高等数学(复旦大学版)第十章_多元函数积分学(一)
专升本高等数学(一)-多元函数微积分学(一)_真题(含答案与解析)-交互
专升本高等数学(一)-多元函数微积分学(一) (总分93, 做题时间90分钟)一、填空题1.求下列函数的定义域..SSS_FILL该题您未回答:х该问题分值: 1答案:x>0,y>0.2.求下列函数的定义域.u=ln(x2-y-1).SSS_FILL该题您未回答:х该问题分值: 1答案:y<x2-13.求下列函数的定义域..SSS_FILL该题您未回答:х该问题分值: 1答案:x≥0,y≥1,x2+1≥y.4.求下列函数的定义域..SSS_FILL该题您未回答:х该问题分值: 1答案:r2<x2+y2≤R2.5.设,则=______.该题您未回答:х该问题分值: 1答案:6.设,则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:-2,先求出f(x,y)=x-7.设,则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:8.设,则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:-e.9.设函数,则=______,=______.SSS_FILL该题您未回答:х该问题分值: 1答案:10.设函数,则=______.该题您未回答:х该问题分值: 1答案:11.函数z=ln(1+x2-y2)的全微分dz=______.SSS_FILL该题您未回答:х该问题分值: 1答案:12.函数z=x2-2xy+y2的全微分=______.SSS_FILL该题您未回答:х该问题分值: 1答案:-2dx+2dy13.=______.SSS_FILL该题您未回答:х该问题分值: 1答案:14.若积分区域D是由x=0,x=1,y=0,y=1围成的矩形区域,则=______ SSS_FILL该题您未回答:х该问题分值: 1答案:15.交换二次积分次序=______.该题您未回答:х该问题分值: 1答案:16.设区域D={(x,y)|x2+y2≤4},则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:π17.平面上一块半径为2的圆形薄板,其密度函数为1,则这块薄板的质量为______.SSS_FILL该题您未回答:х该问题分值: 1答案:4π.二、解答题求下列各函数对x,y的偏导数:SSS_TEXT_QUSTI1.z=e x2+y;该题您未回答:х该问题分值: 1答案:2xe x2+y,e x2+y;SSS_TEXT_QUSTI2.;该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI3.z=ln(ln x+ln y);该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI4.;该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI5.z=sin(x+2y)+2xy;该题您未回答:х该问题分值: 1答案:cos(x+2y)+2y,2cos(x+2y)+2x;SSS_TEXT_QUSTI6.z=(xy)μ(其中μ为非零常数).该题您未回答:х该问题分值: 1答案:μy(xy)μ-1,μx(xy)μ-1.求下列函数的二阶偏导数:SSS_TEXT_QUSTI7.z=sin xy;该题您未回答:х该问题分值: 1答案:.SSS_TEXT_QUSTI8.z=ln(x2+xy+y2).该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI9.设函数z=ln(1-x+y)+x2y,求.该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI10.设z=x2y-xy2,x=ucos v,y=usinv,求.该题您未回答:х该问题分值: 1答案:=(2xy-y2)cos v+(x2-2xy)sin v=3u2sin vcos v(cos v-sin v).同样地,有.SSS_TEXT_QUSTI11.设z=arctan xy,y=e x,求.该题您未回答:х该问题分值: 1答案:.(注意:在本题中,不同于.)SSS_TEXT_QUSTI12.设,x=u-2v,y=2u+v,求.该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI13.设z=(2x+y)(2x+y),求.该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI14.设z=f(x2+y2,e xy),其中f(u,v)有连续偏导数,求.该题您未回答:х该问题分值: 1答案:设z=f(u,v),u=x2+y2,v=e xy,则由复合函数求偏导法则得SSS_TEXT_QUSTI15.设,其中φ有连续偏导数,证明.该题您未回答:х该问题分值: 1答案:因为,其中φ有连续偏导数,令u=xy,所以有,,将之代入即可证得.求下列各式确定的隐函数y=f(x)的导数:SSS_TEXT_QUSTI16.cos y-e x+2xy=0;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI17..该题您未回答:х该问题分值: 1答案:求下列各式确定的隐函数z=f(x,y)的偏导数:SSS_TEXT_QUSTI18.x2+y2+z2-3xyz=0;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI19..该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI20.设z=arctan(xy)+2x2+y,求dz.该题您未回答:х该问题分值: 1答案:求下列各函数的全微分dz:SSS_TEXT_QUSTI21.;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI22.z=ln(3x-2y+3);该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI23.z=e xy(x2+y2);该题您未回答:х该问题分值: 1答案:令u=xy,v=x2+y2,dz=e xy(x2+y2)[(3x2y+y3)dx+(3y2x+x3)dy];SSS_TEXT_QUSTI24.z=arctan xy;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI25.z=xe-xy+sin(xy);该题您未回答:х该问题分值: 1答案:dz=[e-xy(1-xy)+ycos(xy)]dx+[-x2e-xy+xcos(xy)]dy;SSS_TEXT_QUSTI26.z=sin(x+y)-x2+y2.该题您未回答:х该问题分值: 1答案:dz=[cos(x+y)-2z]dx+[cos(x+y)+2y]dy.SSS_TEXT_QUSTI27.设,求该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI28.设z=f(2x+3y,e xy),其中f(u,v)有连续偏导数,求dz.该题您未回答:х该问题分值: 1答案:今u=2x+3y,υ=e xy,SSS_TEXT_QUSTI29.设z=z(x,y)是由方程yz+x2+z=0确定,求dz.该题您未回答:х该问题分值: 1答案:设SSS_TEXT_QUSTI30.设z=f(x,y),由方程x2+y2+z2-4z=0确定,求在点(1,-);(,0);(0,)处的全微分.该题您未回答:х该问题分值: 1答案:,(1)当x=1,时,由原方程得z=1或z=3.①当z=1时,②当z=3时,(2)当,y=0时,由原方程得z=1或z=3.①当z=1时,②当z=3时,(3)当x=0,时,由原方程得z=1或z=3.①当z=1时,②当z=3时,SSS_TEXT_QUSTI31.设z=f(x,y)由方程cos2x+cos2y=1+cos2z所确定,求dz.该题您未回答:х该问题分值: 1答案:令F(x,y,z)=cos2x+cos2y-cos2z-1,.求下列函数的极值与极值点.SSS_TEXT_QUSTI32.f(x,y)=4x+2y-x2-y2;该题您未回答:х该问题分值: 1.5答案:极大值点为(2,1),极大值f(2,1)=5;SSS_TEXT_QUSTI33.f(x,y)=e2x(x+y2+2y);该题您未回答:х该问题分值: 1.5答案:极小值点为(,-1),极小值;SSS_TEXT_QUSTI34.f(x,y)=y3-x2+6x-12y+5.该题您未回答:х该问题分值: 1.5答案:极大值点为(3,-2),极大值f(3,-2)=30.求下列条件极值.SSS_TEXT_QUSTI35.做一个体积为V的无盖的圆柱形桶,试问当桶的高和底面半径各是多少时,可使圆桶所用的材料最省.该题您未回答:х该问题分值: 1.5答案:设圆桶的高为h,底面半径为r,则桶的表面积为S=πr2+2πrh,体积V=πr2h,要求所用的材料最省,就是求表面积的最小值,且满足V=πr2h.构造拉格朗日函数F(r,h,λ)=πr2+2πrh+λ(πr2h-V)可解得.SSS_TEXT_QUSTI36.设生产某种产品的数量Q与所用两种原料A,B的数量x,y间有关系式Q=Q(x,y)=0.005x2y,欲用150元购买原料,已知A,B原料的单价分别为1元,2元,问购进两种原料各多少时,可使生产的产品数量最多?该题您未回答:х该问题分值: 1.5答案:设购买两种原料分别为x,y,则问题化为条件极值问题:求Q=0.005x2y在条件x+2y=150下的条件极值.可解得x=100,y=25.SSS_TEXT_QUSTI37.计算二重积分,其中D是由直线y=-1,y=1,x=1及x=2围成的平面区域.该题您未回答:х该问题分值: 1.5答案:3SSS_TEXT_QUSTI38.计算二重积分,其中D是由曲线y=x2及y=x所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:.或.SSS_TEXT_QUSTI39.,其中D是由直线y=x,y=1及y轴所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:.或SSS_TEXT_QUSTI40.,其中D是由直线x=2,y=x及双曲线xy=1所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI41.,其中D是由直线y=0,,x=2所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI42.,其中D是由直线y=x,y=2x,x=2,x=4所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI43.求,其中D是由直线y=x,y轴,y=1所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:说明如果将此题化为先对y积分后对x积分,其计算量较大.SSS_TEXT_QUSTI44.将二重积分化为二次积分,其中D是由直线x+y=1,x-y=1,x=0所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:或交换下列二次积分次序.SSS_TEXT_QUSTI45.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI46.(a>0为常数)该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI47.计算二重积分该题您未回答:х该问题分值: 1.5答案:试将下列直角坐标系下的二重积分化为极坐标系下的二重积分SSS_TEXT_QUSTI48.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI49.该题您未回答:х该问题分值: 1.5说明首先根据给定的二次积分先画出积分区域,再将积分区域用极坐标表示出来.(1)的积分区域是半径为R,圆心为(R,0)的x轴上方的半圆,用极坐标表示为0≤θ≤,0≤r≤2Rcosθ;(2)的积分区域是以原点为圆心半径为R 的在第一象限内的圆.计算下列二重积分:SSS_TEXT_QUSTI50.,其中D为x2+y2≤a2,x≥0,y≥0所围成的区域;该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI51.,其中D为x2+y2≤1,x≥0所围成的区域;该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI52.,其中D为x2+y2≤4,x2+y2≥1,y≤x,y≥0所围成的区域;该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI53.,其中D为由x2+y2≤R2,x≥0,y≥0所围成的区域;该题您未回答:х该问题分值: 1.5积分区域D的极坐标表达式为0≤θ≤,0≤r≤R,于是;SSS_TEXT_QUSTI54.,其中D为以x2+y2=2x为边界的上半圆域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI55.利用重积分求由平面和三个坐标平面所围成的立体的体积(其中a>0,b>0,c>0).该题您未回答:х该问题分值: 1.5答案:由二重积分的几何意义知,,其中积分区域为x轴、y轴以及直线所围成的平面区域,于是SSS_TEXT_QUSTI56.利用二重积分求由曲线y=x2与y2=x所围成的面积.该题您未回答:х该问题分值: 1.5答案:由二重积分的性质3知,其中积分区域为曲线y=x2与y2=x所围成的平面图形,于是.SSS_TEXT_QUSTI57.求由柱面x2+y2=a2,z=0及平面x+y+z=a所围成的立体的体积.该题您未回答:х该问题分值: 1.5答案:由二重积分的几何意义知.其中D:x2+y2≤a2,利用极坐标系可得SSS_TEXT_QUSTI58.设有平面三角形薄片,其边界线可由方程x=0,y=x及y=1表示,薄片上的点(x,y)处的密度ρ(x,y)=x2+y2,求该三角形薄片的质量.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI59.设半径为1的半圆形薄片上各点处的面密度等于该点到圆心的距离,求该薄片的质量.该题您未回答:х该问题分值: 1.5答案:先求密度函数为μ(x,y)=,于是有SSS_TEXT_QUSTI60.设f(x)在[0,1]上连续,证明该题您未回答:х该问题分值: 1.5答案:求证由可知积分区域为曲线y=x2,y=1,y轴所围成的平面区域,交换积分次序得SSS_TEXT_QUSTI61.,其中D为x2+(y-1)2≤1与x+y≤2所围成的区域.(提示:此题应在直角坐标系下求,先对x积分,积分区域要分块.)该题您未回答:х该问题分值: 1.5答案:在直角坐标系下求二重积分,先对x积分.1。
第一轮复习之多元函数积分学
f ( x, y ) ≡ 0 , ( x, y ) ∈ D 。
设 f ( x, y ) 在 D 上连续, 若在 D 内的任意子区域 D0 , 有 ∫∫ f ( x, y )dxdy = 0 ,则 f ( x, y ) ≡ 0 , ( x, y ) ∈ D 。
D0
三、
两类曲线积分之间的联系: 1) 设 L ∩ 是分段光滑的曲线,两类曲线积分的关系为:
切不可大意失荆州! 具体计算方法: 取 x 轴上一点 x0 , 做平行于 YOZ 的平面 x = x0 , 这 个 截面是以区间
[ϕ1 ( x), ϕ2 ( x)] 为底,曲线 z = f ( x, y)
ϕ2 ( x )
为曲边的曲边梯形,这个截面的面积
f ( x0 , y ) dy
AB
L∩
Qdy ∫ ( P cos α + Q cos β ) ds ∫ Pdx +=
AB
L∩
AB
cos α cos β
为曲线弧 AB 从 A 到 B 方向的切线的方
AB
∩
向余弦,P Q 是在 L ∩ 上的连续函数。 可推广到空间的情形。 2) 两类曲面积分之间的关系: 设 ∑ 为光滑的曲面,则两类曲面积分之间的关系为:
S
∫∫ Rdxdy = 0 (若 S 在垂直于 OXY 平面)
S
四、
多元积分的运算:
6
细节决定成败!
切不可大意失荆州! 1) 曲线积分化成定积分: 根据: 曲线由参数方程给出:
= ds
φ ′2 (t ) + ϕ ′2 (t )dt
r 2 (θ ) + r ′2 (θ )dθ
曲线由极坐标方程给出:
= ∫ f ( x, y, z )ds
多元函数积分定义
第一节 多元函数积分的概念与性质 1. 物体质量的计算
设有一质量非均匀分布的物体, 设有一质量非均匀分布的物体,其密度 是点M的函数 是点 的函数 µ = f (M ). 已知,怎样求物体的质量呢? 如果函数 f 已知,怎样求物体的质量呢?
在定积分中, 在定积分中,一根线密度为
µ = f ( M ) = f ( x)
性质5 估值性 估值性) 性质 (估值性)
mG ≤ ∫ f ( P ) dg ≤ MG
G
这个性质可以由m ≤ f ( P ) ≤ M 利用性质3 和性质4 推出.
b a
定积分 m(b − a) ≤ ∫ f ( x)dx ≤ M(b − a) 二重积分: 二重积分: m⋅σ ≤ ∫∫ f ( x, y)dσ ≤ M ⋅σ
i i
∆σ i
二重积分的几何意义
当被积函数 f ( x , y ) ≥ 0时, 二重积分是曲面 z = f ( x, y)为顶,
z z = f ( x, y)
V D y
其投影D为底曲顶柱体的体积. 其投影 为底曲顶柱体的体积. 为底曲顶柱体的体积 o f ( x, y)dσ = V ∫∫
D
当被积函数 f ( x , y ) ≤ 0时, 二重积分是曲顶柱体的体积的负值. 二重积分是曲顶柱体的体积的负值.
D
解
z
∫∫ f ( x , y )dσ = lim ∑ f (ξ i ,ηi )∆σ i λ →0 i =1
D
n
z = f ( x, y)
曲顶柱体
o
x
D任意划分为 个子域∆σi 任意划分为n个子域 任意划分为 (ξi ,ηi ) ∆σ i y 点 ( ξ i , η i ) ∈ ∆ σ i
(完整版)《高等数学》课程教学大纲
《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决应用问题。
三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。
难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。
高数第十章 多元函数积分学1
其中 (见图10-11)区域 也可表为: ,
图10-11
于是改变积分次序,由公式(10-1-4)可得
由此可得所要证明的等式.
例5计算二重积分 ,其中 是直线 与抛物线 所围成的区域.
解把区域 表示为 型区域,即 (如图10-12).于是
注:如果化为 型区域即先对 积分,则有
.
由于 的原函数不能由初等函数表示,往下计算就困难了,这也说明计算二重积分时,除了要注意积分区域 的特点(区分是 型区域,还是 型区域)外,还应注意被积函数的特点,并适当选择积分次序.
,
即
, .
证毕.
二重积分中值定理的几何意义可叙述如下:
当 为空间一连续曲面时,对以 为顶的曲顶柱体,必定存在一个以 为底,以 内某点 的函数值 为高的平顶柱体,它的体积 就等于这个曲顶柱体的体积.
三、
前面我们已经讨论了二重积分的概念与性质,下面我们将根据二重积分的几何意义来导出二重积分的计算方法.关键问题是如何将二重积分的计算转化为两次定积分的计算问题,即化二重积分为二次积分.
例2计算二重积分 ,其中 是由直线 和 所围成的闭区域.
解画出积分区域 ,易知 : (见图10-9),若利用公式(10-1-3),得
图10-9
.
若利用公式(10-1-4),就有
,
也可得同样的结果.
例3计算二重积分 ,其中 是直线 和双曲线 所围之闭区域.
解求得三线的三个交点分别是 及 .如果先对 积分,那么当 时, 的下限是双曲线 ,而当 时,y的下限是直线 ,因此需要用直线 把区域 分为 和 两部分(见图10-10).
这一性质称为二重积分的中值定理.
*证因 在有界闭区域 上连续,根据有界闭区域上连续函数取到最大值、最小值定理,在 上必存在一点 使 等于最大值 ,又存在一点 使 等于最小值 ,那末对于 上所有点 ,有
高等数学笔记(含数一内容)
隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算
多元函数积分学
多元函数积分学是数学的一个分支,它是对多元函数进行积分的理论。
与一元函数积分学相比,它更加复杂,但它为我们研究物理学、工程学和其他自然科学问题提供了更强大的工具。
在本文中,我将介绍的一些基本理论,包括重积分、极坐标变换、格林公式等。
一、重积分重积分是的基本概念,它是对多元函数在某一区域上的积分。
重积分可以表示为Riemann积分或Lebesgue积分两种形式,具体形式与多元函数的性质有关。
在Riemann积分中,我们将区域分成有限个小区域,对每个小区域内的多元函数进行积分,最后将积分结果相加。
而在Lebesgue积分中,我们采用测度的概念,将多元函数的定义域分成不可数个小区域,在每个小区域上定义一个测度,对多元函数在每个小区域内的值进行加权积分,最后求出所有小区域上的积分和即为整个区域上的积分。
重积分在物理学和工程学中有着广泛的应用,例如计算物体的体积、求解场的强度等。
同时,重积分也是进一步研究多元函数性质的基础。
二、极坐标变换极坐标变换是一种将平面直角坐标系上的点表示为极径和极角的变换。
它可以将一些复杂的函数转化为简单的极坐标函数,使得对多元函数进行积分更加方便。
在极坐标系中,被积函数可以表示为一个积分项和一个积分域,积分项为正态函数,积分域为从 $0$ 到 $2\pi$ 的一个闭区间和一个在某个圆内部的有界区域,在这个有界区域上的积分相当于在平面直角坐标系上的二重积分。
因此,我们可以使用积分转化公式将多元函数在极坐标系中的积分转化为在平面直角坐标系中的二重积分。
极坐标变换在数学中有着广泛的应用。
例如,对于一个椭球体积的计算,使用极坐标变换可以将三维积分转化为二维积分,更加方便计算。
三、格林公式格林公式是中的一个重要定理,它是关于多元函数的一个等式,用于计算曲面积分和线积分之间的关系。
在平面上,格林公式是一个计算平面上曲线积分和面积的公式,它表明二元函数在解析条件下,其在一个闭合路径内的曲线积分等于该函数在这个区域内的面积积分。
(完整版)《高等数学》课程教学大纲
《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决应用问题。
三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。
难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。
(完整版)高等数学课程描述
《高等数学》课程描述高等数学是工科类职业教育中的一门必修的重要基础课,为学习后继课程(如:工程数学等)和进一步获得数学知识奠定必要的数学基础。
通过教学,一方面使学生掌握微积分、常微分方程等基本知识,能熟练地运用其分析计算方法处理一些实际问题;另一方面通过各个教学环节,培养学生的抽象概括能力、逻辑思维能力、运算能力、自学能力及综合运用所学知识分析问题与解决问题的能力。
鉴于工科类职业技术教育的特点,教学中应以分析和运算方法的掌握为重点,并注重与各专业的实际应用结合起来,同时对基本理论应择重有所了解。
使学生具备专业要求的数学基础,又便于提高进一步学习数学知识及应用数学知识解决实际问题的能力一、教学内容本课程要求学生通过学习获得: 1)一元函数微积分学; 2)向量代数和空间解析几何;3)多元函数微积分学;4)无穷级数;5)常微分方程等方面的基本概念、基本理论和比较熟练的运算能力以及综合运用所学知识去分析问题和解决实际问题的能力。
本课程具有抽象性与科学性、较强的逻辑性及应用的广泛性的特点。
第一章:函数、极限与连续函数主要内容:1.函数的概念(定义、表示法),函数的几种特性,反函数,复合函数,初等函数。
2. 数列极限的概念,函数极限的概念(x→xo与x→∞时函数的极限),函数极限与无穷小的关系,无穷小性质,极限四则运算法则,两个极限存在准则:夹逼准则和单调有界准则,两个重要极限的结果:limx→0sin xx=1,limx→∞()11+xx=e,无穷小量的比较。
3. 连续函数的概念,函数的间断点,连续函数的四则运算,初等函数的连续性,闭区间上连续函数的性质(叙述)。
教学时数12课时第二章:导数与微分主要内容:1.导数的概念(定义、几何意义、几何应用),函数可导性与连续性之间的关系,函数的和、差、积、商的导数,复合函数与反函数的导数,基本初等函数的导数公式,初等函数的求导问题,高阶导数,隐函数求导法,对数求导法。
高等数学(复旦大学版)第十章-多元函数积分学(一)
第十章 多元函数积分学(Ⅰ)一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。
第一节 二重积分教学目的:1、熟悉二重积分的概念;2、了解二重积分的性质和几何意义,知道二重积分的中值定理;3、掌握二重积分的(直角坐标、极坐标)计算方法;4、能根据积分区域和被积函数正确选择积分顺序 教学重点:1、二重积分的性质和几何意义;2、二重积分在直角坐标系下的计算 教学难点:1、二重积分的计算;2、二重积分计算中的定限问题 教学内容:一、二重积分的概念 1. 曲顶柱体的体积设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积.首先, 用一组曲线网把D 分成n 个小区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个∆σ i 中任取一点(ξ i , ηi ),以f (ξ i , η i )为高而底为∆σ i 的平顶柱体的体积为f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ).这个平顶柱体体积之和i i i ni f V σηξ∆≈=∑),(1.可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即i i i ni f V σηξλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.2. 平面薄片的质量.设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为ρ(x , y ), 这里ρ(x , y )>0且在D 上连续. 现在要计算该薄片的质量M .用一组曲线网把D 分成n 个小区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n . 把各小块的质量近似地看作均匀薄片的质量:ρ(ξ i , η i )∆σ i . 各小块质量的和作为平面薄片的质量的近似值:i i i ni M σηξρ∆≈=∑),(1.将分割加细, 取极限, 得到平面薄片的质量i i i ni M σηξρλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.定义 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim ),(10. f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和. 直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作dxdy y x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的存在性: 当f (x , y )在闭区域D 上连续时, 积分和的极限是存在的, 也就是说函数f (x , y )在D 上的二重积分必定存在. 我们总假定函数f (x , y )在闭区域D 上连续, 所以f (x , y )在D 上的二重积分都是存在的.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.二、二重积分的性质性质1σσd y x f k d y x kf DD⎰⎰⎰⎰=),(),(.性质2 设c 1、c 2为常数, 则σσσd y x g c d y x f c d y x g c y x f c DDD⎰⎰⎰⎰⎰⎰+=+),(),()],(),([2121.性质3 如果闭区域D 被有限条曲线分为有限个部分闭区域, 则在D 上的二重积分等于在各部分闭区域上的二重积分的和. 例如D 分为两个闭区域D 1与D 2, 则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质4σσσ==⋅⎰⎰⎰⎰DDd d 1(σ为D 的面积).性质5 如果在D 上, f (x , y )≤g (x , y ), 则有不等式σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.性质6 σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.性质7(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点(ξ, η)使得σηξσ),(),(f d y x f D=⎰⎰.三、 二重积分的计算法X --型区域: D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域: D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d . 混合型区域:设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }. 此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为⎰=badx x A V )(dx dy y x f b a x x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f b a x x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d ,则有⎰⎰⎰⎰=dc y y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1:计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解:画出区域D .方法一 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][xDdx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xx Dydy xdx xydy dx d xy σ.方法二 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰⎰=212][y Ddy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y . 例2:计算σd y x yD⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解:画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211xDdy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x21)1(32103=--=⎰dx x .也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydy d y x y σ.例3:计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解:积分区域可以表示为D =D 1+D 2, 其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx xxDxydy dx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4:求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积.解:设这两个圆柱面的方程分别为x 2+y 2=ρ 2及x 2+z 2=ρ 2. 利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=R x R dy x R dx 022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰.四、二重积分的换元法 1.利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(. 按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim ),(. 下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21 i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 内取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i θρξcos =, i i i θρηsin =.于是 i i ni i i i i i i n i i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim ),(lim , 即θρρθρθρσd d f d y x f DD)sin ,cos (),(⎰⎰⎰⎰=.若积分区域D 可表示为 ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β, 则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5:计算⎰⎰--Dy xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解:在极坐标系中, 闭区域D 可表示为0≤ρ≤a , 0≤θ ≤2π . 于是⎰⎰⎰⎰---=DDy x d d edxdy eθρρρ222θθρρπρπρd e d d eaa02020]21[ ][22⎰⎰⎰---==)1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdy e 22也常写成⎰⎰≤+--22222a y x y xdxdy e .利用)1(222222a a y x y xe dxdy e -≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设 D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0}, S ={(x , y )|0≤x ≤R , 0≤y ≤R }. 显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y xdxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy xdx e dy e dx e dxdy e ,又应用上面已得的结果有)1(42122R D y xe dxdy e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R R x R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而220 π=-∞+⎰dx e x .例6:求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积. 解:由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤.于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .小结:1、二重积分的定义、几何意义;2、二重积分的计算(直角坐标,极坐标)3、二重积分的转化作业:习题10-12 (1) (3)、 6 (1)(5)、 8 (1) (4)、9(1)、 10(2)、 11(1)(3)第三节 三重积分教学目的:1、熟悉三重积分的概念;2、了解三重积分的性质;3、掌握三重积分在直角坐标系下的计算方法;4、掌握三重积分在柱面坐标系、球面坐标系下的计算方法 教学重点:1、三重积分的概念和计算;2、三重积分在柱面坐标系下的计算 教学难点:1、三重积分的计算;2、三重积分在球面坐标系下的计算 教学内容:一、三重积分的概念定义 设f (x , y , z )是空间有界闭区域Ω上的有界函数. 将Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅ ⋅ ⋅ , ∆v n其中∆v i 表示第i 个小闭区域, 也表示它的体积. 在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξ i , η i , ζ i )∆v i (i =1, 2, ⋅ ⋅ ⋅, n )并作和i i i i ni v f ∆=∑),,(1ζηξ. 如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在,则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 记作dv z y x f ⎰⎰⎰Ω),,(. 即i i i i ni v f dv z y x f ∆==→Ω∑⎰⎰⎰),,(lim ),,(10ζηξλ. 三重积分中的有关术语:⎰⎰⎰Ω——积分号, f (x , y , z )——被积函数, f (x , y , z )dv ——被积表达式, dv体积元素, x , y , z ——积分变量, Ω——积分区域.在直角坐标系中, 如果用平行于坐标面的平面来划分Ω, 则∆v i =∆x i ∆y i ∆z i , 因此也把体积元素记为dv =dxdydz , 三重积分记作⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z y x f dv z y x f ),,(),,(.当函数f (x , y , z )在闭区域Ω上连续时, 极限i i i i ni v f ∆=→∑),,(lim 10ζηξλ是存在的, 因此f (x , y , z )在Ω上的三重积分是存在的, 以后也总假定f (x , y , z )在闭区域Ω上是连续的.三重积分的性质: 与二重积分类似.比如dv z y x g c dv z y x f c dv z y x g c z y x f c ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ±=±),,(),,()],,(),,([2121;dv z y x f dv z y x f dv z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+Ω+=2121),,(),,(),,(;V dv =⎰⎰⎰Ω, 其中V 为区域Ω的体积.二、三重积分的计算1. 利用直角坐标计算三重积分三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b ,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(,即⎰⎰⎰⎰⎰⎰=Ωbay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 提示:设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b ,计算⎰⎰⎰Ωdv z y x f ),,(.基本思想:对于平面区域D : y 1(x )≤y ≤y 2(x ), a ≤x ≤b 内任意一点(x , y ), 将f (x , y , z )只看作z 的函数, 在区间[z 1(x , y ), z 2(x , y )]上对z 积分, 得到一个二元函数F (x , y ),⎰=),(),(21),,(),(y x z y x z dz z y x f y x F ,然后计算F (x , y )在闭区域D 上的二重积分, 这就完成了f (x , y , z )在空间闭区域Ω上的三重积分.⎰⎰⎰⎰⎰=Dy x z y x z Dd dz z y x f d y x F σσ]),,([),(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(.即⎰⎰⎰⎰⎰⎰=Ωba y x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 例1:计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解:作图, 区域Ω可表示为: 0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1. 于是⎰⎰⎰⎰⎰⎰---Ω=10210210x y x xdz dy dx dxdydz x ⎰⎰---=1210)21(xdy y x xdx ⎰=+-=1032481)2(41dx x x x . 讨论: 其它类型区域呢?有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域Ω={(x , y , z )|(x , y )∈D z , c 1≤ z ≤c 2}, 其中D z 是竖坐标为z 的平面截空间闭区域Ω所得到的一个平面闭区域, 则有⎰⎰⎰⎰⎰⎰=ΩzD c c dxdy z y x f dz dv z y x f ),,(),,(21.例2:计算三重积分dxdydz z ⎰⎰⎰Ω2, 其中Ω是由椭球面1222222=++c z b y a x 所围成的空间闭区域.解:空间区域Ω可表为:2222221c z b y a x -≤+, -c ≤ z ≤c .于是 ⎰⎰⎰⎰⎰⎰-Ω=c c D zdxdy dz z dxdydz z 22 3222154)1(abc dz z c z ab c cππ=-=⎰-. 练习:1. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为三次积分, 其中(1)Ω是由曲面z =1-x 2-y 2, z =0所围成的闭区域.(2)Ω是双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域. (3)其中Ω是由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域. 2. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为先进行二重积分再进行定积分的形式, 其中Ω由曲面z =1-x 2-y 2,z =0所围成的闭区域.三、三重积分的换元法 1. 柱面坐标变换设M (x , y , z )为空间内一点, 并设点M 在xOy 面上的投影P 的极坐标为P (ρ, θ ), 则这样的三个数ρ、θ 、z 就叫做点M 的柱面坐标, 这里规定ρ、θ 、z 的变化范围为: 0≤ρ<+∞, 0≤θ ≤2π , -∞<z <+∞. 坐标面ρ=ρ0, θ =θ 0, z =z 0的意义: 点M 的直角坐标与柱面坐标的关系:x =ρcos θ, y =ρsin θ, z =z . ⎪⎩⎪⎨⎧===zz y x θρθρsin cos柱面坐标系中的体积元素: dv =ρd ρd θdz . 简单来说, dxdy =ρd ρd θ , dxdydz =dxdy ⋅dz =ρd ρd θ dz . 柱面坐标系中的三重积分:⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f θρρθρθρ),sin ,cos (),,(.例3:利用柱面坐标计算三重积分⎰⎰⎰Ωzdxdydz , 其中Ω是由曲面z =x 2+y 2与平面z =4所围成的闭区域.解:闭区域Ω可表示为: ρ2≤z ≤4, 0≤ρ≤2, 0≤θ≤2π. 于是⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z zdxdydz θρρ⎰⎰⎰=πρρρθ202042zdz d d ⎰⎰-=πρρρθ20204)16(21d dπρρπ364]618[2212062=-⋅=.2. 球面坐标变换设M (x , y , z )为空间内一点, 则点M 也可用这样三个有次序的数r 、ϕ、θ 来确定, 其中r 为原点O 与点M 间的距离, ϕ为→OM 与z 轴正向所夹的角, θ为从正z 轴来看自x 轴按逆时针方向转到有向线段→OP 的角, 这里P 为点M 在xOy 面上的投影, 这样的三个数r 、ϕ 、θ 叫做点M 的球面坐标, 这里r 、ϕ、θ 的变化范围为0≤r <+∞, 0≤ϕ<π, 0≤θ ≤2π.点M 的直角坐标与球面坐标的关系:x =r sin ϕcos θ, y =r sin ϕsin θ, z =r cos ϕ . ⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x球面坐标系中的体积元素: dv =r 2sin ϕdrd ϕd θ . 球面坐标系中的三重积分:θϕϕϕθϕθϕd drd r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ=.例4:求半径为a 的球面与半顶角α为的内接锥面所围成的立体的体积. 解:该立体所占区域Ω可表示为: 0≤r ≤2a cos ϕ, 0≤ϕ≤α, 0≤θ≤2π. 于是所求立体的体积为 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd rdxdydz V sin 2⎰⎰⎰=παϕϕϕθ20cos 202sin a dr r d d⎰⎰=αϕϕϕπ0cos 202sin 2a dr r d⎰=αϕϕϕπ033sin cos 316d a )cos 1(3443a a -=π. 提示: 球面的方程为x 2+y 2+(z -a )2=a 2, 即x 2+y 2+z 2=2az . 在球面坐标下此球面的方程为r 2=2ar cos ϕ, 即r =2a cos ϕ. 小结:1、三重积分的定义;2、三重积分的计算(化三重积分为三次积分);3、三重积分换元法(柱面坐标,球面坐标)作业:习题10-32 (1)(3)(5)、 4(1)(2)、5(1)(2)、 6(2)(4)第四节 重积分的应用教学目的:1、理解空间曲面的面积;2、掌握空间曲面面积的计算 教学重点:空间曲面面积的计算 教学难点:空间曲面面积的计算 教学内容:有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U 对于闭区域D 具有可加性(就是说, 当闭区域D 分成许多小闭区域时, 所求量U 相应地分成许多部分量, 且U 等于部分量之和), 并且在闭区域D 内任取一个直径很小的闭区域d σ时, 相应的部分量可近似地表示为f (x , y )d σ 的形式, 其中(x , y )在d σ内, 则称f (x , y )d σ 为所求量U 的元素, 记为dU , 以它为被积表达式, 在闭区域D 上积分: ⎰⎰=Dd y x f U σ),(,这就是所求量的积分表达式. 一、空间曲面的面积设曲面S 由方程 z =f (x , y )给出, D 为曲面S 在xOy 面上的投影区域, 函数f (x , y )在D 上具有连续偏导数f x (x , y )和f y (x , y ). 现求曲面的面积A .在区域D 内任取一点P (x , y ), 并在区域D 内取一包含点P (x , y )的小闭区域d σ, 其面积也记为d σ. 在曲面S 上点M (x , y , f (x , y ))处做曲面S 的切平面T , 再做以小区域d σ的边界曲线为准线、母线平行于z 轴的柱面. 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为dA . 又设切平面T 的法向量与z 轴所成的角为γ , 则σγσd y x f y x f d dA y x ),(),(1cos 22++==,这就是曲面S 的面积元素. 于是曲面S 的面积为σd y x f y x f A y x D),(),(122++=⎰⎰,或 dxdy yz x z A D22)()(1∂∂+∂∂+=⎰⎰.讨论: 若曲面方程为x =g (y , z )或y =h (z , x ), 则曲面的面积如何求?dydz zx y x A yzD ⎰⎰∂∂+∂∂+=22)()(1,或 dzdx xy z y A zxD ⎰⎰∂∂+∂∂+=22)()(1. 其中D yz 是曲面在yOz 面上的投影区域,D zx 是曲面在zOx 面上的投影区域. 例1 求半径为a 的球的表面积.解:取上半球面方程为222z x y a =+?,由zx?=¶zy ?=¶ 所以2222222022,224x y a x y a a A a d a pqp +?+?====蝌蝌蝌二、平面薄片的重心设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为ρ(x , y ), 假定μ(x , y )在D 上连续. 现在要求该薄片的质心坐标.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ.平面薄片对x 轴和对y 轴的力矩分别为⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅.于是⎰⎰⎰⎰==DDy d y x d y x x M M x σμσμ),(),(, ⎰⎰⎰⎰==DD x d y x d y x y M My σμσμ),(),(. 在闭区域D 上任取包含点P (x , y )小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩元素分别为dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ.平面薄片对x 轴和对y 轴的力矩分别为⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅.于是⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDxd y x d y x y MM y σμσμ),(),(.讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求? 求平面图形的形心公式为⎰⎰⎰⎰=DDd xd x σσ, ⎰⎰⎰⎰=DDd yd y σσ.例2 求位于两圆ρ=2sin θ 和ρ=4sin θ 之间的均匀薄片的质心.解 因为闭区域D 对称于y 轴, 所以质心) ,(y x C 必位于y 轴上, 于是0=x . 因为⎰⎰⎰⎰=DDd d yd θρθρσsin 2πρρθθθθπ7sin sin 4sin 220==⎰⎰d d ,πππσ31222=⋅-⋅=⎰⎰d D,所以3737===⎰⎰⎰⎰ππσσDD d yd y . 所求形心是)37 ,0(C .三、转动惯量设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为μ(x , y ), 假定ρ(x , y )在D 上连续. 现在要求该薄片对于x 轴的转动惯量和y 轴的转动惯量.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对于x 轴的转动惯量和y 轴的转动惯量的元素分别为dI x =y 2μ(x , y )d σ , dI y =x 2μ(x , y )d σ .整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为σμd y x y I Dx ),(2⎰⎰=, σμd y x x I Dy ),(2⎰⎰=.例3 求半径为a 的均匀半圆薄片(面密度为常量μ)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D 可表示为D ={(x , y )| x 2+y 2≤a 2, y ≥0}而所求转动惯量即半圆薄片对于x 轴的转动惯量I x ,⎰⎰⎰⎰⋅==DDx d d d y I θρρθρμσμ222sin⎰⎰⎰⋅==ππθθμρρθθμ0240032sin 4 sin d a d d a2441241Ma a =⋅=πμ, 其中μπ221a M =为半圆薄片的质量. 类似地, 占有空间有界闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )的物体对于x 、y 、z 轴的转动惯量为⎰⎰⎰Ω+=dv z y x z y I x ),,()(22ρ,⎰⎰⎰Ω+=dv z y x x z I y ),,()(22ρ,⎰⎰⎰Ω+=dv z y x y x I z ),,()(22ρ.四、引力我们讨论空间一物体对于物体外一点P 0(x 0, y 0, z 0)处的单位质量的质点的引力问题.设物体占有空间有界闭区域Ω, 它在点(x , y , z )处的密度为ρ(x , y , z ), 并假定ρ(x , y , z )在Ω上连续. 在物体内任取一点(x , y , z )及包含该点的一直径很小的闭区域dv (其体积也记为dv ). 把这一小块物体的质量ρdv 近似地看作集中在点(x , y , z )处. 这一小块物体对位于P 0(x 0, y 0, z 0)处的单位质量的质点的引力近似地为),,(z y x dF dF dF d =F )))(,,(,))(,,(,))(,,((303030dv r z z z y x Gdv r y y z y x Gdv r x x z y x G---=ρρρ,其中dF x 、dF y 、dF z 为引力元素d F 在三个坐标轴上的分量, 202020)()()(z z y y x x r -+-+-=, G 为引力常数. 将dF x 、dF y 、dF z 在Ω上分别积分, 即可得F x 、F y 、F z , 从而得F =(F x 、F y 、F z ). 小结:1、曲面面积;2、平面薄片重心、转动惯量、引力作业:习题10-4 2、3、4第五节 对弧长的曲线积分教学目的:1、掌握对弧长的曲线积分的概念及性质;2、掌握对弧长的曲线积分的计算方法;3、会求曲线积分所对应的弧长 教学重点:概念和计算方法 教学难点:曲线积分弧长的计算 教学内容:一、对弧长的曲线积分的概念 曲线形构件的质量:设一曲线形构件所占的位置在xOy 面内的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量. 把曲线分成n 小段, ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n (∆s i 也表示弧长);任取(ξi , ηi )∈∆s i , 得第i小段质量的近似值μ(ξi , ηi )∆s i ;整个物质曲线的质量近似为i i i ni s M ∆≈=∑),(1ηξμ; 令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅,∆s n }→0, 则整个物质曲线的质量为i i i ni s M ∆==→∑),(lim 10ηξμλ.这种和的极限在研究其它问题时也会遇到.定义 设L 为xOy 面内的一条光滑曲线弧, 函数f (x , y )在L 上有界. 在L 上任意插入一点列M 1, M 2, ⋅ ⋅ ⋅, M n -1把L 分在n 个小段. 设第i 个小段的长度为∆s i , 又(ξi , ηi )为第i 个小段上任意取定的一点, 作乘积f (ξi ,ηi )∆s i , (i =1, 2,⋅ ⋅ ⋅, n ), 并作和i i i ni s f ∆=∑),(1ηξ, 如果当各小弧段的长度的最大值λ→0, 这和的极限总存在,则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(⎰, 即i i i ni L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.设函数f (x , y )定义在可求长度的曲线L 上, 并且有界. 将L 任意分成n 个弧段: ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n , 并用∆s i 表示第i 段的弧长; 在每一弧段∆s i 上任取一点(ξi , ηi ), 作和i i i ni s f ∆=∑),(1ηξ;令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n },如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(⎰, 即i i i ni L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.定义 设函数f (x,y )在分段光滑曲线L 上有定义,A ,B 是的端点,依次用分点A=M 0,M 1,....,M n-1,M n =B 把L 分成n 个小弧段¼¼¼01121,,,n n M M M M M M -L每小段的弧长记为,在上任取一点,若时,和式的极限存在,则称函数在曲线L 上积分,且称该极限值为函数沿曲线L 对弧长的曲线积分,记作(,)Lf x y ds ò,即1(,)lim (,).ni i i Li f x y ds f s l x h ®==D åò由定义可知,曲线弧的质量M 等于线密度(,)x y r 沿曲线L 对弧长的曲线积分,即(,).LM x y ds r =ò特别地,当(,)1x y r º时,.LM ds s ==ò二、对弧长的曲线积分的性质设(,)f x y ,(,)g x y 在L 上可积,则有以下性质: (1)(,)(,);LLkf x y ds kf x y ds =蝌(2)[(,)(,)](,)(,);LLLf x yg x y dsf x y dsg x y ds ??蝌?(3)如果曲线L 由12,,,n L L L L 几部分组成,则在弧L 上的积分等于在各部分上积分之和,即12(,)(,)(,)(,).nLL L L f x y ds f x y ds f x y ds f x y ds =+++蝌蝌L三、对弧长的曲线积分的计算法定理 设曲线L 由参数方程(),()()x x t y y t ta b ==#表示,(),()x t y t 在[,]a b 上有一阶连续导数,且22'()'()0x t y t +?(即曲线L 是光滑的简单曲线),函数(,)f x y 在曲线上连续,则(,)((),(.Lf x y ds f x t y t b a=蝌若曲线L 由方程()()y y x a x b =#给出,()y x 在[,]a b 上有一阶连续导数,且(,)f x y 在曲线L上连续,则(,)(,(.b Laf x y ds f x y x =蝌类似的,若曲线L 由方程()()x x y c y d =#给出,()x y 在[,]c d 上有一阶连续导数,且(,)f x y 在曲线L 上连续,则(,)((),.d Lcf x y ds f x y y =蝌例1、计算曲线积分L I xyds =⎰,L 是圆()2220x y a a +=>在第一象限中的部分.解:由圆的参数方程cos ,sin ,02x a t y a t t π==≤≤可得 'sin 'cos t t x a t y a t ==-,ds adt ===按公式,得20cos sin LI xyds a t a t adt π==⋅⋅⎰⎰32sin 22a tdt π=⎰32a =例2、计算曲线积分⎰曲线L 是抛物线214y x =自点(0,0)到点(2,1)的一段弧.解:因为ds ==而x 的变化区间是[0,2],由公式得2322200122(1)|1).2343Lx ==+=- 例3、求LI yds =⎰其中L:y 2=4x 从(1,2)到(1,-2)一段。
《多元函数的微积分》课件
在资源分配和生产计划中,多元函数微积分可以用于求解最优化问 题,例如最大化利润或最小化成本等。
风险评估
在金融学中,多元函数微积分可以用于评估投资风险和回报,以及 制定风险管理策略。
THANKS
感谢观看
多元函数的定义域
函数中各个自变量可以取值的范围。例如,对于函数z = f(x, y),其定义域是x和y的所有可能取值的集合。
多元函数的值域
函数中因变量可以取值的范围。例如,对于函数z = f(x, y) ,其值域是z的所有可能取值的集合。
多元函数的几何意义
平面上的曲线
对于二元函数z = f(x, y),其图像 在二维平面上表现为一条曲线。 例如,函数z = x^2 + y^2表示 一个圆。
体积计算
通过多元函数微积分,可以计算出由曲面围成的三维空间的体积 ,这在工程和科学领域中具有广泛的应用。
曲线积分
在几何学中,曲线积分是计算曲线长度的一种方法,而多元函数 微积分可以提供更精确和更高效的计算方法。
多元函数微积分在物理上的应用
力学分析
在分析力学中,多元函数微积分 被广泛应用于解决质点和刚体的 运动问题,例如计算物体的速度 、加速度和力矩等。
三维空间中的曲面
对于三元函数z = f(x, y, z),其图 像在三维空间中表现为一个曲面 。例如,函数z = x^2 + y^2表 示一个球面。
多元函数的极限与连续性
多元函数的极限
当自变量趋近于某个值时,函数值的趋近值。例如,lim (x, y) → (0, 0) (x^2 + y^2) = 0,表示当(x, y)趋近于(0, 0)时,函数x^2 + y^2的值趋近于0。
《多元函数的微积分》 ppt课件
高等数学下册第十章 重积分
sin x dxd y
π sin x dx
x
dy
Dx
0x
0
π
0 sin x dx
y yx
D xπ
o
πx
2
说明: 有些二次积分为了积分方便, 还需交换积分顺序.
DMU
第二节 直角坐标系中二重积分的计算
例 交换下列积分顺序
2
x2
22
8 x 2
I
0
dx
2 0
f (x, y)dy 2
dx0
f (x, y)dy
y y 2(x) D
D
:
1(
x) a
y x
b
2
(
x)
x o a y 1(x)b x
则
f (x, y) dx d y
b
dx
a
2 (x) 1( x)
f (x, y) dy
D
即先对y后对x积分
y d
x 2(y)
(2)
若D为Y -型区域
D
:
1(
y) c
x y
2 ( y)
d
y
x 1(y)
例 计算二重积分
exyds 其中D {(x, y) x y 1}
D
答案为 e e1
-1
1
DMU
第二节 直角坐标系中二重积分的计算
例 求两个底圆半径为R 的直角圆柱面所围的体积.
解 设两个直圆柱方程为
z
x2 y2 R2, x2 z2 R2
利用对称性, 考虑第一卦限部分, R
其曲顶柱体的顶为 z R2 x2
D2
为D 的面积, 则
1d d
D
高等数学第十章重积分PPT课件
总结词
矩形区域上的重积分计算是重积分中最基础的一种计算方 法。
详细描述
在矩形区域上,可以将积分区域划分为若干个小矩形,然后对每个小矩形进行 积分,最后将所有小矩形的积分结果相加即可得到整个矩形区域的积分值。
公式
$int_{a}^{b}int_{c}^{d}f(x,y)dxdy$
圆形区域上的重积分计算
公式
根据具体情况而定,一般需要通过微分几何和拓扑学知识 进行推导和计算。
03
重积分的应用
重积分在几何学中的应用
80%
计算立体体积
通过重积分可以计算三维空间中 物体的体积,如旋转体、曲面和 不规则体的体积。
100%
计算表面积
重积分可以用来计算封闭曲面或 复杂曲面的表面积,如球面、椭 球面和抛物面等。
化简积分表达式
在计算过程中,尽量化简积分 表达式,以减少计算量。
避免重积分的常见错误
上下限错误
确保上下限的确定是正确的,特别是对于复杂区 域。
公式应用不当
使用不合适的公式可能导致计算错误或无法得出 结果。
积分次序错误
选择错误的积分次序可能导致计算结果不正确。
计算失误
在计算过程中,可能会因为疏忽或笔误导致结果 不准确。
求解流体动力学问 题
重积分在流体动力学中有重要应 用,如计算流体压力、速度和密 度等。
重积分济活动中 涉及到的成本和收益,如生产成 本、销售收入和利润等。
预测经济趋势
通过重积分可以建立经济模型, 预测未来经济趋势和市场变化, 为决策提供依据。
优化资源配置
二重积分的定义
二重积分是计算平面区域上的面积的数学工具,其值等于二元函数在平面区域上的所有点的函数值与该点处面积微元 相乘后累加的总和。
高等数学第十章知识点总结
高等数学第十章知识点总结高等数学第十章主要涵盖了多元函数的微分和局部性质、多元函数的方向导数与梯度、多元函数的极值与条件极值等内容。
下面将对这些知识点进行总结和拓展。
1. 多元函数的偏导数:多元函数的偏导数是指在某一点上,对于其中的一个自变量求导,而将其他自变量视为常数。
偏导数能够描述函数在某一点上的斜率、增减性以及函数在该点的切线方向。
2. 多元函数的全微分:多元函数的全微分是指将函数在某一点上的所有偏导数都考虑进去,并乘以相应的自变量变化量。
全微分可以近似地表示函数值的改变量,具有重要的物理意义。
3. 多元函数的方向导数与梯度:方向导数是指在某一点上,对函数在某一特定方向上的导数。
梯度则是由函数的所有偏导数组成的向量,它的方向为函数在该点上增加最快的方向,大小为方向导数的最大值。
方向导数与梯度可以用来确定函数在某一点上的最大增加率和最大减少率。
4. 多元函数的极值与条件极值:多元函数的极值是指在某一点上,函数取得了局部最大值或局部最小值。
通过求解函数的偏导数并令其为零,可以得到极值点。
条件极值是在给定一定条件下的极值问题,可以通过拉格朗日乘数法来求解。
在拓展部分,我们可以将以上知识点应用于实际问题的解决中。
例如,在经济学中,我们可以利用多元函数的极值来求解最大化利润或最小化成本的问题;在物理学中,我们可以通过方向导数与梯度来分析物体在不同方向上的运动情况;在工程学中,我们可以利用多元函数的全微分来近似计算复杂系统的变化量等等。
总之,高等数学第十章的知识点为我们研究多元函数的微分和局部性质提供了重要工具,通过掌握这些知识,我们可以更深入地理解多元函数的行为和性质,并将其应用于实际问题的求解中。
(完整版)高等数学教案各章的教学目的、重点、难点
第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式.2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4、掌握基本初等函数的性质及其图形。
5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质.教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;闭区间上连续函数性质的应用.第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求某些简单函数的n阶导数。
4、会求分段函数的导数。
5、会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、隐函数和由参数方程确定的函数的导数。
《多元函数积分学》课件
物理应用
重积分在物理中有广泛的应用,如计 算物体的质量、质心、转动惯量等物 理量,还可以用来解决流体动力学、 弹性力学等领域的问题。
数值分析应用
重积分在数值分析中有重要的应用, 如数值积分、数值微分等计算方法的 实现都需要用到重积分的知识。
04 曲线积分与曲面积分
曲线积分的概念与性质
总结词
理解曲线积分的定义和计算方法,掌握其在几何和物理问题中的应用。
总结词
掌握多元函数的可积性和积分的基本性 质是理解多元函数积分学的重要环节。
VS
详细描述
可积性的判定条件和积分的基本性质(如 线性性质、可加性、不等式性质等)是多 元函数积分学中的核心知识点,对于理解 和应用积分具有重要意义。
多元函数积分的计算方法
总结词
掌握多元函数积分的计算方法是学习多元函数积分学的关键。
《多元函数积分学》ppt课件
• 多元函数积分学概述 • 多元函数积分的基本概念 • 重积分 • 曲线积分与曲面积分 • 多元函数积分学的应用
01 多元函数积分学概述
多元函数积分学的定义
定义
多元函数积分学是研究多元函数 的积分、微分和微积分基本定理 的一门学科。
多元函数
一个数学函数,其中自变量不止 一个,即函数的输入和输出都是 向量或更高维度的几何对象。
计算多维工程结构的热传导和流 体流动
在工程中,很多问题需要考虑多维工程结构的热传导和 流体流动,如热力管道、流体机械等。多元函数积分学 可以用来计算这些结构的热传导和流体流动。
THANKS 感谢观看
积分
对一个函数在某个区域上的所有 点的值进行加权求和,权值由该 点的坐标决定。
多元函数积分学的重要性
解决实际问题
高等数学学习重点
第一章函数学习重点一、区间与邻域1.区间定义2.邻域定义二、函数的定义三、函数的性质1.有界性2.单调性3.奇偶性4.周期性四、复合函数与反函数1.复合函数2.反函数3.反函数存在定理五、初等函数第二章极限学习重点一、数列的极限1、定义2、性质二、函数的极限1、定义2、无穷小量和无穷大量3、海涅定理三、函数极限的性质与运算1、极限与函数的关系2、极限与无穷小的关系3、无穷小的性质4、极限的四则运算定理四、极限存在的准则1、夹挤准则2、单调有界准则五、两个重要极限六、无穷小量的比较与等价无穷小代换1、无穷小量的比较2、几个等价无穷小3、等价无穷小的代换定理七、函数的连续性1、函数在一点处的连续性2、函数的间断点3、连续函数的性质4、连续函数在闭区间上的性质第三章 导数与微分学习重点一、导数的概念1、导数的定义2、导数的几何意义3、函数y=f(x)在x=x0处可导的条件4、高阶导数的定义二、函数的求导法则1、导数公式2、函数的和、差、积、商的导数3、复合函数的求导法则4、反函数的求导法则5、隐函数的求导法则6、对数微分法7、由参量方程所确定函数的求导法则三、微分及其应用1、微分定义2、微分的性质和运算公式第四章 中值定理与导数应用学习重点一、微分中值定理1、罗尔(R o l l e )定理2、拉格朗日(l a g r a n g e )定理3、柯西定理4、泰勒定理(T a y l o r )二、罗比塔(L ’H o s p i t a l )法则1、00型未定式2、∞∞型未定式 三、函数性态的研究及函数作图1、有关定义2、重要结论3、函数作图步骤四、平面曲线的曲率1、弧微分2、曲率公式第五章 不定积分学习重点一、不定积分的定义与性质1、原函数与不定积分的定义2、不定积分的性质二、基本积分公式三、积分法1、换元积分法2、分部积分法3、几类函数的积分法第六章 定积分及其应用学习重点一、定积分定义及存在定理1、定积分定义2、定积分存在的条件二、定积分的性质三、定积分与原函数的关系1、变上限的定积分2、牛顿—莱布尼兹公式四、定积分换元法与分部积分法1、定积分的换元法2、定积分的分部积分法五、广义积分1、无穷区间上的广义积分2、无界函数的广义积分六、定积分的应用1、几何方面的应用2、物理方面的应用第七章 空间解析几何与矢量代数学习重点一、空间直角坐标系1、空间直角坐标系2、空间两点间的距离二、矢量代数1、矢量的概念及矢量在轴上的投影2、矢量的坐标表示法3、矢量的加、减法及矢量与数的乘法4、两矢量的数量积(点积,内积)5、两矢量的矢量积(叉积、外积)6、三矢量的混合积三、平面及其方程1、空间曲面及其方程2、平面方程四、空间直线及其方程1、空间曲线及其方程2、空间直线五、常见的曲面及其方程1、柱面方程2、旋转面方程3、二次曲面六、空间曲线方程1、一般方程2、参数方程3、空间曲线在坐标面上的投影曲线第八章多元函数微分学学习重点一、多元函数的概念1、二元函数的定义2、二元函数的极限3、二元函数的连续性二、偏导数、全微分、方向导数与梯度1、偏导数、高阶偏导数2、全微分3、方向导数与梯度4、二元函数在某点P(x0,y0)处的极限、连续、偏导数、方向导数之间的关系三、复合函数与隐函数的微分法1、多元复合函数微分法及全微分形式不变性2、隐函数的微分法四、多元函数微分学的应用1、偏导数在几何上的应用2、多元函数的极值第九章多元函数积分学学习重点一、二重积分、三重积分的概念1、二重积分2、三重积分二、二重积分、三重积分的性质1、二重积分2、三重积分三、二重积分的计算1、在直角坐标系下计算2、在极坐标系下计算四、三重积分的计算1、在直角坐标系下计算2、在柱坐标系下计算3、在球坐标系下计算五、用重积分求体积、曲面面积、质量、重心和转动惯量1、在几何方面2、在物理方面六、确使用重积分中的对称性,以简化重积分的计算1、二重积分中的对称性2、三重积分中的对称性第十章曲线积分和曲面积分学习重点一、曲线积分1、曲线积分的定义2、曲线积分的性质3、曲线积分的计算4、两类曲线积分的关系5、格林(G r e e n)定理及平面曲线积分与路径无关的条件6、曲线积分的应用二、曲面积分1、曲面积分的定义2、曲面积分的计算2、两类曲面积分的关系4、高斯(G a u s s)定理,曲面积分与曲面无关的条件5、斯托克斯(S t o k e s)定理,空间曲线积分与路径无关的条件6、矢量场的散度与旋度7、曲面积分的应用第十一章 级 数学习重点一、数项级数1、数项级数的定义2、数项级数的性质3、正项级数敛散性的判别法4、任意项级数敛散性的判别法5、绝对收敛级数的性质二、幂级数1、函数项级数的基本概念2、幂级数的收敛域3、幂级数的性质三、函数的幂级数展开1、台劳(T a y l o r)级数2、函数展为台劳级数的充要条件3、几个常用的初等函数展开式四、台劳级数在近似计算上的应用四、傅里叶级数1、傅里叶级数2、函数展开成傅里叶级数第十二章 常微分方程学习重点一、微分方程的基本概念1、微分方程的有关定义2、微分方程的有关定理二、一阶微分方程的解法1、可分离变量方程2、齐次方程3、线性方程4、贝努利方程5、全微分方程三、可降价的二阶微分方程的解法1、不显含未知函数y的二阶方程2、不显含自变量x的二阶方程四、二阶常系数线性微分方程的解法1、二阶线性常系数齐次方程的解法2、二阶线性常系数非齐次方程的解法3、欧拉方程的解法。
高等数学思想方法
高等数学思想方法第一章函数与极限主要的思想方法:(1)函数的思想高等数学的核心内容是微积分,而函数是微积分的主要研究对象。
我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。
(2)极限的思想极限的思想方法是微积分的基础。
极限是变量在无限变化过程中的变化趋势,是一个确定的数值。
把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。
第二章导数与微分主要的思想方法:(1)微分的思想微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。
从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。
(2)数形结合的思想书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。
通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。
(3)极限的思想不难发现导数概念的引入与定义深刻地体现了极限的思想。
(4)逻辑思维方法在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。
第三章中值定理与导数的应用主要的思想方法:导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。
导数是一种工具,而中值定理(微分基本定理)则是微分学的理论基础,它更加深刻地揭示了可导函数的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 多元函数积分学(Ⅰ)一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。
第一节 二重积分教学目的:1、熟悉二重积分的概念;2、了解二重积分的性质和几何意义,知道二重积分的中值定理;3、掌握二重积分的(直角坐标、极坐标)计算方法;4、能根据积分区域和被积函数正确选择积分顺序 教学重点:1、二重积分的性质和几何意义;2、二重积分在直角坐标系下的计算 教学难点:1、二重积分的计算;2、二重积分计算中的定限问题 教学容:一、二重积分的概念 1. 曲顶柱体的体积设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积.首先, 用一组曲线网把D 分成n 个小区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个∆σ i 中任取一点(ξ i , ηi ),以f (ξ i , η i )为高而底为∆σ i 的平顶柱体的体积为f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ).这个平顶柱体体积之和i i i ni f V σηξ∆≈=∑),(1.可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即i i i ni f V σηξλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.2. 平面薄片的质量.设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为ρ(x , y ), 这里ρ(x , y )>0且在D 上连续. 现在要计算该薄片的质量M .用一组曲线网把D 分成n 个小区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n . 把各小块的质量近似地看作均匀薄片的质量:ρ(ξ i , η i )∆σ i . 各小块质量的和作为平面薄片的质量的近似值:i i i ni M σηξρ∆≈=∑),(1.将分割加细, 取极限, 得到平面薄片的质量i i i ni M σηξρλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.定义 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim ),(10. f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和. 直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作dxdy y x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的存在性: 当f (x , y )在闭区域D 上连续时, 积分和的极限是存在的, 也就是说函数f (x , y )在D 上的二重积分必定存在. 我们总假定函数f (x , y )在闭区域D 上连续, 所以f (x , y )在D 上的二重积分都是存在的.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.二、二重积分的性质性质1σσd y x f k d y x kf DD⎰⎰⎰⎰=),(),(.性质2 设c 1、c 2为常数, 则σσσd y x g c d y x f c d y x g c y x f c DDD⎰⎰⎰⎰⎰⎰+=+),(),()],(),([2121.性质3 如果闭区域D 被有限条曲线分为有限个部分闭区域, 则在D 上的二重积分等于在各部分闭区域上的二重积分的和. 例如D 分为两个闭区域D 1与D 2, 则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质4σσσ==⋅⎰⎰⎰⎰DDd d 1(σ为D 的面积).性质5 如果在D 上, f (x , y )≤g (x , y ), 则有不等式σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.性质6 σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.性质7(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点(ξ, η)使得σηξσ),(),(f d y x f D=⎰⎰.三、 二重积分的计算法X --型区域: D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域: D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d . 混合型区域:设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }. 此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为⎰=badx x A V )(dx dy y x f b a x x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f b a x x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d ,则有⎰⎰⎰⎰=dc y y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1:计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解:画出区域D .方法一 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][xDdx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xx Dydy xdx xydy dx d xy σ.方法二 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰⎰=212][y Ddy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y . 例2:计算σd y x yD⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解:画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211xDdy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x21)1(32103=--=⎰dx x .也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydy d y x y σ.例3:计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解:积分区域可以表示为D =D 1+D 2, 其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx xxDxydy dx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4:求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积.解:设这两个圆柱面的方程分别为x 2+y 2=ρ 2及x 2+z 2=ρ 2. 利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=R x R dy x R dx 022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰.四、二重积分的换元法 1.利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(. 按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim ),(. 下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i θρξcos =, i i i θρηsin =.于是 i i ni i i i i i i n i i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim ),(lim , 即θρρθρθρσd d f d y x f DD)sin ,cos (),(⎰⎰⎰⎰=.若积分区域D 可表示为 ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β, 则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5:计算⎰⎰--Dy xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解:在极坐标系中, 闭区域D 可表示为0≤ρ≤a , 0≤θ ≤2π . 于是⎰⎰⎰⎰---=DDy x d d edxdy eθρρρ222θθρρπρπρd e d d eaa02020]21[ ][22⎰⎰⎰---==)1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdy e 22也常写成⎰⎰≤+--22222a y x y xdxdy e .利用)1(222222a a y x y xe dxdy e -≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设 D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0}, S ={(x , y )|0≤x ≤R , 0≤y ≤R }. 显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y xdxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy xdx e dy e dx e dxdy e ,又应用上面已得的结果有)1(42122R D y xe dxdy e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R R x R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而220 π=-∞+⎰dx e x .例6:求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面的部分)立体的体积. 解:由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤.于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .小结:1、二重积分的定义、几何意义;2、二重积分的计算(直角坐标,极坐标)3、二重积分的转化作业:习题10-12 (1) (3)、 6 (1)(5)、 8 (1) (4)、9(1)、 10(2)、 11(1)(3)第三节 三重积分教学目的:1、熟悉三重积分的概念;2、了解三重积分的性质;3、掌握三重积分在直角坐标系下的计算方法;4、掌握三重积分在柱面坐标系、球面坐标系下的计算方法 教学重点:1、三重积分的概念和计算;2、三重积分在柱面坐标系下的计算 教学难点:1、三重积分的计算;2、三重积分在球面坐标系下的计算 教学容:一、三重积分的概念定义 设f (x , y , z )是空间有界闭区域Ω上的有界函数. 将Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅ ⋅ ⋅ , ∆v n其中∆v i 表示第i 个小闭区域, 也表示它的体积. 在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξ i , η i , ζ i )∆v i (i =1, 2, ⋅ ⋅ ⋅, n )并作和i i i i ni v f ∆=∑),,(1ζηξ. 如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在,则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 记作dv z y x f ⎰⎰⎰Ω),,(. 即i i i i ni v f dv z y x f ∆==→Ω∑⎰⎰⎰),,(lim ),,(10ζηξλ. 三重积分中的有关术语:⎰⎰⎰Ω——积分号, f (x , y , z )——被积函数, f (x , y , z )dv ——被积表达式, dv体积元素, x , y , z ——积分变量, Ω——积分区域.在直角坐标系中, 如果用平行于坐标面的平面来划分Ω, 则∆v i =∆x i ∆y i ∆z i , 因此也把体积元素记为dv =dxdydz , 三重积分记作⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z y x f dv z y x f ),,(),,(.当函数f (x , y , z )在闭区域Ω上连续时, 极限i i i i ni v f ∆=→∑),,(lim 10ζηξλ是存在的, 因此f (x , y , z )在Ω上的三重积分是存在的, 以后也总假定f (x , y , z )在闭区域Ω上是连续的.三重积分的性质: 与二重积分类似. 比如dv z y x g c dv z y x f c dv z y x g c z y x f c ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ±=±),,(),,()],,(),,([2121;dv z y x f dv z y x f dv z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+Ω+=2121),,(),,(),,(;V dv =⎰⎰⎰Ω, 其中V 为区域Ω的体积.二、三重积分的计算1. 利用直角坐标计算三重积分三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b ,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(,即⎰⎰⎰⎰⎰⎰=Ωbay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 提示:设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b ,计算⎰⎰⎰Ωdv z y x f ),,(.基本思想:对于平面区域D : y 1(x )≤y ≤y 2(x ), a ≤x ≤b 任意一点(x , y ), 将f (x , y , z )只看作z 的函数, 在区间[z 1(x , y ), z 2(x , y )]上对z 积分, 得到一个二元函数F (x , y ),⎰=),(),(21),,(),(y x z y x z dz z y x f y x F ,然后计算F (x , y )在闭区域D 上的二重积分, 这就完成了f (x , y , z )在空间闭区域Ω上的三重积分.⎰⎰⎰⎰⎰=Dy x z y x z Dd dz z y x f d y x F σσ]),,([),(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx),(),()()(2121),,(.即⎰⎰⎰⎰⎰⎰=Ωbay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 例1:计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解:作图, 区域Ω可表示为: 0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1. 于是⎰⎰⎰⎰⎰⎰---Ω=10210210x y x xdz dy dx dxdydz x ⎰⎰---=1210)21(xdy y x xdx ⎰=+-=1032481)2(41dx x x x . 讨论: 其它类型区域呢?有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域Ω={(x , y , z )|(x , y )∈D z , c 1≤ z ≤c 2}, 其中D z 是竖坐标为z 的平面截空间闭区域Ω所得到的一个平面闭区域, 则有⎰⎰⎰⎰⎰⎰=ΩzD c c dxdy z y x f dz dv z y x f ),,(),,(21.例2:计算三重积分dxdydz z ⎰⎰⎰Ω2, 其中Ω是由椭球面1222222=++c z b y a x 所围成的空间闭区域.解:空间区域Ω可表为:2222221c z b y a x -≤+, -c ≤ z ≤c .于是 ⎰⎰⎰⎰⎰⎰-Ω=cc Dzdxdy dz z dxdydz z 223222154)1(abc dz z c z ab cc ππ=-=⎰-.练习:1. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为三次积分, 其中(1)Ω是由曲面z =1-x 2-y 2, z =0所围成的闭区域.(2)Ω是双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域. (3)其中Ω是由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域. 2. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为先进行二重积分再进行定积分的形式, 其中Ω由曲面z =1-x 2-y 2,z =0所围成的闭区域.三、三重积分的换元法1. 柱面坐标变换设M (x , y , z )为空间一点, 并设点M 在xOy 面上的投影P 的极坐标为P (ρ, θ ), 则这样的三个数ρ、θ 、z 就叫做点M 的柱面坐标, 这里规定ρ、θ 、z 的变化围为: 0≤ρ<+∞, 0≤θ ≤2π , -∞<z <+∞. 坐标面ρ=ρ0, θ =θ 0, z =z 0的意义: 点M 的直角坐标与柱面坐标的关系:x =ρcos θ, y =ρsin θ, z =z . ⎪⎩⎪⎨⎧===zz y x θρθρsin cos柱面坐标系中的体积元素: dv =ρd ρd θdz . 简单来说, dxdy =ρd ρd θ , dxdydz =dxdy ⋅dz =ρd ρd θ dz . 柱面坐标系中的三重积分:⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f θρρθρθρ),sin ,cos (),,(.例3:利用柱面坐标计算三重积分⎰⎰⎰Ωzdxdydz , 其中Ω是由曲面z =x 2+y 2与平面z =4所围成的闭区域.解:闭区域Ω可表示为: ρ2≤z ≤4, 0≤ρ≤2, 0≤θ≤2π. 于是⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z zdxdydz θρρ⎰⎰⎰=πρρρθ202042zdz d d ⎰⎰-=πρρρθ20204)16(21d dπρρπ364]618[2212062=-⋅=.2. 球面坐标变换设M (x , y , z )为空间一点, 则点M 也可用这样三个有次序的数r 、ϕ、θ 来确定, 其中r 为原点O 与点M 间的距离, ϕ为→OM 与z 轴正向所夹的角, θ为从正z 轴来看自x 轴按逆时针方向转到有向线段→OP 的角, 这里P 为点M 在xOy 面上的投影, 这样的三个数r 、ϕ 、θ 叫做点M 的球面坐标, 这里r 、ϕ、θ 的变化围为0≤r <+∞, 0≤ϕ<π, 0≤θ ≤2π.点M 的直角坐标与球面坐标的关系:x =r sin ϕcos θ, y =r sin ϕsin θ, z =r cos ϕ . ⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x球面坐标系中的体积元素: dv =r 2sin ϕdrd ϕd θ . 球面坐标系中的三重积分:θϕϕϕθϕθϕd drd r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ=.例4:求半径为a 的球面与半顶角α为的接锥面所围成的立体的体积.解:该立体所占区域Ω可表示为: 0≤r ≤2a cos ϕ, 0≤ϕ≤α, 0≤θ≤2π. 于是所求立体的体积为 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dxdydz V sin 2⎰⎰⎰=παϕϕϕθ20cos 202sin a dr r d d⎰⎰=αϕϕϕπcos 202sin 2a dr r d⎰=αϕϕϕπ033sin cos 316d a )cos 1(3443a a -=π. 提示: 球面的方程为x 2+y 2+(z -a )2=a 2, 即x 2+y 2+z 2=2az . 在球面坐标下此球面的方程为r 2=2ar cos ϕ, 即r =2a cos ϕ. 小结:1、三重积分的定义;2、三重积分的计算(化三重积分为三次积分);3、三重积分换元法(柱面坐标,球面坐标)作业:习题10-32 (1)(3)(5)、 4(1)(2)、5(1)(2)、 6(2)(4)第四节 重积分的应用教学目的:1、理解空间曲面的面积;2、掌握空间曲面面积的计算 教学重点:空间曲面面积的计算 教学难点:空间曲面面积的计算 教学容:有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U 对于闭区域D 具有可加性(就是说, 当闭区域D 分成许多小闭区域时, 所求量U 相应地分成许多部分量, 且U 等于部分量之和), 并且在闭区域D 任取一个直径很小的闭区域d σ时, 相应的部分量可近似地表示为f (x , y )d σ 的形式, 其中(x , y )在d σ, 则称f (x , y )d σ 为所求量U 的元素, 记为dU , 以它为被积表达式, 在闭区域D 上积分: ⎰⎰=Dd y x f U σ),(,这就是所求量的积分表达式. 一、空间曲面的面积设曲面S 由方程 z =f (x , y )给出, D 为曲面S 在xOy 面上的投影区域, 函数f (x , y )在D 上具有连续偏导数f x (x , y )和f y (x , y ). 现求曲面的面积A .在区域D 任取一点P (x , y ), 并在区域D 取一包含点P (x , y )的小闭区域d σ, 其面积也记为d σ. 在曲面S 上点M (x , y , f (x , y ))处做曲面S 的切平面T , 再做以小区域d σ的边界曲线为准线、母线平行于z 轴的柱面. 将含于柱面的小块切平面的面积作为含于柱面的小块曲面面积的近似值, 记为dA . 又设切平面T 的法向量与z 轴所成的角为γ , 则σγσd y x f y x f d dA y x ),(),(1cos 22++==,这就是曲面S 的面积元素. 于是曲面S 的面积为σd y x f y x f A y x D),(),(122++=⎰⎰,或 dxdy yz x z A D22)()(1∂∂+∂∂+=⎰⎰.讨论: 若曲面方程为x =g (y , z )或y =h (z , x ), 则曲面的面积如何求?dydz zx y x A yzD ⎰⎰∂∂+∂∂+=22)()(1,或 dzdx xy z y A zxD ⎰⎰∂∂+∂∂+=22)()(1. 其中D yz 是曲面在yOz 面上的投影区域,D zx 是曲面在zOx 面上的投影区域.例1 求半径为a 的球的表面积.解:取上半球面方程为222z x y a =+?,由zx?=¶zy?=¶所以22222220022,224x y a x y a a A a d a p q p +?+?====蝌蝌蝌二、平面薄片的重心设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为ρ(x , y ), 假定μ(x , y )在D 上连续. 现在要求该薄片的质心坐标.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ.平面薄片对x 轴和对y 轴的力矩分别为⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅.于是⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDxd y x d y x y MM y σμσμ),(),(.在闭区域D 上任取包含点P (x , y )小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩元素分别为dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ.平面薄片对x 轴和对y 轴的力矩分别为⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅.于是⎰⎰⎰⎰==DDy d y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DD x d y x d y x y M My σμσμ),(),(. 讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求? 求平面图形的形心公式为⎰⎰⎰⎰=DDd xd x σσ, ⎰⎰⎰⎰=DDd yd y σσ.例2 求位于两圆ρ=2sin θ 和ρ=4sin θ 之间的均匀薄片的质心.解 因为闭区域D 对称于y 轴, 所以质心) ,(y x C 必位于y 轴上, 于是0=x . 因为⎰⎰⎰⎰=DDd d yd θρθρσsin 2πρρθθθθπ7sin sin 4sin 220==⎰⎰d d ,πππσ31222=⋅-⋅=⎰⎰d D,所以3737===⎰⎰⎰⎰ππσσDD d yd y . 所求形心是)37 ,0(C .三、转动惯量设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为μ(x , y ), 假定ρ(x , y )在D 上连续. 现在要求该薄片对于x 轴的转动惯量和y 轴的转动惯量.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对于x 轴的转动惯量和y 轴的转动惯量的元素分别为dI x =y 2μ(x , y )d σ , dI y =x 2μ(x , y )d σ .整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为σμd y x y I Dx ),(2⎰⎰=, σμd y x x I Dy ),(2⎰⎰=.例3 求半径为a 的均匀半圆薄片(面密度为常量μ)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D 可表示为D ={(x , y )| x 2+y 2≤a 2, y ≥0}而所求转动惯量即半圆薄片对于x 轴的转动惯量I x , ⎰⎰⎰⎰⋅==DDx d d d y I θρρθρμσμ222sin ⎰⎰⎰⋅==ππθθμρρθθμ0240032sin 4 sin d a d d a2441241Ma a =⋅=πμ, 其中μπ221a M =为半圆薄片的质量.类似地, 占有空间有界闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )的物体对于x 、y 、z 轴的转动惯量为⎰⎰⎰Ω+=dv z y x z y I x ),,()(22ρ,⎰⎰⎰Ω+=dv z y x x z I y ),,()(22ρ,⎰⎰⎰Ω+=dv z y x y x I z ),,()(22ρ.四、引力我们讨论空间一物体对于物体外一点P 0(x 0, y 0, z 0)处的单位质量的质点的引力问题.设物体占有空间有界闭区域Ω, 它在点(x , y , z )处的密度为ρ(x , y , z ), 并假定ρ(x , y , z )在Ω上连续. 在物体任取一点(x , y , z )及包含该点的一直径很小的闭区域dv (其体积也记为dv ). 把这一小块物体的质量ρdv 近似地看作集中在点(x , y , z )处. 这一小块物体对位于P 0(x 0, y 0, z 0)处的单位质量的质点的引力近似地为),,(z y x dF dF dF d =F )))(,,(,))(,,(,))(,,((303030dv r z z z y x Gdv r y y z y x Gdv r x x z y x G---=ρρρ,其中dF x 、dF y 、dF z 为引力元素d F 在三个坐标轴上的分量, 202020)()()(z z y y x x r -+-+-=, G 为引力常数. 将dF x 、dF y 、dF z 在Ω上分别积分, 即可得F x 、F y 、F z , 从而得F =(F x 、F y 、F z ). 小结:1、曲面面积;2、平面薄片重心、转动惯量、引力作业:习题10-4 2、3、4第五节 对弧长的曲线积分教学目的:1、掌握对弧长的曲线积分的概念及性质;2、掌握对弧长的曲线积分的计算方法;3、会求曲线积分所对应的弧长 教学重点:概念和计算方法 教学难点:曲线积分弧长的计算 教学容:一、对弧长的曲线积分的概念 曲线形构件的质量:设一曲线形构件所占的位置在xOy 面的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量. 把曲线分成n 小段, ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n (∆s i 也表示弧长);任取(ξi , ηi )∈∆s i , 得第i 小段质量的近似值μ(ξi , ηi )∆s i ;整个物质曲线的质量近似为i i i ni s M ∆≈=∑),(1ηξμ; 令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n }→0,则整个物质曲线的质量为i i i ni s M ∆==→∑),(lim 10ηξμλ.这种和的极限在研究其它问题时也会遇到.定义 设L 为xOy 面的一条光滑曲线弧, 函数f (x , y )在L 上有界. 在L 上任意插入一点列M 1, M 2, ⋅ ⋅ ⋅, M n -1把L 分在n 个小段. 设第i 个小段的长度为∆s i , 又(ξi , ηi )为第i 个小段上任意取定的一点, 作乘积f (ξi ,ηi )∆s i , (i =1, 2,⋅ ⋅ ⋅, n ), 并作和i i i ni s f ∆=∑),(1ηξ, 如果当各小弧段的长度的最大值λ→0, 这和的极限总存在,则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(⎰, 即i i i ni L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.设函数f (x , y )定义在可求长度的曲线L 上, 并且有界. 将L 任意分成n 个弧段: ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n , 并用∆s i 表示第i 段的弧长; 在每一弧段∆s i 上任取一点(ξi , ηi ), 作和i i i ni s f ∆=∑),(1ηξ;令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n },如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(⎰, 即i i i ni L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ.其中f (x , y )叫做被积函数, L 叫做积分弧段.定义 设函数f (x,y )在分段光滑曲线L 上有定义,A ,B 是的端点,依次用分点A=M 0,M 1,....,M n-1,M n =B 把L 分成n 个小弧段¼¼¼01121,,,n n M M M M M M -L每小段的弧长记为,在上任取一点,若时,和式的极限存在,则称函数在曲线L 上积分,且称该极限值为函数沿曲线L 对弧长的曲线积分,记作(,)Lf x y ds ò,即1(,)lim (,).ni i i Li f x y ds f s l x h ®==D åò由定义可知,曲线弧的质量M 等于线密度(,)x y r 沿曲线L 对弧长的曲线积分,即(,).LM x y ds r =ò特别地,当(,)1x y r º时,.LM ds s ==ò二、对弧长的曲线积分的性质设(,)f x y ,(,)g x y 在L 上可积,则有以下性质: (1)(,)(,);LLkf x y ds kf x y ds =蝌(2)[(,)(,)](,)(,);LLLf x yg x y dsf x y dsg x y ds ??蝌?(3)如果曲线L 由12,,,n L L L L 几部分组成,则在弧L 上的积分等于在各部分上积分之和,即12(,)(,)(,)(,).nLL L L f x y ds f x y ds f x y ds f x y ds =+++蝌蝌L三、对弧长的曲线积分的计算法定理 设曲线L 由参数方程(),()()x x t y y t ta b ==#表示,(),()x t y t 在[,]a b 上有一阶连续导数,且22'()'()0x t y t +?(即曲线L 是光滑的简单曲线),函数(,)f x y 在曲线上连续,则(,)((),(.Lf x y ds f x t y t b a=蝌若曲线L 由方程()()y y x a x b =#给出,()y x 在[,]a b 上有一阶连续导数,且(,)f x y 在曲线L上连续,则(,)(,(.b Laf x y ds f x y x =蝌类似的,若曲线L 由方程()()x x y c y d =#给出,()x y 在[,]c d 上有一阶连续导数,且(,)f x y 在曲线L 上连续,则(,)((),.d Lcf x y ds f x y y =蝌例1、计算曲线积分L I xyds =⎰,L 是圆()2220x y a a +=>在第一象限中的部分.解:由圆的参数方程cos ,sin ,02x a t y a t t π==≤≤可得 'sin 'cos t t x a t y a t ==-,ds adt ===按公式,得20cos sin LI xyds a t a t adt π==⋅⋅⎰⎰32sin 22atdt π=⎰32a =例2、计算曲线积分⎰曲线L 是抛物线214y x =自点(0,0)到点(2,1)的一段弧.解:因为ds ==而x 的变化区间是[0,2],由公式得2322200122(1)|1).2343Lx ==+=- 例3、求LI yds =⎰其中L:y 2=4x 从(1,2)到(1,-2)一段。