2019东北三省三校一模-文科数学试卷

合集下载

东北三省三校2019年高三第一次联合模拟考试文科数学试卷

东北三省三校2019年高三第一次联合模拟考试文科数学试卷

东北三省三校2019年高三第一次联合模拟考试文科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码 区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求. 1.已知集合2{0,},{30},A b B x Z x x ==∈-<若,AB ≠∅则b 等于( )A .1B .2C . 3D . 1或2 2.复数212ii+=-( )A.i B.i - C.2(2)i + D.1i +3. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,则“a b >”是“cos2cos2A B <”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.向量a,b 满足1,2,()(2),==+⊥-a b a b a b 则向量a 与b 的夹角为( ) A.45︒ B. 60︒ C. 90︒ D. 120︒5.实数m 是[]0,6上的随机数,则关于x 的方程240x mx -+=有实根的概率为( )A.14 B. 13 C.12 D.236.已知三棱锥的三视图,则该三棱锥的体积是 ( )A .63 B. 263 C.362 D. 627.椭圆2214x y +=两个焦点分别是12,F F ,点P 是椭圆上 任意一点,则12PF PF ⋅的取值范围是( )A. []1,4 B. []1,3 C. []2,1- D. []1,1-8.半径为1的球面上有四个点A,B,C,D,球心为点O,AB 过点O,CA CB =,DA DB =,1DC =, 则三棱锥A BCD -的体积为( ) A .36 B.33C.3 D.6 9. 已知数列{}n a 满足*312ln ln ln ln 32()258312n a a a a n n N n +⋅⋅⋅⋅=∈-,则 10a =( )A.26e B. 29e C.32e D.35e10.执行如图所示的程序框图,要使输出的S 的值小于1,则输入的t 值不能是下面的( ) A.8 B.9 C.10 D.1111.若函数32()236f x x mx x =-+在区间()2,+∞上为增函数,则实数m 的取值范围是( )A.(),2-∞ B.(],2-∞ C.5,2⎛⎫-∞ ⎪⎝⎭ D.5,2⎛⎤-∞ ⎥⎝⎦12.函数()lg(1)sin2f x x x =+-的零点个数为( )A.9 B.10 C.11 D.12开始结束输入t=S1=k3sinπk S S += t k >1+=k k输出S否是(第10题图)(第6题图)222 22正视图侧视图俯视图第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答. 二.填空题(本大题共4小题,每小题5分.) 13.若等差数列{}n a 中,满足46201020128a a a a +++=,则2015S =_________.14.若变量,x y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .15.已知双曲线C :221164y x -=,点P 与双曲线C 的焦点不重合.若点P关于双曲线C的上、下焦点的对称点分别为A 、B ,点Q 在双曲线C 的上支上,点P 关于点Q 的对称点为1P ,则11PA PB -=____. 16.若函数()f x 满足: (ⅰ)函数()f x 的定义域是R ; (ⅱ)对任意12,x x ∈R 有121212()()2()()f x x f x x f x f x ++-=;(ⅲ)3(1)2f =. 则下列命题中正确的是_____. (写出所有正确命题的序号)①函数()f x 是奇函数;②函数()f x 是偶函数;③对任意12,n n ∈N ,若12n n <,则12()()f n f n <;④ 对任意x R ∈,有()1f x ≥-.三.解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知ABC ∆的面积为,2且满足04,AB AC →→<⋅≤设→AB 和→AC 的夹角为θ. (Ⅰ)求θ的取值范围; (Ⅱ)求函数θθπθ2cos 3)4(sin 2)(2-+=f 的值域.18.(本题满分12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:3/g m μ)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量0.0010.002 0.003 0.004 0.005 0.006 0.007 0.008频率 组距空气污染指数 (3/g m μ)50100 150 200DCBAFE级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2019年1月某日某省x 个监测点数据统计如下:空气污染指数 (单位:3/g m μ) []0,50(]50,100(]100,150(]150,200监测点个数1540y10(Ⅰ)根据所给统计表和频率分布直方图中的信息求出,x y 的值,并完成频率分布直方图; (Ⅱ)若A 市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A “其中至少有一个为良”发生的概率是多少?19.(本题满分12分)如图,多面体ABCDEF 中,底面ABCD 是菱形, 60BCD ∠=,四边形BDEF 是正方形,且DE ⊥平面ABCD .(Ⅰ)求证: //CF 平面AED ;(Ⅱ)若2AE =,求多面体ABCDEF 的体积V .20.(本题满分12分)在平面直角坐标系xOy 中,已知动圆过点(2,0),且被y 轴所截得的弦长为4. (Ⅰ) 求动圆圆心的轨迹1C 的方程;(Ⅱ) 过点(1,2)P 分别作斜率为12,k k 的两条直线12,l l ,交1C 于,A B 两点(点,A B 异于点P ),若120k k +=,且直线AB 与圆2:C 221(2)2x y -+=相切,求△PAB 的面积.21.(本题满分12分)已知实数a 为常数,函数2ln )(ax x x x f +=.(Ⅰ)若曲线)(x f y =在1=x 处的切线过点A)2,0(-,求实数a 值; (Ⅱ)若函数)(x f y =有两个极值点1212,()x x x x <.①求证:021<<-a ;②求证: 1()0f x <,21)(2->x f . 请从下面所给的22 , 23 , 24三题中任选一题做答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。

2019年东北三省三校第一次联合考试文科数学试题___含答案

2019年东北三省三校第一次联合考试文科数学试题___含答案

2019年东北三省三校高三第一次联合模拟考试文科数学答案一. 选择题1-6 DBCCBA 7-12 BBCADD二.填空题13. 3 14. 乙 15. 30 16. 4π三.解答题17.解:(Ⅰ)1()2cos 21sin(2)1226π=++=++f x x x x …………………2分 ∵[0,]2x π∈,∴72666πππ≤+≤x , …………………4分 ∴1sin(2)1226π≤++≤x ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦; …………………6分(Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A ∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A…………………8分 由余弦定理,2222cos =+-a b c bc A ,∴2642=+-c c ,即2220--=c c又0>c ,∴1=c …………………10分∴1sin 2∆==ABC S bc A …………………12分18. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件M设每周累计户外暴露时间不少于28小时的4为学生分别为A,B,C,D ,其中A 表示近视的学生, 随机抽取2名,所有的可能有AB,AC,AD,BC,BD,CD 共6种情况, 其中事件M 共有3种情况, 即AB,AC,AD, 所以()3162==P M故随机抽取2名,其中恰有一名学生不近视的概率为12. …………………4分(Ⅱ)根据以上数据得到列联表:KMFGDCBA P近视 …………………8分所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 所以能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.…………………12分19. 解:(Ⅰ)(方法一):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = …………………2分 ∵PG ⊥平面ABCD ,BG ⊂平面ABCD ,∴PG BG ⊥ ∴1124422PBG S BG PG ∆=⋅=⨯⨯= ∵13AG GD =∴3332442BDG BCG S S ∆∆=⋅=⨯= …………………4分设点D 到平面PBG 的距离为h , ∵D PBG P BDG V V --= 1133PBG BDG S h S PG ∆∆∴⋅⋅=⋅⋅, 11344332h ∴⋅⋅=⋅⋅32h ∴= …………………6分 (方法二):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = ………………2分 ∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD ∵平面PBG平面=A B CD B G在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K , 则DK ⊥平面PBG∴DK 的长就是点D 到平面PBG 的距离 …………………4分223434322===∴=BC AD GD BC 在∆DKG 中,DK =DG sin 45︒=23∴点D 到平面PBG 的距离为23…………………6分 (Ⅱ)在平面ABCD 内,过D 作DM ⊥GC 于M ,连结FM ,又因为DF ⊥GC ,DM DF D = ∴GC ⊥平面F M D ,⊂FM 平面F M D ∴GC ⊥FMPG ⊥平面ABCD ,⊂GC 平面ABCD ∴PG ⊥GC∴FM ∥PG由GM ⊥MD 得:3cos452GM GD ︒==…………………10分 32312PF GM FC MC ∴=== …………………12分20. 解:(Ⅰ)24y x =焦点为(1,0)F ,则1(1,0)F -,2(1,0).F122a PF PF =+=解得1,1a c b ===,所以椭圆E 的标准方程为22 1.2x y += …………............4分 (Ⅱ)由已知,可设直线l 方程为1x ty =+,1122(,),(,).A x y B x y联立2213x ty x y =+⎧⎨+=⎩ 得22(1)220,t y ty ++-= 易知0.∆>则1221222,12.1t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩.........6分 ()()111212121211(2)(2)F A F B x x y y ty ty y y ⋅=+++=+++=221212222(1)2()41t t y y t y y t -++++=+.因为111F A F B ⋅=,所以22221t t -=+1,解得213t =. ……..................8分 联立22112x ty x y =+⎧⎪⎨+=⎪⎩,得22(2)210t y ty ++-=,()2810t ∆=+>设3344(,),(,)C x y B x y ,则3423422,21.2t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩….....…….........10分112341273F CDS F F y y∆=⋅-===….....…….........12分21. 解:(Ⅰ)当ea=时,()e ext x x=-,'()e ext x=-, .....….................1分令'()0=t x则1=x列表如下:所以()(1)e e0极小值==-=t x t. ......….......…....5分(Ⅱ)设()()()ln e e ln exF x f x g x x a ax x a=-+-+=-+-+,(1)≥x1'()e xF x ax=-+,(1)≥x设1()e xh x ax=-+,2221e1()exxxh xx x⋅-'=-=, ...........…........7分由1x≥得,21,x≥2e10->xx,'()0>h x,()h x在(1,)+∞单调递增,即()F x'在(1,)+∞单调递增,(1)1F e a'=+-,①当10e a+-≥,即1a e≤+时,(1,)x∈+∞时,()0F x'>,()F x在(1,)+∞单调递增,又(1)0F=,故当1x≥时,关于x的方程()ln e=()f x xg x a+--有且只有一个实数解. ..........9分②当10e a+-<,即1a e>+时,由(Ⅰ)可知e x ex≥,所以11'()e,'()0xa a e eF x a ex a F e ax x e e a a=+-≥+-≥⋅+-=>,又11ae e>+故00(1,),()0ax F xe'∃∈=,当(1,)x x∈时,()0F x'<,()F x单调递减,又(1)0F=,故当(]01,x x∈时,()0F x<,在[)01,x内,关于x的方程()ln e=()f x xg x a+--有一个实数解1.又(,)x x∈+∞时,()0F x'>,()F x单调递增,且22()ln1a aF a e a a a e e a=+-+->-+,令2()1(1)xk x e x x=-+≥,'()()2x s x k x e x ==-,()220'=-≥->x s x e e ,故'()k x 在()1,+∞单调递增,又'(1)0k >1当时,∴>x'()0,>k x ()∴k x 在()1,+∞单调递增,故()(1)0>>k a k ,故()0F a >,又0aa x e>>,由零点存在定理可知,101(,),()0x x a F x ∃∈=, 故在()0,x a 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1x . 又在[)01,x 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1.综上,1a e ≤+. ........................12分22.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩ ……..................2分所以曲线C 的极坐标方程为24cos 10ρρθ-+=. …….................4分 (Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角,代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ.21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ…….................7分1212OA OB +=+=+=ρρρρ…….................8分1cos 2θ∴=±满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 则1tan 3k θ==或3-. …….................10分 23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a .故实数a 的取值范围为]4,4[-. .…….................4分 (Ⅱ)由(Ⅰ)知,4=m ,即424x y z ++=. 根据柯西不等式222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x []21164()22121x y y z ≥+-+= …….................8分 等号在z y y x =-=+24即884,,72121x y z ==-=时取得。

2019 年东北三省三校高考数学一模试卷(文科)

2019 年东北三省三校高考数学一模试卷(文科)

2019年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数(1﹣i)(3+i)的虚部是()A.4B.﹣4C.2D.﹣22.(5分)若集合A={x|﹣1≤x≤2},B={x|log3x≤1},则A∩B=()A.{x|﹣1≤x≤2}B.{x|0<x≤2}C.{x|1≤x≤2}D.{x|x≤﹣1或x>2}3.(5分)已知向量,的夹角为60°,||=1,||=2,则|3+|=()A.B.C.D.4.(5分)设直线y=x﹣与圆O:x2+y2=a2相交于A,B两点,且|AB|=2,则圆O 的面积为()A.πB.2πC.4πD.8π5.(5分)等差数列{a n}的前n项和为S n,且a2+a10=16,a8=11,则S7=()A.30B.35C.42D.566.(5分)已知α∈(0,),tan()=﹣3,则sinα=()A.B.C.D.7.(5分)执行两次如图所示的程序框图,若第一次输入的x的值为4,第二次输入的x的值为5,记第一次输出的a的值为a1,第二次输出的a的值为a2,则a1﹣a2=()A.0B.﹣1C.1D.28.(5分)设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<a C.a<c<b D.c<a<b9.(5分)已知α,β是不重合的平面,m,n是不重合的直线,则m⊥α的一个充分条件是()A.m⊥n,n⊂αB.m∥β,α⊥βC.n⊥α,n⊥β,m⊥βD.α∩β=n,α⊥β,m⊥n10.(5分)圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[﹣1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y>的数对(x,y)共有11个,则用随机模拟的方法得到的π的近似值为()A.B.C.D.11.(5分)已知双曲线=1(a>0,b>0)的左焦点为F(﹣,0),点A的坐标为(0,2),点P为双曲线右支上的动点,且△APF周长的最小值为8,则双曲线的离心率为()A .B .C.2D .12.(5分)若函数f(x)=e x﹣ax2在区间(0,+∞)上有两个极值点x1,x2(0<x1<x2),则实数a的取值范围是()A.a B.a>e C.a≤e D.a二、填空题(本题共4小题,每小题5分,共20分)13.(5分)已知x,y 满足约束条件:,则z=2x+y的最大值是.14.(5分)甲、乙、丙三人中,只有一个会弹钢琴.甲说:“我会”,乙说:“我不会”,丙说:“甲不会”.如果这三句话只有一句是真的,那么会弹钢琴的是.15.(5分)等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=.16.(5分)四面体A﹣BCD中,AB⊥底面BCD,AB=BD =,CB=CD=1,则四面体A ﹣BCD的外接球的表面积为.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题.第22,23题为选考题.)17.(12分)设函数f(x)=sin(2x ﹣)+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,且f(A )=,a =,b=2,求△ABC的面积.18.(12分)世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:(Ⅰ)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(Ⅱ)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(Ⅱ)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?附:K2=19.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是平行四边形,P在平面ABCD上的射影为G,且G在AD上,且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P﹣BCG的体积为.(Ⅰ)求异面直线GE与PC所成的角余弦值;(Ⅱ)求点D到平面PBG的距离;(Ⅲ)若F点是棱PC上一点,且DF⊥GC,求的值.20.(12分)已知F1,F2分别是椭圆E:=1(a>b>0)的左,右焦点,点P(﹣1,)在椭圆E上,且抛物线y2=4x的焦点是椭圆E的一个焦点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过点F2作不与x轴重合的直线l,设l与圆x2+y2=a2+b2相交于A,B两点,且与椭圆E相交于C,D两点,当=1时,求△F1CD的面积.21.(12分)已知函数f(x)=e x(e为自然对数的底数),g(x)=ax(a∈R).(Ⅰ)当a=e时,求函数t(x)=f(x)﹣g(x)的极小值;(Ⅱ)若当x≥1时,关于x的方程f(x)+lnx﹣e=g(x)﹣a有且只有一个实数解,求实数a的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的方程为y=kx,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)曲线C与直线l交于A,B两点,若|OA|+|OB|=2,求k的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣4a|+|x|,a∈R.(Ⅰ)若不等式f(x)≥a2对∀x∈R恒成立,求实数a的取值范围;(Ⅱ)设实数m为(Ⅰ)中a的最大值,若实数x,y,z满足4x+2y+z=m,求(x+y)2+y2+z2的最小值.2019年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数(1﹣i)(3+i)的虚部是()A.4B.﹣4C.2D.﹣2【分析】再利用复数代数形式的乘除运算化简得答案.【解答】解:∵(1﹣i)(3+i)=4﹣2i.∴复数(1﹣i)(3+i)的虚部是﹣2.故选:D.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.(5分)若集合A={x|﹣1≤x≤2},B={x|log3x≤1},则A∩B=()A.{x|﹣1≤x≤2}B.{x|0<x≤2}C.{x|1≤x≤2}D.{x|x≤﹣1或x>2}【分析】可解出集合B,然后进行交集的运算即可.【解答】解:B={x|0<x≤3};∴A∩B={x|0<x≤2}.故选:B.【点评】考查描述法的定义,对数函数的单调性,以及交集的运算.3.(5分)已知向量,的夹角为60°,||=1,||=2,则|3+|=()A.B.C.D.【分析】由已知结合向量数量积的定义可求,然后根据向量数量积的性质|3+|=,展开后可求.【解答】解:∵向量,的夹角为60°,||=1,||=2,∴==1,则|3+|====,故选:C.【点评】本题主要考查了向量数量积的定义及性质的简单应用,属于基础试题.4.(5分)设直线y=x﹣与圆O:x2+y2=a2相交于A,B两点,且|AB|=2,则圆O 的面积为()A.πB.2πC.4πD.8π【分析】根据题意,求出圆O的圆心与半径,求出圆心O到直线的距离,由直线与圆的位置关系可得a2=1+()2=4,结合圆的面积公式计算可得答案.【解答】解:根据题意,圆O:x2+y2=a2的圆心为(0,0),半径r=|a|,圆心到直线y=x﹣的距离d==1,又由弦长|AB|=2,则有a2=1+()2=4,则圆O的面积S=πa2=4π;故选:C.【点评】本题考查直线与圆的位置关系,涉及弦长的计算,属于基础题.5.(5分)等差数列{a n}的前n项和为S n,且a2+a10=16,a8=11,则S7=()A.30B.35C.42D.56【分析】利用等差数列通项公式列方程组,能求出a1=,d=,由此再利用等差数列前n项和公式能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,且a2+a10=16,a8=11,∴,解得a1=,d=,∴S7=7a1+==35.故选:B.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.6.(5分)已知α∈(0,),tan()=﹣3,则sinα=()A.B.C.D.【分析】利用两角和的正切公式求出tanα,再结合角的范围及同角三角函数基本关系即可求出sinα.【解答】解:∵利用两角和的正切公式得tan()==﹣3,∴tanα=2.∵α∈(0,),∴.再根据sin2α+cos2α=1,解得.故选:A.【点评】本题考查两角和的正切公式,考查同角三角函数基本关系式的应用,是基础题.7.(5分)执行两次如图所示的程序框图,若第一次输入的x的值为4,第二次输入的x的值为5,记第一次输出的a的值为a1,第二次输出的a的值为a2,则a1﹣a2=()A.0B.﹣1C.1D.2【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为4时,b=2,第一次,不满足b2>x,不满足x能被b整数,故输出a=0;当输入的x值为5时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;即第一次输出的a的值为a1的值为0,第二次输出的a的值为a2的值为1,则a1﹣a2=0﹣1=﹣1.故选:B.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.8.(5分)设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<a C.a<c<b D.c<a<b【分析】根据指数函数和幂函数的单调性即可求出.【解答】解:由函数y=()x为减函数,可知b<c,由函数y=x为增函数,可知a>c,即b<c<a,故选:B.【点评】本题考查了指数函数和幂函数的单调性,属于基础题.9.(5分)已知α,β是不重合的平面,m,n是不重合的直线,则m⊥α的一个充分条件是()A.m⊥n,n⊂αB.m∥β,α⊥βC.n⊥α,n⊥β,m⊥βD.α∩β=n,α⊥β,m⊥n【分析】根据空间直线和平面垂直的判定定理以及性质结合充分条件和必要条件的定义进行求解即可.【解答】解:当n⊥β,m⊥β时,m∥n,当n⊥α时,m⊥α,即充分性成立,即m⊥α的一个充分条件是C,故选:C.【点评】本题主要考查充分条件和必要条件的判断,结合空间直线和平面垂直的位置关系是解决本题的关键.10.(5分)圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[﹣1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y>的数对(x,y)共有11个,则用随机模拟的方法得到的π的近似值为()A.B.C.D.【分析】由不等式表示的平面区域得:不等式y>的平面区域为正方形内位于第一,二象限圆x2+y2=1外的区域,由几何概型中的面积型得:=,即π==,得解【解答】解:从区间[﹣1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y >的数对(x,y)共有11个,即从区间[﹣1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y≤的数对(x,y)共有100﹣2×11=78个,由几何概型中的面积型可得:=,所以π==,故选:A.【点评】本题考查了几何概型中的面积型,及不等式表示的平面区域,属中档题11.(5分)已知双曲线=1(a>0,b>0)的左焦点为F(﹣,0),点A的坐标为(0,2),点P为双曲线右支上的动点,且△APF周长的最小值为8,则双曲线的离心率为()A.B.C.2D.【分析】由题意可得|AF|=3,可得|P A|+|PF|的最小值为5,由双曲线的定义可得|P A|+|PF'|+2a的最小值为5,当A,P,F'三点共线时,取得最小值,可得a=1,由离心率公式可得所求值.【解答】解:由|AF|==3,三角形APF的周长的最小值为8,可得|P A|+|PF|的最小值为5,又F'为双曲线的右焦点,可得|PF|=|PF'|+2a,当A,P,F'三点共线时,|P A|+|PF'|取得最小值,且为|AF'|=3,即有3+2a=5,即a=1,c=,可得e==.故选:D.【点评】本题考查双曲线的定义、方程和性质,主要是离心率的求法,考查三点共线取得最小值的性质,考查方程思想和运算能力,属于中档题.12.(5分)若函数f(x)=e x﹣ax2在区间(0,+∞)上有两个极值点x1,x2(0<x1<x2),则实数a的取值范围是()A.a B.a>e C.a≤e D.a【分析】求出函数的导数,问题转化为y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),求出临界值,求出a的范围即可.【解答】解:f′(x)=e x﹣2ax,若f(x)在(0,+∞)上有两个极值点x1,x2(0<x1<x2),则y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),则y′=e x,y′|x=m=e m,故y﹣e m=e m(x﹣m),即y=e m x+(1﹣m)e m=2ax,故(1﹣m)e m=0,解得:m=1,故A(1,e),故2a=e,a=,故直线y=2ax和y=e x相交时,a>,故选:D.【点评】本题考查了切线方程,考查函数的单调性,极值问题,考查导数的应用以及转化思想,是一道综合题.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)已知x,y满足约束条件:,则z=2x+y的最大值是3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.【解答】解:作出x,y满足约束条件:对应的平面区域如图:(阴影部分),由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得A(,),代入目标函数z=2x+y得z=3.即目标函数z=2x+y的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.(5分)甲、乙、丙三人中,只有一个会弹钢琴.甲说:“我会”,乙说:“我不会”,丙说:“甲不会”.如果这三句话只有一句是真的,那么会弹钢琴的是乙.【分析】先理解题意,再进行简单的合情推理,逐一进行检验即可得解.【解答】解:①设会弹钢琴的是甲,则甲、乙说的是真话,与题设矛盾,故会弹钢琴的不是甲,②设会弹钢琴的是乙,则丙说的是真话,与题设相符,故会弹钢琴的是乙,③设会弹钢琴的是丙,则乙、丙说的时真话,与题设矛盾,故会弹钢琴的不是丙,综合①②③得:会弹钢琴的是乙,故答案为:乙【点评】本题考查了进行简单的合情推理,属简单题.15.(5分)等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=30.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.(5分)四面体A﹣BCD中,AB⊥底面BCD,AB=BD=,CB=CD=1,则四面体A ﹣BCD的外接球的表面积为4π.【分析】由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.【解答】解:如图,在四面体A﹣BCD中,AB⊥底面BCD,AB=BD=,CB=CD=1,可得∠BCD=90°,补形为长方体,则过一个顶点的三条棱长分别为1,1,,则长方体的对角线长为,则三棱锥A﹣BCD的外接球的半径为1.其表面积为4π×12=4π.故答案为:4π.【点评】本题考查多面体外接球表面积的求法,补形是关键,是中档题.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题.第22,23题为选考题.)17.(12分)设函数f(x)=sin(2x﹣)+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,且f(A)=,a=,b=2,求△ABC的面积.【分析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x+)+1,由已知可求范围≤2x+≤,利用正弦函数的性质可求其值域.(Ⅱ)由已知可求sin(2A+)=,可求范围<2A+<,从而可求A=,由余弦定理解得c的值,即可根据三角形的面积公式计算得解.【解答】(本题满分为12分)解:(Ⅰ)f(x)=sin(2x﹣)+2cos2x=sin2x+cos2x+1=sin(2x+)+1,…………………(2分)∵x∈[0,],∴≤2x +≤,…………………(4分)∴sin(2x +)+1≤2,∴函数f(x)的值域为[,2];…………………(6分)(Ⅱ)∵f(A)=sin(2A +)+1=,∴sin(2A +)=,∵0<A<π,∴<2A +<,∴2A +=,即A =,…………………(8分)由余弦定理,a2=b2+c2﹣2bc cos A,∴6=4+c2﹣2c,即c2﹣2c﹣2=0,又c>0,∴c=1+,…………………(10分)∴S△ABC=bc sin A==+.…………………(12分)【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的性质,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.(12分)世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:(Ⅰ)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(Ⅱ)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(Ⅱ)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?附:K2=【分析】(Ⅰ)根据古典概型概率公式计算可得;(Ⅱ)先得2×2列联表,再根据表格中数据计算k2,再根据临界值表作答.【解答】解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A,则P(A)==故随机抽取2名,其中恰有一名学生不近视的概率为.(Ⅱ)根据以上数据得到列联表:所以K2的观测值k2==8.000>6.635,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.【点评】本题考查了独立性检验,属中档题.19.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是平行四边形,P在平面ABCD上的射影为G,且G在AD上,且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P﹣BCG的体积为.(Ⅰ)求异面直线GE与PC所成的角余弦值;(Ⅱ)求点D到平面PBG的距离;(Ⅲ)若F点是棱PC上一点,且DF⊥GC,求的值.【分析】(1)先利用等体积法求出PG的长,在平面ABCD内,过C点作CH∥EG交AD 于H,连接PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角,在△PCH中利用余弦定理求出此角即可;(2)在平面ABCD内,过D作DK⊥BG,交BG延长线于K,则DK⊥平面PBG,DK 的长就是点D到平面PBG的距离,在△DKG利用边角关系求出DK长;(3)在平面ABCD内,过D作DM⊥GC,M为垂足,连接MF,先证明FM∥PG,然后利用三角形相似对应边成比例建立等量关系即可.【解答】解:(I)由已知,∴PG=4.在平面ABCD内,过C点作CH∥EG交AD于H,连接PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.在△PCH中,,由余弦定理得,cos∠PCH=,∴异面直线GE与PC所成的角的余弦值为.(II)∵PG⊥平面ABCD,PG⊂平面PBG∴平面PBG⊥平面ABCD,在平面ABCD内,过D作DK⊥BG,交BG延长线于K,则DK⊥平面PBG∴DK的长就是点D到平面PBG的距离.∵.在△DKG,DK=DG sin45°=,∴点D到平面PBG的距离为.(III)在平面ABCD内,过D作DM⊥GC,M为垂足,连接MF,又因为DF⊥GC,∴GC⊥平面MFD,∴GC⊥FM.由平面PGC⊥平面ABCD,∴FM⊥平面ABCD∴FM∥PG;由GM⊥MD得:GM=GD•cos45°=.∵,∴由DF⊥GC可得.【点评】本题主要考查四棱锥的有关知识,以及求异面直线所成角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥.20.(12分)已知F1,F2分别是椭圆E:=1(a>b>0)的左,右焦点,点P(﹣1,)在椭圆E上,且抛物线y2=4x的焦点是椭圆E的一个焦点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过点F2作不与x轴重合的直线l,设l与圆x2+y2=a2+b2相交于A,B两点,且与椭圆E相交于C,D两点,当=1时,求△F1CD的面积.【分析】(Ⅰ)y2=4x焦点为F(1,0),则F1(﹣1,0),F2(1,0),2a=|PF1|+|PF2|=2,求解a,b即可得到椭圆方程.(Ⅱ)设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2),利用联立可得(t2+1)y2+2ty﹣2=0,通过韦达定理以及向量的数量积推出解得t2=.联立,得(t2+2)y2+2ty﹣1=0.设C(x3,y3),D(x4,y4),利用韦达定理,求解三角形的面积.【解答】解:(Ⅰ)y2=4x焦点为F(1,0),则F1(﹣1,0),F2(1,0),2a=|PF1|+|PF2|=2解得a=,c=1,b=1,所以椭圆E的标准方程为+y2=1,(Ⅱ)由已知,可设直线l方程为x=ty+1,设A(x1,y1),B(x2,y2),联立得(t2+1)y2+2ty﹣2=0 易知△>0,则y1+y2=﹣,y1y2=﹣,所以•=(x1+1)(x2+1)+y1y2=(ty1+2)(ty2+2)+y1y2=(t2+1)y1y2+2t(y1+y2)+4=因为=1,所以=1,解得t2=.联立,得(t2+2)y2+2ty﹣1=0 易知△=8(t2+1)>0,设C(x3,y3),B(x4,y4),则y3+y4=﹣,y1y2=﹣,∴|y3﹣y4|==∴△F1CD的面积S=|F1F2|•|y3﹣y4|===【点评】本题考查椭圆的简单性质,考查直线与椭圆的位置关系的应用,考查三角形的面积计算公式,把面积比转化为长度比是解题的关键,考查了运算求解能力,转化与化归能力,属于中档题.21.(12分)已知函数f(x)=e x(e为自然对数的底数),g(x)=ax(a∈R).(Ⅰ)当a=e时,求函数t(x)=f(x)﹣g(x)的极小值;(Ⅱ)若当x≥1时,关于x的方程f(x)+lnx﹣e=g(x)﹣a有且只有一个实数解,求实数a的取值范围.【分析】(Ⅰ)代入a的值,解关于导函数的不等式,求出函数的单调区间,求出函数的极小值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合方程的解的个数确定a的范围即可.【解答】解:(Ⅰ)当a=e时,t(x)=e x﹣ex,t′(x)=e x﹣e,………(1分)令t′(x)=0,则x=1,x,t′(x),t(x)的变化列表如下:………(3分)所以t(x)极小值=t(1)=e﹣e=0……………(5分)(Ⅱ)设F(x)=f(x)﹣g(x)+lnx﹣e+a=e x﹣ax+lnx﹣e+a,(x≥1),F′(x)=e x﹣a+,(x≥1),设h(x)=e x﹣a+,h′(x)=,………(7分)由x≥1得,x2≥1,x2e x﹣1>0,h′(x)>0,h(x)在(1,+∞)单调递增,即F′(x)在(1,+∞)单调递增,F′(1)=e+1﹣a,①当e+1﹣a≥0,即a≤e+1时,x∈(1,+∞)时,F′(x)>0,F(x)在(1,+∞)单调递增,又F(1)=0,故当x≥1时,关于x的方程f(x)+lnx﹣e=g(x)﹣a有且只有一个实数解…(9分)②当e+1﹣a<0,即a>e+1时,由(Ⅰ)可知e x≥ex,所以F′(x)=e x+﹣a≥ex+﹣a,F′()≥e•+﹣a=>0,又>=1,故∃x0∈(1,),F′(x0)=0,当x∈(1,x0)时,F′(x)<0,F(x)单调递减,又F(1)=0,故当x∈(1,x0]时,F(x)<0,在[1,x0)内,关于x的方程f(x)+lnx﹣e=g(x)﹣a有一个实数解1.又x∈(x0,+∞)时,F′(x)>0,F(x)单调递增,且F(a)=e a+lna﹣a2+a﹣e>e a﹣a2+1,令k(x)=e x﹣x2+1(x≥1),s(x)=k′(x)=e x﹣2x,s′(x)=e x﹣2≥e﹣2>0,故k′(x)在(1,+∞)单调递增,又k′(1)>0,故x>1时,k′(x)>0,k(x)在(1,+∞)单调递增,故k(a)>k(1)>0,故F(a)>0,又a>>x0,由零点存在定理可知,∃x1∈(x0,a),F(x1)=0,故在(x0,a)内,关于x的方程f(x)+lnx﹣e=g(x)﹣a有一个实数解x1,又在[1,x0)内,关于x的方程f(x)+lnx﹣e=g(x)﹣a有一个实数解1.综上,a≤e+1…(12分)【点评】本题考查了函数的单调性,极值,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的方程为y=kx,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)曲线C与直线l交于A,B两点,若|OA|+|OB|=2,求k的值.【分析】(Ⅰ)先消去α得C的普通方程,再化成极坐标方程;(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入C的极坐标方程,利用韦达定理可求得.【解答】解:(Ⅰ)∵,∴x2﹣4x+y2+1=0所以曲线C的极坐标方程为ρ2﹣4ρcosθ+1=0.(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入曲线C得ρ2﹣4ρcosθ1+1=0,设A,B所对应的极径分别为ρ1,ρ2.ρ1+ρ2=4cosθ1,ρ1ρ2=1>0,△=16cosθ12﹣4>0∴|QA|+|QB|=|ρ1|+|ρ2|=|ρ1+ρ2|=2∴cosθ1=±满足△>0∴θ1=或∴l的倾斜角为或,则k=tanθ1=或﹣.【点评】本题考查了参数方程化成普通方程,属基础题.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣4a|+|x|,a∈R.(Ⅰ)若不等式f(x)≥a2对∀x∈R恒成立,求实数a的取值范围;(Ⅱ)设实数m为(Ⅰ)中a的最大值,若实数x,y,z满足4x+2y+z=m,求(x+y)2+y2+z2的最小值.【分析】(Ⅰ)根据基本不等式的性质得到关于a的不等式,解出即可;(Ⅱ)根据柯西不等式的性质求出代数式的最小值即可.【解答】解:(Ⅰ)因为f(x)=|x﹣4a|+|x|≥|x﹣4a﹣x|=4|a|,所以a2≤4|a|,解得:﹣4≤a≤4.故实数a的取值范围为[﹣4,4];(Ⅱ)由(1)知,m=4,即4x+2y+z=4,根据柯西不等式(x+y)2+y2+z2=[(x+y)2+y2+z2]•[42+4+1]≥[4(x+y)﹣2y+z]2=等号在==z即x=,y=﹣,z=时取得.所以(x+y)2+y2+z2的最小值为.【点评】本题考查了解绝对值不等式,考查基本不等式以及柯西不等式的性质,是一道常规题.。

2019年三省三校一模考试文数答案

2019年三省三校一模考试文数答案

s(x) k '(x) e x 2x , s(x) ex 2 e 2 0 ,故 k ' (x) 在 1, 单调递增,又 k ' (1) 0
当x 1时,k ' (x) 0,k(x) 在 1, 单调递增,故 k(a) k(1) 0 ,故 F (a) 0 ,
t2 1
0

C
(
x3
,
y3
),
B
(
x4
,
y4
)
,则

y3 y3
y4
y4

t2
2t
t2
1
2
.
2
,
SF1CD
1 2
F1F2

y3 y4

81 t2 t2 2
8 4 3
4
6
7
7
3
21. 解:(Ⅰ)当 a e 时, t(x) ex ex , t '(x) ex e , 令 t '(x) 0 则 x 1 列表如下:

1 3
SBCG
PG

1 1 BG GC PG 32

8 3
∴ PG 4
…………………2 分
∵ PG ⊥平面 ABCD , BG 平面 ABCD ,∴ PG BG
∴ SPBG

1 2
BG PG

1 2
24

4
∵ AG 1 GD 3
∴ SBDG

3 4

SBCG
1) y1y2
2t( y1
y2) 4

东北三省三校2019-2020学年高三第一次联合模拟考试数学(文)试题(教师版)

东北三省三校2019-2020学年高三第一次联合模拟考试数学(文)试题(教师版)

三省三校2019——2020 (上)第一次内考卷文科数学一、选择题:本题共 12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.设{}1,2,3,4,5U =,{}1,2,3A =,{}2,4B =,则U A B =I ð( ) A. {}1 B. {}2 C. {}1,2,3 D. {}1,3【答案】D 【解析】 【分析】先由题意求出{}1,3,5U B =ð,再与集合A 求交集,即可得出结果. 【详解】因为{}1,2,3,4,5U =,{}2,4B =,所以{}1,3,5U B =ð, 又{}1,2,3A =,所以{}1,3=U A B I ð. 故选:D【点睛】本题主要考查集合的交集与补集的混合运算,熟记交集与补集的定义即可,属于基础题型. 2.设,a b 是两条不同的直线,,αβ是两个不同的平面,则//αβ的一个充分条件是( ) A. 存两条异面直线,a b ,,,//,//a b a b αββα⊂⊂.B. 存在一条直线a ,//,//a a αβ.C. 存在一条直线a ,,//β⊂a a a .D. 存在两条平行直线,a b ,,,//,//αββ⊂⊂a b a b a . 【答案】A 【解析】 【分析】根据面面平行的判定定理,以及线面,面面位置关系,逐项判断,即可得出结果.【详解】对于A 选项,如图:,a b 为异面直线,且,,//,//a b a b αββα⊂⊂,在β内过b 上一点作//c a ,则β内有两相交直线平行于α,则有//αβ;故A 正确;对于B 选项,若//,//a a αβ,则a 可能平行于α与β的交线,因此α与β可能平行,也可能相交,故B 错;对于C 选项,若,//β⊂a a a ,则α与β可能平行,也可能相交,故C 错;对于D 选项,若,,//,//αββ⊂⊂a b a b a ,则α与β可能平行,也可能相交,故D 错. 故选:A【点睛】本题主要考查探求面面平行的充分条件,熟记面面平行的判定定理,以及线面,面面位置关系即可,属于常考题型.3.已知向量()()()3,2,2,1,4,3a b c ==-= ,若()()a b c a λ+⊥-,则实数λ=( ) A.15B. 5C. 4D.14【答案】A 【解析】 【分析】先由题意,得到()32,21a b λλλ+=-+,(1,1)-=c a ,再根据向量垂直,即可列出方程求解,得出结果. 【详解】因为()()()3,2,2,1,4,3a b c ==-=, 所以()32,21a b λλλ+=-+,(1,1)-=c a ,又()()a b c a λ+⊥-,所以()()0λ+⋅-=a b c a ,即32210λλ-++=, 解得:15λ=. 故选:A【点睛】本题主要考查由向量垂直求参数,熟记向量数量积的坐标运算即可,属于常考题型.4.若sin 22a π⎛⎫+= ⎪⎝⎭3sin 2a π⎛⎫+= ⎪⎝⎭( ) A. 23- B. 13- C.13 D.23【答案】C 【解析】 【分析】先由题意,得到cos2=a ,再根据二倍角公式,以及诱导公式,即可得出结果.【详解】由sin 22a π⎛⎫+=⎪⎝⎭,得cos 2=a ,221cos 2cos 12123∴=-=⨯-=-⎝⎭a a , 31sin cos 23πα⎛⎫∴+=-= ⎪⎝⎭a .故选:C【点睛】本题主要考查三角恒等变换给值求值的问题,熟记公式即可,属于常考题型.5.已知()f x 在R 上连续可导,()f x '为其导函数,且()(0)x xf x e f e '-=+⋅,则()1f =( )A. 2eB. 12e e+ C. 3 D.103【答案】B 【解析】 【分析】先对函数求导,得出1(0)2'=f ,求出1()2-=+xx f x e e ,进而可求出结果. 【详解】由题意,()(0)-''=-⋅xxf x e f e ,所以0(0)(0)1(0)'''=-⋅=-f e f e f , 因此1(0)2'=f ,所以1()2-=+xx f x e e ,故()112=+f e e. 故选:B【点睛】本题主要考查由导数的方法求参数,以及求函数值的问题,熟记导数的计算公式即可,属于基础题型.6.在各项均为正数的等比数列{}n a 中,若101010112a a =,则111213120202222log log log log a a a a ++++的值为( ) A. 2 021 B. -2021 C. 1 010 D. -1010【答案】D 【解析】 【分析】根据题中数据,以及等比数列的性质,得到122201********* =a a a a a a =⋯=,再由对数的运算法则,得到111213120202222log log log log a a a a ++++112320202log =⋅⋅a a a a ,进而可求出结果.【详解】在各项均为正数的等比数列{a n }中,若101010112a a =,可得122201*********=a a a a aa=⋯=,则111213120202222log log log log a a a a ++++()101011232020122log log 21010a a a a =⋅⋅==-.故选D.【点睛】本题主要考查等比数列的性质的应用,以及对数的运算,熟记等比数列的性质,以及对数运算法则即可,属于常考题型.7.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A. ()()0.63(3)log 132f f f -<-<B. ()()0.63(3)2log 13f f f -<<-C. ()()0.632log 13(3)ff f <-<-D. ()()0.632(3)log 13ff f <-<-【答案】C 【解析】 【分析】根据题意,由函数的奇偶性可得()()33f f -=,()()33log 13log 13f f -=,又由0.63322log 13log 273<<<=,结合函数的单调性分析可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,则()()33f f -=,()()33log 13log 13f f -=, 有0.63322log 13log 273<<<=,又由()f x 在()0,∞+上单调递增,则有()()()0.632log 133f f f <-<-,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题. 8.数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究陌数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数2()()21x x f x -=-.的图象大致是( )A. B.C. D.【答案】D 【解析】 【分析】先由函数解析式,得到22()()()2121----==≠--xx x x f x f x ,推出()f x 不是偶函数,排除AC ,再由特殊值验证,排除B ,即可得出结果.【详解】因为函数22()()2121-==--x x x x f x ,所以22()()()2121----==≠--xx x x f x f x , 因此函数()f x 不是偶函数,图象不关于y 轴对称,故排除A 、C 选项;又因为9(3)7=f ,16(4)15=f ,所以(3)(4)f f >,而选项B 在0x >时是递增的,故排除B. 故选:D【点睛】本题主要考查函数图像的识别,熟记函数的基本性质,灵活运用排除法处理即可,属于常考题型. 9.已知偶函数()f x 的图象经过点()1,3--,且当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则使得(2)30f x -+<成立的x 的取值范围为( )A. ()3,+∞B. ()1,3C. ()(),13,-∞⋃+∞D. []1,3【答案】C 【解析】 【分析】先由题意,得到点()1,3-也在函数图象上,函数()f x 在[)0,+∞上为减函数,将不等式化为(|2|)(1)-<f x f ,根据函数单调性,即可得出结果.【详解】根据题意,()f x 为偶函数, 且经过点()1,3--,则点()1,3-也在函数图象上, 又当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则函数()f x 在[)0,+∞上为减函数,因为(2)30f x -+<,所以(2)3(|2|)(1)|2|1f x f x f x -<-⇒-<⇒-> 解得1x <或3x >. 故选:C【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性与单调性的概念即可,属于常考题型.10.已知实数x ,y 满足10220220x y x y x y --⎧⎪-+-⎨⎪+-⎩………,若目标函数()0z ax y a =+>最大值为5,取到最大值时的最优解是唯一的,则a 的取值是( )A.14 B.13C. 12D. 1【答案】C 【解析】 【分析】先由约束条件作出可行域,化目标函数z ax y =+为y ax z =-+,则y ax z =-+表示斜率为a -的直线,且0a -<,结合图像,以及题中条件,即可得出结果.【详解】由不等式组10220220x y x y x y --⎧⎪-+-⎨⎪+-⎩………,即为10220220x y x y x y --⎧⎪-+⎨⎪+-⎩………,作可行域如图:目标函数z ax y =+可化为y ax z =-+,因为y ax z =-+表示斜率为a -的直线,且0a -<,由图象可知当y ax z =-+经过点C 时,z 取到最大值,这时满足C 坐标满足22010x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩,C 点坐标为()4,3,代人z ax y =+得到12a =. 故选:C【点睛】本题主要考查由最优解求参数的问题,通常需作出可行域,根据目标函数的几何意义,结合图像求解,属于常考题型.11.ABC ∆的内角A ,B ,C 的对边为a ,b ,c ,若b =且ABC ∆的面积为)2224=-+-S a c b ,则a c +的最大值为( ) A. 1 B. 2C. 3D. 4【答案】D【解析】【分析】根据余弦定理,以及题中三角形的面积,得到1sin cos 22ac B ac B=-,求出23B π=,再由(222222cos ()==+-=+-b a c ac B a c ac ,结合基本不等式,即可求出结果.【详解】由余弦定理可得:2222cos a c b ac B =+-,又)222=+-S a c b , 1sin cos 2∴=ac B B ,因此tan B =23B π=. 所以(22222222()32cos ()()()44+==+-=+-+-=+a c b a c ac B a c ac a c a c …,即223()4a c +… 2()16a c ∴+…,即4a c +≤,当且仅当a c =时,等号成立,故a c +的最大值为4.故选:D【点睛】本题主要考查解三角形,以及基本不等式求最值,熟记余弦定理,三角形面积公式,以及基本不等式即可,属于常考题型.12.如果定义在R 上的函数()f x 满足:对于任意12x x ≠,都有()()()()11221221x f x x f x x f x x f x +<+,则称()f x 为“M 函数”.给出下列函数:①221y x x =-++;②3112x y +⎛⎫= ⎪⎝⎭;③xx y ee -=- ;④ln ,0()0,0x x f x x ⎧≠=⎨=⎩其中为“M 函数”的是( ) A. ①② B. ②③C. ①②③D. ②④【答案】B 【解析】 【分析】先根据题中条件,得到函数()f x 是定义在R 上的减函数,逐项判断所给函数单调性,即可得出结果. 【详解】∵对于任意给定的不等实数12x x ,,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,∴不等式等价为()()()12120x x f x f x --<⎡⎤⎣⎦恒成立, 即函数()f x 是定义在R 上的减函数.①2221(1)2y x x x =-++=--+,则函数在定义域上不单调.②函数3112x y +⎛⎫= ⎪⎝⎭是由1,312ty t x ⎛⎫==+ ⎪⎝⎭复合而成,根据同增异减的原则,函数单调递减,满足条件. ③根据指数函数单调性可得:xx y e e -=-为减函数,满足条件.④ln ,0()0,0x x f x x ⎧≠=⎨=⎩.当0x >时,函数单调递增,当0x <时,函数单调递减,不满足条件.综上满足“M 函数”的函数为②③, 故选:B【点睛】本题主要考查函数单调性的判定,熟记函数单调性的定义,以及基本初等函数单调性即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分.13.若()y f x =是偶函数,当0x >时,()31xf x =-,则31log 2f ⎛⎫ ⎪⎝⎭=.______. 【答案】1 【解析】 【分析】根据偶函数的性质,以及题中条件,结合对数运算,可直接得出结果.【详解】因为0x >时,()31xf x =-,且函数()y f x =是偶函数,所以()()3log 23331log log 2log 23112⎛⎫=-==-= ⎪⎝⎭f f f . 故答案为:1【点睛】本题主要考查由函数奇偶性求函数值,熟记偶函数性质,以及对数运算法则即可,属于基础题型. 14.若关于x 的不等式2250x x a a -++<的解集是()2,3,则a =_______. 【答案】3-或2 【解析】【分析】先由题意得到关于x 的方程2250x x a a -++=的两根分别是2和3,进而可求出结果. 【详解】因为关于x 的不等式2250x x a a -++<的解集是()2,3, 所以关于x 的方程2250x x a a -++=的两根分别是2和3, 所以有2236a a +=⨯=,解得:3a =-或2a =. 故答案为:3-或2【点睛】本题主要考查由不等式的解集求参数,熟记三个二次之间关系即可,属于常考题型. 15.设D 为ABC ∆所在平面内一点,4BC CD =,若24AD AB AC λμ=+,则λμ+=__________.【答案】92【解析】 【分析】先由题意,作出图形,根据平面向量的基本定理,得到1544AD AB AC =-+,再由题意确定λμ,的值,即可得出结果.【详解】如图所示,由4BC CD =,可知,B 、C 、D 三点在同一 直线上,图形如右:根据题意及图形,可得: 1115()4444=+=+=+-=-+AD AC CD AC BC AC AC AB AB AC ,24AD AB AC λμ=+,124544λμ⎧=-⎪⎪∴⎨⎪=⎪⎩,解得: 125λμ⎧=-⎪⎨⎪=⎩,则19522λμ⎛⎫+=-+= ⎪⎝⎭故答案为:92【点睛】本题主要考查由平面向量基本定理求参数,熟记平面向量的基本定理即可,属于常考题型.16._____.【答案】27【解析】【分析】找出正四面体中内接圆柱的最大值的临界条件,通过体积公式即可得到答案.【详解】解:圆柱体体积最大时,圆柱的底面圆心为正四面体的底面中心'O ,圆柱的上底面与棱锥侧面的交点N 在侧面的中线AM 上.,∴32BM =,12O M '=,1BO '=,∴AO '=设圆柱的底面半径为r ,高为h ,则102r <<.由三角形相似得:12r =h =,圆柱的体积()2212V r h r r π=-,∵()3212112327r r r r r ++-⎛⎫-≤= ⎪⎝⎭,当且仅当12r r =-即13r =时取等号.∴圆柱的最大体积为27.故答案为27.【点睛】本题主要考查学生的空间想象能力,以及分析问题的能力,基本不等式的运用,难度较大.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知命题:[2,1]p x ∀∈--,不等式2a x x <-恒成立;命题q :函数[1,)x ∀∈+∞,2141--x a x …; (1)若命题p 为真,求a 的取值范围;(2)若命题p q ∧是真命题,求实数a 的取值范围.【答案】(1)1a <-;(2)(),1-∞-.【解析】【分析】(1)根据p 为真,得到[2,1]x ∈--时,min2a x x ⎛⎫<-⎪⎝⎭即可,根据函数单调性,求出2=-y x x 的最小值,进而可求出结果; (2)若q 为真命题,根据题意得到2max 141x a x ⎛⎫-- ⎪⎝⎭…,由函数单调性,求出1y x x=-在[1,)+∞上的最大值,进而可求出结果. 【详解】(1) 若p 为真,即[2,1]x ∀∈--,不等式2a x x <-恒成立; 只需[2,1]x ∈--时,min 2a x x ⎛⎫<-⎪⎝⎭即可, 易知:函数2=-y x x 在[2,1]--递减,所以2=-y x x 的最小值为1-, 因此1a <-.(2)若q 为真命题,则2max 141x a x ⎛⎫--⎪⎝⎭…, 易知:1y x x=-在[1,)+∞上单调递减,所以min 0y =; 因此2410a -…,故12-a …或12a …,因为命题p q ∧是真命题,所以p ,q 均为真命题,故a 满足112a a <-⎧⎪⎨-⎪⎩…或112a a <-⎧⎪⎨≥⎪⎩ 解得:1a <-,因此实数a 的取值范围是(),1-∞-.【点睛】本题主要考查由命题的真假求参数,以及由复合命题真假求参数,根据转化与化归的思想即可求解 ,属于常考题型.18.已知函数2()sin 2cos 1,264x x f x x π⎛⎫=--+∈ ⎪⎝⎭R (1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间2,33ππ⎡⎤⎢⎥⎣⎦上的最小值,并求出取得最值时x 的值. 【答案】(1)4π,5114,4()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)最小值为, 3x π=. 【解析】【分析】(1)先将函数解析式化简整理,得到()23π⎛⎫=- ⎪⎝⎭x f x ,根据正弦函数的周期与单调区间求解,即可得出结果;(2)由2,33x ππ⎡⎤∈⎢⎥⎣⎦得,0236x ππ⎡⎤-∈-⎢⎥⎣⎦,根据正弦函数的性质,即可得出结果. 【详解】(1)因为2()sin 2cos 1sin cos cos sin cos 26426262x x x x x f x πππ⎛⎫=--+=--⎪⎝⎭3cos 22223x x x π⎛⎫=-=- ⎪⎝⎭所以函数()f x 的最小正周期为2412T ππ==. 由322,2232x k k k πππππ+-+∈Z 剟,得51144,33ππππ++∈k x k k Z 剟故函数()f x 的单调递减区间为5114,4()33ππππ⎡⎤++∈⎢⎥⎣⎦k k k Z . (2)因为2,,,033236x x ππππ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦,所以当236x ππ-=-即3x π=时,min ()36f x f ππ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭所以函数()f x 在区间2,33ππ⎡⎤⎢⎥⎣⎦上的最小值为,此时3x π=. 【点睛】本题主要考查求正弦型函数的周期,单调区间,以及最值,熟记正弦函数的性质即可,属于常考题型.19.已知四棱锥P ABCD -的底面ABCD 为平行四边形,,PD DC AD PC =⊥.(1)求证:AC AP =;(2)若平面APD ⊥平面ABCD ,120ADC ∠=,4AD DC ==,求点B 到平面PAC 的距离.【答案】(1)证明见解析;(2. 【解析】【分析】 (1)取PC 中点M ,连接AM ,DM ,根据线面垂直的判定定理,得出PC ⊥平面ADM ,进而可得AC AP =;(2)过点P 作PH 垂直AD 延长线于点H ,连接CH ,根据线面垂直的判定定理,证明PH ⊥平面ABCD ,推出⊥PH CH ;设h 为点B 到平面PAC 的距离,根据P ABC B ACP V V --=,结合题中数据,即可求出结果.【详解】(1)取PC 中点M ,连接AM ,DM ,∵PD DC =,且M 为PC 中点,DM PC ∴⊥∴AD PC ⊥,AD DM D =I ,PC ∴⊥平面ADM ,AM ⊂平面ADM ,PC AM ∴⊥,∵M 为PC 中点,AC PA ∴=;(2)过点P 作PH 垂直AD 延长线于点H ,连接CH ,∵平面APD ⊥平面ABCD ,平面APD 平面ABCD AD =,PH ⊂平面APD ,PH AD ⊥,PH ∴⊥平面ABCD ,CH ⊂Q 平面ABCD ,PH CH ∴⊥,∵PD DC =,AD AD =,AC AP =,∴∆≅∆ADP ADC ,∴120∠=∠=ADC ADP ,∴4===PD AD DC,==AC APPH CH PC ===设h 为点B 到平面PAC 的距离,由于P ABC B ACP V V --=,可得1133∆∆⋅=⋅ABC ACP S PH S h ,1442∆=⨯⨯=ABC S12ACP S ∆=⨯=7=h . 即点B 到平面PAC. 【点睛】本题主要考查证明线段相等,以及求点到平面的距离,熟记线面垂直的判定定理,性质定理,以及等体积法求点到平面的距离即可,属于常考题型.20.已知数列的前n 项和n S 满足2,n n S a n n =-∈N .(1)求数列{}n a 的通项公式;(2)若()2log 1n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1) 21n n a =-;(2)1n n T n =+. 【解析】【分析】(1)根据2n n S a n =-,求出11a =;再得到2n ≥时,112(1)n n S a n --=--,两式作差得到数列{}1n a +是首项为2,公比为2的等比数列,进而可得出结果;(2)由(1)的结果,根据裂项相消的方法,即可求出数列的和.【详解】(1)由题可知2n n S a n =-,①当1n =时,1112a a +=,得11a =,当2n ≥时,112(1)n n S a n --=--,②①-②,得121n n a a -=+,所以()1121n n a a -+=+所以数列{}1n a +是首项为2,公比为2的等比数列,所以11222n n n a -+=⨯=,故21n n a =-.(2)由(1)知()22log 1log 2n n n b a n =+==,则11111(1)1n n b b n n n n +==-++, 12233411111111111111223341n n n T b b b b b b b b n n +⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+=-+-+-+- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭, 所以1111n n T n n =-=++. 【点睛】本题主要考查由递推公式求通项公式,以及数列的求和,熟记等比数列的通项公式,以及裂项相消法求数列的和即可,属于常考题型.21.已知函数()(2)e 2x f x ax x =+--,其中2a >-.(1)当0a =时,求函数()f x 在[]1,0-上的最大值和最小值;(2)若函数()f x 为R 上的单调函数,求实数a 的取值范围.【答案】(1)max ()0f x =,min ()ln 21f x =-;(2)21a -<≤-.【解析】【分析】(1)由0a =得()22=--x f x e x ,对其求导,得到()21'=-x f x e ,解对应不等式,求出单调区间,进而可求出最值;(2)先由2(1)10f e'-=-<得到函数()f x 不可能在R 上单调递增,由题意,得到()f x 在R 上单调递减,推出()0f x '≤恒成立;令()()(2)1x g x f x ax a e '==++-,用导数的方研究其单调性,进而可求出结果. 【详解】(1)当0a =时,()22=--x f x e x ,所以()21'=-xf x e .由()0f x '>解得ln 2x >-,由()0f x '<解得ln 2x <-.故函数()f x 在区间[]1,ln 2--上单减,在区间[]ln 2,0-上单增. min ()(ln 2)ln 21f x f ∴=-=-,2(1)10,(0)0-=-<=f f e,max ()(0)0∴==f x f ;(2) 因为2(1)10f e'-=-<,所以函数()f x 不可能在R 上单调递增. 所以,若函数()f x 为R 上单调函数,则必是单调递减函数,即()0f x '≤恒成立.由(0)10f a '=+…可得1a ≤-,故()0f x '≤恒成立的必要条件为21a -<≤-.令()()(2)1x g x f x ax a e '==++-,则()(22)x g x ax a e '=++.当21a -<≤-时,由()0g x '>,可得22x a ⎛⎫<-+ ⎪⎝⎭, 由()0g x '<可得22x a ⎛⎫>-+ ⎪⎝⎭, ()g x ∴在2,2a ⎛⎫-∞-- ⎪⎝⎭.上单调递增,在22,a ⎛⎫--+∞ ⎪⎝⎭上单调递减. 故22max 2()21a g x g ae a --⎛⎫=--=-- ⎪⎝⎭令22()1a h a ae--=--,下证:当21a -<≤-时,22()10a h a ae --=--…. 即证221a e a---…,令22t a --=,其中(]1,0∈-t ,则112t a -=+, 则原式等价于证明:当(]1,0∈-t 时,12t e t +…. 由(1)的结论知,显然成立.综上,当21a -<≤-时,函数()f x 为R 上的单调函数,且单调递减.【点睛】本题主要考查求函数最值,以及由函数单调性求参数的问题,灵活运用导数的方法求函数单调性,即可研究其最值等,属于常考题型.(二)选考题:共10分.请考生在第22、23两题中任选- -题做答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,曲线1C 的参数方程为: 1(x y ααα⎧=+⎪⎨=⎪⎩为参数),以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为()4πθρ=∈R .(1)求1C 的极坐标方程;(2)若直线2C 与曲线1C 相交于M ,N 两点,求MN .【答案】(1) 22cos 40ρρθ--=;(2)【解析】【分析】 (1)根据曲线1C 的参数方程消去参数,得到普通方程,再转化为极坐标方程即可;(2)先将直线的极坐标方程化为参数方程,代入()2215x y -+=,根据参数方程下的弦长公式,即可求出结果. 【详解】(1)曲线1C 的参数方程为: 1(x y ααα⎧=+⎪⎨=⎪⎩为参数), 转换为普通方程为: ()2215x y -+=,转换为极坐标方程为: 22cos 40ρρθ--=. (2)直线2C 的极坐标方程为()4πθρ=∈R .转换为参数方程为: 22x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数). 把直线的参数方程代入22(1)5x y -+=,得到: 240t -=,(1t 和2t 为M ,N 对应的参数),故: 12t t +124t t ⋅=-, 所以12||MN t t =-==【点睛】本题主要考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,以及求弦长的问题,熟记公式即可,属于常考题型.选修4-5:不等式选讲23.已知()|1||1|f x x ax =+++.(1)当1a =-时,求不等式()3f x ≥的解集;(2)若1x ≥时,不等式()2f x x ≥+恒成立,求a 的取值范围.【答案】(1) 33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)(,2][0,)-∞-⋃+∞. 【解析】【分析】(1)先由1a =-得|1||1|3++-≥x x ,分别讨论1x <-,11x -≤<,1x ≥三种情况,即可得出结果;(2)先由题意,得到当1x ≥时,不等式()2f x x ≥+恒成立转化为2a x -…或0a ≥恒成立,进而可求出结果.【详解】(1)当1a =-时,不等式()3f x ≥可化简为|1||1|3++-≥x x .当1x <-时,113x x --+-≥,解得32x -…,所以32x -… 当11x -≤<时,113x x ++-≥,无解;当1x ≥时,113x x ++-≥,解得32x ≥,所以32x ≥; 综上,不等式()3f x ≥的解集为33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭; (2)当1x ≥时,不等式()2f x x ≥+可化简为11ax +≥.由不等式的性质得11ax +≤-或11ax +≥,即2ax ≤-或0ax ≥.当1x ≥时,不等式()2f x x ≥+恒成立转化为2a x -…或0a ≥恒成立; 则2a ≤-或0a ≥.综上,所求a 的取值范围为(,2][0,)-∞-⋃+∞.【点睛】本题主要考查解含绝对值不等式,以及由不等式恒成立求参数的问题,灵活运用分类讨论法求解即可,属于常考题型.。

东北三省三校(哈师大附中、东北师大附中、辽宁实验中学)2019届高三第一次模拟考试数学试卷(文) 含解析

东北三省三校(哈师大附中、东北师大附中、辽宁实验中学)2019届高三第一次模拟考试数学试卷(文) 含解析

东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟考试数学试题(文)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A. 4B. -4C. 2D. -2【答案】D【解析】复数=,所以虚部为-2,故选D.2.集合,,则()A. B.C. D.【答案】B【解析】因为可得,集合,所以故选B3.已知向量的夹角为,,,则()A. B. C. D.【答案】C【解析】所以故选C.4.设直线与圆相交于两点,且,则圆的面积为()A. B. C. D.【答案】C【解析】圆的圆心坐标为,半径为,,直线与圆相交于两点,且,圆心到直线的距离,所以,解得,圆的半径,所以圆的面积,故选C.5.等差数列的前项和为,且,,则()A. 30B. 35C. 42D. 56 【答案】B【解析】因为是等差数列,所以,所以公差,根据求和公式故选B6.已知,,则()A. B. C. D.【答案】A【解析】因为,所以,所以,且解得,故选A.7.执行两次下图所示的程序框图,若第一次输入的的值为4,第二次输入的的值为5,记第一次输出的的值为,第二次输出的的值为,则()A. 2B. 1C. 0D. -1 【答案】D【解析】当输入x的值为4时,第一次不满足,但是满足x能被b整除,输出;当输入x的值为5时,第一次不满足,也不满足x能被b整除,故b=3第二次满足,故输出则-1故选D8.设,,,则的大小关系为()A. B. C. D. 【答案】B【解析】因为指数函数是减函数,,所以<,即;因为幂函数是增函数,,所以>,即,所以,故选B.9.已知是不重合的平面,是不重合的直线,则的一个充分条件是()A. ,B. ,C.,, D. ,,【答案】C【解析】对于答案A:,,得出与是相交的或是垂直的,故A错;答案B:,,得出与是相交的、平行的都可以,故B错;答案C:,,得出,再得出,故C正确;答案D: ,,,得出与是相交的或是垂直的,故D错故选C10.圆周率是圆的周长与直径的比值,一般用希腊字母表示,早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年,在生活中,我们也可以通过设计下面的实验来估计的值;从区间内随机抽取200个数,构成100个数对,其中满足不等式的数对共有11个,则用随机模拟的方法得到的的近似值为()A. B. C. D.【答案】A【解析】在平面坐标系中作出边长为1的正方形和单位圆,则符合条件的数对表示的点在轴上方、正方形内且在圆外的区域,区域面积为,由几何概型概率公式可得解得,故选A.11.双曲线的左焦点为,点的坐标为,点为双曲线右支上的动点,且周长的最小值为8,则双曲线的离心率为()A. B. C. 2 D.【答案】D【解析】由题易知双曲线的右焦点,即,点P为双曲线右支上的动点,根据双曲线的定义可知所以周长为:当点共线是,周长最小即解得故离心率故选D.12.若函数在区间上有两个极值点,则实数的取值范围是()A. B. C. D.【答案】D【解析】,可得,要使恰有2个正极值点,则方程有2个不相等的正实数根,即有两个不同的正根,的图象在轴右边有两个不同的交点,求得,由可得在上递减,由可得在上递增,,当时,;当时,所以,当,即时,的图象在轴右边有两个不同的交点,所以使函数在区间上有两个极值点,实数的取值范围是,故选D.二、填空题13.已知满足约束条件:,则的最大值是______.【答案】3【解析】满足约束条件:,可行域如图:解得由题,当目标函数过点A时取最大值,即故答案为314.甲、乙、丙三人中,只有一个会弹钢琴,甲说:“我会”,乙说:“我不会”,丙说:“甲不会”,如果这三句话,只有一句是真的,那么会弹钢琴的是_____.【答案】乙【解析】假设甲会,那么甲、乙说的都是真话,与题意矛盾,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的是真话,符合题意,假设丙会,那么乙、丙说的都是真话,与题意矛盾;故答案是乙15.四面体中,底面,,,则四面体的外接球的表面积为____.【答案】【解析】由题意,可得BC CD,又因为底面,所以AB CD,即CD平面ABC,所以CD AC取AD的中点O,则OC=OA=OB=OD故点O为四面体外接球的球心,因为所以球半径故外接球的表面积故答案为三、解答题(解答应写出文字说明、证明过程或演算步骤.)16.设函数.(1)当时,求函数的值域;(2)中,角的对边分别为,若,且,求的面积. 解:(1)∵,∴,∴∴函数的值域为;(2)∵,∴,∵,∴,∴,即由余弦定理,,∴,即又,∴∴.17.世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?附:P解:(1)设“随机抽取2名,其中恰有一名学生不近视”为事件,则故随机抽取2名,中恰有一名学生不近视的概率为.(2)根据以上数据得到列联表:所以的观测值,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系. 18.如图,四棱锥中,底面是平行四边形,平面,垂足为,在上,且,,,四面体的体积为.(1)求点到平面的距离;(2)若点是棱上一点,且,求的值.解:(1)(方法一):由已知∴∵⊥平面,平面,∴∴∵∴设点到平面的距离为,∵,法二:由已知∴∵⊥平面,平面∴平面⊥平面∵平面平面在平面ABCD内,过作⊥,交延长线于,则⊥平面∴的长就是点到平面的距离在中,==∴点到平面的距离为(2)在平面内,过作⊥于,连结,又因为⊥,∴⊥平面,平面∴⊥⊥平面,平面∴⊥∴∥由⊥得:19.已知分别是椭圆:的左右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求椭圆的标准方程;(2)过点作不与轴重合的直线,设与圆相交于两点,且与椭圆相交于两点,当时,求的面积.解:(1)焦点为,则,解得,所以椭圆的标准方程为(2)由已知,可设直线方程为,联立得易知则=.因为,所以,解得.联立,得,设,则20.已知函数(为自然对数的底数),.(1)当时,求函数的极小值;(2)若当时,关于的方程有且只有一个实数解,求的取值范围.解:(1)当时,,,令则列表如下:所以.(2)设,,设,,由得,,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增, 又,故当时,关于的方程有且只有一个实数解,符合题意.②当,即时,由(1)可知,所以,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解1.又时,,单调递增,且,令,,,故在单调递增,又在单调递增,故,故,又,由零点存在定理可知,,故在内,关于的方程有一个实数解.又在内,关于的方程有一个实数解1,不合题意.综上,.21.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),直线的方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)曲线与直线交于两点,若,求的值.解:(1)由题,曲线的参数方程为(为参数),化为普通方程为:所以曲线C的极坐标方程:(2)直线的方程为,的参数方程为为参数),然后将直线得参数方程带入曲线C的普通方程,化简可得:,所以故解得22.选修4-5:不等式选讲已知函数.(1)若不等式对恒成立,求实数的取值范围;(2)设实数为(1)中的最大值,若实数满足,求的最小值.解:(1)因为函数恒成立,解得;(2)由第一问可知,即由柯西不等式可得:化简:即当且紧当:时取等号,故最小值为。

东北三省四市2019届高三第一次模拟数学(文)试卷及解析

东北三省四市2019届高三第一次模拟数学(文)试卷及解析

第1页,总19页…………装…………○…校:___________姓名:___________班级:…………装…………○…东北三省四市2019届高三第一次模拟数学(文)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合A ={−1,0,1,2},B ={x |(x +1)(x −2)<0},则A ∩B =( )A. {−1,0,1,2}B. {−1,0,1}C. {0,1,2}D. {0,1,}2.在复平面内,表示复数z =11−i的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列各点中,可以作为函数y =sinx −√3cosx 图象的对称中心的是( )A. (π3,0)B. (π6,0)C. (2π3,0)D. (5π6,0)4.执行如图所示的程序框图,如果输入N =4,则输出p 为( )A. 6B. 24C. 120D. 7205.已知等差数列{a n }的前n 项和为S n ,且a 2=4,a 4=2,则S 5=( )A. 0B. 10C. 15D. 306.已知m,n 为两条不重合直线,α,β为两个不重合平面,下列条件中,α//β的充分条件是( ) A. m//n,m ⊂α,n ⊂β B. m//n,m ⊥α,n ⊥βC. m⊥n,m//α,n//β D. m⊥n,m ⊥α,n ⊥β7.“科技引领,布局未来”科技研发是企业发展的驱动力量。

2007−2018年,某企业连续12年累计研发投入搭4100亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这12年间的研发投答案第2页,总19页○…………装……○…………线…………※※请※※不※※要※题※※○…………装……○…………线…………入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )A. 2012年至2013年研发投入占营收比增量相比2017年至2018年增量大B. 2013年至2014年研发投入增量相比2015年至2016年增量小C. 该企业连续12年研发投入逐年增加D. 该企业来连续12年来研发投入占营收比逐年增加 8.若a =log 225,b =0.48,c =ln2,则a,b,c 的大小关系是( )A. a<c <b B. a <b <c C. c <b <a D. b <c <a9.我国古达数学名著《九章算术-商功》中阐述:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,一为鳖觸,阳马居二,鳖属居一.不易之率也。

2019东北三省三模文科数学有答案解析

2019东北三省三模文科数学有答案解析

2019年东北三省四市教研协作体等值诊断联合考试2019年长春市高中毕业班第三次调研测试数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回. 注意事项:1. 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上). 1. 若i zi-=+123,则=z A.1522i -- B. 1522i - C.i 2521+ D.1522i -+2. 若集合{2,1,0,1,2}A =--,则集合{|1,}y y x x A =+∈=A.{1,2,3}B.{0,1,2}C.{0,1,2,3}D.{1,0,1,2,3}-3. 直线l :2x my =+与圆M :22220x x y y +++=相切,则m 的值为A.1或-6B.1或-7C.-1或7D.1或17-4. 各项都是正数的等比数列{}n a 中,13a ,312a ,22a 成等差数列,则1012810a aa a +=+A.1B.3C.6D.95. 对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是相关系数为1r相关系数为2r相关系数为3r相关系数为4rA. 24310r r r r <<<<B. 42130r r r r <<<<C. 42310r r r r <<<<D. 24130r r r r <<<<6. 函数21()3coslog 22f x x x π=--的零点个数为 A.2 B.3 C.4 D.57. 一个算法的程序框图如图所示,若该程序输出的结果是631,则判断框内应填入的条件是 A.i <4 B.i >4 C.i <5 D.i >58. 函数()sin()6f x A x πω=+(0)ω>的图像与x 轴的交点的横坐标构成一个公差为2π的等差数列,要得到函数()cos g x A x ω=的图像只需将()f x 的图像A.向左平移6πB.向右平移3π C.向左平移23πD.向右平移23π9. 若满足条件AB=3,C=3π的三角形ABC 有两个,则边长BC 的取值范围是A.()1,2B.()2,3C.()3,2D.()2,2 10. 现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为A.13B.23C.12D.3411. 双曲线22221(0,0)x y a b a b-=>>,过其一个焦点且垂直于实轴的直线与双曲线交于M 、N 两点,O 是坐标原点,满足OM ON ⊥,则双曲线的离心率为A.172+ B.152+ C.132+ D.122+12. 四棱锥S ABCD -的所有顶点都在同一个球面上,底面ABCD 是正方形且和球心O在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于443+,则球O 的体积等于 A.423π B.823π C.1623π D.3223π第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 平面区域⎩⎨⎧≤-≤-≤+≤-1111y x y x 的周长为_______________.14. 某长方体的三视图如右图,长度为10的体对角线在正视图中的长度为6,在侧视图中的长度为5,则该长方体的全面积为________________.15. 等差数列{}n a 的首项为a ,公差为d ,其前n 项和为n S ,则数列{}n S 为递增数列的充分必要条件是________________.16. 如果直线2140ax by -+=(0,0)a b >>和函数1()1x f x m+=+(0,1)m m >≠的图像恒过同一个定点,且该定点始终落在圆22(1)(2)25x a y b -+++-=的内部或圆上,那么ba的取值范围是_______________. 三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17. (本小题满分12分)在△ABC 中,向量(2cos ,1)m B =,向量(1sin ,1sin 2)n B B =--+,且满足m n m n +=-.⑴求角B 的大小;⑵求sin sin A C +的取值范围. 18. (本小题满分12分)2012年2月份,从银行房贷部门得到好消息,首套住房贷款利率将回归基准利率. 某大型银行在一个星期内发放贷款的情况统计如图所示: ⑴求本周该银行所发放贷款的贷款..年限..的标准差; ⑵求在本周内一位购房者贷款年限不超过20年的概率; ⑶求在本周内该银行所借贷客户的平均贷款年限(取过剩近似整数值).19. (本小题满分12分)已知四棱柱1111ABCD A B C D -中,1AA ABCD ⊥底面,90ADC ∠=,AB CD||,122AD CD DD AB ====.⑴求证:11AD B C ⊥; ⑵求四面体11A BDC 的体积.A 1CD 1DA BB 1C 16正视图侧视图俯视图520. (本小题满分12分)已知12,F F 分别为椭圆22221x y a b+=(0)a b >>的左右焦点, ,M N 分别为其左右顶点,过2F 的直线l 与椭圆相交于,A B 两点. 当直线l 与x 轴垂直时,四边形AMBN的面积等于2,且满足222MF AB F N =+.⑴求此椭圆的方程;⑵当直线l 绕着焦点2F 旋转但不与x 轴重合时,求MA MB NA NB ⋅+⋅的取值范围.21. (本小题满分12分)已知函数()ln f x x x =.⑴讨论函数()f x 的单调性;⑵对于任意正实数x ,不等式1()2f x kx >-恒成立,求实数k 的取值范围; ⑶求证:当3a >时,对于任意正实数x ,不等式()()xf a x f a e +<⋅恒成立.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1:几何证明选讲.自圆O 外一点P 引圆的一条切线PA ,切点为A ,M 为PA的中点,过点M 引圆O 的割线交该圆于,B C 两点,且100BMP ∠=,40BPC ∠=.⑴求证:MBP ∆ 与MPC ∆相似; ⑵求MPB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系xOy 中,曲线M 的参数方程为sin cos sin 2x y θθθ=+⎧⎨=⎩(θ为参数),若以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线N 的极坐标方程为:2sin()42t πρθ+=(其中t 为常数).⑴若曲线N 与曲线M 只有一个公共点,求t 的取值范围; ⑵当2t =-时,求曲线M 上的点与曲线N 上点的最小距离.24. (本小题满分10分)选修4-5:不等式选讲. 已知函数()|1||22|.f x x x =-++ ⑴解不等式()5f x >;⑵若关于x 的方程1()4a f x =-的解集为空集,求实数a 的取值范围.2019年东北三省四市教研协作体等值诊断联合考试2019年长春市高中毕业班第三次调研测试数学(文科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.C2.C3. B4.D5.A6.B7.C8.A9.C 10.C 11.B 12.B 简答与提示:1. C由已知i i i z 2521123+=-+=. 故选C. 2. C 将2,1,0,1,2--=x 逐一带入1+=x y ,得y=0,1,2,3,故选C.3. B圆的方程化为22(1)(1)2x y +++=,由直线与圆相切,可有2132=+-m m ,解得71m =-或. 故选B. 4. D由已知31232a a a =+于是232q q =+,由数列各项都是正数,解得3q =,210128109a a q a a +==+. 故选D.5. A 由相关系数的定义以及散点图所表达的含义可知24310r r r r <<<<. 故选A6. B在同一坐标系内画出函数3cos2y x π=和21log 2y x =+的图像,可得交点个数为3. 故选B.7. C 初始值15,0,1===P T i ,第一次循环后2,1,5i T P ===,第二次循环后3,2,1i T P ===,第三次循环后14,3,7i T P ===,第四次循环后15,4,63i T P ===,因此循环次数应为4次,故5i <可以作为判断循环终止的条件. 故选C. 8. A由条件知函数()f x 的周期为π,可知2ω=,即函数()sin(2)6f x A x π=+,()cos 2g x A x =,可将()g x 化为()sin(2)2g x A x π=+,由此可知只需将()f x 向左平移6π个单位即可获得x A x A x A x f 2cos )22sin(]6)6(2sin[)6(=+=++=+ππππ.故选A. 9. C若满足条件的三角形有两个,则应1sin sin 23<<=A C ,又因为2sin sin ==CABA BC ,故A BC sin 2=,32BC <<. 故选C. 10. C 通过将基本事件进行列举,求得概率为21. 故选C.11. B 由题意可有:a b c 2=,由此求得251+=e . 故选B . 12. B 由题意可知四棱锥S ABCD -的所有顶点都在同一个球面上,底面ABCD 是正方形且和球心O 在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的半径R ,且四棱锥的高h R =,进而可知此四棱锥的四个侧面均是边长为2R 的正三角形,底面为边长为2R 的正方形,所以该四棱锥的表面积为2124(22sin 60)2R R R +⋅⋅⋅= 2(223)443R +=+,于是2,22==R R ,进而球O 的体积3448222333V R πππ==⨯=. 故选B .二、填空题(本大题包括4小题,每小题5分,共20分) 13. 4214. 465+15.0d ≥且0d a +>16. 34[,]43简答与提示:13. 画出图形,可得该区域图形为边长为2的正方形,故其周长为42.14. 由体对角线长10,正视图的对角线长6,侧视图的对角线长5,可得长方体的长宽高分别为5,2,1,因此其全面积为2(515212)465⨯+⨯+⨯=+.15. 由n n S S >+1,可得(1)(1)(1)22n n n n n a d na d +-++>+,整理得0>+a dn ,而*∈N n ,所以0d ≥且0>+a d . 因此数列{}n S 单调递增的充要条件是: 0d ≥且0d a +>.16. 根据指数函数的性质,可知函数1()1(0,1)x f x m m m +=+>≠恒过定点(1,2)-.将点(1,2)-代入2140ax by -+=,可得7a b +=.由于(1,2)-始终落在所给圆的内部或圆上,所以2225a b +≤.由22725a b a b +=⎧⎨+=⎩,解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,这说明点(,)a b 在以(3,4)A 和(4,3)B 为端点的线段上运动,所以b a 的取值范围是34[,]43.三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题借助向量的垂直与数量积考查三角函数的化简,并且考查利用三角函数的变换与辅助角公式求取三角函数的值域等有关知识.【试题解析】解:⑴由m n m n +=-,可知0m n m n ⊥⇔⋅=. 然而(2cos ,1),m B =(1sin ,1sin 2)n B B =--+,所以有2cos sin 21sin 22cos 10m n B B B B ⋅=--+=-=,得1c o s ,602B B ==.(6分)⑵)30sin(3cos 23sin 23)120sin(sin sin sin +=+=-+=+A A A A A C A .(9分)又0120A <<,则3030150A <+<,1sin(30)12A <+≤, 所以 3sin sin 23≤+<C A ,即sin sin A C +的取值范围是3(,3]2.(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,具体涉及到统计图的应用、平均值的求取以及概率的初步应用.【试题解析】解:⑴贷款年限依次为10,15,20,25,30,其平均值20x =.222222(1020)(1520)(2020)(2520)(3020)505s -+-+-+-+-==,所以标准差52s =. (4分)⑵所求概率123101025980808016P P P P =++=++=. (8分) ⑶平均年限101010152025252015302280n ⨯+⨯+⨯+⨯+⨯=≈(年).(12分) 19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面的垂直关系以及几何体体积的求法.【试题解析】解:⑴由四边形11A ADD 是正方形,所以D A AD 11⊥.又⊥1AA 平面ABCD , 90=∠ADC ,所以DC AD DC AA ⊥⊥,1,而1AA AD A =,所以DC ⊥平面D D AA 11,DC AD ⊥1.又1A D DC D =,所以⊥1AD 平面11DCB A ,从而C B AD 11⊥. (6分) ⑵设所给四棱柱的体积为V ,则61=⋅=AA S V ABCD ,又三棱锥ABD A -1的体积等于三棱锥111C D A B -的体积,记为1V ,三棱锥111C D A D -的体积又等于三棱锥CBD C -1的体积,记为2V .而3221221311=⨯⨯⨯⨯=V ,3422221312=⨯⨯⨯⨯=V ,所以所求四面体的体积为22221=--V V V . (12分) 20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到椭圆 方程的求法、直线与圆锥曲线的相关知识以及向量与圆锥曲线的综合知识.【试题解析】解:⑴当直线l 与x 轴垂直时,四边形AMBN 面积: ,222212=⋅⋅ab a 得12=b . 又2222,,b MF a c AB F N a c a =+==-,于是c a ab c a -+=+222,得2=ac ,又221a c =+,解得2a =.因此该椭圆方程为1222=+y x . (4分) (2)设直线1:+=my x l ,由⎪⎩⎪⎨⎧=++=12122y x my x 消去x 并整理得:012)2(22=-++my y m . 设),(),,(2211y x B y x A ,则有21,22221221+-=+-=+m y y m m y y . (6分) 由),2(11y x MA +=,),2(22y x MB +=,),2(11y x NA -=,),2(22y x NB -=,可得4)(22121++=⋅+⋅y y x x NB NA MB MA . (8分) 1)()1()1)(1(2121221212121++++=+++=+y y m y y m y y my my y y x x 21222++-=m m ,所以2104)(222121+=++=⋅+⋅m y y x x NB NA MB MA . (10分) 由于m R ∈,可知MA MB NA NB ⋅+⋅的取值范围是(0,5]. (12分) 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来研 究函数的单调性、极值以及函数零点的情况.【试题解析】解:⑴令()l n 10fx x '=+=,得1x e=. 当1(0,)x e ∈时,()0f x '<;当1(,)x e∈+∞时,()0f x '>.所以函数()f x 在1(0,)e上单调递减,在1(,)e +∞上单调递增.(3分)⑵由于0x >,所以11()l n l n 22fxxxk x k x x=>-⇔<+. 构造函数1()ln 2k x x x =+,则令221121()022x kx x x x-'=-==,得12x =. 当1(0,)2x ∈时,()0k x '<;当1(,)2x ∈+∞时,()0k x '>.所以函数()k x 在点12x =处取得最小值,即m i n11()()l n 11l n 222k x k ==+=-. 因此所求的k 的取值范围是(,1l n 2)-∞-. (7分) ⑶()()()ln()ln x xf a x f a e a x a x a a e +<⋅⇔++<⋅()ln()ln a x a a x a x a ae e+++⇔<.构造函数ln ()xx xg x e =,则问题就是要求()()g a x g a +<恒成立. (9分) 对于()g x 求导得 2(ln 1)ln ln 1ln ()x x x xx e x x e x x xg x e e +-⋅+-'==. 令()ln 1ln h x x x x =+-,则1()ln 1h x x x'=--,显然()h x '是减函数.当1x >时,()(1)0h x h ''<=,从而函数()h x 在(1,)+∞上也是减函数. 从而当3x >时,()()ln 1ln 20h x h e e e e e <=+-=-<,即()0g x '<,即函数ln ()xx xg x e=在区间(3,)+∞上是减函数. 当3a >时,对于任意的非零正数x ,3a x a +>>,进而有()()g a x g a +<恒成立,结论得证. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明及其运算,具体涉及到圆的性质以及三角形相似等有关知识内容.【试题解析】解:⑴因为MA 为圆的切线,所以2MA MB MC =⋅ 又M 为PA 中点,所以2MP MB MC =⋅.因为BMP PMC ∠=∠,所以BMP ∆与PMC ∆相似. (5分) ⑵由⑴中BMP ∆与PMC ∆相似,可得MPB MCP ∠=∠. 在MCP ∆中,由180MPB MCP BPC BMP ∠+∠+∠+∠=, 得180202BPC BMPMPB -∠-∠∠==. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、直线与曲线的位置关系以及点到直线的距离等内容.【试题解析】对于曲线M,消去参数,得普通方程为2,12≤-=x x y ,曲线M是抛物线的一部分;对于曲线N ,化成直角坐标方程为t y x =+,曲线N 是一条直线. (2分)(1)若曲线M,N 只有一个公共点,则有直线N 过点(2,1)时满足要求,并且向左下方平行运动直到过点(2,1)-之前总是保持只有一个公共点,再接着向左下方平行运动直到相切之前总是有两个公共点,所以2121t -+<≤+满足要求;相切时仍然只有一个公共点,由12-=-x x t ,得210,x x t +--=14(1)0t ∆=++=,求得54t =-. 综合可求得t 的取值范围是:2121t -+<≤+或54t =-. (6分)(2)当2-=t 时,直线N: 2-=+y x ,设M 上点为)1,(200-x x ,02x ≤,则823243)21(212002≥++=++=x x x d , 当012x =-时取等号,满足02x ≤,所以所求的最小距离为823. (10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明以及解法等内容.【试题解析】解:(1)⎪⎩⎪⎨⎧-<--<≤-+≥+=1,1311,31,13)(x x x x x x x f当1≥x 时,由513>+x 解得:34>x ;当11<≤-x 时,由53>+x 得2>x ,舍去;当1-<x 时,由513>--x ,解得2-<x . 所以原不等式解集为4|23x x x ⎧⎫<->⎨⎬⎩⎭或.(5分) (2)由(1)中分段函数()f x 的解析式可知:()f x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增.并且min ()(1)2f x f =-=,所以函数()f x 的值域为[2,)+∞.从而()4f x -的取值范围是[2,)-+∞,进而1()4f x -(()40)f x -≠的取值范围是1(,](0,)2-∞-+∞.根据已知关于x 的方程1()4a f x =-的解集为空集,所以实数a 的取值范围是1(,0]2-. (10分)。

东北三省三校东北师大附中2019届高三第一次模拟考试数学(文)试题-70cd4159a3a4428491a98f1c24cc7307

东北三省三校东北师大附中2019届高三第一次模拟考试数学(文)试题-70cd4159a3a4428491a98f1c24cc7307
【详解】
由题意 , 可得BC CD,
又因为 底面 ,所以AB CD,即CD 平面ABC,所以CD AC
取AD的中点O,则OC=OA=OB=OD
故点O为四面体 外接球的球心,因为
所以球半径
故外接球的表面积
故答案为
【点睛】
本题主要考查了三棱锥的外接球知识,找出球心的位置是解题的关键,属于中档题.
16.(1) (2)
7.D
【解析】
【分析】
根据已知的程序框图,模拟程序的执行过程,可的结果.
【详解】
当输入x的值为4时,
第一次不满足 ,但是满足x能被b整除,输出 ;
当输入x的值为5时,
第一次不满足 ,也不满足x能被b整除,故b=3
第二次满足 ,故输出
则 -1
故选D
【点睛】
本题主要考查了程序框图,属于较为基础题.
8.B
(1)求曲线 的极坐标方程;
(2)曲线 与直线 交于 两点,若 ,求 的值.
22.选修4-5:不等式选讲
已知函数 .
(1)若不等式 对 恒成立,求实数 的取值范围;
(2)设实数 为(1)中 的最大值,若实数 满足 ,求 的最小值.
参考答案
1.D
【解析】
【分析】
先将复数进行化简得 ,得出答案.
【详解】
【详解】因为 ,所以 Nhomakorabea,所以 ,且
解得 ,故选A.
【点睛】
三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.

精品解析:【校级联考】东北三省三校2019届高三第三次模拟考试数学(文)试题(解析版)

精品解析:【校级联考】东北三省三校2019届高三第三次模拟考试数学(文)试题(解析版)

哈师大附中2019年高三第三次模拟考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】C【解析】【分析】先求出集合,然后再求出即可.【详解】∵,,∴.故选C.【点睛】解答集合运算的问题时,首先要分清所给的集合是用列举法还是用描述法表示的,对于用描述法表示的集合,在运算时一定要把握准集合中元素的特征.2.,则()A. B. C. D.【答案】A【解析】【分析】根据复数的乘法运算律展开再求模即可.【详解】所以,故答案为A【点睛】本题考查复数的乘法运算和求模,基础题.3.已知向量的夹角为,,,则()A. -16B. -13C. -12D. -10【答案】C【解析】根据数量积的运算律和数量积的定义求解即可得到答案.【详解】∵向量的夹角为,,,∴,∴.故选C.【点睛】本题考查数量积的运算,解题时根据运算律和定义求解即可,属于基础题.4.已知双曲线的离心率为2,则其渐近线方程为()A. B. C. D.【答案】D【解析】【分析】由离心率为2可得,于是得,由此可得渐近线的方程.【详解】由得,即为双曲线的渐近线方程.∵双曲线的离心率为2,∴,解得,∴双曲线的渐近线方程为.故选D.【点睛】解题时注意两点:一是如何根据双曲线的标准方程求出渐近线的方程;二是要根据离心率得到.考查双曲线的基本性质和转化、计算能力,属于基础题.5.等比数列的各项和均为正数,,,则()A. 14B. 21C. 28D. 63【答案】C【分析】根据题中的条件求出等比数列的公比,再根据即可得到所求.【详解】设等比数列的公比为,∵,,∴,即,解得或,又,∴,∴.故选C.【点睛】本题考查等比数列项的运算,解题时注意将问题转化为基本量(首项和公比)的运算,另外解题时还需注意数列中项之间性质的灵活应用,以减少计算量、提高解题的效率.6.设命题,则为()A. B.C. D.【答案】A【解析】【分析】根据含有量词的命题的否定的定义进行求解即可.【详解】∵命题,∴为:.故选A.【点睛】对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.7.如图,直角梯形中,,,,在边上任取点,连交于点,则的概率为()A. B. C. D.【答案】B【解析】【分析】利用相似三角形即可.【详解】由已知三角形ABC为直角三角形, ,可得AC=2.当时,因为所以即,所以,且点E的活动区域为线段AD,AD=1.所以的概率为故答案为B.【点睛】本题考查几何概型中的“长度”之比,基础题.8.运行程序框图,如果输入某个正数后,输出的,那么的值为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】依次运行框图中给出的程序,根据输出结果所在的范围来判断图中的值.【详解】依次运行框图中的程序,可得:第一次:;第二次:;第三次:;第四次:;第五次:;……因为输出的,所以程序运行完第四次即可满足题意,所以判断框中的值为4.故选B.【点睛】程序框图的补全及逆向求解问题思路:①先假设参数的判断条件满足或不满足;②运行循环结构,一直到运行结果与题目要求的输出结果相同为止;③根据此时各个变量的值,补全程序框图.此类试题要求学生要有比较扎实的算法初步的基本知识,以及综合分析问题和解决问题的能力,要求较高,属中档题.9.已知四面体中,平面平面,为边长2的等边三角形,,,则四面体的体积为()A. B. C. D.【答案】A【解析】【分析】先利用面面垂直求出四面体的高,因为是等腰直角三角形易求面积,利用三棱锥的体积公式即得.【详解】解:取BD中点M,因为为边长2的等边三角形,所以,且.又因为平面平面且交线为BD,所以,而且是等腰直角三角形,且面积为2,所以,故答案为A.【点睛】本题考查面面垂直的性质,椎体体积的运算,基础题.10.一项针对都市熟男(三线以上城市,岁男性)消费水平的调查显示,对于最近一年内是否购买过以下七类高价商品,全体被调查者,以及其中包括的1980年及以后出生(80后)被调查者,1980年以前出生(80前)被调查者回答“是”的比例分别如下:根据表格中数据判断,以下分析错误的是()A. 都市熟男购买比例最高的高价商品是电子产品B. 从整体上看,80后购买高价商品的意愿高于80前C. 80前超过3成一年内从未购买过表格中七类高价商品D. 被调查的都市熟男中80后人数与80前人数的比例大约为【答案】D【解析】【分析】根据表格中给出的信息,对四个选项分别进行分析、判断后可得答案.【详解】对于选项A,从表中的数据可得都市熟男购买电子产品的比例为,为最高值,所以A正确.对于选项B,从表中后两列的数据可看出,前6项的比例均是80后的意愿高于80前的意愿,所以B正确.对于选项C,从表中的最后一列可看出,80前一年内从未购买过表格中七类高价商品的比例为,约为3成,所以C正确.对于选项D,根据表中数据不能得到被调查的都市熟男中80后人数与80前人数的比例,所以D不正确.故选D.【点睛】本题考查统计图表的应用和阅读理解能力,解题的关键是读懂表中数据的意义,然后结合所求进行分析、判断,属于基础题.11.椭圆上存在两点,关于直线对称,若为坐标原点,则=()A. 1B.C.D.【答案】C【解析】【分析】由题意设直线的方程为,与椭圆方程联立后求得到点的坐标与参数的关系,然后根据的中点在直线上求出参数的值,进而得到点的坐标,进而得到向量的坐标,于是可得结果.【详解】由题意直线与直线垂直,设直线的方程为.由消去整理得,∵直线与椭圆交于两点,∴,解得.设,的中点为,则,∴,,∴点的坐标为.由题意得点在直线上,∴,解得.∴,∴,∴.故选C.【点睛】本题考查直线和椭圆的位置关系,解题的关键是得到直线的方程.其中题中的对称是解题的突破口,对于此类问题要注意两对称点的连线与对称轴垂直、两对称点的中点在对称轴上,解题是要注意这两点的运用,属于中档题.12.如图,直角梯形,,,,是边中点,沿翻折成四棱锥,则点到平面距离的最大值为()A. B. C. D.【答案】B【解析】【分析】由题意得在四棱锥中平面.作于,作于,连,可证得平面.然后作于,可得即为点到平面的距离.在中,根据等面积法求出的表达式,再根据基本不等式求解可得结果.【详解】由翻折过程可得,在如图所示的四棱锥中,底面为边长是1的正方形,侧面中,,且.∵,∴平面.作于,作于,连,则由平面,可得,∴平面.又平面,∴.∵,,∴平面.在中,作于,则平面.又由题意可得平面,∴即为点到平面的距离.在中,,设,则,∴.由可得,∴,当且仅当,即时等号成立,此时平面,综上可得点到平面距离的最大值为.故选B.【点睛】本题综合考查立体几何中的线面关系和点面距的计算,解题的关键是作出表示点面距的垂线段,另外根据线面平行将所求距离进行转化也是解答本题的关键.在求得点面距的表达式后再运用基本不等式求解,此时需要注意等号成立的条件,本题难度较大.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知等差数列的前项和为,且,,则__________.【答案】80【解析】【分析】解方程组求出等差数列的首项和公差后再根据前项和公式求解即可.【详解】设等差数列的公差为,由题意得,解得,∴.故答案为:.【点睛】本题考查等差数列中的基本运算,解题时注意方程思想的运用,同时将问题转化为等差数列的首项和公差的问题是解题的关键,属于基础题.14.函数的一条对称轴,则的最小值为__________.【答案】2【解析】【分析】根据题意得到,进而得,最后根据题中的要求得到答案.【详解】∵函数的一条对称轴,∴,∴,又,∴的最小值为.故答案为:.【点睛】本题考查函数的性质,解题时要把作为一个整体,然后再结合正弦函数的相关性质求解,同时还应注意的符号对结果的影响,属于中档题.15.若函数在上单调递增,则的取值范围是__________.【答案】【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围.【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是.故答案为:.【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.16.已知,,其中,则下列判断正确的是__________.(写出所有正确结论的序号)①关于点成中心对称;②在上单调递增;③存在,使;④若有零点,则;⑤的解集可能为.【答案】①③⑤【解析】【分析】对于①,根据函数为奇函数并结合函数图象的平移可得正确.对于②,分析可得当时,函数在上单调递减,故不正确.对于③,由,可得,从而得,可得结果成立.对于④,根据③中的函数的值域可得时方程也有解.对于⑤,分析可得当时满足条件,由此可得⑤正确.【详解】对于①,令,则该函数的定义域为,且函数为奇函数,故其图象关于原点对称.又函数的图象是由的图象向上或向下平移个单位而得到的,所以函数图象的对称中心为,故①正确.对于②,当时,,若,则函数在上单调递减,所以函数单调递增;函数在上单调递增,所以函数单调递减.故②不正确.对于③,令,则当时,,则.所以,令,则成立.故③正确.对于④,若有零点,则,得,从而得,故,结合③可得当有零点时,只需即可,而不一定为零.故④不正确.对于⑤,由,得.取,则,整理得.当时,方程的两根为或.又函数为奇函数,故方程的解集为.故⑤正确.综上可得①③⑤正确.故答案为:①③⑤【点睛】本题考查函数性质的运用及命题真假的判定,解题时要结合函数的性质对函数的零点情况进行分析,注意直接推理的应用,同时在判断命题的真假时还要注意举反例的方法的运用,难度较大.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【答案】(I);(Ⅱ).【解析】【分析】(Ⅰ)将切函数化为弦函数,整理后两边约掉,然后逆用两角和的余弦公式得到,于是,从而.(Ⅱ)将代入所求值的式子后化简得,然后再结合的范围得到所求.【详解】(Ⅰ)由条件得,∵,∴,∴,∵,∴,∴.(Ⅱ)由(Ⅰ)得,∴,∵,∴,∴,∴的取值范围是.【点睛】本题考查三角形中的三角变换问题,解题时注意三角形内角和定理的运用,同时要注意三角变换公式的合理应用.对于求范围或最值的问题,一般还是要以三角函数为工具进行求解,解题时需要确定角的范围.18.如图四棱锥中,底面,是边长为2的等边三角形,且,.(I )求证:平面平面;(Ⅱ)若点是棱的中点,求直线与所成角的余弦值.【答案】(I )证明见解析;(Ⅱ) .【解析】 【分析】 (I)先证出平面,再利用面面垂直的判定定理即可.(Ⅱ) 取中点 ,连接,,则或其补角是异面直线与所成的角. 在中利用余弦定理即可. 【详解】(Ⅰ)证明:底面,取中点,连接,则,,点共线,即又,平面平面, 平面平面 (Ⅱ)解:取中点 ,连接,,则或其补角是异面直线与所成的角中,, ,即中,,.中,,,,由余弦定理得中,所以直线与所成角的余弦值为.【点睛】本题考查线面垂直的性质定理,判定定理,面面垂直的判定定理,异面直线所称的角的作法及运算,基础题.19.现代社会,“鼠标手”已成为常见病,一次实验中,10名实验对象进行160分钟的连续鼠标点击游戏,每位实验对象完成的游戏关卡一样,鼠标点击频率平均为180次/分钟,实验研究人员测试了实验对象使用鼠标前后的握力变化,前臂表面肌电频率()等指标.(I )10 名实验对象实验前、后握力(单位:)测试结果如下: 实验前:346,357,358,360,362,362,364,372,373,376实验后:313,321,322,324,330,332,334,343,350,361完成茎叶图,并计算实验后握力平均值比实验前握力的平均值下降了多少?(Ⅱ)实验过程中测得时间(分)与10名实验对象前臂表面肌电频率()的中的位数()的九组对应数据为,.建立关于时间的线性回归方程;(Ⅲ)若肌肉肌电水平显著下降,提示肌肉明显进入疲劳状态,根据(Ⅱ)中9组数据分析,使用鼠标多少分钟就该进行休息了?参考数据:;参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,【答案】(I)茎叶图见解析,;(Ⅱ);(Ⅲ)60分钟.【解析】【分析】(Ⅰ)结合所给数据可得茎叶图;分别求出实验前、后握力的平均数后比较可得结果.(Ⅱ)根据所给公式并结合条件中的数据可得,于是可得线性回归方程.(Ⅲ)分析九组数据可得,在40分钟到60分钟的下降幅度最大,由此可得结论.【详解】(Ⅰ)根据题意得到茎叶图如下图所示:由图中数据可得,,∴,∴故实验前后握力的平均值下降.(Ⅱ)由题意得,,,又,∴,∴,∴关于时间的线性回归方程为.(Ⅲ)九组数据中40分钟到60分钟的下降幅度最大,提示60分钟时肌肉已经进入疲劳状态,故使用鼠标60分钟就该休息了.【点睛】本题考查统计的基本问题,即数据的整理、分析和应用,解题时由于涉及到大量的计算,所以在解题时要注意计算的合理性和准确性,同时要充分利用条件中给出的中间数据,属于中档题.20.抛物线的焦点为,准线为,若为抛物线上第一象限的一动点,过作的垂线交准线于点,交抛物线于两点.(Ⅰ)求证:直线与抛物线相切;(Ⅱ)若点满足,求此时点的坐标.【答案】(I )证明见解析;(Ⅱ).【解析】 【分析】 (Ⅰ)设,由此可得直线的斜率,进而得到直线的斜率,由此得到的方程为,令可得点的坐标,于是可得直线的斜率.然后再由导数的几何意义得到在点A 处的切线的斜率,比较后可得结论.(Ⅱ)由(Ⅰ)知,直线的方程为,将直线方程与椭圆方程联立消元后得到二次方程,结合根与系数的关系及可求得点A 的坐标.【详解】(Ⅰ)由题意得焦点.设,∴直线的斜率为,由已知直线斜率存在,且直线的方程为,令,得,∴点的坐标为,∴直线的斜率为.由得,∴,即抛物线在点A 处的切线的斜率为,∴直线与抛物线相切.(Ⅱ)由(Ⅰ)知,直线的方程为,由消去整理得,设,则.由题意得直线的斜率为,直线的斜率为,∵,∴,∴,∴,整理得,解得或.∵,∴,又,且,∴存在,使得.【点睛】解答本题时要注意以下几点:(1)题中所需要的点的产生的方法,即由线与线相交产生点的坐标;(2)注意将问题合理进行转化,如根据线的垂直可得斜率的关系;(3)由于解题中要涉及到大量的计算,所以在解题中要注意计算的合理性,通过利用抛物线方程进行曲线上点的坐标间的转化、利用“设而不求”、“整体代换”等方法进行求解.21.已知函数 .(I)当时,求函数的单调区间;(Ⅱ)若对任意的恒成立,求整数的最大值.【答案】(I)的减区间为,无增区间;(Ⅱ)3.【解析】【分析】(I) 利用二次求导即得.(Ⅱ)先分离参数得到令,通过二次求导和零点存在性定理确定零点所在区间及整数的最大值.【详解】(I)的定义域为当时,令,,,单调递增,,单调递减的减区间为,无增区间;(Ⅱ)令,则令,则,在上单调递增,,存在唯一,使得即,列表表示:整数的最大值为3.【点睛】本题考查利用导数研究函数的单调性,利用零点存在性定理确定零点所在区间,中档题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.已知曲线的参数方程为(为参数),,为曲线上的一动点.(I)求动点对应的参数从变动到时,线段所扫过的图形面积;(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ)存在点满足题意,且.【解析】【分析】(Ⅰ)先判断出线段所扫过的图形由一三角形和一弓形组成,然后通过分析图形的特征并结合扇形的面积可得所求.(Ⅱ)设,由题意得,然后根据点在曲线上求出后可得点的坐标.【详解】(Ⅰ)设时对应的点为时对应的点为,由题意得轴,则线段扫过的面积.(Ⅱ)设,,∵为线段的中点,∴,∵在曲线上,曲线的直角坐标方程为,∴,整理得,∴,∴,∴存在点满足题意,且点的坐标为.【点睛】本题考查参数方程及其应用,解题的关键是将问题转化为普通方程后再求解,考查转化和计算能力,属于中档题.选修4-5:不等式选讲23.已知函数.(Ⅰ)解不等式:;(Ⅱ)已知,若对任意的,不等式恒成立,求正数的取值范围.【答案】(I);(Ⅱ).【解析】【分析】(Ⅰ)由题意得不等式为,然后根据分类讨论的方法,去掉绝对值后解不等式组即可.(Ⅱ)根据题意先得到,故由题意得恒成立,分类讨论去掉绝对值后可得所求范围.【详解】(Ⅰ)由题意得不等式为.①当时,原不等式化为,解得,不合题意;②当时,原不等式化为,解得,∴;③当时,原不等式化为,解得,∴.综上可得∴原不等式的解集为.(Ⅱ)∵,∴.当且仅当且,即时等号成立,∴.由题意得恒成立,①当时,可得恒成立,即恒成立,∴,由,可得上式显然成立;②当时,可得恒成立,即恒成立,∵,∴;③当时,可得恒成立,即恒成立,∴.综上可得,∴故的取值范围是.【点睛】解绝对值不等式的关键是通过对对变量的分类讨论,去掉绝对值后转化为不等式(组)求解,考查转化和计算能力,属于中档题.。

东北三三校2019高三3月第一次联考-数学文(解析版)

东北三三校2019高三3月第一次联考-数学文(解析版)

东北三三校2019高三3月第一次联考-数学文(解析版)文科数学全解析本试卷分为第I 卷〔选择题〕和第II 卷〔非选择题〕两部分,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。

本卷须知1、答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2、选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4、作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第I 卷〔选择题,共60分〕【一】选择题〔本大题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1、全集U R =,集合{}|2A x x =≥,{|05}B x x =≤<,那么集合)U C A B ⋂=( 〔 〕A 、{|02}x x <<B 、{|02}x x <≤C 、{|02}x x ≤<D 、{|02}x x ≤≤解析:{}|2U C A x x =<){|02}U C A B x x ∴⋂=≤<(,应选CA 、假设1x >,那么0x ≤B 、假设1x ≤,那么0x >C 、假设1x ≤,那么0x ≤D 、假设1x <,那么0x <解析:、命题“假设1,x >那么0x >”的否命题是:假设1x ≤,那么0x ≤,应选C 3、在复平面内复数-31+z i=的对应点在〔〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限解析:-3-3(1-)3333+1+2222i i z i i -+====-,而点33(,)22-在第二象限,应选B 4、函数1()(0,1)x f x a a a -=>≠的图象恒过点A ,以下函数中图象不经过点A 的是〔〕 A 、y、y =|x -2|C 、y =2x -1D 、y =2log (2)x解析:由题知:点(1,1)A ,经验证可得:y (1,1)A ,应选A5、与椭圆:C 2211612y x +=共焦点且过点的双曲线的标准方程为〔〕A 、2213y x -=B 、2221y x -=C 、22122y x -=D 、2213y x -= 解析:由题知:焦距为4,排除B,又焦点在y 轴上排除A,将代入C 、D 可得C 正确,应选C6、向量a b 、是夹角为60°的两个单位向量,向量λa b +〔λ∈R 〕与向量2-a b 垂直,那么实数λ的值为〔〕 A 、1B 、-1C 、2D 、0 解析:向量λa b +〔λ∈R 〕与向量2-a b 垂直()(2)=0λ∴∙-a b a b +又向量a b 、是夹角为60°的两个单位向量=0λ∴,应选D7按如下图的程序框图运行后,假设输出的结果是63,那么判断框的整数M 的值是〔〕A 、5B 、6C 、7D 、8解析:按框图推演可得:M 的值为:6,应选B第9小题DC BO 1OA函数sin()y x ωϕ=+的最小正周期为2π,直线3x π=是其图像的一条对称轴,那么下面各式中符合条件的解析式为〔〕 A 、sin(4)6y x π=+B 、sin(2)3y x π=+C 、sin(4-)3y x π=D 、15sin()412y x π=+解析:由题得:242πωπ==()sin(4)f x x ϕ∴=+又直线3x π=是()f x 图像的一条对称轴432k ππϕπ∴⨯+=+5,6k k Zπϕπ∴=-∈ 故可得:sin(4)6y x π=+符合条件,所以选A9、点A B C D 、、、在同一个球的球面上,AB BC ==,2AC =,假设四面体ABCD 体积的最大值为23,那么这个球的表面积为〔〕A 、1256π3B 、8πC 、254πD 、2516π解析:AB BC ==,2AC =,ABC ∴∆是直角三角形,ABC ∴∆的外接圆的圆心在边1AC 的中点O 如下图,假设使四面体ABCD 体积的最大值只需使点D 平面ABC 的距离最大,又1OO ⊥平面ABC ,所以点D 是直线1OO 与球的交点最大。

东北三省三校2019届高三第一次模拟考试数学试题试卷(文)(解析版)

东北三省三校2019届高三第一次模拟考试数学试题试卷(文)(解析版)

东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟考试数学试题(文)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A. 4B. -4C. 2D. -2【答案】D【解析】复数=,所以虚部为-2,故选D.2.集合,,则()A. B.C. D.【答案】B【解析】因为可得,集合,所以故选B3.已知向量的夹角为,,,则()A. B. C. D.【答案】C【解析】所以故选C.4.设直线与圆相交于两点,且,则圆的面积为()A. B. C. D.【答案】C【解析】圆的圆心坐标为,半径为,,直线与圆相交于两点,且,圆心到直线的距离,所以,解得,圆的半径,所以圆的面积,故选C.5.等差数列的前项和为,且,,则()A. 30B. 35C. 42D. 56【答案】B【解析】因为是等差数列,所以,所以公差,根据求和公式故选B6.已知,,则()A. B. C. D.【答案】A【解析】因为,所以,所以,且解得,故选A.7.执行两次下图所示的程序框图,若第一次输入的的值为4,第二次输入的的值为5,记第一次输出的的值为,第二次输出的的值为,则()A. 2B. 1C. 0D. -1【答案】D【解析】当输入x的值为4时,第一次不满足,但是满足x能被b整除,输出;当输入x的值为5时,第一次不满足,也不满足x能被b整除,故b=3第二次满足,故输出则-1故选D8.设,,,则的大小关系为()A. B. C. D.【答案】B【解析】因为指数函数是减函数,,所以<,即;因为幂函数是增函数,,所以>,即,所以,故选B.9.已知是不重合的平面,是不重合的直线,则的一个充分条件是()A. ,B. ,C. ,,D. ,,【答案】C【解析】对于答案A:,,得出与是相交的或是垂直的,故A错;答案B:,,得出与是相交的、平行的都可以,故B错;答案C:,,得出,再得出,故C正确;答案D: ,,,得出与是相交的或是垂直的,故D错故选C10.圆周率是圆的周长与直径的比值,一般用希腊字母表示,早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年,在生活中,我们也可以通过设计下面的实验来估计的值;从区间内随机抽取200个数,构成100个数对,其中满足不等式的数对共有11个,则用随机模拟的方法得到的的近似值为()A. B. C. D.【答案】A【解析】在平面坐标系中作出边长为1的正方形和单位圆,则符合条件的数对表示的点在轴上方、正方形内且在圆外的区域,区域面积为,由几何概型概率公式可得解得,故选A.11.双曲线的左焦点为,点的坐标为,点为双曲线右支上的动点,且周长的最小值为8,则双曲线的离心率为()A. B. C. 2 D.【答案】D【解析】由题易知双曲线的右焦点,即,点P为双曲线右支上的动点,根据双曲线的定义可知所以周长为:当点共线是,周长最小即解得故离心率故选D.12.若函数在区间上有两个极值点,则实数的取值范围是()A. B. C. D.【答案】D【解析】,可得,要使恰有2个正极值点,则方程有2个不相等的正实数根,即有两个不同的正根,的图象在轴右边有两个不同的交点,求得,由可得在上递减,由可得在上递增,,当时,;当时,所以,当,即时,的图象在轴右边有两个不同的交点,所以使函数在区间上有两个极值点,实数的取值范围是,故选D.二、填空题13.已知满足约束条件:,则的最大值是______.【答案】3【解析】满足约束条件:,可行域如图:解得由题,当目标函数过点A时取最大值,即故答案为314.甲、乙、丙三人中,只有一个会弹钢琴,甲说:“我会”,乙说:“我不会”,丙说:“甲不会”,如果这三句话,只有一句是真的,那么会弹钢琴的是_____.【答案】乙【解析】假设甲会,那么甲、乙说的都是真话,与题意矛盾,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的是真话,符合题意,假设丙会,那么乙、丙说的都是真话,与题意矛盾;故答案是乙15.四面体中,底面,,,则四面体的外接球的表面积为____.【答案】【解析】由题意,可得BC CD,又因为底面,所以AB CD,即CD平面ABC,所以CD AC取AD的中点O,则OC=OA=OB=OD故点O为四面体外接球的球心,因为所以球半径故外接球的表面积故答案为三、解答题(解答应写出文字说明、证明过程或演算步骤.)16.设函数.(1)当时,求函数的值域;(2)中,角的对边分别为,若,且,求的面积.解:(1)∵,∴,∴∴函数的值域为;(2)∵,∴,∵,∴,∴,即由余弦定理,,∴,即又,∴∴.17.世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:每周累积户外不少于28小时暴露时间(单位:小时)近视人数21 39 37 2 1不近视人数 3 37 52 5 3(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?近视不近视足够的户外暴露时间不足够的户外暴露时间附:P0.050 0.010 0.0013.841 6.635 10.828解:(1)设“随机抽取2名,其中恰有一名学生不近视”为事件,则故随机抽取2名,中恰有一名学生不近视的概率为.(2)根据以上数据得到列联表:近视不近视足够的户外暴露时间40 60不足够的户外暴露时间60 40所以的观测值,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.18.如图,四棱锥中,底面是平行四边形,平面,垂足为,在上,且,,,四面体的体积为.(1)求点到平面的距离;(2)若点是棱上一点,且,求的值.解:(1)(方法一):由已知∴∵⊥平面,平面,∴∴∵∴设点到平面的距离为,∵,法二:由已知∴∵⊥平面,平面∴平面⊥平面∵平面平面在平面ABCD内,过作⊥,交延长线于,则⊥平面∴的长就是点到平面的距离在中,==∴点到平面的距离为(2)在平面内,过作⊥于,连结,又因为⊥, ∴⊥平面,平面∴⊥⊥平面,平面∴⊥∴∥由⊥得:19.已知分别是椭圆:的左右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求椭圆的标准方程;(2)过点作不与轴重合的直线,设与圆相交于两点,且与椭圆相交于两点,当时,求的面积.解:(1)焦点为,则,解得,所以椭圆的标准方程为(2)由已知,可设直线方程为,联立得易知则=.因为,所以,解得.联立,得,设,则20.已知函数(为自然对数的底数),.(1)当时,求函数的极小值;(2)若当时,关于的方程有且只有一个实数解,求的取值范围.解:(1)当时,,,令则列表如下:1单调递减极小值单调递增所以.(2)设,,设,,由得,,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增,又,故当时,关于的方程有且只有一个实数解,符合题意.②当,即时,由(1)可知,所以,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解1.又时,,单调递增,且,令,,,故在单调递增,又在单调递增,故,故,又,由零点存在定理可知,,故在内,关于的方程有一个实数解.又在内,关于的方程有一个实数解1,不合题意.综上,.21.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),直线的方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)曲线与直线交于两点,若,求的值.解:(1)由题,曲线的参数方程为(为参数),化为普通方程为:所以曲线C的极坐标方程:(2)直线的方程为,的参数方程为为参数),然后将直线得参数方程带入曲线C的普通方程,化简可得:,所以故解得22.选修4-5:不等式选讲已知函数.(1)若不等式对恒成立,求实数的取值范围;(2)设实数为(1)中的最大值,若实数满足,求的最小值. 解:(1)因为函数恒成立,解得;(2)由第一问可知,即由柯西不等式可得:化简:即当且紧当:时取等号,故最小值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档