人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

合集下载

人教版高中数学必修五课时作业28:习题课 正弦定理和余弦定理

人教版高中数学必修五课时作业28:习题课 正弦定理和余弦定理

习题课 正弦定理和余弦定理基础过关1.在△ABC 中,若a =7,b =8,cos C =1314,则最大角的余弦值是( ) A.-15 B.-16 C.-17D.-18解析 c 2=a 2+b 2-2ab cos C =9,c =3,B 为最大角,cos B =a 2+c 2-b 22ac =49+9-642×7×3=-17.答案 C2.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能( )A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形解析 假设能作出△ABC ,不妨设高113,111,15对应的边分别为a =26S ,b =22S ,c =10S ,cos A =b 2+c 2-a 22bc =(22S )2+(10S )2-(26S )22×22S ×10S =-23110<0,∴A 为钝角. 答案 D3.已知△ABC 的三边长分别为AB =7,BC =5,AC =6.则AB →·BC →的值为( )A.19B.14C.-18D.-19解析 由余弦定理的推论知: cos B =AB 2+BC 2-AC 22AB ·BC =1935.所以AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×⎝ ⎛⎭⎪⎫-1935=-19,故选D.答案 D4.在△ABC 中,B =60°,a =1,S △ABC =32,则csin C =________.解析 S △ABC =12ac sin B =12×1×c ×32=32, ∴c =2,∴b 2=a 2+c 2-2ac cos B =1+4-2×1×2×⎝ ⎛⎭⎪⎫12=3,∴b =3,∴c sin C =b sin B =332=2.答案 25.在△ABC 中,若a cos A =b cos B =ccos C ,则△ABC 是________三角形. 解析 ∵a cos A =bcos B ,∴sin A cos B -sin B cos A =0,∴sin(A -B )=0, ∵A ,B ∈(0,π),∴A -B ∈(-π,π), ∴A -B =0,∴A =B . 同理B =C ,∴A =B =C , ∴△ABC 为等边三角形. 答案 等边6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2). (1)求cos A 的值;(2)求sin(2B -A )的值.解 (1)由a sin A =4b sin B 及a sin A =bsin B ,得a =2b .由ac =5(a 2-b 2-c 2)及余弦定理,得cos A =b 2+c 2-a 22bc =-55ac ac =-55.(2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55.由(1)知,A 为钝角,所以cos B =1-sin 2B =255.于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos 2B sin A =45×⎝ ⎛⎭⎪⎫-55-35×255=-255. 7.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.解 (1)由2a sin B =3b 及正弦定理a sin A =bsin B , 得sin A =32. 因为A 是锐角,所以A =π3.(2)因为a =6,cos A =12,所以由余弦定理a 2=b 2+c 2-2bc cos A , 得b 2+c 2-bc =36.又因为b +c =8,所以bc =283. 由三角形面积公式S =12bc sin A , 得△ABC 的面积为12×283×32=733.能力提升8.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆半径为( ) A.922B.924C.928D.229解析 不妨设c =2,b =3,则cos A =13,sin A =223. ∵a 2=b 2+c 2-2bc cos A ,∴a 2=32+22-2×3×2×13=9,∴a =3. ∵a sin A =2R ,∴R =a sin A =32×223=928. 答案 C9.已知△ABC 中,三边与面积的关系为S △ABC =a 2+b 2-c 243,则cos C 的值为( ) A.12B.22C.32D.0解析 S △ABC =12ab sin C =a 2+b 2-c 243=2ab cos C 43,∴tan C =33,C ∈(0,π),∴C =π6,∴cos C =32. 答案 C10.在△ABC 中,若a 2-b 2=3bc ,sin C =23sin B ,则A =________. 解析 由sin C =23sin B ,根据正弦定理,得c =23b , 代入a 2-b 2=3bc ,得a 2-b 2=6b 2,即a 2=7b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b =6b 243b 2=32.又∵0°<A <180°,∴A =30°. 答案 30°11.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =12a ,2sin B =3sin C ,则cos A 的值为________.解析 由2sin B =3sin C 及正弦定理可得:2b =3c ,由b -c =12a 可得:a =c ,b =32c ,由余弦定理可得cos A =b 2+c 2-a 22bc =34. 答案 3412.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b 2=ac ,且cos B =34.(1)求1tan A +1tan C 的值; (2)设BA →·BC→=32,求a +c 的值. 解 (1)由cos B =34及0<B <π,得sin B =1-(34)2=74,由b 2=ac 及正弦定理,得sin 2 B =sin A sin C , 于是1tan A +1tan C =cos A sin A +cos C sin C =sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B=sin B sin 2B =1sin B =477.(2)由BA →·BC→=32得ca cos B =32, 由cos B =34,可得ca =2,即b 2=2. 由余弦定理得a 2+c 2=b 2+2ac cos B =5, ∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.创新突破13.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积. 解(1)由sin A+3cos A=0及cos A≠0得tan A=-3,又0<A<π,所以A=2π3.由余弦定理,得28=4+c2-4c·cos 2π3.即c2+2c-24=0,解得c=-6(舍去),c=4.(2)由题设可得∠CAD=π2,所以∠BAD=∠BAC-∠CAD=π6.故△ABD面积与△ACD面积的比值为12AB·AD sin π612AC·AD=1.又△ABC的面积为12×4×2sin∠BAC=23,所以△ABD的面积为 3.。

人教版高中数学高二人教A版必修5(正弦定理)

人教版高中数学高二人教A版必修5(正弦定理)

绝密★启用前1.1.1 正弦定理 (A 卷)考点:1.正弦定理解三角形 2.正弦定理判定三角形解的个数3.正弦定理边角互化的应用一、选择题:本题共8个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】在△ABC 中,6,60a b A ===,则sin B = ( )A . 23B .3.2 D .382.【题文】设△ABC 的内角A ,B ,C 所对的边分别为,,a b c ,若cos cos sin b C c B a A +=,则△ABC 的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定3.【题文】在△ABC 中, ,,A B C ∠∠∠所对的边分别为,,a b c ,若8,60,75a B C =∠=︒∠=︒,则实数b 等于( )A. B. D.3234.【题文】在△ABC 中,b =4B π∠=,tan A =,则实数a 的值是( )A .210B .C .10D .25.【题文】在△ABC 中,15,18,30a b A ===︒,则此三角形解的个数为( ) A .0 B . C . 2 D .不确定6.【题文】在△ABC 中,角,,A B C 所对的边分别为a b c 、、,已知π3,3a b A ===,则角B 等于( ) A.π4 B.3π4 C. π4或3π4D. 以上都不正确7.【题文】在△ABC 中,已知AB =,30B =︒,则A = ( ) A .45° B.15° C.45°或135° D.15°或105°8.【题文】在△ABC 中,已知1,15b c B ===,则边长a 等于 ( )A 1或21 C. 2 D.二、填空题:本题共3小题.9.【题文】在△ABC 中,已知a =4,B =60°,C =75°,则b = .10.【题文】在△ABC 中,角A , C 所对的边分别是a , c ,其中1=a ,33=c 3A π=,则角=C .11.【题文】如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD .为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ︒∠=,沿山坡前进50m 到达B 处,又测得45DBC ︒∠=.根据以上数据计算可得cos θ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.12.【题文】△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c .己知A −C =90°,a +c =2b ,求C .13.【题文】如图,在△ABC中,点D 在BC 边上,π72cos 42CAD AC ADB ∠==∠=-,,.(1)求sin C ∠的值; (2)若5BD =,求AD 的长.14.【题文】在△ABC 中,c b a 、、分别是角C B A 、、所对的边,且满足C b a cos 3=.(1)求BCtan tan 的值; (2)若3tan ,3==A a ,求边长b 的值.1.1.1 正弦定理 (A 卷)参考答案与解析1. 【答案】D【解析】∵6,60a b A ===,由sin sin a b A B =得sin 3sin .8b A B a ==故选D. 考点:正弦定理. 【题型】选择题 【难度】一般2. 【答案】B【解析】由已知可得2sin cos cos sin sin B C B C A +=,∴()2sin sin B C A +=, ∴sin 1A =,∴π2A =,三角形为直角三角形. 考点:判断三角形的形状. 【题型】选择题 【难度】较易3. 【答案】C【解析】∵60,75B C ︒︒∠=∠=,∴45A ∠=,∵sin sin a bA B =,=,∴b =考点:正弦定理解三角形. 【题型】选择题 【难度】较易4. 【答案】B【解析】因为sin tan cos AA A==22sin cos 1A A +=,∴sin A =,由正弦定πsin 43=,解得a = B. 考点:三角恒等式,正弦定理解三角形. 【题型】选择题 【难度】一般5. 【答案】C303=,因为b a >,所以30B A >=,所以角B 可能是锐角,也可能是钝角,所以此三角形有两解,故选C.考点:正弦定理判定三角形解的个数. 【题型】选择题 【难度】一般6. 【答案】A【解析】在△ABC 中,∵π3,3a b A ===,∴3πsin sin sin 3a b A B =⇒=sin B ⇒=,又∵3b a =<=,∴π03B A <<=,∴π4B =,故选A. 考点:正弦定理解三角形. 【题型】选择题 【难度】一般7. 【答案】D 【解析】由正弦定理得sinsin AB ACC B=,得sin sin 30AB B C AC ==︒=,由AB AC >,得C B >,所以45C =︒或135︒,从而105A =︒或15︒.故选D . 考点:正弦定理解三角形. 【题型】选择题 【难度】一般8. 【答案】A【解析】由正弦定理可得,sin 6sin153sin 31c B C b ⨯===-, 在△ABC 中,c b >,60C ∴=或120.当60C =时,105A =,sin 6sin10531sin sin 60c A a C ︒︒∴===+; 当120C =时,45A =,此时sin 6sin 452sin sin120c A a C ︒︒∴===. 综上可得31a =+或2a =. 考点:正弦定理解三角形. 【题型】选择题 【难度】一般9. 【答案】26【解析】∵B =60°,C =75°,∴A =45°,∴由正弦定理得b =oo sin 4sin 60=26sin sin 45a B A ⨯=考点:正弦定理解三角形. 【题型】填空题 【难度】较易10. 【答案】π6【解析】由正弦定理可得313πsin sin 3C =,即212333sin =⨯=C ,所以π6C =或5π6,又a c <,所以π6C =.考点:正弦定理解三角形. 【题型】填空题 【难度】一般11. 【解析】在△ABD 中,50m 15451530AB DAB ADB ︒︒︒︒=∠=∠=-=,,,由正弦定理得50sin 30sin 15BD ︒︒=,可得100sin 15m BD ︒=.在△DBC 中,25m CD =,45CBD ︒∠=,90BCD θ︒∠=+,由正弦定理得()100sin15sin 45295sin 0θ︒︒︒=+,()cos sin 90θθ︒︒∴=+==1. 考点:正弦定理解三角形. 【题型】填空题 【难度】较难12. 【答案】15【解析】由正弦定理可得sin sin A C B +=,又由于()o o 90=180,A C B A C -=-+,故()cos sin C C A C +=+()o 9022.C C =+=cos 2,C C C = ()o cos 45=cos 2C C -.因为o o 090C <<, 所以o 2=45C C -,o =15C .考点:正弦定理边角互化的应用,三角恒等变换. 【题型】解答题 【难度】一般13. 【答案】(1)45(2【解析】(1)因为cos ADB ∠=,所以sin ADB ∠=. 又因为π4CAD ∠=,所以π4C ADB ∠=∠-.所以πsin sin sin 4C ADB ADB⎛⎫∠=∠-=∠ ⎪⎝⎭ππ4cos cos sin 441021025ADB ⋅-∠⋅=+=.(2)在△ACD 中,由sin sin AD ACC ADC=∠∠考点:两角差的正弦公式,正弦定理解三角形. 【题型】解答题 【难度】一般14. 【答案】(1)2 (2【解析】(1)由正弦定理可得sin 3sin cos A B C =,πA B C ++=,sin sin()=3sin cos A B C B C ∴=+,即sin cos cos sin =3sin cos B C B C B C +,cos sin =2sin cos B C B C ∴,cos sin =2sin cos B CB C∴,故tan =2tan CB. (2)由πA B C ++=得tan()tan(π)3B C A +=-=-,即tan tan 31tan tan B C B C +=--⨯, 将tan 2tan C B =代入得23tan 312tan BB=--, 解得tan 1B =或1tan 2B =-,根据tan 2tan C B =得tan tan C B 、同正, 所以tan 1B =,又tan 3A =,可得sin sin 210B A ==102,∴b考点:正弦定理的运用,三角函数的恒等变换. 【题型】解答题【难度】一般。

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。

必修5余弦定理同步测试(带答案新人教A版)【推荐下载】

必修5余弦定理同步测试(带答案新人教A版)【推荐下载】
知a、b、c为△ABC的三边长,若满足(a+b-c)(a+b+c)=ab,则∠C
的大小为()
A.60°B.90°
C.120°D.150°
答案C
解析∵(a+b-c)(a+b+c)=ab,
∴a2+b2-c2=-ab,
即a2+b2-c22ab=-12,
专注下一代成长,为了孩子
书山有路勤为径;学海无涯苦作舟
∵三角形为钝角三角形,∴a2+(2a-1)2;2a+1,
∴a>;2,∴2两边和夹角
(如a,b,C)余弦定理
专注下一代成长,为了孩子
书山有路勤为径;学海无涯苦作舟
正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由
A+B+C=180°求出另一
角.在有解时只有一解.
三边
(a,b,c)余弦定理由余弦定理求出角A、B;再利用A+B+C=180°,
求出
角C.在有一解时只有一解.
两边和其中一边的对角如
(a,b,A)余弦定理
正弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用
正弦定理或余弦定理求
c.可有两解、一解或无解.
2.根据所给条件确定三角形的形状,主要有两种途径
(1)化边为角;
(2)化角为边,并常用正弦(余弦)定理实施边、角转换.
答案A
解析 设直角三角形三边长为a,b,c,且a2+b2=c2,
则(a+x)2+(b+x)2-(c+x)2
=a2+b2+2x2+2(a+b)x-c2-2cx-x2=2(a+b-c)x+x2>;0,
∴c+x所对的最大角变为锐角.
二、填空题
7.在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C=60°,

正弦定理、余弦定理习题及答案

正弦定理、余弦定理习题及答案

正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1 C.2 D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 15.B 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1. 2(-1) 2 3. 45° 4. 8 5.等腰三角形 6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3(2)C=45°,B=15°。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

人教版高中数学必修五《 正、余弦定理在三角形中的》测试卷

人教版高中数学必修五《 正、余弦定理在三角形中的》测试卷

1.2.2 解三角形实际应用举例习题班级: 组名: 姓名: 设计人:连秀明 审核人:魏帅举 领导审批:一、选择题1.在△ABC 中,若b =1,c =3,∠C =2π3,则a 的值是( ) A.1 B. 3 C. 2 D.22.在△ABC 中,下列各式正确的是 ( )A. a b =sinB sinAB.asinC =csinBC.asin(A +B)=csinAD.c2=a2+b2-2abcos(A +B) 3.已知ABC ∆的三边分别为a 、b 、ab b a ++22,则ABC ∆的最大角是 ( )A.135°B.120°C.60°D.90°4有A 、B 两个小岛相距10 nmile ,从A 岛望B 岛和C 岛成60°的视角,从B 岛望A 岛和C 岛成75°角的视角,则B 、C 间的距离是 ( )A.5 2 nmileB.10 3 nmileC. 1036 nmileD.5 6 nmile5.如下图,为了测量隧道AB 的长度,给定下列四组数据,测量应当用数据A.α、a 、bB.α、β、aC.a 、b 、γD.α、β、γ6、边长为5、7、8的三角形的最大角与最小角之和为 ( )A 、90°B 、 120°C 、 135°D 、150°7、在△ABC 中,8b =,83c =,163ABC S =,则A ∠等于 ( )A 、30B 、60C 、30或150D 、60或1208、在△ABC 中,60B =,2b ac =,则△ABC 一定是 ( )A 、锐角三角形B 、钝角三角形C 、等腰三角形D 、等边三角形9.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522 m10.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时( )A .5海里B .53海里C .10海里D .103海里 二、填空题11.在△ABC 中,tanB =1,sinC =26,b =100,则c = . 12.在△ABC 中,已知503b =,150c =,30B =,则边长a = 。

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

2020秋高中数学人教版5达标检测:1.1第3课时 正、余弦定理的综合应用含解析

2020秋高中数学人教版5达标检测:1.1第3课时 正、余弦定理的综合应用含解析

2020秋高中数学人教A版必修5达标检测:1.1第3课时正、余弦定理的综合应用含解析A级基础巩固一、选择题1.已知三角形的三边长分别是a,b,错误!,则此三角形中最大的角是()A.30°B.60°C.120°D.150°解析:因为错误!>a, 错误!>b,所以最大边是错误!,设其所对的角为θ,则cos θ=错误!=-错误!,所以θ=120°.答案:C2.△ABC的内角A,B,C所对的边分别为a,b,c。

若B=2A,a=1,b=错误!,则c=()A.2错误!B.2 C.错误!D.1解析:由asin A=错误!,得错误!=错误!,所以错误!=错误!,故cos A=错误!,因为A∈(0,π),所以A=错误!,所以B=错误!,C=错误!,c=错误!=错误!=2.答案:B3.已知△ABC的三边长分别为AB=7,BC=5,AC=6。

则错误!·错误!的值为()A.19 B.14 C.-18 D.-19解析:由余弦定理的推论知:cos B=AB2+BC2-AC22AB·BC=1935。

所以错误!·错误!=|错误!|·|错误!|·cos(π-B)=7×5×错误!=-19.答案:D4.锐角三角形ABC中,sin A和cos B的大小关系是()A.sin A=cos B B.sin A<cos BC.sin A>cos B D.不能确定解析:在锐角三角形ABC中,A+B>90°.所以A>90°-B,所以sin A>sin (90°-B)=cos B.答案:C5.在△ABC中,b=8,c=3,A=60°,则此三角形外接圆面积为()A.错误!B.错误!C。

错误!D。

错误!解析:a2=b2+c2-2bc cos A=82+32-2×8×3×错误!=49,所以a=7,所以2R=错误!=错误!=错误!,所以R=错误!,所以S=π错误!错误!=错误!π.答案:D二、填空题6.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案:错误!7.在△ABC中,AB=错误!,D为BC的中点,AD=1,∠BAD =30°,则△ABC的面积S△ABC=________.解析:因为AB=3,AD=1,∠BAD=30°,所以S△ABD=错误!·错误!·1·sin 30°=错误!,又D是BC边中点,所以S△ABC=2S ABD=错误!.答案:错误!8.(2018·浙江卷)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=7,b=2,A=60°,则sin B=________,c=________.解析:本小题考查正弦定理、余弦定理.由错误!=错误!得sin B=错误!sin A=错误!,由a2=b2+c2-2bc cos A,得c2-2c-3=0,解得c=3(舍负).答案:错误!3三、解答题9.已知△ABC中,角A,B,C的对边分别为a,b,c,2cos C·(a cos C+c cos A)+b=0.(1)求角C的大小;(2)若b=2,c=2错误!,求△ABC的面积.解:(1)由正弦定理可得2cos C (sin A cos C +sin C cos A )+sin B =0,所以2cos C sin(A +C )+sin B =0,即2cos C sin B +sin B =0, 又0<B <π,所以sin B ≠0,所以cos C =-错误!,即C =错误!。

高中数学必修5正弦定理、余弦定理水平测试题

高中数学必修5正弦定理、余弦定理水平测试题

高中数学必修5正弦定理、余弦定理水平测试题一、选择题1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为( )A . π6B . π3C . π6或5π6D . π3或2π32.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为 ( )A .75°B .60°C .45°D .30°3.(2010·上海高考)若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 ( )A . 518B . 34C . 32D . 785.(2010·湖南高考)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C =120°,c =2a ,则 ( )A .a >bB .a <bC .a =bD .a 与b 大小不能确定二、填空题6.△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,已知a =3,b =3,C =30°,则A =________.7.(2010·山东高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B=2,则角A 的大小为________.8.已知△ABC 的三个内角A ,B ,C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为________.三、解答题9.△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c .若a 2-c 2=2b ,且sin B =4cos A sin C ,求b .10.在△ABC 中,已知a 2+b 2=c 2+ab .(1)求角C 的大小;(2)又若sin A sin B =34,判断△ABC 的形状.11.(2010·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,且S =34(a 2+b 2-c 2). (1)求角C 的大小;(2)求sin A +sin B 的最大值.。

(完整版)正弦定理和余弦定理典型例题(最新整理)

(完整版)正弦定理和余弦定理典型例题(最新整理)

【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)

根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .

【高二数学试题精选】必修5正、余弦定理应用举例同步练习题(含答案新人教A版)

【高二数学试题精选】必修5正、余弦定理应用举例同步练习题(含答案新人教A版)

必修5正、余弦定理应用举例同步练习题(含答案新人教A
版)
5 必修5正、余弦定理应用举例同步练习题(含答案新人教A版)
时目标
1.了解数学建模的思想;
2.利用正、余弦定理解决生产实践中的有关距离的问题.
1.基线的定义在测量上,我们根据测量需要适当确定的线段叫做基线.一般说,基线越长,测量的精确度越高.
2.方位角指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A点的方位角为α
3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.
一、选择题
1.若点P在点Q的北偏西45°10′方向上,则点Q在点P的( ) A.南偏西45°10′ B.南偏西44°50′
c.南偏东45°10′ D.南偏东44°50′
答案 c
2.已知两灯塔A和B与海洋观测站c的距离都等于a ,灯塔A 在观测站c的北偏东20°方向上,灯塔B在观测站c的南偏东40°方向上,则灯塔A与灯塔B的距离为( )
A.a B3a
c2a D.2a
答案 B
解析∠AcB=120°,Ac=Bc=a,
∴由余弦定理得AB=3a
3.海上有A、B两个小岛相距10 n ile,从A岛望c岛和B岛。

正弦定理-高二数学人教版(必修5)

正弦定理-高二数学人教版(必修5)

第一章 解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即____________.正弦定理对任意三角形都成立.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的____________.已知三角形的几个元素求其他元素的过程叫做____________.K 知识参考答案:1.sin sin sin a b c ==A B C2.元素 解三角形K —重点 正弦定理的变形和推广、正弦定理在解三角形中的应用 K —难点 三角形解的个数的探究、三角形形状的判断K —易错 解三角形时要明确角的取值范围,同时注意对角的讨论正弦定理的常见变形及推广(1)sin sin sin ,,,sin sin ,sin sin ,sin sin sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ======. (2)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++. (3)::sin :sin :sin a b c A B C =. (4)正弦定理的推广:2sin sin sin a b cR A B C===,其中R 为ABC △外接圆的半径. (1)已知△ABC 中,sin :sin :sin =1:2:3A B C ,则a:b:c =_____________;(2)已知△ABC 中,∠A =60︒,3a ,则++sin +sin +sin a b cA B C=_____________.【答案】(1)1:2:3;(2)2.【解析】(1)根据正弦定理的变形,可得=sin :sin :sin =1:2:3a:b:c A B C . (2)方法1:设=sin sin a b A B ==(>0)sin ck k C,则有sin sin sin a k Ab k Bc k C ===,,, 从而sin sin sin sin sin sin sin sin sin a b c k A k B k C k A B C A B C ++++++++==,又32sin sin60a k A ===︒,所以sin sin sin a b c A B C ++++=2. 方法2:根据正弦定理的变形,可得2sin sin sin sin a b c aA B C A++++==.【名师点睛】熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果.在ABC △中,求证:22sin 2sin 22sin a B b A ab C +=.【答案】证明见解析.【解析】设ABC △外接圆的半径为R ,则2sin ,2sin ,a R A b R B == 于是222222sin 2sin 2(2sin )sin 2(2sin )sin 28sin sin (sin cos cos sin )8sin sin sin 22sin 2sin sin 2sin ,a Bb A R A B R B A R A B A B A B R A B CR A R B C ab C +=+=+==⋅⋅⋅=所以22sin 2sin 22sin a B b A ab C +=. 【解题技巧】===2sin sin sin a b c R A B C的两种变形的应用: (1)(边化角)2sin ,2sin ,2sin a R A b R B c R C ===; (2)(角化边)sin ,sin ,sin 222a b cA B C R R R===. 正弦定理在解三角形中的应用、三角形解的个数的探究1.正弦定理可以用来解决下列两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 2.三角形解的个数的探究(以已知a b ,和A 解三角形为例) (1)从代数角度来看①若sin sin 1b AB=a >,则满足条件的三角形的个数为0,即无解; ②若sin sin 1b AB=a=,则满足条件的三角形的个数为1;③若sin sin 1b AB=a<,则满足条件的三角形的个数为1或2. 注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”、“三角形内角和等于180°”等进行讨论. (2)从几何角度来看①当A 为锐角时:一解一解 两解 无解②当A 为钝角或直角时:一解 一解 无解 无解(1)已知在ABC △中,10,45,30c A C ==︒=︒,则a =_______,b =_______,B =_______;(2)已知在ABC △中,3,60,1b B c ==︒=,则a =_______,A =_______,C =_______; (3)已知在ABC △中,6,45,2c A a ==︒=,求b 和,B C .【答案】(1)102,5652+,105︒;(2)2,90︒,30︒;(3)见解析. 【解析】(1)10,45,30180()105c A C B A C ==︒=︒∴=︒-+=︒,,由sin sin a c A C =,得sin 10sin 45102sin sin 30c A a C ⨯︒===︒, 由sin sin b c B C =,得sin 10sin10562205652sin sin 304c B b C ⨯︒+===⨯=+︒.(2)∵sin 1sin 601,sin sin sin 23b c c B C B C b ⨯︒=∴===, ,60,b c B C B >=︒∴<,C 为锐角,30,90C A ∴=︒=︒,∴222=+=c b a .(3)sin 6sin 453,sin sin sin 22a c c A C A C a ⨯︒=∴===, sin ,60c A a c C <<∴=︒或120︒,∴当60C =︒时,sin 6sin 7575,31sin sin 60c B B b C︒=︒===+︒,当120C =︒时,sin 6sin1515,31sin sin 60c B B b C ︒=︒===-︒. 31,75,60b B C ∴=+=︒=︒或31,15,120b B C =-=︒=︒.【解题技巧】(1)已知三角形的两角与一边解三角形时,由三角形内角和定理可以计算出三角形的另一角,由正弦定理可计算出三角形的另两边.(2)已知两边和其中一边的对角解三角形时,先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,则利用三角形中“大边对大角”看能否判断所求这个角是锐角,①当已知的角为大边所对的角时,则能判断另一边所对的角为锐角;②当已知的角为小边所对的角时,则不能判断,此时就有两解,再分别求解即可;③然后由三角形内角和定理求出第三个角;④最后根据正弦定理求出第三条边.三角形形状的判断判断三角形形状的常用方法——边化角,已知条件中同时包含边角关系,判断三角形形状时,将边化为角,从三角变换的角度来研究角的关系和特征,进而判断三角形的形状.一般来说,这种方法能够判断的三角形都是特殊的三角形,如直角三角形、等腰三角形、等边三角形、等腰直角三角形.在ABC △中,已知sin sin sin a b Ba B A+=-,且cos()cos 1cos 2A B C C -+=-,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形【答案】B【解析】设ABC △的外接圆半径为R ,由正弦定理的推广,得sin 2a A R =,sin 2bB R=,代入sin sin sin a b B a B A +=-,可得a b ba b a+=-,即22b a ab -=. 因为cos()cos 1cos 2A B C C -+=-,所以2cos()cos()2sin A B A B C -++=, 即2sin sin sin A B C =. 由正弦定理的推广可得2()222a b cR R R⋅=,所以2ab c =, 由22b a ab -=及2ab c =可得222b a c =+,所以ABC △是直角三角形. 故选B .【名师点睛】注意到a ,b ,c 在条件式中是齐次线性关系,因此可以考虑利用正弦定理将边化为角.通过角的特征或者关系来判断三角形的形状.忽略角的取值范围而出错在ABC △中,若3C B =,求cb的取值范围. 【错解】由正弦定理,可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 220cos 1,14cos 13B B ≤<∴-≤-<,由0,0b c >>,可得03cb<<. 故cb的取值范围为(0,3). 【错因分析】错解中没有考虑角B 的取值范围,误认为角B 的取值范围为(0,180)︒︒. 【正解】由正弦定理可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 2180,3,045,cos 12A B C C B B B ++=︒=∴︒<<︒<<, 214cos 13B ∴≤-<,即13cb<<, 故cb的取值范围为(1,3). 【名师点睛】解三角形时要注意三角形的内角为正角且必须满足三角形内角和定理,这是解题中的隐含条件,应特别注意.忽略对角的讨论而出错已知在ABC △中,4,22,30,a b B ===︒ 求角,A C 和边c .【错解】由正弦定理sin sin a b A B =可得422sin sin 30A =︒, 2sin ,452A A ∴==︒,1803045105C ∴=︒-︒-︒=︒,62,sin105sin sin 4c b C B +=︒=,sin 232sin b C c B ∴==+. 【错因分析】错解中由正弦定理求出角A 的正弦值后误认为角A 是锐角,从而导致错误. 【正解】由正弦定理,sin sin a b A B =得422sin sin 30A =︒, 2sin ,2A ∴=,45a b A >∴=︒或135︒.当45A =︒时,1803045105C =︒-︒-︒=︒,62sin ,sin105,232sin sin 4sin c b b Cc C B B+=︒=∴==+;当135A =︒时,1803013515C =︒-︒-︒=︒,62sin ,sin15,232sin sin 4sin c b b Cc C B B-=︒=∴==-. 综上,45,105,232A C c =︒=︒=+或135,15,232A C c =︒=︒=-.【名师点睛】在ABC △中,已知两边和其中一边的对角解三角形时,可先用正弦定理求出另一边的对角,此时解的个数可能不确定,应注意讨论,避免漏解导致错误.1.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,83,6,60a b A ===︒,则sin B = A .2B 6C 2D 32.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =45B =︒,2b =,则A =A .30︒或150︒B .30︒C .150︒D .45︒3.在ABC △中,若∠A =60°,∠B =45°,BC =AC =A .B .CD 4.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知A :B :C =1:2:3,则a :b :c =A .1:2:3B .C .D .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,b =,4B π∠=,tan A =,则a =A .210B .C .10D .26.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,15,18,30a b A ===︒,则此三角形解的个数为 A .0 B .1 C .2D .不能确定8.已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A :cos B =b :a ,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形9.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若8a =,60B =︒,75C =︒,则b =______________.10.在ABC △中,角A ,C 的对边分别为a ,c ,其中1=a ,33=c 3A π=,则角=C ______________.11.在ABC △中,若B =30°,AB =23,AC =2,则ABC △的周长为______________. 12.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,己知A −C =90°,a +c =2b ,求C .13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =52b ,A =2B ,则cos B = A 5 B 5C 5 D 5 14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π,3,23A a b ===,则B = A .π6 B .π4 C .π3D .π215.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π3,6,3a b A ===,则角B 等于 A .π4B .3π4C .π4或3π4D .以上都不正确16.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,若cos (2)cos c a B a b A -=-,则ABC △是A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos cos A B Ca b c==,则ABC △是 A .有一内角是30°的三角形 B .等边三角形C .等腰直角三角形D .有一内角是30°的等腰三角形18.在ABC △中,已知31,6,15b c B =-==︒,则边长a =A .31+或2B .31+C .2D .2319.在ABC △中,已知2AB AC =,30B =︒,则A =______________.20.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD .为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ∠=︒,沿山坡前进50m 到达B 处,又测得45DBC ∠=︒.根据以上数据计算可得cos θ=______________.21.如图,在ABC △中,点D 在BC 边上,π72cos 42CAD AC ADB ∠==∠=,,. (1)求sin C 的值;(2)若5BD =,求AD 的长.22.(2017山东理)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =23.(2017新课标全国Ⅰ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12 B .π6 C .π4D .π324.(2017新课标全国Ⅱ文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =______________.25.(2017新课标全国Ⅲ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =______________.26.(2018北京理)在△ABC 中,7a =,8b =,1cos 7B =-. (1)求A ∠;(2)求AC 边上的高.1.【答案】D【解析】∵83,6,60a b A ===,由sin sin a b A B =得sin 3sin .8b A B a ==故选D . 2.【答案】B【解析】在ABC △中,由sin sin a b A B =得21sin sin sin 4522a A Bb ===︒,由于a b <,所以A B <,所以30A =︒,故选B . 3.【答案】B【解析】由正弦定理得23sin 60sin 45AC =︒︒,所以AC =23sin 452 2.sin 60︒=︒故选B .4.【答案】C【解析】因为在ABC △中,A +B +C =π,且A :B :C =1:2:3,所以A =6π,B =3π,C =2π,由正弦定理的变形,得a :b :c =sin A :sin B :sin C 13=1=22::1:3:2.故选C .6.【答案】B【解析】由已知可得2sin cos cos sin sin B C B C A +=,∴2sin()sin B C A +=,∴sin 1A =,∴π2A =,三角形为直角三角形.故选B . 7.【答案】C【解析】由正弦定理可得sin 18sin 303sin 155b A B a ︒===,因为b a >,所以30B A >=︒,所以角B 可能是锐角,也可能是钝角,所以此三角形有两解,故选C .8.【答案】D【解析】由正弦定理可得cos sin cos sin A b BB a A==,即sin A cos A =sin B cos B ,所以sin2A =sin2B ,即2A =2B 或2A +2B =π,即A =B 或A +B =2π,故ABC △是等腰或直角三角形.故选D .9.【答案】46【解析】∵60B =︒,75C =︒,∴45A =︒,∵sin sin a bA B=,∴82322b=,∴46b =. 10.【答案】π6【解析】由正弦定理可得313πsin sin 3C =,即212333sin =⨯=C ,所以π6C =或5π6,又a c <,所以π6C =.12.【答案】o =15C .【解析】由正弦定理可得sin sin 2A C B +=,又由于o o90=180()A C B A C -=-+,,故cos sin 2)C C A C +=+o 22)22C C =+=,即22sin cos 2,22C C C +=o cos(45)cos 2C C -=. 因为o o 090C <<,所以o 2=45C C -,即o =15C . 13.【答案】B【解析】由正弦定理,得sin sin a A b B =,所以a =52b 可化为sin sin A B =52.又A =2B ,所以sin 2sin B B =52,所以cos B =54.故选B . 14.【答案】D【解析】在ABC △中,由正弦定理可得2πsin sin sin 133b B A a ==⨯=,又0πB <<,所以B =π2,故选D . 15.【答案】 A【解析】在ABC △中,∵π3,6,3a b A ===,∴36πsin sin sin sin 3a b A B B =⇒=2sin 2B ⇒=,又63b a =<=,∴π03B A <<=,∴π4B =,故选A .16.【答案】D【解析】由正弦定理和已知条件可得sin sin cos 2sin cos sin cos C A B A A B A -=-, 所以sin()sin cos 2sin cos sin cos ,A B A B A A B A +-=- 即cos (sin sin )0A B A -=,所以cos 0A =或sin sin 0B A -=,即90A =︒或=A B .故ABC △是等腰三角形或直角三角形. 故选D .18.【答案】A【解析】由正弦定理可得,sin 63sin 231c B C b ===-, 在ABC △中,c b >,60C ∴=或120.当60C =时,105A =︒,sin 6sin10531sin c A a C ︒∴===; 当120C =时,45A =︒,此时sin 6sin 452sin c A a C ︒∴===. 综上,可得31a =或2.故选A .19.【答案】105︒或15︒【解析】由正弦定理得sin sin AB AC C B =,得sin 2sin 2sin 302AB B C AC ==︒=, 由AB AC >,得C B >,所以45C =︒或135︒,从而105A =︒或15︒.21.【答案】(1)45;(2)22. 【解析】(1)因为2cos ADB ∠=72sin ADB ∠= 又π4CAD ∠=,所以π4C ADB =∠-, 所以πππ722224sin sin()sin coscos sin 4445C ADB ADB ADB =∠-=∠⋅-∠⋅==. (2)在ACD △中,由sin sin AD ACC ADC =∠,可得sin 22sin AC C AD ADC⋅==∠. 22.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A . 23.【答案】B【解析】由sin()sin (sin cos )0A C A C C ++-=可得sin cos cos sin sin sin A C A C A C ++-sin cos 0A C =,即πsin (sin cos )2sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =可得223πsin sin 4C =,即1sin 2C =,因为c a <,所以C A <,所以π6C =,故选B . 24.【答案】π3【解析】由正弦定理可得12sin cos sin cos sin cos sin()sin cos 2B B A C C A A C B B =+=+=⇒=π3B ⇒=. 25.【答案】75︒【解析】由正弦定理sin sin b c B C=,可得36sin 22sin 32b C Bc ⨯===,结合b c <可得45B =︒,则18075A B C =︒--=︒. 26.【答案】(1)π3A ∠=;(2)AC 边上的高为332. 【解析】(1)在△ABC 中,因为1cos 7B =-,所以π(,)2B ∈π,所以243sin 1cos 7B B =-=. 由正弦定理7sin sin sin a b A B A =⇒=8437,所以3sin 2A =. 因为π(,)2B ∈π,所以π(0,)2A ∈,所以π3A ∠=(2)在△ABC 中,3114333sin sin()sin cos sin cos ()272714C A B A B B A =+=+=⨯-+⨯=. 如图所示,在△ABC 中,sin h C BC =,所以3333sin 7142h BC C =⋅=⨯=, 所以AC 边上的高为332.。

高一人教A数学必修5测试卷:正弦定理和余弦定理A卷

高一人教A数学必修5测试卷:正弦定理和余弦定理A卷

故选 A. 10. 【答案】
B 【考点】
余弦定理
【解析】
此题暂无解析
【解答】
解:由已知条件可得梯形 ABCD 如图所示,
第 7页 共 18页
连结 AC. 在△ ACD 中,CD2 = AD2 + AC2 − 2AD ⋅ AC ⋅ cos∠DAC. 设 CD = a,则 AD = 2a,AC = 5a, ∴ a2 = ( 2a)2 + ( 5a)2 − 2 ⋅ 2a ⋅ 5a ⋅ cos∠DAC,
解:由 a = b ,
sinA sinB
得 sinB = 3,
2
又 a < b, 所以 B = 60 或 120, 所以 C = 90 或 30. 故答案为:90 或 30. 【答案】
7
3 【考点】
余弦定理
【解析】
此题暂无解析
【解答】
解:由余弦定理,得a2 = b2 + c2 − 2bccosA
=
1 c
= sin 2x − π + 2,
6
当 x ∈ 0, π 时,f(x)的最大值为 3,
2
此时 2A − π = π,即 A = π,
62
3
由余弦定理a2 = b2 + c2 − 2bccosA,
得(2
3)2
=
b2
+
42

2
×
4
×
b
×
1,解得
2
b
=
2.
故选 A.
第 9页 共 18页
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上) 【答案】 90 或30 【考点】 正弦定理 【解析】 此题暂无解析 【解答】

必修5《解三角形》综合测试题及解析【教师版】

必修5《解三角形》综合测试题及解析【教师版】

专题复习 正弦定理和余弦定理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.高考模拟1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则b 等于___5___.解析 ∵S =12ac sin B =2,∴12×1×c ×sin 45°=2. ∴c =4 2.∴b 2=a 2+c 2-2ac cos B =1+32-2×1×42×cos 45°. ∴b 2=25,b =5.2.在△ABC 中,A ,B ,C 为内角,且sin A cos A =sin B cos B ,则△ABC 是____等腰或直角____三角形.解析 由sin A cos A =sin B cos B 得sin 2A =sin 2B =sin(π-2B ),所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以△ABC 为等腰或直角三角形.3.已知α∈R ,sin α+2cos α=102,则tan 2α等于____-34____. 解析 ∵sin α+2cos α=102,∴sin 2α+4sin α·cos α+4cos 2α=52. 化简,得4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于___725_____.解析 先用正弦定理求出角B 的余弦值,再求解.由b sin B =c sin C,且8b =5c ,C =2B , 所以5c sin 2B =8c sin B ,所以cos B =45. 所以cos C =cos 2B =2cos 2 B -1=725.5.已知tan β=43,sin(α+β)=513,其中α,β∈(0,π),则sin α的值为___6365___.解析 依题意得sin β=45,cos β=35;注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)· cos β-cos(α+β)sin β=6365.6.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin A ,求b =___4___.解析 在△ABC 中,sin A cos C =3cos A sin C ,则由正弦定理及余弦定理有a ·a 2+b 2-c 22ab =3·b 2+c 2-a 22bc ·c ,化简并整理得2(a 2-c 2)=b 2.又由已知a 2-c 2=2b ,则4b =b 2,解得b =4或b =0(舍).7.若α,β∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α-β2=32,sin ⎝⎛⎭⎫α2-β=-12,则cos (α+β)=___-12__. 解析 ∵α,β∈⎝⎛⎭⎫0,π2,∴-π4<α-β2<π2,-π2<α2-β<π4,由cos ⎝⎛⎭⎫α-β2=32和sin ⎝⎛⎭⎫α2-β=-12得α-β2=±π6,α2-β=-π6,当α-β2=-π6,α2-β=-π6时,α+β=0,与α,β∈⎝⎛⎭⎫0,π2矛盾;当α-β2=π6,α2-β=-π6时,α=β=π3,此时cos (α+β)=-12.8.在△ABC 中,AD 为BC 边上的高线,AD =BC ,角A ,B ,C 的对边为a ,b ,c ,则b c +cb 的取值范围是__[2,5]___.解析 因为AD =BC =a ,由12a 2=12bc sin A ,解得sin A =a 2bc ,再由余弦定理得cos A =b 2+c 2-a 22bc =12⎝⎛⎭⎫b c +c b -a 2bc =12⎝⎛⎭⎫b c +c b -sin A , 得b c +cb=2cos A +sin A ,又A ∈(0,π), 所以由基本不等式和辅助角公式得b c +cb 的取值范围是[2,5].9.(2010·江苏卷)某兴趣小组要测量电视塔AE 的高度H (单位:m).如示意图,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β. (1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大? 解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β,解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此,算出的电视塔的高度H 是124 m. (2)由题设知d =AB ,得tan α=Hd .由AB =AD -BD =H tan β-htan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan α tan β=hd +H(H -h )d≤h2H (H -h ),当且仅当d =H (H -h )d ,即d =H (H -h )=125×(125-4)=555时,上式取等号,所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是555m.10.(2012·江苏卷)在△ABC 中,已知AB →·AC →=3BA →·BC →.(1)求证:tan B =3tan A ;(2)若cos C =55,求A 的值. (1)证明 因为AB →·AC →=3BA →·BC →,所以AB ·AC ·cos A =3BA ·BC ·cos B , 即AC ·cos A =3BC ·cos B ,由正弦定理知AC sin B =BC sin A ,从而sin B cos A =3sin A cos B ,又因为0<A +B <π,所以cos A >0,cos B >0, 所以tan B =3tan A . (2)解 因为cos C =55,0<C <π,所以sin C =1-cos 2C =255, 从而tan C =2,于是tan[π-(A +B )]=2,即tan(A +B )=-2,亦即tan A +tan B 1-tan A tan B =-2,由(1)得4tan A 1-3tan 2A =-2,解得tan A =1或-13, 因为cos A >0,故tan A =1,所以A =π4.11.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理,得 sin A =sin B cos C +sin C sin B ,①又A =π-(B +C ), 故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理,得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.《解三角形》综合测试题(A )Ⅰ卷(选择题)一、选择题(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.某三角形的两个内角为o45和o60,若o45角所对的边长是6,则o60角所对的边长是 【 A 】A .B .C .D . 答案:A .解析:设o60角所对的边长是x ,由正弦定理得o o6sin 45sin 60x=,解得x =.故选A .2.在ABC ∆中,已知a =10c =,o30A =,则B 等于 【 D 】 A .o 105 B .o60 C .o15 D .o105或o15 答案:D .解析:在ABC ∆中,由sin sin a c A C =,得sin sin c A C a ==,则o 45C =或o135C =.故 当o45C =时,o105B =;当o135C =时,o15B =.故选D .3.在ABC ∆中,三边长7AB =,5BC =,6AC =,则AB BC ⋅的值等于 【 D 】A .19B .14-C .18-D .19- 答案:D .解析:由余弦定理得49253619cos 27535B +-==⨯⨯,故AB BC ⋅= ||AB ⋅ ||cos(BC π )B -=1975()1935⨯⨯-=-.故选D .4.在ABC ∆中,sin <sin A B ,则 【 A 】 A .<a b B .>a b C .a b ≥ D .a 、b 的大小关系不确定 答案:A .解析:在ABC ∆中,由正弦定理2sin sin a b R A B ==,得sin 2a A R =,sin 2bB R=,由sin A <sin B ,得<22a bR R,故<a b .故选A .5.ABC ∆满足下列条件:①3b =,4c =,o 30B =;②12b =,9c =,o60C =;③b =, 6c =,o 60B =;④5a =,8b =,o30A =.其中有两个解的是 【 B 】A .①②B .①④C .①②③D .②③ 答案:B .解析:① sin <<c B b c ,三角形有两解;②o<sin60c b ,三角形无解;③b =sin c B ,三角形只有一解;④sin <<b A a b ,三角形有两解.故选B .6.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是 【 A 】A .2B C .2 D .3 答案:A .解析:由2220b bc c --=,得(2)()0b c b c -+=,故2b c =或b c =-(舍去),由余弦定理2222cos a b c bc A =+-及已知条件,得23120c -=,故2c =,4b =,又由7cos 8A =及A 是ABC ∆的内角可得sin 8A =,故1242S =⨯⨯82=.故选A . 7.设a 、1a +、2a +是钝角三角形的三边长,则a 的取值范围为 【 B 】 A .0<<3a B .1<<3a C .3<<4a D .4<<6a 答案:B .解析:设钝角为C ,由三角形中大角对大边可知C 的对边为2a +,且cos C =222(1)(2)2(1)a a a a a ++-+⋅⋅+(3)(1)<02(1)a a a a -+=+,因为>0a ,故1>0a +,故0<<3a ,又(1)>+2a a a ++,故>1a ,故1<<3a .故选B .8.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,且4a =,5b c +=,tan tan A B ++t a n t a nA B =⋅,则ABC ∆的面积为 【 C 】A .32 B . C D .52 答案:C .解析:由已知,得tan tan tan tan )A B A B +=-⋅,即t a n ()A B +=又A 、B 是ABC ∆的内角,故o 120A B +=,则o 60C =,由2224(5)24(5)c c c =+--⨯⨯-ocos60,解得72c =,故32b =,故113sin 4222ABC S ab C ∆==⨯⨯=.故选C . 第Ⅱ卷(非选择题)二、填空题(每小题5分,共30分)9.在ABC ∆中,1sin 3A =,cos 3B =,1a =,则b =_________.解析:由cos B =,得sin 3B ===,由sin sin a b A B =,得b =1sin 31sin 3a BA==10.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若c =b =o 120B =,则a =______.解析:由余弦定理得2222cos b a c ac B =+-,即2o62cos120a =+-,即24a +-0=,解得a =(舍去负值).11.如果ABC ∆的面积是222S =C =____________.答案:o30.解析:由题意得2221sin 2ab C =cos C C =,故tan C =,故o30C =.12.ABC ∆的三内角A 、B 、C 的对边分别为a 、b 、c ,若o60A =,1b =,三角形的面积S =sin sin sin a b cA B C++++的值为____________.. 解析:由o 11sin sin 6022S bc A c ===4c =.由余弦定理得22a b =+22cos c bc A - 13=,故a =故sin sin sin a b c A B C ====,由等比性质,得sin sin sin sin a b c a A B C A ++==++14.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,向量1)m =- ,(cos ,sin )n A A =,若m n ⊥,且cos cos sin a B b A c C +=,则B =____________.答案:6π或o30.解析:由m n ⊥ 得0m n ⋅=sin 0A A -=,即sin 0A A -=,故2sin()3A π-0=,故3A π=.由cos cos sin aB b A cC +=,得sin cos sin cos A B B A +=2sin C ,即2sin()sin A B C +=,故2sin sin C C =,故sin 1C =,又C 为ABC ∆的内角,故2C π=,故()()326B AC πππππ=-+=-+=.三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤)15.(本题满分12分)在ABC ∆中,已知2a =,c =o 45A =,解此三角形.解:由正弦定理,得sin sin 222c A C a ==⨯=o 60C ∠=或o120. 当o60C ∠=时,o o 180()75B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=+1b =.当o120C ∠=时,o o 180()15B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=-1b =.故1b =,o60C ∠=,o75B ∠=或1b =,o120C ∠=,o15B ∠=.17.(本题满分14分)a 、b 、c 是ABC ∆的内角A 、B 、C 的对边,S 是ABC ∆的面积,若4a =,5b =,S =c .解:由11sin 45sin 22S ab C C ==⋅⋅⋅=sin C =,则1cos 2C =或1cos 2C =-.(1)当1cos 2C =时,由余弦定理,得211625245212c =+-⋅⋅⋅=,故c =;(2)当1cos 2C =-时,由余弦定理,得211625245612c =++⋅⋅⋅=,故c =综上可知c .20.(本题满分14分)在锐角ABC ∆中,边a 、b 是方程220x -+=的两根,A 、B 满足2sin()A B +0=,解答下列问题:(1)求C 的度数;(2)求边c 的长度; (3)求ABC ∆的面积.解:(1)由题意,得sin()A B +=,因ABC ∆是锐角三角形,故o 120A B +=,o60C =;(2)由a 、b 是方程220x -+=的两根,得a b +=2a b ⋅=,由余弦定理,得22222cos ()31266c a b ab C a b ab =+-=+-=-=,故c =(3)故1sin 2ABC S ab C ∆==12222⨯⨯=.《解三角形》综合测试题(B )第Ⅰ卷(选择题)一、选择题(本大题共8小题,每小题5分,共40分.四个选项中只有一项是符合题目要求的) 1.在ABC ∆中,已知sin 1B =,3b =,则此三角形 【 D 】A .无解B .只有一解C .有两解D . 解的个数不确定答案:D .解析:由sin 1B =得o90B =,只知一边3b =,故三角形解的个数不确定.故选D .2.在ABC ∆中,已知o60A =,19b =,ABC ∆的面积S =,则a 等于 【 C 】 A .84 B .48 CD答案:C . 解析:由o 11sin 19sin 6022S bc A c ==⋅⋅=84c =,故222a b c =+o 2cos60bc - 5821=,故a =故选C .3.在ABC ∆中,o60A =,a =b =B 等于 【 A 】 A . o45 B .o 135 C .o 45或o135 D . 以上答案都不对 答案:A .解析:由正弦定理可求得sin B =<b a ,故o <60B A =,故o45B =.故选A . 4.在ABC ∆中,sin sin sin cos cos B CA B C+=+,则ABC ∆一定是 【 B 】A . 锐角三角形B . 直角三角形C . 钝角三角形D . 以上都有可能 答案:B .解析:由已知根据正、余弦定理得22222222b c a a c b a b cac ab+=+-+-+,整理得2222()()b a b c a c -+- ()bc b c =+,即233()()()()b c a b c bc b c bc b c +=+++=+,故22222a b bc c bc b c =-++=+,故ABC ∆为直角三角形. 故选B .5.在ABC ∆中,lg lg lg(sin )a b B -==-B 为锐角,则A 为 【 D 】 A . o90 B . o45 C . o60 D . o30 答案:D . 解析:由已知得sin a B b ==,又B 为锐角,故o45B =;又sin sin a A b B ==,故1sin 2A =,故o 30A =.故选D .6.在锐角三角形ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,设2B A =,则ba的取值 范围是 【 D 】 A . (2,2)- B . (0,2) C .D. 答案:D .解一:因2B A =,故o o 1801803C A B A =--=-,故o o o o o o o 0<<900<2<900<1803<90A A A ⎧⎪⎨⎪-⎩,解得o30<o <45A,故sin 2cos sin b BA a A==∈,故选D . 解二:由正弦定理得sin sin 22cos sin sin b B A A a A A ===,因02<<B π,故022<<A π,即0< 4<A π,又A B C π++=,故3C A π=-,由题意得032<<A ππ-,故63<<A ππ,又04<<A π,故64<<A ππ<cos <A<2cos <A ,即2cos A ∈,即ba∈.故选D . 7.在ABC ∆中,若3sin 4B =,10b =,则边长c 的取值范围是 【C 】A . 15(,)2+∞B . (10,)+∞C . 40(0,]3D . (0,10)答案:C .解析:由正弦定理可得40sin 3c C =,因0<sin 1C ≤,故400<3c ≤.故选C . 8.在ABC ∆中,若223coscos 222C A a c b +=,则a 、b 、c 的关系是 【 A 】 A .2a c b += B . a b c += C . 2b c a +=D . a b c ==答案:A . 解析:由已知得1cos 1cos 3222C A a c b ++⋅+⋅=,即(1cos )(1cos )3a C c A b +++=,由正弦定 理,得sin (1cos )sin (1cos )3sin A C C A B +++=,故sin sin cos sin A A C C +++sin cos C A3sin B =,即sin sin sin()3sin A C A CB +++=,又sin()sin AC B +=,故sin sin A C += 2sin B ,由正弦定理,得2a c b +=.故选A .第Ⅱ卷(非选择题)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在横线上)9.三角形一边长为14,它的对角为60,另两边之比为8:5,则此三角形的面积为____________.答案:解析:设另两边的长为8x 和5x ,由余弦定理,得222o2(8)(5)14cos6080x x x +-=,解得2x =,则另两边的长为16和10,故此三角形的面积为o11610sin 602S =⨯⨯⨯=10.在ABC ∆中,50a =,o 30B =,o120C =,则BC 边上的高的长度是__________.答案:.解析:由已知得o30A =,由正弦定理得o o 50sin 30sin120AB=,解得AB =BC 边上的高12AD AB == 11.三角形的两边分别为5和3,它们的夹角的余弦值是方程25760x x --=的根,则此三角形的 面积S 为___________. 答案:6.解析:由方程解得3cos 5α=-,则4sin 5α=,故1453625S =⨯⨯⨯=.12.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是_________.解析:由2220b bc c --=,得2b c =;由余弦定理2222cos b c a bc A +-=,得2246c c +-7228c c =⨯⨯⨯,解得2c =,故4b =,故1242S =⨯⨯= 三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤)15.(本题满分10分)在ABC ∆中,已知3sin 5A =,sin cos <0A A +,a =5b =.求c .解:因为sin cos <0A A +,且3sin 5A =,故4cos 5A ==-;又a =5b =,故由2222cos a b c bc A =+-,得2224525()5c c =+-⨯⨯⨯-,即28200c c +-=,解得2c =或10(c =-舍去).故2c =. 点评:解此题的关键是由3sin 5A =求出cos A ,应注意根据sin cos <0A A +先判断cos A 的正负,以防产生漏解.18.(本题满分14分)设锐角三角形的内角A 、B 、C 的对边分别为a 、b 、c ,且2sin a b A =. (1)求B 的大小;(2)求cos sin A C +的取值范围.解:(1)由2sin a b A =根据正弦定理,得sin 2sin sin A B A =,故1sin 2B =.因ABC ∆为锐角三 角形,故6B π=.(2)1cos sin cos sin()cos sin()cos cos 662A C A A A A A A πππ+=+--=++=++2A)3A π=+.由ABC ∆为锐角三角形,知<<22B A ππ-,而226B πππ-=-3π=,故<<32A ππ,故25<<336A πππ+,故1<sin()<232A π+,<)23A π+3<2.故cos sin A C +的取值范围是3()22.。

正弦定理余弦定理习题及答案

正弦定理余弦定理习题及答案

正弦定理余弦定理习题及答案Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】正 余 弦 定 理1.在ABC∆中,A B >是sin sin A B >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin 02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是 ( )(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= .4、如图,在△ABC 中,若b = 1,c =3,23C π∠=,则a= 。

5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若3a =,3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c .AB323π1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .2、【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin sin 60A =得1sin 2A =,由a b <知60AB <=,所以30A =,180C A B =--90=,所以sin sin 90 1.C ==4、【命题立意】本题考查解三角形中的余弦定理。

人教版高中数学必修五正弦定理和余弦定理第3课时配套练习题

人教版高中数学必修五正弦定理和余弦定理第3课时配套练习题

第一章 1.1 第3课时一、选择题1.在△ABC 中,若sin A a =cos Bb ,则角B 等于( )A .30°B .45°C .60°D .90°[答案] B[解析] 由正弦定理知sin A a =sin B b ,∵sin A a =cos Bb ,∴sin B =cos B ,∵0°<B <180°,∴B =45°.2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( )A .-15B .-16C .-17D .-18[答案] C[解析] 由余弦定理,得 c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大, 所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.3.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120° D .150° [答案] B[解析] ∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.4.在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形[答案] B[解析] ∵2sin A cos B =sin(A +B ),∴sin(A -B )=0,∴A =B .5.在△ABC 中,已知a =x ,b =2,B =60°,如果△ABC 有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <433D .2<x ≤433[答案] C[解析] 欲使△ABC 有两解,须a sin60°<b <A . 即32x <2<x ,∴2<x <433. 6.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A .75° B .60° C .45° D .30°[答案] B[解析] ∵33=12×4×3sin C ,∴sin C =32, ∵△ABC 为锐角三角形, ∴C =60°,故选B. 二、填空题7.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. [答案] 0[解析] ∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos120° =a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0.8.在△ABC 中,A =60°,最大边与最小边是方程x 2-9x +8=0的两个实根,则边BC 长为________.[答案]57[解析] ∵A =60°,∴可设最大边与最小边分别为b ,C . 又b +c =9,bc =8, ∴BC 2=b 2+c 2-2bc cos A=(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos60° =57, ∴BC =57. 三、解答题9.在△ABC 中,S △ABC =153,a +b +c =30,A +C =B2,求三角形各边边长.[解析] ∵A +C =B 2,∴3B 2=180°,∴B =120°.由S △ABC =12ac sin B =34ac =153得:ac =60,由余弦定理b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos120°)=(30-b )2-60得b =14, ∴a +c =16∴a ,c 是方程x 2-16x +60=0的两根.所以⎩⎪⎨⎪⎧ a =10c =6或⎩⎪⎨⎪⎧a =6c =10, ∴该三角形各边长为14,10和6.10.在△ABC 中,sin(C -A )=1,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.[解析] (1)由sin(C -A )=1,-π<C -A <π,知C =A +π2.又∵A +B +C =π,∴2A +B =π2,即2A =π2-B,0<A <π4.故cos2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63. 又由正弦定理,得BC =AC sin Asin B =3 2.∴S △ABC =12·AC ·BC ·sin C =12AC ·BC ·cos A =3 2.一、选择题1.在钝角三角形ABC 中,若sin A <sin B <sin C ,则( )A.cos A·cos C>0 B.cos B·cos C>0C.cos A·cos B>0 D.cos A·cos B·cos C>0[答案] C[解析]由正弦定理得,a<b<c,∴角C是最大角,∴角C为钝角,∴cos C<0,cos A>0,cos B>0.2.在△ABC中,B=60°,b2=ac,则此三角形一定是()A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形[答案] B[解析]由余弦定理,得b2=a2+c2-ac,又∵b2=ac,∴a2+c2-2ac=0,即(a-c)2=0,∴a=c,∵B=60°,∴A=C=60°.故△ABC是等边三角形.3.在△ABC中,有下列关系式:①a sin B=b sin A;②a=b cos C+c cos B;③a2+b2-c2=2ab cos C;④b=c sin A+a sin C.一定成立的有()A.1个B.2个C.3个D.4个[答案] C[解析]对于①③,由正弦、余弦定理,知一定成立.对于②,由正弦定理及sin A=sin(B +C)=sin B cos C+sin C cos B,知显然成立.对于④,利用正弦定理,变形得sin B=sin C sin A+sin A sin C=2sin A sin C,又sin B=sin(A+C)=cos C sin A+cos A sin C,与上式不一定相等,所以④不一定成立.故选C.4.△ABC中,BC=2,B=π3,当△ABC的面积等于32时,sin C等于()A.32B.12C.33D.34[答案] B[解析]由正弦定理得S△ABC=12·AB·BC·sin B=32AB=32,∴AB=1,∴AC2=AB2+BC2-2AB ·BC ·cos B =1+4-4×12=3,∴AC =3,再由正弦定理,得1sin C =3sin π3,∴sin C =12.二、填空题5.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. [答案]1534[解析] 由余弦定理知72=52+BC 2+5BC ,即BC 2+5BC -24=0, 解之得BC =3,所以S =12×5×3×sin120°=1534.6.已知三角形两边长分别为1和3,第三边上的中线长为1,则三角形的外接圆半径为__________.[答案] 1[解析] 如图,AB =1,BD =1,BC =3,设AD =DC =x ,在△ABD 中, cos ∠ADB =x 2+1-12x =x2,在△BDC 中,cos ∠BDC =x 2+1-32x =x 2-22x ,∵∠ADB 与∠BDC 互补,∴cos ∠ADB =-cos ∠BDC ,∴x2=-x 2-22x ,∴x =1,∴∠A =60°,由3sin60°=2R 得R =1.三、解答题7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =14,a =4,b +c =6,且b <c ,求b ,c 的值.[解析] ∵a 2=b 2+c 2-2bc cos A ,b 2+c 2=(b +c )2-2bc ,a =4,cos A =14,∴16=(b +c )2-2bc -12bC .又b +c =6,∴bc =8.解方程组⎩⎪⎨⎪⎧b +c =6,bc =8,得b =2,c =4,或b =4,c =2. 又∵b <c ,∴b =2,c =4.8.(2014·浙江理,18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,C .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.[解析] (1)由已知cos 2A -cos 2B =3sin A cos A -3sin B cos B 得. 12(1+cos2A )-12(1+cos2B )=32sin2A -32sin2B , ∴12cos2A -32sin2A =12cos2B -32sin2B , 即sin(-π6+2A )=sin(-π6+2B ),∴-π6+2A =-π6+2B 或-π6+2A -π6+2B =π,即A =B 或A +B =2π3,∵a ≠b ,∴A +B =2π3,∴∠C =π3.(2)由(1)知sin C =32,cos C =12, ∴sin B =sin(A +C )=sin A cos C +cos A sin C =33+410由正弦定理得:a sin A =csin C ,又∵c =3,sin A =45.∴a =85.∴S △ABC =12ac sin B =18+8325.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修5正弦定理和余弦定理测试题及答案
人教版高中数学必修5正弦定理和余弦定理测试题及答案
一、选择题
1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,
cos C =-
41,则c 等于( ) (A)2 (B)3 (C)4 (D)5
2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( )
(A)60° (B)30° (C)60°或120° (D)30°或150°
3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =
150,b =503,那么这个三角形是( )
(A)等边三角形
(B)等腰三角形 (C)直角三角形
(D)等腰三角形或直角三角形
4.在△ABC 中,已知3
2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45
(B)35
(C)920 (D)5
12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =
1∶2∶3,那么a ∶b ∶c 等于( )
(A)1∶2∶3
(B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3
二、填空题
6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =
45°,C =75°,则b =________.
7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.
8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形.
9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________.
10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________.
三、解答题
11.在△ABC中,三个内角A,B,C的对边分别是a,b,c,
若a=2,b=4,C=60°,试解△ABC.
12.在△ABC中,已知AB=3,BC=4,AC=13.
(1)求角B的大小;
(2)若D是BC的中点,求中线AD的长.
13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.
14.在△ABC中,已知BC=a,AC=b,且a,b是方程x2-23x+2=0的两根,2cos(A+B)=1.
(1)求角C的度数;
(2)求AB的长;
(3)求△ABC的面积.
参考答案
一、选择题
1. C 2.B 3.D 4. B 5.B
提示:
4.由正弦定理,得sin C =2
3,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形;
当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形.
5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°, 由正弦定理C
c B b A a sin sin sin ===k , 得a =k ·sin30°=21
k ,b =k ·sin60°=
23k ,c =k ·sin90°=k , 所以a ∶b ∶c =1∶3∶2.
二、填空题
6.362 7.30° 8.等腰三角形 9.
2
373+ 10.425 提示: 8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1,
∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C .
9.利用余弦定理b 2=a 2+c 2-2ac cos B .
10.由tan A =2,得52
sin =A ,根据正弦定理,得A
BC B AC sin sin =,得AC =425.
三、解答题
11.c =23,A =30°,B =90°.
12.(1)60°;(2)AD =7.
13.如右图,由两点间距离公式,
得OA =29)02()05(22=-+-,
同理得232,145==AB OB .由余弦定理,得cos A =2
22222=⨯⨯-+AB OA OB AB OA ,
∴A =45°.
14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.
(2)由题意,得a +b =23,ab =2,
又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C
=12-4-4×(2
1-)=10.
所以AB =10.
(3)S △ABC =21ab sin C =21·2·
23=23.。

相关文档
最新文档