(完整word版)脱丙烯精馏塔工艺
烯烃精馏系统操作与控制—作业丙烯精馏
2.减小再沸量
3.回流量小
3.加大回流量
4.采出量大
4.减小采出量
5.仪表故障
5.切至手动,联系仪表处理
丙烯精馏塔结构 及工艺流程
ONTENTS
目 录
1 丙烯精馏塔结构 2 丙烯精馏塔任务 3 丙烯精馏塔工艺流程描述
01丙 烯 精 馏 塔 结 构
结构
1 本装置设置有两个丙烯精馏塔,串联操作。 1#丙烯精馏塔160T603设置有77 层四溢流浮阀
2 塔盘。 2# 丙烯精馏塔160T604设有162 层四溢流浮阀塔
1
通过丙烯产品泵160P606A/B送出。
经丙烯产品冷却器160E615进行冷却,然后通过 2 丙烯产品保护床160D602A/B进行精制。
从床层上部经过,在过滤器160S601A/B过滤 3 后由160FC649(聚合级丙烯采出流控器)控制采出量。03 丙烯产品输送条件
温度40℃,压力 2.1MPag
1#丙烯精馏塔的塔顶气相进入2#丙烯精馏塔塔釜。 4 来自脱乙烷塔160T601塔釜的物料进入到2#丙烯精
馏塔的第146层塔盘。
2#丙烯精馏塔塔顶冷凝器160E614A/B的出料进入2# 5 丙烯精馏塔回流罐160V604,回流罐中的部分液相通
过回流泵160P607A/B打回2#丙烯精镏塔塔顶。。
聚合级丙烯产品通过丙烯产品采出泵160P606A/B送 6 出,经丙烯产品冷却器160E615冷却、经丙烯产品保
调节方法
1.调整进料量 2.调整再沸量 3.调整采出量 4.调整回流量
异常情况处理
现象 液位上升
液位下降
异常情况处理
原因
处理方法
1.进料量增加
1.减小进料量
简单的精馏塔工艺流程
简单的精馏塔工艺流程
精馏塔工艺流程是一种分离液体混合物中各组分的方法,通过利用不同组分的沸点差异,采用蒸馏柱进行分离和纯化。
下面将详细介绍精馏塔工艺流程。
精馏塔主要包括加热锅、塔体、塔板、冷凝器和分离器等部件。
工艺流程如下:
1. 将待分离的混合物加热至使其中液体沸腾,蒸汽上升进入塔体。
2. 在塔体内设置多个塔板,通过塔板上的开孔和分布器使蒸汽均匀分布到各个塔板中。
3. 在塔体的底部设置加热锅,加热锅产生的蒸汽进入塔体底部。
4. 利用不同组分的沸点差异,蒸汽在塔体内上升时逐渐冷凝回液体,并与塔板上的液体进行逆流交换,从而实现分离。
5. 较易挥发的组分(即沸点较低的组分)在较低的位置先凝结并收集,而较不易挥发的组分(即沸点较高的组分)在较高的位置凝结并收集。
6. 分离出的纯净组分通过分离器进行排出,并收集于不同的容器中。
7. 随着分离的进行,塔体中会逐渐形成纯净组分的纯液体。
8. 确保温度和压力的控制,以保持精馏塔处于稳定操作状态。
9. 根据需要,可以通过向塔体中添加一定的补充物料来调整组分成分的纯度。
需要注意的是,精馏塔在操作过程中对温度和压力的控制非常重要。
合理的温度和压力选择可以提高分离效率,并保证分离出的组分的纯度。
此外,精馏塔需要定期维护和清洁,以保持其良好的工作状态。
总结起来,精馏塔工艺流程通过蒸馏柱将混合物中的不同组分进行分离和纯化,从而得到所需的纯净组分。
通过合理控制温度和压力,并进行定期维护,可以使精馏塔保持高效和稳定的操作状态。
丙烯精馏塔工艺设计
过程工艺与设备课程设计(精馏塔及辅助设备设计)设计日期:2010年7月6日班级:化机0701班姓名:梁昊穹指导老师:韩志忠前言化工原理是化工及其相关专业学生的一门重要的技术基础课,其课程设计涉及多学科知识,包括化工,制图,控制,机械等各种学科,是一项综合性很强的工作;是锻炼工程观念和培养设计思维的好方法,是为以后的各种设计准备条件;是化工原理教学的关键环节,也是巩固和深化理论知识的重要环节。
本设计说明书包括概述、方案流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共七章。
说明中对精馏塔的设计计算做了较为详细的阐述,对于再沸器、辅助设备和管路和控制方案的设计也做了简要的说明。
在设计过程中,得到了韩志忠老师的指导,得到了同学们的帮助,同学们一起讨论更让我感受到设计工作是一种集体性的劳动,少走了许多弯路,避免了不少错误,也提高了效率。
鉴于学生的经验和知识水平有限,设计中难免存在错误和不足之处,请老师给予指正感谢老师的指导和参阅!目录前言- - - - - - - - - - - - - - - - - - - - - - - - - 2 第一章概述- - - - - - - - - - - - - - - - - - - - - - 5 1.1精馏塔- - - - - - - - - - - - - - - - - - - - - - 5 1.2再沸器- - - - - - - - - - - - - - - - - - - - - - 5 1.3冷凝器- - - - - - - - - - - - - - - - - - - - - - 6 第二章方案流程简介- - - - - - - - - - - - - - - - - - 7 2.1 精馏装置流程- - - - - - - - - - - - - - - - - - - 7 2.2 工艺流程- - - - - - - - - - - - - - - - - - - - - 7 2.3 调节装置- - - - - - - - - - - - - - - - - - - - - 8 2.4 设备选用- - - - - - - - - - - - - - - - - - - - - 8 2.5 处理能力及产品质量- - - - - - - - - - - - - - - - 8 第三章精馏过程系统设计- - - - - - - - - - - - - - - - 9 3.1设计条件- - - - - - - - - - - - - - - - - - - - - - 9 3.2物料衡算及热量衡算- - - - - - - - - - - - - - - - - 10 3.3塔板数的计算- - - - - - - - - - - - - - - - - - - - 11 3.4精馏塔工艺设计- - - - - - - - - - - - - - - - - - - 163.5溢流装置的设计- - - - - - - - - - - - - - - - - - - 173.6塔板布置和其余结构尺寸的选取- - - - - - - - - - - - 183.7塔板流动性能校核- - - - - - - - - - - - - - - - - - 19 3.8负荷性能图- - - - - - - - - - - - - - - - - - - - 21 3.9 塔计算结果表- - - - - - - - - - - - - - - - - - -24 附:塔设计图第四章再沸器的设计- - - - - - - - - - - - - - - - - - 254.1设计任务与设计条件- - - - - - - - - - - - - - - - - 254.2估算设备尺寸- - - - - - - - - - - - - - - - - - - - 264.3传热系数的校核- - - - - - - - - - - - - - - - - - - 26 4.4循环流量校核- - - - - - - - - - - - - - - - - - - - 30 4.5 再沸器主要结构尺寸和计算结果表- - - - - - - - - - - 35附:再沸器设计图第五章辅助设备的设计- - - - - - - - - - - - - - - - 36 5.1冷凝器- - - - - - - - - - - - - - - - - - - - - - - 36 5.2其它换热设备- - - - - - - - - - - - - - - - - - - - 36 5.3容器- - - - - - - - - - - - - - - - - - - - - - - 38 5.4 管路设计及泵的选择- - - - - - - - - - - - - - - - 39 第六章管路设计- - - - - - - - - - - - - - - - - - - - 43 第七章控制方案- - - - - - - - - - - - - - - - - - - - 45 附:工艺流程图设计心得及总结- - - - - - - - - - - - - - - - - - - - 46 附录一主要符号说明- - - - - - - - - - - - - - - - - - 48 附录二参考文献- - - - - - - - - - - - - - - - - - - - 49第一章概述精馏是分离过程中的重要单元操作之一,所用设备主要包括精馏塔,再沸器和冷凝器。
120万吨气体分馏丙烯塔操作
120万吨气体分馏丙烯塔操作针对现阶段我国化工生产过程中,气体分馏装置丙烯精馏塔操作要被运用在石油化工以及炼油领域当中。
比如,在化工单位的日常生产减压加氢以及催化裂化工作中,将使用内部所产生的气体进行有效的分流处理,分流之后得到了乙烯、天然气以及油田气等相关物质,因此分离设置在化工生产工作当中的应用非常普遍。
在我国医药领域以及环境保护等领域当中都有着一定程度的应用和发展。
1.丙烯分馏塔操作流程针对我国某化工单位的丙烯精馏塔的具体生产工艺状况开展了实际分析,通过实地考察可以看出,将含有丙烷和丙烯的原材料直接输送到丙烯精馏塔的系统当中,输入完成之后顶部的气体会直接进入到丙烯精馏塔的10-C-407塔板以下。
在此过程中精馏塔的底部液体经过过滤器和冷却器的处理之后,保证温度控制在44℃以内才可以被输送到装置以外,而丙烯精馏塔的顶部气体,再输送到空冷器内部之后可以迅速进行冷却,并且将其直接输送到塔顶的回流罐当中。
通过塔顶的灰流泵处理之后再慢慢释放出来,直到精馏塔的内部压力完全上升之后,其中一部分作为丙烯精馏塔的顶部液体,在被输送到丙烯精馏塔的10-C-408的塔板上,同时另外一部分的丙烯物质通过内部的脱水装置处理之后,再直接输送到丙烯产品的收集装置当中。
在针对该化工单位丙烯精馏塔乙烯设备的扩能改造工作之后,丙烯精馏塔在整个工作能力和对丙烯的处理能力上得到了较大幅度的提高,进料量相比于改造之前的量得到了有效的提升,因此相关生产工作单位需要通过对应的生产工艺流程,对整个生产工艺的进料量进行准确的计算,以此可以充分保证整个化工生产的工作需求。
通过对原本的设计参数进行了重新的划分和设定,其中丙烯精馏塔的进料量上涨明显。
丙烯精馏塔在整个操作和生产过程中系统没有出现异常变化。
在气体内部的分流装置当中,塔盘内部的通过量会存在不足的问题,同时在相关的工艺流程当中包含了供应商塔底不变的条件下,对底部的塔盘进行了二次的固定和改造工作。
丙烯精馏塔工艺设计
丙烯精馏塔工艺设计
首先,需要确定丙烯的纯度要求。
根据产品的不同要求,丙烯的纯度
可以在90%至99%之间。
纯度的提高会增加设备的复杂性和操作难度,需
要更加严密的工艺控制。
其次,需要确定进料温度和压力。
丙烯的开启温度在20-30°C之间,进料温度一般选取在此范围内,同时考虑到设备的工作压力,一般选择在0.5-1.5MPa之间。
在塔体内部,需要设计丙烯精馏塔的塔盘结构和填料形式。
一般来说,可以采用板式塔盘或填料塔盘的形式。
塔盘的选择要考虑到其分离效果、
压降和清洗难易程度等因素。
在操作方面,需要合理安排丙烯的进料、回流和副产品的排出。
通常
情况下,可以将丙烯精馏塔分为顶底两部分,顶部为蒸汽区,底部为液相区。
通过调节进料位置和回流比例,可以控制顶部的蒸汽流量和液位,从
而实现对丙烯纯度的控制。
此外,还需要考虑设备的安全性和可靠性。
在设计中要充分考虑到操
作的安全性,选择适用的材料和防腐措施,确保设备的正常运行。
最后,需要进行工艺参数和操作条件的优化。
通过模拟和实验手段,
确定最佳的进料流量、回流比例、操作压力和温度等参数,以实现最佳的
分离效果和经济效益。
总之,丙烯精馏塔的工艺设计需要充分考虑到丙烯的物化性质、产品
要求和设备安全性等因素,通过合理的设计和优化,实现最佳的分离效果
和经济效益。
(完整word版)脱丙烯精馏塔工艺
(完整word版)脱丙烯精馏塔工艺目录第一章概述 (4)第二章脱丙烯精馏塔工艺计算 (5)2.1 设计方案简介 (5)2.2 主要物性数据 (5)2.3物料衡算 (5)2.3.1确定关键组分塔顶、塔底的分布量. (6)2.4确定塔操作条件 (6)2.4.1.确定塔顶温度: (6)2.4.2.确定进料温度。
(6)2.4.3.确定塔底温度. (7)2.4.4. 各组分相对挥发度 (7)2.5确定最小回流比。
(8)2.6理论塔板数与实际板数。
(8)2.6.1.求定最少理论板数 (8)2.6.2. 计算实际回流比R及理论塔板数 (9)2.6.3.计算全塔平均板效率 (9)2.6.4. 计算实际塔板数和进料板位置 (9)2.7确定冷凝器和再沸器的热负荷Q Q (10),C r第三章物料的性质计算 (12)3.1 求气液负荷 (12)3.2 平均摩尔质量的计算 (12)3.2.1 塔顶平均摩尔质量计算 (12)3.2.2 进料平均摩尔质量计算. (12)3.2.3 塔底平均摩尔质量计算. (13)3.3 平均密度计算 (13)3.3.1 气体平均密度计算 (13)3.3.2 液体平均密度计算 (13)3.3.3 液体平均表面张力计算。
(15) 3.3.4 液体平均粘度的计算。
(15) 第四章精馏塔的工艺尺寸计算。
(17)4.1 塔高的计算。
(17)4.1.1 塔径D的计算。
(17)4.2 塔板设计 (18)4.2.1 确定塔板溢流形式 (18)4.2.2降液管以及溢流堰的尺寸 (18) 4.2.3核算阀孔动能因数及孔速 (20) 4.2.4计算塔板开孔率 (20)4.2.5 浮阀塔板设计的校核 (20)4.2.6 塔板负荷性能图。
(22)第五章塔附属设备的设计 (25)5.1主要接管尺寸的计算 (25)5.1.1进料管 (25)5.1.2回流管 (25)5.1.4 塔顶蒸汽出料管 (25)5.1.5 加热蒸汽管 (26)5.2 筒体与封头 (26)5.2.1筒体 (26)5.2.2 封头 (26)5.3 裙座 (26)5.4 人孔 (27)5.5 塔体总高度的设计 (27)5.5.1 塔顶空间 (27)5.5.2 塔底空间 (27)5.5.3 塔高计算 (27)第六章全塔设计结果汇总表 (28)第七章心得体会 (29)第八章主要参考文献 (31)第一章概述精馏是在精馏塔中进行的,它由精馏塔、冷凝器、再沸器及其他设备构成。
丙烯—丙烷板式精馏塔设计
丙烯—丙烷板式精馏塔设计丙烯-丙烷分离是石油炼制过程中的重要操作之一、丙烯-丙烷板式精馏塔是进行该分离的常见设备之一、本文将介绍丙烯-丙烷板式精馏塔的设计。
一、塔内结构设计1.塔径和塔高:根据丙烯-丙烷的物理性质和进出料的要求,决定塔径和塔高。
一般来说,塔径选择在0.5到2.5米范围内,塔高选择在20到30米范围内。
2.装塔板设计:为了提高分离效率,常采用板式结构。
根据工艺要求和流体性质,确定装塔板的类型、布置和数量。
常用的板式结构有筛板和壳程板。
筛板形状为圆形孔,使得流体分布更均匀;壳程板则是在板上装置隔流器,使流体分配均匀。
塔板的数量根据物料组分和分离要求确定。
3.塔壳设计:塔壳一般采用圆筒形结构,确保塔内压力稳定。
根据设计要求和工艺条件,确定壳体材料和厚度。
二、热量平衡设计1.进料和出料的热量平衡计算:根据进出料的温度和流量,计算出料的焓值,从而得到进出料之间的热量差。
2.塔板的热量平衡计算:根据进出料的温度和流量,在塔板上进行热量平衡计算,以确定塔板上液体和气体的温度和流量。
3.塔壳的热量平衡计算:根据进出料的温度和流量,在塔壳内进行热量平衡计算,以确定塔壳内的温度和流量。
三、物料平衡设计1.塔板的物料平衡计算:根据塔板上液体和气体的温度和流量,计算塔板上液体和气体的物料平衡,以确定各组分的质量分数。
2.塔壳的物料平衡计算:根据塔壳内的温度和流量,计算塔壳内的物料平衡,以确定各组分的质量分数。
四、压力平衡设计1.压力损失计算:根据装塔板和塔壳的结构参数,计算出塔板和塔壳内的压力损失,以确定塔板和塔壳的工作压力。
2.压力平衡设计:根据丙烯-丙烷的物理性质和工艺要求,确定塔板和塔壳的工作压力,从而确保各部分之间的流体压力平衡。
五、其他设计考虑因素1.材料的选择:根据工艺要求和流体性质,选择适当的材料,以确保设备的耐腐蚀性和机械性能。
2.设备的安全性和可靠性:考虑设备的安全性和可靠性,采取必要的安全措施,如设置安全阀、温度传感器等。
丙烯精馏
第三章 精馏过程系统设计————丙烯、丙烷精馏装置设计3.1 设计条件1. 工艺条件:饱和液体进料,进料丙烯含量xf =65%(摩尔分数) 塔顶丙烯含量xD =98%,釜液丙烯含量xw≤2%,总板效率为0.6。
2.操作条件:1)塔顶操作压力:P=1.62MPa (表压) 2)加热剂及加热方法:加热剂——水蒸气 加热方法——间壁换热 3)冷却剂:循环冷却水 4)回流比系数:R/Rmin=1.4。
3.塔板形式:筛板 4.处理量:qnfh=70kmol/h 6.塔板设计位置:塔底3.2 物料衡算及热量衡算1物料衡算:w d f Wx Dx Fz WD F +=+= 其中: D ——塔顶采出 W ——塔底采出 F ——进料量Xd ——塔顶产品组成,摩尔分数Xw ——塔底产品组成,摩尔分数 Zf ——进料组成,摩尔分数解得结过果: h kmol D /9375.45= h kmol W /0625.24= 2.求质量流量:Md=0.98*42+0.02*44=42.04 kg/kmol; Mw=0.02*42+0.98*44=43.964 kg/kmol; Mf=0.65*42+0.35*44=42.7 kg/kmol则 qMd = D •Md/3600 =0.5364kg/s ; qMw = W•Mw/3600 =0.2939kg/s qf=F•Mf/3600=0.8303 kg/s 其中:Md ,Mw ,Mf ——塔顶,塔底,进料物流摩尔质量kg/kmol ; qMd ,qMd ,qf ——塔顶。
塔底,进料物流质量流量kg/s 。
3. 塔内气、液相流量:1)精馏段:L =R •D; V =(R+1)•D;2)提馏段:L'=L+q •F; V'=V-(1-q)•F; L'=V'+W; 其中q=1;则:L’=L+F; V’=V 4. 热量衡算1)再沸器热流量:Qr=V'•r'再沸器加热蒸气的质量流量:Gr= Qr/Rr2)冷凝器热流量:Qc=V •Cp •(t2-t1)冷凝器冷却剂的质量流量:Gc= Qc/(Cl •(t2-t1))3.3 塔板数的计算1 相对挥发度的计算:通过对给定的温度—组成表格,计算相对挥发度α α=Ka/Kb=(ya*xb)/(yb*xa)计算后平均,算得,1.72Mpa (绝)下α=1.131583 1.82Mpa (绝)下α=1.127408 平衡关系:x=y/(α-(α-1)y). 2 估算塔底的压力:已知塔顶的压力为1.62Mpa (表) 即1.72Mpa (绝) 工程经验每块塔板压降100mm 液柱,丙烷-丙烯:密度 460。
丙烯精馏塔工作原理
丙烯精馏塔的工作原理是基于物质的沸点差异,通过加热和分离的步骤将不同沸点的物质分离提纯。
在丙烯精馏塔中,原料丙烯通过预热器进入精馏塔,与塔釜中的液体丙烯混合并加热。
随着温度的升高,丙烯物质开始沸腾并转化为气态。
这些气态物质在精馏塔内部向上流动,并在流动过程中与塔釜中的液体丙烯进行热量交换和质量交换。
在精馏塔内部,不同沸点的物质在塔板之间实现分离。
由于丙烯的沸点较低,它会在较低的温度下被汽化并进入精馏塔的顶部。
随着丙烯物质不断向上流动,低沸点的物质逐渐被分离出来,而高沸点的物质则留在了底部。
通过调整塔板数量和操作条件,可以控制不同沸点物质的分离效果。
从精馏塔顶部出来的丙烯气体经过冷凝器冷却后被液化,然后通过回流管回流到塔釜中。
回流液在塔釜中与上升的蒸汽进行逆向热交换,进一步提高了丙烯的纯度和收率。
通过调整回流量和塔釜温度,可以优化丙烯产品的质量和产量。
精馏塔工艺流程
精馏塔工艺流程
《精馏塔工艺流程》
精馏塔是一种用于分离混合物的设备,通常用于分离液体混合物中的组分。
精馏塔工艺流程是指进行精馏过程时所采取的步骤和操作方法,下面将简单介绍精馏塔的工艺流程。
首先,混合物被加热至沸点,进入精馏塔内。
一般情况下,精馏塔内设有填料或板式结构,用于增加表面积以便更好地分离混合物。
加热后,混合物的不同组分会根据其沸点的不同在塔内升华,并在塔内上升。
随着混合物向上升华,不同组分开始在塔内逐渐分离。
高沸点的组分会在塔的底部凝结成液体,低沸点的组分则会在塔的顶部凝结成液体。
这样,就实现了混合物的分离。
在整个精馏过程中,操作人员需不断监控塔内的温度和压力。
当塔内产生过多的高沸点组分时,需要调节温度或其他参数以保持分离效果。
而在低沸点组分产生过多时,也需要对塔内操作进行调整。
最后,分离完成后,产生的不同组分液体会经过不同的管道被收集起来,以便后续的处理或利用。
总的来说,精馏塔工艺流程是一个通过控制温度和压力,利用不同组分沸点的特性实现混合物分离的过程。
通过严格的操作
和监控,可以有效地分离出混合物中的不同组分,为各种工业和化工应用提供了重要的技术支持。
丙烯精制塔工艺设计论文(DOC 42页)
丙烯精制塔工艺设计论文(DOC 42页)毕业设计(论文)手册学院:职业技术学院专业班级:化工 0832姓名:杨文龙指导教师:王景芸2011 年 6 月毕业设计(论文)任务书毕业设计(论文)评阅书毕业设计(论文)评阅书毕业答辩情况表答辩时间:年月日摘要本人所设计所依据的是以丙烯精制塔为设计原型。
我所设计的题目是年产60000吨丙烯精制塔设计,开工周期为7900小时/年,其中原料主要组成为丙烯,丙烷,丁烷等组分,按各组分的沸点和相对挥发度的不同使各组分分离。
工艺流程说明如下:原料(丙稀、丙烷、丁烷的混合液体)经进料管由精馏塔中的某一位置(进料板处)流入塔内,开始精馏操作;当釜中的料液建立起适当液位时,再沸器进行加热,使之部分汽化返回塔内。
气相沿塔上升直至塔顶,由塔顶冷凝器将其进行全部或部分冷凝。
将塔顶蒸气凝液部分作为塔顶产品取出,称为馏出物。
另一部分凝液作为回流返回塔顶。
回流液从塔顶沿塔流下,在下降过程中与来自塔底的上升蒸气多次逆向接触和分离。
当流至塔底时,被再沸器加热部分汽化,其气相返回塔内作为气相回流,而其液相则作为塔底产品采出。
设计时,依次进行了物料衡算、热量衡算、塔结构的相关工艺计算,及换热设备的计算及附属设备的选型。
设备选型方面主要按照现场实际,并兼顾工艺控制要求与经济合理性。
随着先进控制技术的兴起,关键控制指标由定值控制向区间控制转变,调节变量与控制变量的关系由单对单向多变量预估控制转变。
它是装置控制技术发展的方向,正在逐步普及。
为了为装置以后上先进控制提供方便,我们在设计时,注意为塔顶温度,塔底温度,回流量等指标保留较大的操作弹性。
关键词:丙烯;精馏塔;物料衡算;热量衡算;塔温;操作弹性;目录1.前言 (1)1.1丙烯概述 (1)1.1.1主要特性 (1)1.1.2危险性 (1)1.2丙烯行业特点 (2)2.丙烯精制塔的工艺计算 (3)2.1原始数据 (3)2.2物料衡算 (4)2.2.1关键组分 (4)2.2.2计算塔顶小时产量 (4)2.2.3计算塔釜质量组成 (5)2.2.4质量分数转换 (5)2.2.5计算进料量和塔底产品量 (6)2.2.6物料衡算计算结果 (7)2.3塔温的确定 (8)2.3.1确定进料温度 (8)2.3.2确定塔顶温度 (8)2.3.3确定塔釜温度 (9)2.4塔板数的计算 (10)2.4.1最小回流比的计算 (10)2.4.2计算最少理论板数 (11)2.4.3塔板数和实际回流比的确定 (12)2.5确定进料位置 (12)2.6全塔热量衡算 (13)2.6.1冷却器的热量衡算 (13)2.6.2再沸器的热量衡算 (13)2.6.3全塔热量衡算 (14)2.7板间距离的选定和塔径的确定 (15)2.7.1计算混合液塔顶、塔釜、进料的密度及气体的密度 (15)2.7.2求液体及气体的体积流量 (17)2.7.3初选板间距及塔径的估算 (17)2.8浮阀塔塔板结构尺寸确定 (19)2.8.1塔板布置 (19)2.8.2溢流堰及降液管设计计算 (20)2.9水力学计算 (21)2.9.1塔板总压力降的计算 (21)2.9.2雾沫夹带 (22)2.9.3淹塔情况校核 (26)2.10浮阀塔的负荷性能图 (26)2.10.1雾沫夹带线 (26)2.10.2液泛线 (28)2.10.3降液管超负荷线 (30)2.10.4泄露线 (30)2.10.5液相下限线 (31)2.10.6操作点 (31)2.11塔的附属设备计算 (32)2.11.1再沸器的计算 (32)2.11.2塔顶冷凝器的计算 (33)2.11.3确定塔体各接管及材料 (33)3.总结 (38)4.致谢 (39)设计参考资料 (40)1.前言1.1丙烯概述【6】丙烯(propylene,CH2=CHCH3)常温下为无色、无臭、稍带有甜味的气体。
产量5万吨丙烯精馏塔工艺设计
毕业设计题目:年产量为5.4万吨丙烯的精馏工艺装置设计学生姓名学号指导教师院系专业年级毕业设计任务书设计(论文)题目:年产 5.4万吨丙烯精馏塔的工艺设计1.设计(论文)的主要任务及目标:通过本次毕业设计加深学生精馏过程的理解,提高综合运用知识的能力;掌握本毕业设计的主要内容、工程设计或撰写论文的步骤和方法;提高制图能力,学会应用有关设计资料进行设计计算和理论分析的方法,以提高学生独立分析问题、解决问题的能力,逐步增强实际工程训练。
撰写设计说明书一份(不少于8000字);绘制主要设备装配图一张;绘制带控制点的工艺流程图一张。
2.(论文)的基本要求和内容:1)设计方案的选择及流程说明;2)物料衡算、热量衡算;3)塔板数、塔径计算;4)溢流装置、塔盘设计;5)流体力学计算、塔板负荷性能图;6)绘制带控制点的工艺流程图一张、主体设备装配图一张。
7)完成设计说明书一份(不少于8000字)。
3.设计条件1)设计原始数据见下表原始数据2)操作压力p=1.74Mpa3)年开工时间为8000h;4)年生产能力 54000t。
目录摘要 (I)第1章绪论 (2)1.1丙烯的性质 (2)1.1.1 丙烯的物理性质 (2)1.1.2 丙烯的化学性质 (2)1.2丙烯的发展前景 (2)1.3丙烯的生产技术进展 (3)1.3.1 概况 (3)1.3.2 丙烯的来源 (3)1.3.3 丙烯的生产方法 (3)1.3.4 丙烯生产新技术现状及发展趋势 (4)第2章丙烯精馏塔的物料衡算及热量衡算 (4)2.2.1 确定关键组分 (5)2.2.2计算每小时塔顶产量 (5)2.2.4物料衡算计算结果见表2.5 (7)2.3塔温的确定 (7)2.3.1 确定进料温度 (7)2.3.2 确定塔顶温度 (8)2.3.3 确定塔釜温度 (8)第3章精馏塔板数及塔径的计算 (10)3.1塔板数的计算 (10)3.1.1 最小回流比的计算 (10)3.1.2 计算最少理论板数 (11)3.1.3 塔板数和实际回流比的确定 (11)3.2确定进料位置 (11)3.3全塔热量衡算 (12)3.3.1 冷凝器的热量衡算 (12)3.3.2 再沸器的热量衡算 (13)3.3.3 全塔热量衡算 (13)3.4板间距离的选定和塔径的确定 (14)3.4.1 计算混合液塔顶、塔釜、进料的密度及气体的密度 (14)3.4.2 求液体及气体的体积流量 (15)3.4.3 初选板间距及塔径的估算 (16)3.5浮阀塔塔板结构尺寸确定 (18)3.5.1塔板布置 (18)3.5.2 溢流堰及降液管设计计算 (19)3.6塔高的计算 (20)第四章流体力学计算及塔板负荷性能图 (22)4.1水利学计算 (22)4.1.1 塔板总压力降的计算 (22)4.1.2 雾沫夹带 (23)4.1.3 淹塔情况校核 (26)4.2浮阀塔的负荷性能图 (27)4.2.1 雾沫夹带线 (27)4.2.2 液泛线 (28)4.2.3 降液管超负荷线 (29)4.2.4泄露线 (29)4.2.5 液相下限线 (30)4.2.6 操作点 (30)总论 (33)致谢 (34)参考文献 (35)附录 (37)年产5.4万吨丙烯精馏装置工艺设计摘要本设计任务为设计一个精馏塔来进行丙烯-丙烷混合物的分离,采用连续操作方式的浮阀精馏塔。
乙烯装置分离工段------丙烯精馏工序工艺设计
乙烯装置分离工段------丙烯精馏工序工艺设计摘要乙烯是石油化学工业中最重要基础有机原料之一。
由乙烯装置生产的乙烯、丙烯、丁二烯、苯、甲苯、二甲苯,即“三烯三苯”是生产各种有机化工原料和合成树脂、合成纤维、合成橡胶三大合成材料的基础原料,涉及到国民生活的各个方面。
所以,乙烯生产能力的大小直接影响着乙烯及其他衍生物的供应。
其产能是衡量一国乙烯竞争力的重要标准,也是衡量一个国家石油化工产业的重要标志。
乙烯装置是石油化工行业的龙头装置,对应乙烯装置,石油烃裂解制乙烯技术研究始于20世纪30年代,经过近70年的发展,裂解技术日臻完善,目前该技术所生产的乙烯已经占到世界乙烯总产量的98%以上。
本次设计参考了**乙烯厂的部分资料,以生产实践为基础,理论联系实际,针对乙烯装置分离工段进行重点设计。
设计生产能力为年生产10万吨。
本设计内容主要对丙烯精馏塔进行了物料衡算、热量衡算、塔型设计、尺寸计算与选型。
其中包括塔径计算、塔板布置、流体力学计算,附件的计算与选型,其中包括塔冷凝器的选择、再沸器的选取、接管及除沫器的计算、塔高的计算等内容。
设计过程中查阅了大量的文献资料,并以**乙烯厂装置为参考,设计基本达到了合理程度,绘制了工艺流程图和填料装配图。
关键词:乙烯;装置;丙烯;精馏ABSTRACT目录引言第一章、文献综述1.1 设计概述1.2 国内外乙烯工业的现状和发展前景1.3 乙烯的主要生产方法1.3.1 烃类热裂解法生产乙烯1.3.2 乙烯的主要分离技术1.3.3 乙烯生产的其他方法第二章、乙烯等主要产品的性质和工艺流程的确定2.1 乙烯等主要产品和主要副产品的性质、用途和质量规格2.1.1 聚合级乙烯2.1.2 聚合级丙烯2.1.3 主要副产品的性质、用途和质量规格2.2 乙烯生产工艺技术简介2.2.1 装置简介2.2.2 基本原理2.2.3工艺流程2.2.4工艺条件控制指标第三章、乙烯装置的物料衡算3.1 物料衡算3.1.1 裂解装置的物料衡算3.1.2 丙烯精馏塔物料衡算3.2 热量衡算3.2.1 丙烯精馏塔热流示意图3.2.2 热量衡算3.3 设备尺寸衡算与选型3.3.1 丙烯精馏塔的设备尺寸计算与选型3.3.2 丙烯精馏塔附属设备及主要附件选型与计算第四章、设计结果汇总引言乙烯是石油化工的基础原料。
丙烯精制塔工艺设计
丙烯精制塔工艺设计引言丙烯是一种重要的有机化工原料,广泛应用于塑料、纤维、橡胶、油漆等行业。
丙烯的生产过程中,精制塔起到了关键作用。
本文将介绍丙烯精制塔的工艺设计。
一、工艺流程丙烯精制塔的工艺流程主要包括以下几个步骤:1.原料进料:丙烯的原料可以是丙烯裂解产物中提取得到的混合物,也可以是丙烷经氧化制得的丙烯气体。
原料进料需要经过一系列的预处理,如除杂、除水等。
2.分离:原料进入精制塔后,经过一系列的分离步骤,将其中的杂质、不纯物质分离出去。
分离步骤包括萃取、精馏等过程。
3.反应:在分离的过程中,需要进行一些反应来进一步净化丙烯。
例如,可以利用酸催化剂将杂质烷烃转化为酮烯烃。
4.冷凝和除水:丙烯在分离过程中会生成一些难以分离的气体。
这些气体需要经过冷凝和除水处理,以进一步提高丙烯的纯度。
5.精制丙烯得到产品:经过上述步骤,最终得到的丙烯可以达到工业使用的标准。
这个过程需要控制好操作条件和仪表参数,以保证丙烯的质量。
二、关键设备丙烯精制塔的工艺设计中,有几个关键的设备需要特别关注:1.萃取塔:用于将丙烯与其他杂质进行分离。
一般采用溶剂萃取法,在塔内加入溶剂,将杂质从丙烯中萃取出来。
2.精馏塔:用于进一步提纯丙烯。
由于丙烯与其他组分的沸点有差异,可以通过塔内的精馏过程,将杂质分离出去,得到纯净的丙烯。
3.冷凝器:用于冷凝塔内产生的气体,将气体冷凝成液体,以便进一步分离处理。
4.除水器:用于去除丙烯中的水分。
水对丙烯的纯度有一定的影响,因此需要将丙烯中的水分去除。
三、工艺控制在丙烯精制塔的工艺设计中,工艺控制是非常重要的。
需要合理调节操作条件和仪表参数,以保证丙烯的纯度和产量。
1.温度控制:丙烯的分离和反应过程中,温度的控制非常重要。
适当的温度可以加速反应速度和提高分离效果。
因此,在工艺设计中需要考虑到温度的调控。
2.压力控制:在分离和冷凝过程中,适当的压力可以改善分离效果。
同时,压力的控制也可以影响生产能力和设备的安全性。
年产10万吨丙烯精制塔的工艺设计2范文
年产10万吨丙烯精制塔的工艺设计一、说明书(1) 丙烯生产概况简述。
(略)(2) 设计方案的确定与论证。
(略)(3) 本设计的工艺流程图(看附件),及流程说明(略)。
(4)工艺设计计算结果汇总,附属设备一览表,工艺管线接管尺寸汇总表,设计结果评价。
(略)(5)工艺计算。
(6)设备计算及选型。
(略)(7)参考文献。
二、丙烯精制塔的工艺计算(1)物料衡算1. 关键组分按多组分精馏确定关键组分;挥发度高的丙烯作为轻关键组分在塔顶分出;挥发度低的丙烷作为重关键组分在塔底分出。
原始数据见表一表一原始数据操作压力 p=1.74MPa (表压)。
年生产能力t 丙烯2. 计算每小时塔顶产量,每年的操作时间按8000h 计算。
由题目给定/8000=12500kg /h3.计算塔釜组成设计比丙烷重的全部在塔底,比丙烷轻的全部在塔顶。
以100kg /h 进料为基准,进行物料衡算见表二。
表二 物料衡算F=D+W%2.15100125.0004.025.7125.0=⎪⎪⎩⎪⎪⎨⎧+=+-WD W D W 或 ⎩⎨⎧+=+=D W W D 100125.0996.075.92解得: W=8.116k g /h D=100-8.1161=91.8839 k g /h丙烷 x 83H WC =34.82125.0004.025.7004.005.7=+--WD D﹪丁烷x 104H WC =46.2125.0004.025.72.0=+-WD ﹪式中 F −原料液流量,k g /h;D —塔顶产品(馏出液)流量,k g /hW —塔底产品(釜残液)流量,k g /h x W—釜液中各组分的质量分数。
4. 将质量分数换算成摩尔分数按下式计算: x A =CC B B M x M x M x M x W W A WAAWA ++式中 x A ——液相中A 组分的摩尔质量;A M 、MB 、MC ——A 、B 、C 组分的摩尔质量,kg/mol; x WA x WB x WC ——液相中A 、B 、C 组分的质量分数。
最新毕业设计:脱丙烯精馏塔设计
最新毕业设计:脱丙烯精馏塔设计毕业设计(论文)设计脱丙烯精馏塔目录摘要 (1)1. 前言 (4)2.脱丙烯精馏塔工艺计算 (7)2.1全塔物料平衡计算 (7)2.2确定塔操作条件 (8)2.2.1回流罐压力确定 (8)2.2.2确定塔顶温度 (9)2.2.3塔底温度的求定 (9)2.2.4进料温度的求定 (10)2.3回流比及理论塔板数的求定 (11)2.3.1求取相对挥发度 (11)2.3.2求最小回流比R min (11)2.3.3求定最少理论塔板数 (13)2.3.4计算实际回流比R及理论塔板数 (14)2.3.5确定实际塔板数及进料板位置 (15)2.3.5.1计算全塔平均板效率 (15)2.3.5.2计算实际塔板数 (15)2.3.5.3计算精馏段实际塔板数和进料板位置的确定 (15)精馏塔设计计算草图 (18)3.浮阀塔板设计计算 (19)3.2气体摩尔流量的计算 (19)3.2.1根据恒摩尔流假定求摩尔流量 (19)3.2.2求定气体的压缩因子Z (19)3.2.3求气体体积流量 (20)3.2.4求气体密度 (20)3.3计算液体的密度及流量 (20)3.3.1液体密度的计算 (21)3.3.2计算液体的体积流量 (22)3.4求定液体表面张力σm (22)3.5初选塔径 (22)3.5.1求上限空塔气速u max (22)3.5.2计算空塔气速 (22)3.5.3初算塔径 (23)3.6选取塔径及实际空塔气速 (23)3.6.1根据浮阀塔直径系列标准圆整 (23)3.6.2实际空塔气速的求取 (23)3.7计算塔截面积 (23)3.8计算塔的有效高度 (23)3.9.1确定塔板溢流形式 (23)3.9.2确定降液管的结构形式 (23)3.9.3塔板四区尺寸的确定 (24)3.9.4初算浮阀个数 (25)3.9.5确定浮阀排列方式及实际浮阀个数 (25)3.9.6核算阀孔动能因数及孔速 (26)3.9.7计算塔板开孔率 (26)3.10塔板的水力学计算 (26)3.10.1气体通过浮阀塔板的压强降 (26)3.10.2淹塔(液泛) (27)3.10.3雾沫夹带 (28)3.11塔板负荷性能图 (29)3.11.1泄漏线 (29)3.11.2液相负荷下限线 (29)3.11.3液相负荷上限线 (29)3.11.4液泛线 (30)3.11.5雾沫夹带线(上限) (31)浮阀塔板设计计算结果及符号意义一览表 (31)浮阀阀孔排列图 (33)浮阀塔板布置图 (34)浮阀塔板负荷性能图 (35)4.技术分析 (36)5.结束语 (36)6.参考文献 (37)English Summary:Oil is an important substance used in developing national economy and construction . It can produce various products and has many purposes . The produce and the development of fine chemical industry are closely related to the life of the people and to the other produce movement . Relatively , the organic chemicalmaterial industry of our country developed late , but as new fields developed and new oil-refining factories constructed gradually , the use of the resources of natural gas has achieved a remarkable development .Propylene is one of the important chemical industry material , a half of its produce outputs are used to make chemical industry products in America , then the re action’s product between the rest and isobutane is alkane chemical compound demanded in petroleum . Plenty of chemical industry products are all come from propylene . For instance , polypropylene, acrylic acid , acrylonitrile , ethyiene oxide and acetone and so on .Now , most of gas-seperating device of oil-refining factory are still using the seperation of distillation . Distillation is the unit operation of seperating liquids compounds . Its basic theory is applying the differences of eyery seperated par t’s volatility , that is , under thesame pressure , they are seperated as the different boiling point .Column device is a device that can realize distillation’s chance between gases and liquids , widely used in chemical industry , petrochemical industry and others . Its constructure style basicly can be divided into two types-board column and fioat-valve column .Board column is a device that complete the transmition between gases and liquids through touch , and floatvalve column’s advantages are the strong produce capacity and the large elasticity of operation , because the plate dfficiency is very high , the pressure drop from air to liquid level is relative small , and its cost is cheaper , float-valve column has become the most widely useful column type .Our country’s petrochemical industry developed rapidly these years , but because of the original low foundation , the duties lie before our petroleumworkers are still heavy , we must insist on maintain independence , self-reliance , comprehensive utilization , overall improvement , work hard , are determined to catch up with the advanced level of the world , and build the more beautiful country .中文摘要:石油是发展国民经济和建设的主要物质,产品种类繁多,用途极广。
丙烯精馏塔回流原理
丙烯精馏塔回流原理丙烯精馏塔回流是一种常见的化工工艺,用于分离丙烯等烃类混合物中的杂质。
它是一种基于物质沸点差异的分馏过程,通过控制温度和压力,将混合物中不同沸点的组分分离出来。
丙烯精馏塔回流的原理可以简单地描述为以下几个步骤:加热、汽化、冷凝、分离和回流。
首先,混合物被加热至其沸点以上的温度,以使其中的丙烯和其他组分汽化。
加热可以通过外部加热或通过将混合物引入加热器中来实现。
加热过程中,需要控制温度,以确保只有丙烯和其他目标组分达到汽化状态,而杂质则保持液态。
接下来,汽化的混合物进入冷凝器,通过降温使其冷凝成液体。
冷凝器通常采用冷却水或其他冷却介质来降低混合物的温度。
在冷凝过程中,丙烯和其他目标组分凝结成液体,而杂质则保持在气态状态。
然后,液体混合物进入分离器,通过重力或其他分离方法,将液体中的丙烯和其他目标组分与杂质分离开。
分离器通常包括塔板或填料,利用其表面积增大和液体流动性质,加速分离过程。
通过适当的设计和操作,可以实现高效的分离效果。
最后,分离后的丙烯和其他目标组分被收集,并通过回流的方式重新引入到塔中。
回流是为了增加分馏塔的效率和稳定性。
通过回流,可以提供更大的接触面积,增强液体和气体之间的质量传递,从而提高分离效果。
丙烯精馏塔回流原理的关键在于控制温度和压力,以及有效的分离过程。
通过合理的设计和操作,可以实现高效、稳定的丙烯精馏塔回流过程,从而达到目标分离效果。
总之,丙烯精馏塔回流是一种常用的化工分离工艺,通过加热、汽化、冷凝、分离和回流等步骤,将混合物中的丙烯和其他目标组分与杂质分离开。
它是一种基于物质沸点差异的分馏过程,需要合理的温度和压力控制,以及适当的分离器设计和操作。
通过丙烯精馏塔回流,可以实现高效、稳定的分离效果。
甲醇制烯烃工艺丙烯精馏塔的工艺流程
甲醇制烯烃工艺丙烯精馏塔的工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1.引言甲醇制烯烃工艺是一种重要的石化工艺,丙烯作为烯烃产品之一在化工领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章概述 (4)第二章脱丙烯精馏塔工艺计算 (5)2.1 设计方案简介 (5)2.2 主要物性数据 (5)2.3物料衡算 (5)2.3.1确定关键组分塔顶、塔底的分布量. (6)2.4确定塔操作条件 (6)2.4.1.确定塔顶温度: (6)2.4.2.确定进料温度。
(6)2.4.3.确定塔底温度. (7)2.4.4. 各组分相对挥发度 (7)2.5确定最小回流比。
(8)2.6理论塔板数与实际板数。
(8)2.6.1.求定最少理论板数 (8)2.6.2. 计算实际回流比R及理论塔板数 (9)2.6.3.计算全塔平均板效率 (9)2.6.4. 计算实际塔板数和进料板位置 (9)2.7确定冷凝器和再沸器的热负荷Q Q (10),C r第三章物料的性质计算 (12)3.1 求气液负荷 (12)3.2 平均摩尔质量的计算 (12)3.2.1 塔顶平均摩尔质量计算 (12)3.2.2 进料平均摩尔质量计算. (12)3.2.3 塔底平均摩尔质量计算. (13)3.3 平均密度计算 (13)3.3.1 气体平均密度计算 (13)3.3.2 液体平均密度计算 (13)3.3.3 液体平均表面张力计算。
(15)3.3.4 液体平均粘度的计算。
(15)第四章精馏塔的工艺尺寸计算。
(17)4.1 塔高的计算。
(17)4.1.1 塔径D的计算。
(17)4.2 塔板设计 (18)4.2.1 确定塔板溢流形式 (18)4.2.2降液管以及溢流堰的尺寸 (18)4.2.3核算阀孔动能因数及孔速 (20)4.2.4计算塔板开孔率 (20)4.2.5 浮阀塔板设计的校核 (20)4.2.6 塔板负荷性能图。
(22)第五章塔附属设备的设计 (25)5.1主要接管尺寸的计算 (25)5.1.1进料管 (25)5.1.2回流管 (25)5.1.4 塔顶蒸汽出料管 (25)5.1.5 加热蒸汽管 (26)5.2 筒体与封头 (26)5.2.1筒体 (26)5.2.2 封头 (26)5.3 裙座 (26)5.4 人孔 (27)5.5 塔体总高度的设计 (27)5.5.1 塔顶空间 (27)5.5.2 塔底空间 (27)5.5.3 塔高计算 (27)第六章全塔设计结果汇总表 (28)第七章心得体会 (29)第八章主要参考文献 (31)第一章概述精馏是在精馏塔中进行的,它由精馏塔、冷凝器、再沸器及其他设备构成。
本设计板式塔中有气液两相物流,塔底部分存液被再沸器加热而部分汽化,蒸汽沿塔逐板上升,使全塔处于沸腾状态。
蒸汽在塔顶冷凝器中冷凝,一部分作为馏出液,一部分作为回流液回到塔顶,逐板下流,使塔中各板保持一定液层,与上升气相密切接触,发生传热与传质,料液于塔中适当位置进入。
精馏塔中料液加入板称为进料板,进料板以上称为精馏段,以下称为提馏段。
对于多组分精馏分离过程和设备的开发,包括以下内容:(1)塔设备类型的选择。
(2)精馏塔设计计算。
(3)进行流体力学计算。
(4)绘制塔板性能负荷图。
(5)绘制主体装置图及工艺流程图。
第二章脱丙烯精馏塔工艺计算2.1 设计方案简介本次课程设计的任务是设计丙烯精馏塔,塔型为浮阀塔,进料为五组分(甲烷,乙烷,丙烯,丙烷,丁烷)。
因其中最轻组分甲烷,乙烷和最重组分丁烷含量都很小,按清晰分割的原则,在精馏是可以认为甲烷和乙烷全部由塔顶蒸出,而最重组分丁烷则完全存在于塔底产品中。
因此,虽然是对多组分进行分离,却可以看成是对两个关键组分(丙烯,丙烷)的分离,所以可用一个塔进行精馏分离。
由于要分离的混合物各组分在常压下均是气相,无法分离,因此操作必须在加压条件下进行。
本设计选取操作压力为0.6MPa,同时在塔顶设冷凝器,由于塔顶部需要气相出料,故采用全凝器,又因所设计的塔较高,应用泵强制回流。
2.2 主要物性数据表2-2-1 物性数据表2.3物料衡算选取丙烯为轻关键组分,丙烷为重关键组分,由于精馏的任务是把丙烯,丙烷与甲烷、乙烷、丁烷混合物分开,按清晰分割情况确定各组分在塔顶、进料和塔底的数量,组成以及操作温度。
2.3.1确定关键组分塔顶、塔底的分布量.表2-3-1 各组分在塔顶、塔底的分布量2.4确定塔操作条件2.4.1.确定塔顶温度:设塔顶的温度为3℃。
用露点方程计算列表如下:表2-4-1 塔顶温度的确定所以所设塔顶温度3℃正确。
2.4.2.确定进料温度。
设进料温度为4℃,,用泡点方程计算列表计算如下:表2-4-2 进料温度的确定所以所设进料温度4℃正确。
2.4.3.确定塔底温度.设进料温度为9℃,用泡点方程计算列表计算如下:表2-4-3 塔底温度的确定所以塔底所设温度9℃正确。
2.4.4. 各组分相对挥发度以重关键组分丙烷为对比组分,各组分的平均相对挥发度,用泡点方程计算列表如下:表2-4-4 平均相对挥发度2.5确定最小回流比。
根据恩德伍德公式求取最小回流比R min ,恩德伍德公式如下:∑=-⋅ni ij Fiij X 1θαα=1-q ,R min =∑=-⋅ni ij Diij X 1θαα-1其中αij 为i 组分对重关键组分的相对挥发度,θ为∑=-⋅ni ij Fiij X 1θαα=1-q 的根,且其值介于轻重关键组分的相对挥发度之间,由于本设计所选取的轻重关键组分为两个相邻的组分,因此θ仅有一个值。
θ值在1.0~1.1919之间,下面就运用试差法求取θ值,再求出R min 的值。
因为为泡点进料,所以q=1,∑=-⋅ni ij Fiij X 1θαα=0。
通过试差法求θ,最终求得θ=1.093各组分塔顶含量和以丙烷为对比组分求各组分的相对挥发度ijα如下表:表2-5-1 各组分的相对挥发度Rm+1 =4.8170.977 2.0810.0563 3.0930.00959610.0037604.817 1.3406 2.081 1.3406 3.093 1.34061 1.3406i Di ih X ααθ⨯⨯⨯⨯=+++-----=12.85, 则Rm = 11.85 取R = 1.8 Rm = 21.332.6理论塔板数与实际板数。
2.6.1.求定最少理论板数平均相对挥发度为:lhα=(1.1986+1.1919)/2=1.18530.970.95lg lg 0.0180.004141.8342lg lg1.1853h L h L W D m lh X X X X N α⎡⎤⎛⎫⎛⎫⎡⎤⎛⎫⎛⎫⨯⎢⎥⨯ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦===≈块 该塔最小理论板数为42块。
2.6.2. 计算实际回流比R 及理论塔板数21.3311.850.4242121.331m R R R --==++ 1mR R x R -=+0.56680.750.75(0.4245)1T mT N N y N -==-+则T N = 59.48 块2.6.3.计算全塔平均板效率利用奥康奈尔关联式计算E T ,其表达式是E T =0.49(Lw αL μ)-0.245,其中Lh α=底顶αα=1.1853。
L μ为t =2D Wt t +=6.42℃时进料的液相平均粘度,并且L μ=fi Li X μ∑。
查得t=6.42℃时进料中个组分的粘度Li μ,最终求得L μ。
计算结果列于下表。
表2-6-1 进料的液相平均粘度那么T η=0.49⨯0.245(1.18520.1144)-⨯=0.802.6.4. 计算实际塔板数和进料板位置T E =/T N N ,59.481173.1740.80T TN N η--===≈块,包括再沸器lhd 1.1786α=,lhf 1.2045∂=,lhw 1.1919α=,lh n ∂= 1.158== ,lh m ∂= 1.178==,,/lg l.8284/1.1915 1.45l.2680/1.1982lg /lg h L h L F D h L h L W F ih n ih n X X X X n m X X X X αα⎡⎤⎛⎫⎛⎫⨯⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦===⎡⎤⎛⎫⎛⎫⨯⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由1TN n m =++即59.48=1.45m+m+1可以解得n=35.14,m=23.86 理论上T N =59.48 n=35.14 m=23.86 实际塔板数159.48173.1740.80N T N a T η--===≈ 35.1443.9440.80n n a T η===≈ 23.8629.8300.80mm a Tη===≈ 精馏段实际塔板数 44块,提馏段实际塔板数:30块.进料板位置为自上而下的第45块板。
2.7确定冷凝器和再沸器的热负荷,C r Q Q冷凝器的热量衡算.(t=3℃)表2-7-1c di pdi Q V My C =∑=647.658×958.85×4.187=2600155JK/h再沸器的热量衡算(t=9℃)表2-7-2r di pdi Q V My C ==694.6553×958.85×4.187=2788836JK/h第三章物料的性质计算3.1 求气液负荷L = RD = 21.33×42.94=915.91 Kmol/hV = (R+1)D = 22.33×42.94=958.85 Kmol/hL′= L+F = 915.91 + 958.85 =1015.91 Kmol/hV′= V = 958.85 Kmol/h3.2 平均摩尔质量的计算3.2.1 塔顶平均摩尔质量计算表3-2-1 塔顶平均摩尔质量3.2.2 进料平均摩尔质量计算.表3-2-2进料平均摩尔质量3.2.3 塔底平均摩尔质量计算.表3-2-3塔底平均摩尔质量全塔平均摩尔质量M lm =(42.1594+44.044+40.188)/3=42.130 kg/mol M vm =(41.8821594+41.9746+43.5482)/3=42.448 kg/mol3.3 平均密度计算3.3.1 气体平均密度计算由理想气体状态方程计算,则:ρvm=()60042.44810.968.314 6.42273.15⨯=⨯+ kg/3m3.3.2 液体平均密度计算依下式计算,即 1/ρLm=∑Ai/ρi 。
塔顶液体的平均密度计算; 由d T =3℃。
查手册得:表-3-2-1 塔顶液体的平均密度ρ=1/ 0.00188=531.915 kg/3mlmdT=4℃。
进料液体的平均密度计算;由f查手册得:表-3-2-2 进料液体的平均密度ρ=1/0.001881=531.632 kg/3mlmf塔底液体的平均密度计算,由tw=9℃。