCDABCDAB C DO1 2. 如图,在 ABCD 中,AB 、BC 、CD 的长度分别为2x +1, 3x ,x +4,则 ABCD 的周长是_____________1 3. 在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DCE 的周长为__________1 4. 在等腰梯形ABCD 中,AD ∥BC ,AB=CD ,∠B=40°,则∠A=_____,∠C=____,∠D=_____. 15. 菱形的对角线长分别为24和10,则此菱形的周长为___________,面积为____________. 16. 已知 ABCD 中,∠A -∠B = 30°,则∠C = __________,∠D = __________. 17. 判定一个四边形是正方形主要有两种方法,一是先证明它是矩形,然后证明______________,二是先证明它是一个菱形,再证明_____________________.18. 如图,已知四边形ABCD 是一个平行四边形,则只须 补充条件__________________,就可以判定它是一个菱形 三、细心做一做:(本大题共5小题,每小题6分,共30分) 19、已知:如图,平行四边形ABCD 中,AB = 12,AB 边上的高 为3,BC 边上的高为6,求平行四边形ABCD 的周长为20、如图,在Rt ⊿ABC 中,∠C = 90,AC = AB ,AB = 30,矩形DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若DG :GF = 1:4,求矩形DEFG 的面积是;BACDA BCDEFA B CD FG21、在Rt ⊿ABC 中,∠C =︒90,周长为cm )325(+;斜边上的中线CD =cm 2,求Rt ⊿ABC 的面积为22\已知:菱形ABCD 中,对角线AC = 16 cm ,BD = 12 cm ,BE ⊥CD 于点E ,求菱形ABCD 的面积和BE 的长.23\如图,在平行四边形ABCD 中,BC = 2AB ,E 为BC 的中点,求∠AED 的度数;BACDOEA B C DE四、勇敢闯一闯:(本大题共 2小题,每小题 8分,共16分)24、如图,四边形ABCD中,AD = BC,AE⊥BD,CF⊥BD,垂足为E、F,AE= CF,求证:四边形ABCD是平行四边形;25、在正方形ABCD的对角线AC上取一点 E,使 AE = AB,过 E 作EF⊥AC 交BC 于F ,求证:⑴ BF = EF⑵ BF = CEF A B。

冀教版九年级数学上册 第24章 一元二次方程 单元评估检测试卷(有答案)

冀教版九年级数学上册 第24章  一元二次方程 单元评估检测试卷(有答案)

冀教版九年级数学上册第24章一元二次方程单元评估检测试卷一、单选题(共10题;共30分)1.下列方程是一元二次方程的是()A. B. C. D.2.若关于的方程有一个根为-1,则的值为( )A. B. C. D.3.已知关于的一元二次方程有一个解为x=1,则c的值为()A. -2B. 0C. 1D. 24.如果一个等腰三角形的两边长分别为方程x2﹣5x+4=0的两根,则这个等腰三角形的周长为()A. 6B. 9C. 6或9D. 以上都不正确5.用配方法解方程,则配方正确的是()A. B. C. D.6.若△ABC的三边长是a,b,c,且满足(a-b)(a-c)=0,则△ABC是()A. 钝角三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形7.若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A. m≤-1B. m≤1C. m≤1D. m≤48.某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A. 20(1+x)3=24.2B. 20(1﹣x)2=24.2C. 20+20(1+x)2=24.2D. 20(1+x)2=24.29.有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为()A. 1+x+x(1+x)=100B. x(1+x)=100C. 1+x+x2=100D. x2=10010.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A. 13B. 11或13C. 11D. 12二、填空题(共10题;共30分)11.关于的一元二次方程有实数根,则m的取值范围是________.12.(2017•长春)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是________.13.若实数a、b满足,则________.14.已知实数满足,则代数式的值为________.15.已知x、y为实数,且方程为(x2+y2)(x2﹣2+y2)=15,则x2+y2=________.16.已知实数m是关于x的方程x2-3x-1=0的一根,则代数式m2-3m +5值为________.17.若方程是关于x的一元二次方程,则m=________.18.若x=2是关于x的方程x2﹣4mx﹣8=0的一个根,则m的值为________.19.若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是________.20.如图,△ABC中,∠C=90°,AC=6,BC=8,动点P从A点出发,以1cm/s的速度,沿A﹣C﹣B向B点运动,同时,动点Q从C点出发,以2cm/s的速度,沿C﹣B﹣A向A点运动,当其中一点运动到终点时,两点同时停止运动.设运动时间为t秒,当t=________秒时,△PCQ的面积等于8cm2.三、解答题(共9题;共60分)21.用两种不同方法解方程:x2-3-2x=0 22.解方程:2x2﹣4x﹣1=0(配方法)23.已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于1的整数,求方程的根.24.如图,在宽为20 m、长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分作为草坪,要使草坪的面积为540m2,求道路的宽.25.已知关于的方程x2+ax+b=0()与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2-x-6=0与x2-2x-3=0互为“同根轮换方程”.(1)若关于(x的方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,求m的值;(2)若p是关于x的方程x2+ax+b=0()的实数根,q是关于x的方程x2+2ax+b=0的实数根,当p,q分别取何值时,方程x2+ax+b=0()与x2+2ax+b=0互为“同根轮换方程”,请说明理由.26.如图,用一根长为22cm的铁丝分段围成一个面积为10cm2的“田”字形的长方形铁丝框.设宽为x,请列出关于x的方程并化成一般形式.27.某小区在绿化工程中有一块长为18m、宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.28.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?29.(2017•巴中)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】D7.【答案】B8.【答案】D9.【答案】A10.【答案】B二、填空题11.【答案】m≤112.【答案】413.【答案】4或-214.【答案】215.【答案】516.【答案】617.【答案】-118.【答案】﹣19.【答案】m≤﹣或m≥﹣20.【答案】2或4或三、解答题21.【答案】解:①用“公式法”解,原方程可化为:,∴,,,∴△= ,∴,∴,.②用“因式分解法”解,原方程可化为:,∴或,解得,22.【答案】解:x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=±=±,所以x1=1+,x2=1﹣;23.【答案】解:(1)∵关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4(k﹣2)>0,即12﹣4k>0,解得:k<3.故k的取值范围为k<3.(2)∵k为大于1的整数,且k<3,∴k=2.将k=2代入原方程得:x2+2x=x(x+2)=0,解得:x1=0,x2=﹣2.故当k为大于1的整数,方程的根为x1=0和x2=﹣224.【答案】解:设道路的宽为xm,根据题意,得(20-x)(32-x)=540,∴x2-52x+100=0,∴x1=2,x2=50(不合题意,舍去)25.【答案】解:(1)∵方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,∴4m=-6n.设t是公共根,则有t2+4t+m=0,t2-6t+n=0.解得,t=.∵4m=-6n.∴t=-.∴(-)2+4(-)+m=0.∴m=-12.(2)若方程x2+ax+b=0(b≠0)与x2+2ax+b=0有公共根.则由x2+ax+b=0,x2+2ax+b=0解得x=.∴.∴b=-6a2.当b=-6a2时,有x2+ax-6a2=0,x2+2ax-3a2=0.解得,x1=-3a,x2=2a;x3=-3a,x4=a.若p=q=-3a,∵b≠0,∴-6a2≠0,∴a≠0.∴2a≠a.即x2≠x4.∵2a×b=ab,∴方程x2+ax+b=0(b≠0)与x2+2ax+b=0=0互为“同根轮换方程” .26.【答案】解:设矩形的宽为xcm,则长为:cm,根据题意得到:x()=10,化为一般形式为:3x2﹣22x+30=0.27.【答案】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,(x﹣1)(x﹣8)=0.解得x1=1,x2=8(不合题意,舍去).答:人行通道的宽度是1m.28.【答案】解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=60时,进货180﹣10(60﹣52)=100个<180个,符合题意.答:当该商品每个定价为60元时,进货100个29.【答案】解:设平均每次下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次下调的百分率为10%。

人教版数学九年级上册第一单元测试卷(附答案)

人教版数学九年级上册第一单元测试卷(附答案)

一元二次方程单元测试题(满分120分)一、选择题(每题3分,共30分) 1、下列方程中,是一元二次方程的是( )A. 0y x 3x 22=-+B.06x 5x 23=--C.4x 4x 2++D.03x2x 2=++2、如果01x 3)x 2(m 2=+++是一元二次方程,则m 的取值范围是 ( ) A. 0m = B.2m -=C.2m -≠D.0m ≠ 3、1x =是下列哪个方程的一个解?( )A.01x 3x 22=-+B.03x 5x 22=--C.05x 4x 2=-+D.03x 2x 2=-- 4、方程x x 2=的解是( )A.0x =B.1x =C.1x ±=D.0x =或者1x =5、用配方法解一元二次方程13x 12x 2=-时,等号左右两边应同时加上( )A.212B.12C.26D.6 6、一元二次方程05x 4x 2=+-的根的情况是( )A.有两个不相等的根B.有一个根C.有两个相等的根D.无实根7、一元二次方程02m x 22=+-x 有两个不相等的实根,则m 的取值范围是 ( )A.4m >B.4m -<C.44<<-mD.4m 4m >-<或者8、已知一个三角形的底比高多2,如果这个三角形的面积是24,则它的底是( )A.8B.6C.4D.29、已知方程08x 6x 2=+-的两个根分别是等腰三角形的底和腰,则它的周长是 ( ) A.8 B.10 C.8或10 D.610、一次排球比赛中每两队之间都要进行一次比赛,一共比赛了45场,则参赛的队伍一共有多少个? ( ) A.8 B.9 C.10 D.11二、填空题(每小题4分,共28分)11、一元二次方程9x 5x 42=-的二次项系数是_____________,常数项是____________。

12、如果2x =是方程08x 2mx 2=+-的一个解,那么=m ______________。

度第一学期北师大版九年级数学上册_第二章_一元二次方程_单元评估测试卷

度第一学期北师大版九年级数学上册_第二章_一元二次方程_单元评估测试卷

2019-2019学年度第一学期北师大版九年级数学上册第二章一元二次方程单元评估测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 9 小题,每小题 3 分,共 27 分)1.下列关于的方程:① ;②;③ ;④ .其中一元二次方程有()A.个B.个C.个D.个2.一元二次方程化成一般形式后,二次项系数为,一次项系数为,则的值为()A. B. C. D.3.关于的一元二次方程的一个根为,则实数的值是()A. B. C.或 D.4.关于的方程有实数根,则的取值范围是()A. B.且C.且D.5.方程的解是()A. B. C. D.无法确定6.解方程最简便的方法是()A.配方法B.公式法C.因式分解法D.直接开平方法7.用配方法解方程,配方后的方程是()A. B.C. D.8.解下面方程:,,,较适当的方法分别为()A.直接开平法方因式分解法配方法B.因式分解法公式法直接开平方法C.公式法直接开平方法因式分解法D.直接开平方法公式法因式分解法9.某班级同学过年互发短信拜年,每人都给其他所有的同学发送一条短信,既不重复,也无遗漏,全班一共发送了条短信.设该班级共有同学名,则可列方程为()A. B.C. D.二、填空题(共 11 小题,每小题 3 分,共 33 分)10.若把代数式化为的形式,其中,为常数,则________.11.关于的一元二次方程群有两个相等的实数根,写出一组满足条件的实数,的值________.12.小明设计了一个魔术盒,当任意实数对进入其中,会得到一个新的实数,若将实数对放入其中,得到一个新数为,则________.13.已知关于的方程的两根互为相反数,则的值为________.14.若是方程的一个根,则代数式的值是________..①关于的一元二次方程有两个不相等的实数根,则的取值范围是________;②关于的方程的两个实数根分别是、,且,则________.16.已知实数满足,则代数式的值为________.17.已知、为方程的两根,则________.18.如果方程有两个不等实根,则实数的取值范围是________.19.在国家实行的宏观调控下,某市的商品房成交价由今年月分的元下降到月份的元,、两月平均每月降价的百分率是________(参考数据:第 1 页. . )20.一个长方形的长减少,宽增加,得到一个正方形,且这个正方形的面积与原长方形的面积相等,若设正方形的边长为,可列方程为:________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.解方程:① (配方法)② .22.已知:关于的方程若方程有两个相等的实数根,求的值;是否存在,使方程的两个实数根的平方和等于?若存在,请求出满足条件的值;若不存在,请说明理由.23.小明在一幅长为,宽为的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,求金色纸边的宽度.24.要建一个如图所示的面积为的长方形围栏,围栏总长,一边靠墙(墙长).求围栏的长和宽;能否围成面积为的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由.25.某青年旅社有间客房供游客居住,在旅游旺季,当客房的定价为每天元时,所有客房都可以住满.客房定价每提高元,就会有个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出元/每天的维护费用,设每间客房的定价提高了元.价应为多少元?(纯收入总收入-维护费用)26.黄冈市人杰地灵、山青水秀,拥有丰富的旅游资源,楚龙旅行社为吸引市民组团去大别山某风景区旅游,推出了如下收费标准:一单位组织员工去该风景区旅游,共支付给楚龙旅行社旅游费用元,请问该单位这次共有多少员工去旅游?答案1.A2.B3.B4.D5.C6.C7.C8.D9.A10.11.,12.13.14.15.且16.17.18.且19.20.21.解:① (配方法),∴ ,解得,,;②,∴ 或,解得,,.22.解: ∵关于的方程有两个相等的实数根,∴ ,解得:;设方程的两个实数根为、,则,,令得:,解这个方程得,或,当时,,所以不合题意,应舍去,当时,,所以存在实数,使得方程的两个实数根的平方和等于.23.金色纸边的宽度为.24.围栏的长为米,围栏的宽为米.假设能围成,设围栏的宽为米,则围栏的长为米,依题意得:,即,∵ ,∴该方程没有实数根.故假设不成立,即不能围成面积为的长方形围栏.25.依题意得:,整理,得,解得,.当时,有游客居住的客房数量是:(间).当时,有游客居住的客房数量是:(间).所以当时,能吸引更多的游客,则每个房间的定价为(元).答:每间客房的定价应为元.26.该单位去风景区旅游人数为人.第 3 页。

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

北师大版九年级数学上册第(1-3)单元试卷(含答案)第一章 单元检测试卷(满分:100分,时间:90分钟)一、选择题(本大题10小题,每小题3分,共30分)1.下列性质中菱形不一定具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形2.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形3.菱形的周长为4,一个内角为60°,则较短的对角线长为( )A .2B . 3C .1D .124.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( )A .22.5°角B .30°角C .45°角D .60°角,第5题图) ,第6题图),第7题图)5.如图,点E ,F ,G ,H 分别为四边形ABCD 的四边AB ,BC ,CD ,DA 的中点,则关于四边形EFGH ,下列说法正确的是( )A .一定不是平行四边形B .一定不是中心对称图形C .可能是轴对称图形D .当AC =BD 时它是矩形6.如图,菱形ABCD 的对角线AC ,BD 的长分别是6 cm ,8 cm ,AE ⊥BC 于点E ,则AE 的长是( )A .485 cmB .245 cmC .125cm D .5 3 cm 7.如图,在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE∥AC,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD⊥BC,则四边形AEDF 是矩形B .若BD =CD ,则四边形AEDF 是菱形C .若AD 垂直平分BC ,则四边形AEDF 是矩形D .若AD 平分∠BAC,则四边形AEDF 是菱形8.如图,在矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连接CE ,则CE 的长为( )A .3B .3.5C .2.5D .2.8,第8题图) ,第9题图),第10题图)9.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是( )A .12B .33C .1-33D .2-1 10.如图,点E 为边长为2的正方形ABCD 的对角线上一点,BE =BC ,点P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于R ,则PQ +PR 的值为( )A .22B .12C .32D . 2 二、填空题(本大题6小题,每小题4分,共24分)11.已知菱形的周长是20 cm ,一条对角线长为8 cm ,则菱形的另一条对角线长为( )cm .12.矩形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件AB =BC(答案不唯一),使其成为正方形.(只填一个即可)13.如图,点E 为正方形ABCD 外一点,AE =AD ,∠ADE =75°,则∠AEB =( ).,第13题图) ,第15题图),第16题图)14. 直角三角形斜边上的高与中线分别是5 cm和6 cm,则它的面积是()cm2.15. 如图,矩形ABCD的对角线BD的中点为O,过点O作OE⊥BC于点E,连接OA,已知AB=5,BC=12,则四边形ABEO的周长为().16. 如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1,A2,A3,A4…在射线ON上,点B1,B2,B3,B4…在射线OM上,依此类推,则第n个正方形的周长().三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图,在正方形ABCD中,点E是对角线BD上的点,求证:AE =CE.18. 如图,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的高及面积.19.如图,在矩形ABCD中,点E为AD边上一点,EF⊥CE,交AB于点F,若DE=2,矩形的周长为16,且CE=EF,求AE的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC =∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.21. 如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形,请加以证明.22. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.(1)求证:BE=BF;(2)若∠ABE=20°,求∠BFE的度数;(3)若AB=6,AD=8,求AE的长.24.如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.25.已知正方形ABCD中,点E,F分别为BC,CD上的点,连接AE,BF相交于点H,且AE⊥BF.(1)如图1,连接AC交BF于点G,求证:∠AGF=∠AEB+45°;(2)如图2,延长BF到点M,连接MC,若∠BMC=45°,求证:AH+BH=BM;(3)如图3,在(2)的条件下,若点H为BM的三等分点,连接BD,DM,若HE=1,求△BDM的面积.答 案一、选择题(本大题10小题,每小题3分,共30分)1. 下列性质中菱形不一定具有的性质是(C )A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形2. 下列命题中,真命题是(D )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形3. 菱形的周长为4,一个内角为60°,则较短的对角线长为(C )A .2B . 3C .1D .124. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成(C )A .22.5°角B .30°角C .45°角D .60°角,第5题图) ,第6题图),第7题图)5. 如图,点E ,F ,G ,H 分别为四边形ABCD 的四边AB ,BC ,CD ,DA 的中点,则关于四边形EFGH ,下列说法正确的是(C )A .一定不是平行四边形B .一定不是中心对称图形C .可能是轴对称图形D .当AC =BD 时它是矩形6. 如图,菱形ABCD 的对角线AC ,BD 的长分别是6 cm ,8 cm ,AE ⊥BC 于点E ,则AE 的长是(B )A .485 cmB .245 cmC .125cm D .5 3 cm 7. 如图,在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE∥AC,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是(D )A .若AD⊥BC,则四边形AEDF 是矩形B .若BD =CD ,则四边形AEDF 是菱形C .若AD 垂直平分BC ,则四边形AEDF 是矩形D .若AD 平分∠BAC,则四边形AEDF 是菱形8. 如图,在矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连接CE ,则CE 的长为(C )A .3B .3.5C .2.5D .2.8,第8题图) ,第9题图),第10题图)9. 如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是(D )A .12B .33C .1-33D .2-1 10. 如图,点E 为边长为2的正方形ABCD 的对角线上一点,BE =BC ,点P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于R ,则PQ +PR 的值为(D )A .22B .12C .32D . 2 二、填空题(本大题6小题,每小题4分,共24分)11. 已知菱形的周长是20 cm ,一条对角线长为8 cm ,则菱形的另一条对角线长为6cm .12. 矩形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件AB =BC(答案不唯一),使其成为正方形.(只填一个即可)13. 如图,点E 为正方形ABCD 外一点,AE =AD ,∠ADE =75°,则∠AEB=30°.,第13题图) ,第15题图),第16题图)14. 直角三角形斜边上的高与中线分别是5 cm 和6 cm ,则它的面积是30cm 2.15. 如图,矩形ABCD 的对角线BD 的中点为O ,过点O 作OE⊥BC于点E ,连接OA ,已知AB =5,BC =12,则四边形ABEO 的周长为20.16. 如图,∠MON =45°,OA 1=1,作正方形A 1B 1C 1A 2,周长记作C 1;再作第二个正方形A 2B 2C 2A 3,周长记作C 2;继续作第三个正方形A 3B 3C 3A 4,周长记作C 3;点A 1,A 2,A 3,A 4…在射线ON 上,点B 1,B 2,B 3,B 4…在射线OM 上,依此类推,则第n 个正方形的周长C n =2n +1.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图,在正方形ABCD 中,点E 是对角线BD 上的点,求证:AE =CE.证明:∵四边形ABCD 为正方形,∴AB =CB ,∠ABE =∠CBE.在△ABE 和△CBE 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBE,BE =BE ,,∴△ABE ≌△CBE(SAS ),∴AE=CE18. 如图,已知菱形ABCD 两条对角线BD 与AC 的长度之比为3∶4,周长为40 cm ,求菱形的高及面积.解:∵BD∶AC=3∶4,∴设BD =3x ,AC =4x ,∴BO =3x 2,AO =2x ,又∵AB 2=BO 2+AO 2,∴AB =52x ,∵菱形的周长是40 cm ,∴AB =40÷4=10(cm ),即52x =10,∴x =4,∴BD =12 cm ,AC =16 cm ,∴S 菱形ABCD =12BD·AC=12×12×16=96(cm 2),又∵S 菱形ABCD =AB·h,∴h =9610=9.6(cm ),菱形的高是9.6 cm ,面积是96 cm 219. 如图,在矩形ABCD 中,点E 为AD 边上一点,EF ⊥CE ,交AB 于点F ,若DE =2,矩形的周长为16,且CE =EF ,求AE 的长.解:∵EF⊥EC,∴∠1+∠3=90°.∵在矩形ABCD 中,∠A =∠D =90°,∴∠3+∠2=90°,∴∠1=∠2.又∵EF=EC ,∴△EFA ≌△CED(AAS ),∴AE =CD.设AE =x ,则DC =x.由矩形的周长为16得2x +2=8,∴x =3,即AE 的长为3四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,已知平行四边形ABCD ,对角线AC ,BD 相交于点O ,∠OBC =∠OCB.(1)求证:平行四边形ABCD 是矩形;(2)请添加一个条件使矩形ABCD 为正方形.解:(1)∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵∠OBC =∠OCB,∴OB =OC ,∴AC =BD ,∴平行四边形ABCD 是矩形(2)AB =AD(或AC⊥BD 答案不唯一).理由:∵四边形ABCD 是矩形,又∵AB =AD ,∴四边形ABCD 是正方形(或:∵四边形ABCD 是矩形,又∵AC⊥BD,∴四边形ABCD 是正方形)21. 如图,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD =BC(答案不唯一),可使四边形ABCD 为矩形,请加以证明.解:(1)在△DCA 和△EAC中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC(SSS )(2)添加AD =BC ,可使四边形ABCD 为矩形.理由:∵AB=DC ,AD =BC ,∴四边形ABCD 是平行四边形.∵CE⊥AE,∴∠E =90°,由(1)知△DCA≌△EAC,∴∠D =∠E=90°,∴四边形ABCD 为矩形22. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 的延长线上,且AF =CE =AE.(1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.解:(1)由题意知∠FDC=∠DCA=90°,∴EF ∥CA ,∴∠AEF =∠EAC.∵AF=CE =AE ,∴∠F =∠AEF=∠EAC=∠ECA.又∵AE=EA ,∴△AEC ≌△EAF ,∴EF =CA ,∴四边形ACEF 是平行四边形 (2)当∠B =30°时,四边形ACEF 是菱形.理由:∠B=30°,∠ACB =90°,∴AC =12AB.∵DE 垂直平分BC ,∴BE =CE.∵AE=CE ,∴AE =BE =CE =12AB ,∴AC =CE ,由(1)得四边形ACEF 是平行四边形,∴四边形ACEF 是菱形五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF.(1)求证:BE =BF ;(2)若∠ABE=20°,求∠BFE 的度数;(3)若AB =6,AD =8,求AE 的长.解:(1)由题意得∠BEF=∠DEF.∵四边形ABCD 为矩形,∴DE ∥BF ,∴∠BFE =∠DEF,∴∠BEF =∠BFE,∴BE =BF (2)∵四边形ABCD 为矩形,∴∠ABF =90°;而∠ABE=20°,∴∠EBF =90°-20°=70°;又∵∠BEF=∠BFE,∴∠BFE 的度数为55° (3)由题意知BE =DE ;设AE =x ,则BE =DE =8-x ,由勾股定理得(8-x)2=62+x 2,解得x =74,即AE 的长为7424. 如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t s (0<t≤15).过点D 作DF⊥BC 于点F ,连接DE ,EF.(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△DEF 为直角三角形?请说明理由.解:(1)∵∠DFC=90°,∠C =30°,DC =4t ,∴DF =2t ,又∵AE =2t ,∴AE =DF (2)能,理由:∵AB⊥BC,DF ⊥BC ,∴AE ∥DF ,又∵AE=DF ,∴四边形AEFD 为平行四边形,当AE =AD 时,四边形AEFD 为菱形,即60-4t =2t ,解得t =10,∴当t =10秒时,四边形AEFD 为菱形 (3)①当∠DEF=90°时,由(1)知四边形AEFD 为平行四边形,∴EF ∥AD ,∴∠ADE =∠DEF=90°,∵∠A =60°,∴∠AED =30°,∴AD =12AE =t ,又AD =60-4t ,即60-4t =t ,解得t =12;②当∠EDF =90°时,四边形EBFD 为矩形,在Rt △AED 中∠A=60°,则∠ADE=30°,∴AD =2AE ,即60-4t =4t ,解得t =152;③若∠EFD=90°,则E 与B 重合,D 与A 重合,此种情况不存在.综上所述,当t =152s 或12 s 时,△DEF 为直角三角形25. 已知正方形ABCD 中,点E ,F 分别为BC ,CD 上的点,连接AE ,BF 相交于点H ,且AE ⊥BF.(1)如图1,连接AC 交BF 于点G ,求证:∠AGF=∠AEB+45°;(2)如图2,延长BF 到点M ,连接MC ,若∠BMC=45°,求证:AH +BH =BM ;(3)如图3,在(2)的条件下,若点H 为BM 的三等分点,连接BD ,DM ,若HE =1,求△BDM 的面积.解:(1)∵四边形ABCD 是正方形,∴∠ABC =∠BCD=90°,∴∠ACB =∠ACD=45°,∵AE ⊥BF ,∴∠AEB +∠FBC=90°,∵∠FBC +∠BFC =90°∴∠AEB =∠BFC,∵∠AGF =∠BFC+∠ACF,∴∠AGF =∠AEB +45° (2)过C 作CK⊥BM 于K ,∴∠BKC =∠AHB=90°,∵∠BMC =45°,∴CK =MK ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =∠BCD =90°,∴∠ABH =∠BCK,∴△ABH ≌△BCK(AAS ),∴BH =CK =MK ,AH =BK ,∴BM =BK +MK =AH +BH (3)由(2)得,BH =CK =MK ,∵H 为BM 的三等分点,∴BH =HK =KM ,过E 作EN⊥CK 于N ,∴四边形HENK 是矩形,∴HK =EN =BH ,∠BHE =∠ENC,∴△BHE ≌△ENC(ASA ),∴HE =CN =NK =1,∴CK =BH =2,∴BM =6,连接CH ,∵HK =MK ,CK ⊥MH ,∠BMC =45°,∴CH =CM ,∠MCH =90°,∴∠BCH =∠DCM,∴△BHC ≌△DMC(SAS ),∴BH =DM =2,∠BHC =∠DMC=135°,∴∠DMB=90°,∴△BDM 的面积为12DM·BM=6北师大版九年级数学上册第二单元试卷(含答案)(满分:100分,时间:90分钟)一、选择题(本大题10小题,每小题3分,共30分)1. 下列方程中,是关于x的一元二次方程是()A.3(x+1)2=2(x+1) B.1x2+1x-2=0C.ax2+bx+c=0 D.x2+2x=x2-12. 把方程x2-10x=-3左边化成含有x的完全平方式,下列做法正确的是()A.x2-10x+(-5)2=28 B.x2-10x+(-5)2=22C.x2+10x+52=22 D.x2-10x+5=23. 关于x的一元二次方程x2+bx-10=0的一个根为2,则b的值为()A.1 B.2 C.3 D.74. 方程(x-2)(x+3)=0的解是()A.x=2 B.x=-3C.x1=-2,x2=3 D.x1=2,x2=-35. 解方程(x+1)(x+3)=5较为合适的方法是()A.直接开平方法B.配方法C.公式法或配方法D.因式分解法6. 关于x的一元二次方程kx2+4x-2=0有实数根,则k的取值范围是( )A .k ≥-2B .k >-2且k≠0C .k ≥-2且k≠0D .k ≤-27. 已知一元二次方程x 2-3x -1=0的两个根分别是x 1,x 2,则x 21x 2+x 1x 22的值为( )A .-3B .3C .-6D .68. 某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A .168(1+x)2=108B .168(1-x)2=108C .168(1-2x)=108D .168(1-x 2)=1089. 有一块长32 cm ,宽24 cm 的矩形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A .2 cmB .3 cmC .4 cmD .5 cm10. 定义运算:a*b =a(1-b).若a ,b 是方程x 2-x +14m =0(m <0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关二、填空题(本大题6小题,每小题4分,共24分)11. 方程(x +2)2=x +2的解是( )。

人教版数学九年级上册单元测试卷15套含答案

人教版数学九年级上册单元测试卷15套含答案

第21章一元二次方程测试卷(1)一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3ﻩ B.2ﻩ C.0D.32.(3分)方程x2=2x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=3.(3分)方程x2﹣4=0的根是()A.x=2B.x=﹣2 C.x1=2,x2=﹣2ﻩD.x=44.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是( )A.﹣1ﻩB.0ﻩC.1D.25.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9ﻩD.(x﹣2)2=96.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0ﻩB.x2+65x﹣350=0C.x2﹣130x﹣1400=0ﻩD.x2﹣65x﹣350=07.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6ﻩB.8ﻩC.10D.128.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A.12ﻩB.12或15ﻩ C.15ﻩ D.不能确定9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是( )A.1B.1或﹣1C.﹣1D.210.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12 B.12或66C.15ﻩD.33二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2: .12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=,另一个根是.13.(3分)方程(2y+1)(2y﹣3)=0的根是.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= .15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是( )A.﹣3B.2C.0D.3【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.2.(3分)方程x2=2x的解是( )A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.【解答】解:x2﹣2x=0x(x﹣2)=0∴x1=0,x2=2.故选C.【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.3.(3分)方程x2﹣4=0的根是( )A.x=2B.x=﹣2 C.x1=2,x2=﹣2D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b (a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1B.0C.1D.2【考点】根的判别式;一元二次方程的定义.【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0,当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,解得k>,则满足条件的最小整数k为2.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1ﻩC.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.【解答】解:移项得:x2﹣4x=5,配方得:x2﹣4x+22=5+22,(x﹣2)2=9,故选D.【点评】本题考查了解一元二次方程,关键是能正确配方.6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【解答】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x﹣1400=0,即x2+65x﹣350=0.故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6B.8ﻩC.10ﻩD.12【考点】勾股定理.【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.【解答】解:设这三边长分别为x,x+1,x+2,根据勾股定理得:(x+2)2=(x+1)2+x2解得:x=﹣1(不合题意舍去),或x=3,∴x+1=4,x+2=5,则三边长是3,4,5,∴三角形的面积=××4=6;故选:A.【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12ﻩB.12或15 C.15ﻩD.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1ﻩB.1或﹣1 C.﹣1ﻩD.2【考点】根的判别式.【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.【解答】解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12ﻩB.12或66ﻩC.15 D.33【考点】一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=132解得:x1=﹣11(不合题意舍去),x2=12,答:全组共有12名学生.故选:A.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:﹣3x2+2x﹣3=0.【考点】一元二次方程的一般形式.【专题】开放型.【分析】根据一元二次方程的一般形式和题意写出方程即可.【解答】解:由题意得:﹣3x2+2x﹣3=0,故答案为:﹣3x2+2x﹣3=0.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+b x+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4,另一个根是 5 .【考点】一元二次方程的解.【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根,∴把x=﹣1代入得:1﹣b﹣5=0,解得b=﹣4,即方程为x2﹣4x﹣5=0,(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,即b的值是﹣4,另一个实数根式5.故答案为:﹣4,5;【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.(3分)方程(2y+1)(2y﹣3)=0的根是y1=﹣,y2=.【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.【解答】解:∵(2y+1)(2y﹣3)=0,∴2y+1=0或2y﹣3=0,解得y1=,y2=.【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=3.【考点】根与系数的关系.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两,x2,则x1+x2=﹣,代入计算即可.根为x1【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,∴x1+x2=3,故答案为:3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0.【考点】换元法解分式方程.【专题】换元法.【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体.【解答】解:原方程可化为:﹣(x2﹣2x)+3=0设y=x2﹣2x﹣y+3=0∴1﹣y2+3y=0∴y2﹣3y﹣1=0.【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)4x2﹣8x+1=0(配方法)移项得,x2﹣2x=﹣,配方得,x2﹣2x+1=﹣+1,(x﹣1)2=,∴x﹣1=±∴x=1+,x2=1﹣.1(2)7x(5x+2)=6(5x+2)(因式分解法)7x(5x+2)﹣6(5x+2)=0,(5x+2)(7x﹣6)=0,∴5x+2=0,7x﹣6=0,∴x=﹣,x2=;1(3)3x2+5(2x+1)=0(公式法)整理得,3x2+10x+5=0∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,∴x===,∴x1=,x2=;(4)x2﹣2x﹣8=0.(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.【点评】本题考查的是一元二次方程的应用,难度一般.18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0解得x1=30 x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).(1)可先求出增长率,然后再求2007年的盈利情况.(2)有了2008年的盈利和增长率,求出2009年的就容易了.【解答】解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160.=0.2,x2=﹣2.2(不合题意,舍去).解得x1∴1500(1+x)=1500(1+0.2)=1800.答:2007年该企业盈利1800万元.(2)2160(1+0.2)=2592.答:预计2009年该企业盈利2592万元.【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?【考点】一元二次方程的应用.【专题】销售问题.【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x),由题意得,(500﹣40x)×(10+4x)=8000,整理得,5000+2000x﹣400x﹣160x2=8000,解得:x1=,x2=,当x1=时,则涨价10元,销量为:400件;当x2=时,则涨价30元,销量为:200件.答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C 匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【考点】一元二次方程的应用;相似三角形的判定.【专题】几何动点问题.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ =S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有=或=,所以=,或=,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;( 3)有可能.由勾股定理得AB=10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴=,=,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.第21章一元二次方程测试卷(2)一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10B.1,7,﹣10C.1,﹣5,12D.1,3,22.(3分)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14ﻩB.(x﹣3)2=4C.(x+3)2=14ﻩD.(x+3)2=43.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0ﻩC.k<D.k≥且k≠04.(3分)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0B.y﹣﹣3=0C.y﹣+3=0ﻩD.y﹣+3=05.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10ﻩC.11或10ﻩD.不能确定6.(3分)若分式的值为零,则x的值为()A.3ﻩB.3或﹣3ﻩC.0ﻩD.﹣37.(3分)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10B.=10ﻩC.x(x+1)=10ﻩD.=109.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182ﻩB.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182ﻩD.50+50(1+x)+50(1+2x)2=18210.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣ C.4D.﹣111.(3分)定义运算:aﻩb=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则bﻩb﹣aﻩa的值为()A.0B.1 C.2ﻩD.与m有关12.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20B.x•=20C.x(13﹣x)=20D.x•=20二.填空题(每小题3分,共12分)13.(3分)方程x2﹣3=0的根是.14.(3分)当k= 时,方程x2+(k+1)x+k=0有一根是0.15.(3分)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=.16.(3分)写出以4,﹣5为根且二次项的系数为1的一元二次方程是.三.解答题(本题有7小题,共52分)17.(10分)解方程(1)x2﹣4x﹣5=0(2)3x(x﹣1)=2﹣2x.18.(5分)试证明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.19.(6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?20.(8分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?21.(6分)阅读下面的例题,范例:解方程x2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.22.(8分)龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定成本共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元? 23.(9分)如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿A边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从C点开始沿CB边向点B以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、C两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?(2)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?(3)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿A B移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点B即停止运动),是否存在一个时刻,PQ同时平分△ABC的周长与面积?若存在求出这个时刻的t值,若不存在说明理由.ﻩ参考答案与试题解析一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是() A.1,﹣3,10ﻩB.1,7,﹣10ﻩC.1,﹣5,12 D.1,3,2【考点】一元二次方程的一般形式.【专题】压轴题;推理填空题.【分析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.【解答】解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c 是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.(3分)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4ﻩC.(x+3)2=14D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.3.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>ﻩB.k>且k≠0ﻩC.k<D.k≥且k≠0【考点】根的判别式.【专题】压轴题.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.4.(3分)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0ﻩB.y﹣﹣3=0 C.y﹣+3=0ﻩD.y﹣+3=0【考点】换元法解分式方程.【分析】把y=代入原方程,移项即可得到答案.【解答】解:设=y,则原方程可化为:y﹣=3,即y﹣﹣3=0,故选:A.【点评】本题主要考查换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.5.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10C.11或10ﻩD.不能确定【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【专题】计算题;一次方程(组)及应用.【分析】利用因式分解法求出方程的解得到x的值,确定出底与腰,即可求出周长.【解答】解:方程分解得:(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,若3为底,4为腰,三角形三边为3,4,4,周长为3+4+4=11;若3为腰,4为底,三角形三边为3,3,4,周长为3+3+4=10.故选C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.(3分)若分式的值为零,则x的值为()A.3 B.3或﹣3C.0ﻩD.﹣3【考点】分式的值为零的条件;解一元二次方程-直接开平方法;解一元一次不等式.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意,可得x2﹣9=0且2x﹣6≠0,解得x=﹣3.故选D.【点评】本题主要考查分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7.(3分)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.8.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10B.=10ﻩC.x(x+1)=10D.=10【考点】由实际问题抽象出一元二次方程.【专题】其他问题;压轴题.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.9.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182ﻩB.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P O
F
E D
C
B A
九年级数学(上)单元评估试卷
第三章 证明(三)(总分:100分;时间: 90分) 姓名 学号 成绩 题号 1 2 3 4 5 6 7 8 9 10 答案
1.下面给出的条件中,能判定一个四边形是平行四边形的是 ( )。

A .一组邻角互补,一组对角相等。

B .一组对边平行,一组邻角相等。

C .一组对边相等,一组对角相等。

D .一组对边相等,一组邻角相等。

2.顺次连接矩形四条边的中点,所得到的四边形一定是 ( )。

A .矩形 B .菱形 C .正方形 D .平行四边形 3.下列说法错误的是 ( )。

A .有一组对边平行但不相等的四边形是梯形。

B .有一个角是直角的梯形是直角梯形。

C .等腰梯形的两底角相等。

D .直角梯形的两条对角线不相等。

4.如图1把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置。

若∠EFB =65°,则∠AED ′等于 ( )。

A.50° B.55° C.60° D.65° 5. ABCD 中,O 是对角线的交点,不能判定这个平行四边形是正方形的是 ( )。

A .∠BAD=90°,AB=AD
B .∠BAD=90°,A
C ⊥B
D C .AC ⊥BD ,AC=BD D .AB=AC ,∠BAD=∠BCD
6.如图2,□ABCD 中,EF 过对角线的交点O ,AB=4,AD=3,OF=1.3,则四边形BCEF 的周长为 ( )
A.8.3
B.9.6
C.12.6
D.13.6
7.给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形.其中错误命题的个数是 ( ) A.1 B.2 C.3 D.4
如图2 如图3
8、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是( ) A 2 对 B 3对 C 4对 D 5 对 9、 菱形具有而平行四边形不具有的性质是 ( ) A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直. 10、如图3,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为 ( )
A.
5
13 B.
2
5 C.2 D.
5
12 二、耐心填一填:(把答案填放相应的空格里。

每小题3分,共24分) 11.在
ABCD 中,已知∠ABC=60°,则∠BCD=____________。

12.已知△ABC 中,AB=12㎝,BC=10㎝,AC=8㎝,D 、E 、F 分别为AB 、BC 、AC 边上的中点,则△DEF 的周长为___________cm 。

13.菱形ABCD 中,对角线AC 、BD 的长分别为6㎝和10㎝,则菱形的面积是______㎝2。

14.如图2,在矩形ABCD 中,AC 、BD 相交于点O 且AC=8,如果∠AOD=60°,那么AD=_________ 。

15.已知正方形ABCD 的对角线长为9㎝,则正方形ABCD 的面积为_________㎝2。

16.菱形ABCD 中,若周长是20㎝,对角线AC=6㎝,则对角线BD=__________㎝。

17.如图3,直线l 是四边形ABCD 的对称轴,若AB=CD ,则下面的结论:①AO=CO ;②AB ∥CD ;③AC ⊥BD ;④AB ⊥BC 。

其中正确的结论有:________。

18、如图4,已知四边形ABCD 是一个平行四边形,则只须补充条件__________________,
就可以判定它是一个菱形
三、细心做一做:(本大题共6小题,共24
19、已知:菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF 。

求证:∠AEF=∠AFE 。

A
C
D
图4
20、已知:
中,E 、
F 是AC 上的两点,且AE = CF. 求证:DE = BF.
21. 已知:在△ABC 中,AD 平分∠BAC, DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F.
求证:四边形AEDF 是菱形
A
B
C
2,AE⊥BD于点E,22、如图8,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=3
求OE的长?
四、勇敢闯一闯:(本大题共 2小题,每23题小题 10分,第24题12分,共22分)
23、如图9,点D是△ABC中BC边上的中点,DF⊥AC,DE⊥AB,垂足分别为E、F,且BE=CF。

(1)求证:△ABC是等腰三角形;
(2)当∠A=90°时,试判断四边形AEDF是怎样的四边形,证明你的结论。

24、如图10,在正方形ABCD中,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H。

(1)求证:△BCG≌△DCE;
(2)B H⊥DE。

相关文档
最新文档