浅析BA系统中冷水机组群控策略
冷水机组群控系统方案
冷水机组群控系统方案随着现代工艺水平的提升,冷水机组在工业生产和建筑空调中得到了广泛应用。
然而,随着生产规模的不断扩大,单个冷水机组的容量和运行负荷也不断增加,机组间的协作和群控成为一大难点。
因此,冷水机组群控系统的设计和应用成为了必要的选择。
1.减少能耗冷水机组群控系统能够合理调度各个机组,在避免运行闲置的情况下,选择工作效率最优的机组进行运转。
同时,该系统能够自动控制冷水机组的运行状态,全面监控机组的运行状况,避免能耗浪费和机组负荷过大。
2.提高生产效率在需要大量制冷或者制热的生产线中,冷水机组往往是重要的工具之一。
但是,针对生产线中不同的工艺要求,需要选择不同的温度、压力等参数,且要按时保持恒定。
冷水机组群控系统能够根据不同的工艺要求精准调配机组,从而提高生产效率和产品质量。
冷水机组群控系统具有集中管理的功能,将多个冷水机组的数据进行汇总、分析、处理,进一步提高了管理效率。
通过该系统,管理员能够对不同机组的运行状态、故障信息等进行及时监控,并能够进行实时控制和远程操作。
1. 网络通信技术冷水机组群控系统需要对多个机组的数据进行汇总和分析,这就需要在各个机组之间建立一个良好的通信环境。
网络通信技术能够实现不同机组之间的数据传输,确保系统数据的实时准确性。
2. 控制策略针对冷水机组的运行状态、负荷等参数,需要制定相应的控制策略,以实现机组群控。
控制策略应在特定的时间段内,采取各种合理的方式,调整机组的压力、温度、流量等参数,达到最优的机组运行状态。
3. 数据采集技术在冷水机组群控系统中,需要采集多个机组的实时数据,如流量、压力、温度等。
数据采集技术能够实现对不同机组的运行数据进行即时采集和监控,从而确保冷水机组群控系统能够准确地掌握机组运行状态。
冷水机组群控系统方案需要考虑多种因素,如应用场景、技术设备、控制策略等,以下提供一个冷水机组群控系统实现方案:1. 技术设备方案冷水机组群控系统可以采用多种设备来实现,如传感器、采集卡、PLC等。
冷水机组群控系统方案
冷水机组群控系统方案随着科技的不断发展,冷水机组群控系统已经被广泛应用于各类商业建筑、办公楼、酒店等场所,为用户提供高效、可靠的制冷服务。
本文将针对冷水机组群控系统的方案进行详细介绍。
一、冷水机组群控系统的基本原理冷水机组群控系统是通过集中管理和控制多台冷水机组的运行状态,以达到节能、优化运行和提高制冷效果的目的。
其基本原理如下:1. 整体调度控制:通过中央控制系统实现对冷水机组的整体调度控制,根据建筑物的实际需求和运行情况,自动调整冷水机组的运行模式、机组数量和冷却水温度等参数,以实现最佳的节能效果和制冷效果。
2. 功能分区控制:根据建筑物的不同功能分区(如会议室、办公区、餐厅等),可以将冷水机组群控系统划分为多个独立的控制区域。
每个控制区域可根据自身需求独立调整运行模式,以满足不同区域的舒适度要求和节能要求。
3. 负荷平衡控制:冷水机组群控系统可以监控每个冷水机组的负荷情况,并根据负荷的变化自动调整机组的运行状态,以实现负荷平衡。
当某个冷水机组负荷过大时,系统可自动调整其他机组的运行状态,将负荷分摊到其他机组,以保证每个冷水机组都在最佳运行状态。
4. 故障监测和报警:冷水机组群控系统可以实时监测每个冷水机组的运行状态,并对故障进行监测和报警。
当某个冷水机组发生故障时,系统可自动切换至备用机组,以保证冷水供应的连续性和稳定性。
二、冷水机组群控系统的组成冷水机组群控系统主要由以下几个组成部分组成:1. 中央控制系统:负责整个冷水机组群控系统的运行管理和调度控制。
中央控制系统通常采用计算机或工控机作为控制主机,并通过PLC或DCS控制器与各个冷水机组进行通信。
2. 冷水机组:冷水机组是冷水机组群控系统的核心设备,负责制冷和冷却水的供应。
冷水机组通常由压缩机、冷凝器、蒸发器、循环泵等组成,并通过传感器监测运行状态和环境参数。
3. 传感器与执行器:传感器负责监测冷水机组和建筑物的运行状态和环境参数,如温度、湿度、压力等。
冷水机组群控系统方案
冷水机组群控系统方案随着现代工况需求的不断发展,冷水机组群控系统在各个领域的应用越来越广泛。
冷水机组群控系统是指将多个冷水机组通过一个中央控制器进行集中管理和控制的系统。
冷水机组群控系统方案首先需要考虑的是系统的硬件结构。
一般来说,系统包括多个冷水机组、中央控制器、传感器和执行器等四个主要硬件组成部分。
冷水机组是系统的核心设备,通过中央控制器实现对其运行状态的监测和控制。
传感器用于实时监测系统的温度、湿度、压力等关键参数,以及冷水机组的运行状态。
执行器用于根据中央控制器发送的指令,对冷水机组进行调节和控制。
冷水机组群控系统方案需要考虑的是软件控制系统。
软件控制系统主要包括监测、预警和控制三个功能模块。
监测模块通过传感器实时采集系统的各种参数,并将其传输到中央控制器进行处理。
预警模块通过对监测数据的分析和比对,发现系统异常情况并进行预警。
控制模块通过对冷水机组的控制器发送指令,实现对系统的自动控制和调节。
冷水机组群控系统方案中还需要考虑的一个重要问题是通信方式。
通信方式是冷水机组群控系统能否正常运行和稳定工作的关键因素之一。
常见的通信方式有有线通信和无线通信两种。
有线通信一般采用RS485通信协议,具有传输速率快、稳定可靠的特点。
无线通信一般采用无线网络或蓝牙通信技术,具有传输距离远、适用于复杂环境的特点。
根据实际需求,选择合适的通信方式对冷水机组群控系统的可靠性和稳定性都具有重要影响。
冷水机组群控系统方案需要考虑的是系统的监测和管理方式。
监测和管理方式主要包括本地监测和管理和远程监测和管理两种方式。
本地监测和管理方式一般通过中央控制器进行操作,可以实时查看冷水机组的运行状态和参数。
远程监测和管理方式一般通过互联网或远程控制终端进行操作,可以随时随地通过手机或电脑进行监测和管理。
冷水机组群控系统方案应该考虑系统的硬件结构、软件控制系统、通信方式以及监测和管理方式等关键因素。
只有在各个方面都做到科学合理,才能够实现冷水机组群控系统的高效运行和可靠性工作。
冷水机组群控系统方案
冷水机组群控系统方案冷水机组是制冷行业中比较常见的一种设备,其可广泛应用于制冷、空调、通风等领域。
在工业、商业以及家用建筑中,冷水机组都扮演着相当重要的角色,通过对空气进行冷却或加热,为建筑内的使用者提供一个更加舒适的生活环境。
此外,冷水机组也经常被应用到各大工厂、医院、商场等大型建筑的通风空调系统中。
为了更好的满足这些需要,现在的冷水机组越来越注重其自身的控制和管理,因此很多厂商都为其冷水机组搭载了各种控制系统,以便能更加准确地控制温度和湿度等相关参数,不断提升其能效和运行稳定性。
而冷水机组的群控系统,则是一种更加高端、更加智能化的冷水机组控制手段,能够通过网络将多个冷水机组连接起来,实现集中式管理,从而大大提升其整体运行效率和控制精度。
冷水机组群控系统的方案一般包含以下几个主要环节:1. 网络通讯模块:这是连接整个群控系统的关键。
并将多个冷水机组通过公共网络连接到同一控制中心,实现智能化集中控制。
2. 控制中心:通常由计算机组成,用于对冷水机组进行集中控制和监视。
该控制中心可实现对多个冷水机组的运行状态、能耗、故障等参数的实时监控和记录。
3. 控制软件:该软件是组成冷水机组群控系统的核心组成部分,可用于整合多个冷水机组的控制系统,并将其功能统一。
通常含有以下主要功能:(1)温度控制:通过计算机控制器对冷水机组的制冷量进行调整,以控制建筑内部的温度。
(2)湿度控制:将湿度传感器和控制器连接到冷水机组中,以精确控制室内的湿度水平。
(3)能耗管理:通过网络搜集每个冷水机组的能耗情况,及时发现能源浪费问题,并制订相应的管理措施。
(4)远程控制:通过公共网络实现对冷水机组的远程控制,确保其始终保持最佳的运行状态。
总之,冷水机组群控系统可以帮助建筑管理者实现更加智能、高效的空调控制,提高其全年工作效率,降低能源消耗和运行成本,并提升建筑内部的空气质量,为用户提供更加舒适的生活环境。
冷水机组群控策略
BAS系统中冷水机组群控策略摘要:本文分析与比较了几种可能的群控模式, 如回水温度控制法,流量控制法,热量控制法,流量/热量控制法,压差控制法,压差/流量控制法,与冷冻机数据接口相结合的群控法及几种特殊的控制方法1、 冷水机组群控的意义1.1 节能:–根据系统负荷的大小,开启相应的机组,从而节能,并节省运行费用。
–停开相应水泵,或降低水泵电机转速,从而达到节能的目的。
1.2 长寿命运转:积极群控,有助于延长机组寿命,提高设备利用效率。
1.3 设备保护:合理群控,使系统更舒适,避免过冷,更容易达到设计要求2、几种可能的群控模式分析2.1 回水温度控制法1) 回水温度控制法原理:通过测量空调系统中冷冻水系统回水的温度,根据其值的大小,从而决定开启冷水机组的台数,达到控制冷水机组台数的目的。
2) 回水温度控制法控制流程图13) 回水温度控制法的分析♦ 回水温度适应性较差,尤其温差小时,误差大,对节能不利。
♦ 可用于冷冻机的低温保护和报警。
♦ 但装置简单,价格便宜。
♦ 判据不明确。
2.2 流量控制法1) 流量控制法控制原理:通过测量冷冻水流量获得流量信号,然后再把此流量值与冷水机组的额定流量进行比较,从而实现对冷水机组的台数控制。
2) 有关流量控制法的分析: 流量控制的原理是基于这样三个假定♦ 负荷与流量成正比♦ 冷冻水供回水温差恒定♦ 在设计工况之下运行但实际上,这三个假定一个也不能成立,更不可能同时成立。
流量控制法虽能保证系统流量,避免冷水机组蒸发器结冰,但并不能很好的适应系统负荷的变化。
因为盘管的传热量和流量并不是线性关系。
实验和研究表明,冷冻水流量和建筑物热负荷之间呈对数关系。
这种关系伴随着冷冻水入口温度、盘管尺寸结构和盘管表面积和盘管表面接触的空气温度以及气流速度的不同而变化,所以它不仅是非线性的,还是一个随着多种因素变动的曲线。
不能反映负荷的变化,因而不能有效节能。
2.3 热量控制法1) 热量控制法控制原理:通过测量冷冻水供回水温度和供(回)水流量获得温差和流量信号,然后将两个信号依据热力学公式计算实际的需冷量,再把此冷量值与冷水机组的产冷量进行比较,从而实现对冷水机组的台数控制。
冷水机组群控策略
冷水机组群控策略新办公室空调系统冷冻站群控说明一.空调水系统监控设备与监控内容详细监控内容如下:1.冷水机组开启台数控制1)根据供回水总管的温差,或回水总管回水温度,对冷水机组进行群控。
冷水机组加载控制――常规运行模式下(夏季运行模式),默认开启水冷螺杆式冷水机组CH-1。
采用回水温度控制法对冷水机组进行加载控制。
根据供水总管上的温度传感器监测回水温度,根据供水温度的变化,当供水温度>9℃时,开启一台风冷热泵机组;继续监测回水温度,如30min后供水温度仍然>9℃时,开启两台风冷热泵机组。
冷水机组卸载控制――常规运行模式下(夏季运行模式),当水冷螺杆式冷水机组CH-1与两台风冷热泵机组CH-2,3同时开启时,采用供水温度控制及供回水总管温差控制对冷水机组进行卸载控制。
根据供、回水总管上的温度传感器监测供回水温度,根据二者的变化,当供水温度<7℃,且供回水温差<1℃时,卸载一台风冷热泵机组;继续监测供、回水温度,如30min后回水温度仍然<8℃,且供回水温差仍然<1℃时,卸载两台风冷热泵机组。
冬夏季模式转换为人工手动转换。
(注:冬夏季模式转换需能达到以下要求;①需设置权限,仅操作管理人员具有该权限;②需设置物理保护,以防止错误操作,如任一冷冻泵开启,即表明系统在供冷模式下运行,此时,即使手动进行冬夏季模式转换都不能实现。
) 2)冷水系统运行时间控制。
工作日情况下,早上7:50开启水冷螺杆式冷水机组CH-1,下午5:15,所有冷水机组停止运行,冷冻水泵延时15分钟停止。
低温冷水机组为手动控制。
●机组启动后通过彩色图形显示,显示不同的状态和报警,显示每个参数的值,通过鼠标任意修改设定值,以达到最佳的工况;●机组的每一点都有趋势显示图,报警显示;●设备发生故障时,自动切换;●程序控制冷冻水系统,目的是达到最低的能耗,最低的主机折旧;●根据程序或办公室的日程安排自动开关冷冻机组。
冷水机组群控系统方案
冷水机组群控系统方案冷水机组群控系统是指控制多台冷水机组同时运行、停止、调节参数和故障报警等功能的系统。
随着制冷技术的发展和应用需求的不断提高,冷水机组群控系统越来越受到工程设计和用户的重视。
本文将就冷水机组群控系统的方案进行详细的介绍,从系统组成、工作原理、控制策略、应用优势等方面进行论述。
一、系统组成冷水机组群控系统由主控制器、冷水机组控制器、监控显示器、传感器和执行器等部分组成。
主控制器负责整个系统的调度和协调,冷水机组控制器负责单台冷水机组的控制和运行,监控显示器用于实时显示系统运行状态,传感器和执行器用于检测和执行系统的各种操作。
二、工作原理三、控制策略冷水机组群控系统的控制策略一般包括负荷分配、轮换运行和故障自动切换等。
负荷分配是根据系统负荷需求,动态调整各个冷水机组的运行状态,保证系统在部分负荷和全负荷时的运行效果。
轮换运行是指在系统负荷需求较小时,通过轮换运行各个冷水机组,延长设备寿命和提高效能。
故障自动切换则是在某个冷水机组出现故障时,系统能够自动切换到其他正常运行的冷水机组,保证系统的连续运行。
四、应用优势冷水机组群控系统相比单台冷水机组的控制具有以下优势:1. 提高运行效率:通过对多台冷水机组的协同控制和轮换运行,提高了系统的运行效率,降低了能耗和运行成本。
2. 提高稳定性:系统可以根据系统的负荷需求和运行状态,动态调整各个冷水机组的运行状态,保证系统的稳定运行。
3. 提高可靠性:系统故障自动切换功能可以在某个冷水机组出现故障时,自动切换到其他正常运行的冷水机组,保证系统连续运行。
5. 减少维护成本:通过对冷水机组的协同控制和轮换运行,延长了各个设备的使用寿命,降低了设备的维护成本。
冷水机组群控系统在大型制冷系统中的应用前景广阔,可以提高能源利用率、减少运行成本、提高系统稳定性和可靠性,是制冷技术领域的一项重要技术创新。
通过不断改进和完善系统方案,将能够更好地满足用户的实际需求,推动制冷技术的发展和应用。
冷水机组群控系统方案
冷水机组群控系统方案随着现代化程度的不断提高,人们对于工厂、医院、大型商场等场所的空调需求越来越高。
为了满足这些需求,冷水机组已经成为空调系统的重要组成部分,在空调领域中得到了广泛应用。
冷水机组南北配合,实现热源与冷源的互换,调节室内的温度、湿度、洁净度及新鲜度,满足人们各种各样的需求。
在此背景下,群控系统方案的出现也变得日益重要。
1.工作原理群控系统方案是指将多台冷水机组打造成一个整体,通过集中控制的方式,实现对多个冷水机组的远程监测和控制。
具体来说,群控系统方案由一个中央控制器和多个从控制器组成,中央控制器作为群控系统的核心,负责群控系统的整体管理,从控制器则负责与各个冷水机组进行通信,实现对冷水机组的远程控制。
通过该群控系统,用户可以随时随地对多个冷水机组进行远程控制,大大提高了工作的效率和便利性。
2.系统组成群控系统方案主要由如下组成部分:(1)中央控制器:中央控制器是群控系统的核心,可以实现对所有从控制器进行管理和控制。
中央控制器可以通过局域网、互联网等方式接入到计算机或其他设备中,提供各种查询、监测和控制服务的功能。
(2)从控制器:从控制器是连接冷水机组和中央控制器之间的桥梁,可以实现对单个或多个冷水机组的远程监测和控制。
从控制器通过自己的独立网络与中央控制器进行通信。
(3)冷水机组:冷水机组是群控系统的最终执行对象,是实现空调需求的核心设备。
冷水机组包括冷却水泵、制冷机组、冷却塔、阀组等零部件,是将室外的冷热源与室内的风机盘管结合在一起的关键设备。
(4)传感器:传感器可以实现对空调系统的各种参数进行监测和反馈,例如温度、湿度、压力等。
传感器将这些参数的变化转化为电信号,传输到中央控制器中,帮助用户更精准地了解冷水机组的工作状态。
3.方案优点(1)集中管理:群控系统方案可以将多个冷水机组集中在一个中央控制器下管理,实现对冷水机组的一次性配置和控制,确保系统运行的标准化和统一性。
(2)远程控制:群控系统方案可以实现对冷水机组的远程监测和控制,用户不必亲自前往现场进行操作,大大提高了操作的便利性和效率。
试析ba系统在集中空调设备节能控制中的应用
DOI:10.16767/ki.10-1213/tu.2020.04.035试析B A系统在集中空调设备节能控制中的应用邢志响福建富源鸿大机电设备工程有限公司摘要:本文以福建工程学院图书馆冷水机组自控系统为 例,对B A系统在集中空调设备节能控制中的应用的相关问题进 行分析阐述,希望起到一定的借鉴与参考作用。
关键词:BA系统;集中空调设备;节能控制;应用1引言BA系统也可称为楼宇设备自控系统,是一种具有集中操 作、分散控制特点的综合监控系统,通过现代计算机技术的运 用,以确保建筑内机电设备始终处于高效、节能的运行状态。
2工程概况福建工程学院图书馆冷水机组自控系统应用工程共计3985Kw的总冷负荷需求。
空调冷源主机系统采用2台离心式水 冷冷水机组,单机制冷量为1750kW,总制冷量为3500kW,辅机 设备包括冷冻水杲、冷却水泵、冷却塔风机等。
水系统示意图 见图1。
6S3里4琪■ ^n-----------------------------------------------------------r冷*触■冷木机《 J—A图1中央空调工程水系统示意图在通讯要求方面,由于B A系统主要通过读取冷冻机组各项 参数以实现监测,为此必须建立通讯网络以实现B A系统和冷冻 机组控制器之间的协议转换与数据传递。
3 BA系统的施工技术措施3.1施工准备在福建工程学院图书馆冷水机组自控系统施工准备阶段,要注意做好设备的防碰撞、防淋雨和防强电磁工作。
在施工材 料领取后,特别要注意防爆件的质量检査与各类材料的整理摆 放工作,这是由于材料种类繁多,且小型件居多,容易混乱或 遗失。
3.2施工流程施工流程,依次是电管预留预埋,设备开箱、检验、材料检 验,DDC控制器箱体及辅控箱安装,传感器安装,现场控制屏至 各DDC控制器的保护管敷设,缆线敷设,校接线,终端机房设备 安装接线,各DDC系统调试,联调,系统集成调试。
3.3线缆敷设考虑到福建T程学院图书馆冷水机组自控系统工程端子连 接较多,为此布线时要使用绝缘性能好的尼龙扎带绑扎,以此防 止因线乱而产生电容效应,出现误信号。
BA群控原理
BA群控控制方式:(1) 一次泵及冷水机组1) 冷冻水系统一次泵回路中各设备及附件的启停应进行电气联锁,系统启动时电动水阀、冷却水泵、冷却塔风机与供水阀应先于冷水机组启动。
系统停车时,上述顺序相反,水冷离心式冷冻机组的冷却水系统应按厂家要求延长运行一段时间。
(具体延长的时间由离心式冷冻机组提供);2) 一次泵、每组冷却塔与制冷机组一一对应设置,即启动一台制冷机组,相应的一台冷却水泵、一组冷却塔、一台冷冻水一次泵均启动。
3) 一次泵与制冷机组投入与退出采用流量盈亏控制,即通过集水器与分水器之间的双向流量计来控制,当旁通管盈余流量超过单台水泵流量(单台水泵的流量由厂家提供)的110%时,停一组制冷机、一次水泵、冷却泵和一组冷却塔;4) 制冷机正常启动顺序(停机顺序相反):先开离心式冷冻机组,后开水冷螺杆式冷冻机组,同类机组按运行时数控制开停,运行时数少的机组优先投运。
允许人为指定开停任一台制冷机;5) 一次泵与备用泵之间的切换:故障切换优先,均无故障时,按水泵的运行时数控制开停,运行时数少的水泵优先投运。
(2) 空调用冷却水系统的控制要求1) 冷却水泵、冷却塔应与冷水机组同步运行,开启顺序见冷水机组的控制要求;2) 冷却水泵应先于冷却塔的风机运行;3) 冷却水的出水温度(进入冷水机组的水温)小于18℃时,关闭冷却塔风机。
(3) 冷却塔补水泵冷却塔补水泵采用定压变频方式(由设备厂家提供),BA系统只监不控;(4) 一次泵及热交换器1) 一次泵、出水阀与换热器一一对应设置,即启动一台换热器,相应的换热器出水阀、空调热水一次泵均启动。
各备用泵的切换按运行时数少的泵的优先投运;2) 空调热水一次泵与换热器投入与退出采用流量盈亏控制,即通过集水器与分水器之间的双向流量计来控制,当旁通管盈余流量超过单台水泵流量(单台水泵的流量由厂家提供)的110%时,停一组换热器、空调热水一次水泵;3) 空调热水一次泵与备用泵之间的切换:故障切换优先,均无故障时,按水泵的运行时数控制开停,运行时数少的水泵优先投运。
冷水机组群控的策略
1、冷水机组的选型冷水机组在暖通系统中占有很重要的地位,冷水机组的选择不仅对工程设计来说至关重要,而且对系统的投资和后续的运行都会有影响。
常见的冷水机组有水冷机组和风冷机组,具体如何选择,需要结合药厂所在地的气候条件来决定。
一般来讲,水冷机的能效比(COP)要比风冷机高,其原因为:空气湿球温度低于干球温度,水冷机冷却水温度对应的是湿球温度而风冷机冷却温度对应的是干球温度,在相同的制冷能力和相同的外界环境条件下,水冷机的冷凝饱和温度小于风冷机冷凝饱和温度,温度低对应的压力低,压力低做功就少,所以水冷机的COP要高于风冷机。
风冷机组是一种室外机器,可放置在建筑物的屋顶或室外地面上,其冷冻水循环泵也可与机组放置在一起,无需占用机房。
对水冷机组而言,应提供机房,以保证设备(包括冷水机组、冷冻水循环泵以及冷却水循环泵)的正常运行和使用寿命,并在建筑物的屋顶或室外地面上设置冷却塔设备。
所以水冷机组的造价要高于风冷机组,综合来看,在我国长三角地区两者的综合成本相差不大。
药厂的冷负荷不仅来源于暖通系统,还涉及到工艺设备也需要冷量,因此药厂通常还会配置离心机。
为了避免冷水机组的故障造成整体冷量的不足,建议冷水机组配置的台数不少于3台。
另外,考虑到冷水机组在冬季会有低负荷的运行,建议再配置一台较小的磁悬浮冷水机组。
2、磁悬浮与普通离心机的对比磁悬浮冷水机会利用磁力使得转子处于悬浮状态,因此它具有无摩擦、低噪声、无油运行的特点,所以相对一般的冷机,在制备相同冷水量的情况下,它的耗电量更低,也就是具备更高的性能系数(即拥有更高的COP)。
表1 磁悬浮离心机与普通离心机的比较此外,磁悬浮冷水机还拥有很高的IPLV(综合部分负荷能效值),绝大多数时间都不是满负荷运行,这个指标有非常高的实际价值。
表1中对磁悬浮离心机与普通离心机的一些具体参数进行了比较,图1展示了三种类型冷水机组的COP变化。
图1 三种类型冷水机组的COP比较3冷水机组群控的策略在进行系统群控设计时,设定的目标是让COP最大化,即让获得的总冷量与总耗电量的比值达到最大(如图2所示)。
冷水机组群控系统方案
冷水机组群控系统方案冷水机组群控系统方案是一种智能化的控制系统方案,旨在对冷水机组进行集中监控和控制,提高系统的运行效率和能耗管理能力。
该方案通过自动化控制,实现对多台冷水机组的集中管理,包括温度设定、运行模式选择、能源消耗监测等功能。
以下是一个详细的冷水机组群控系统方案。
一、系统架构冷水机组群控系统由服务器、监控主机和冷水机组组成。
服务器作为系统的核心,负责数据的采集、处理和存储;监控主机用于人机交互,提供操作界面;冷水机组通过传感器与监控主机连接,实现控制指令的传输和数据的反馈。
二、功能模块1. 数据采集模块:通过传感器实时采集冷水机组各项参数数据,包括进出水温度、冷却水流量、电源电压等。
2. 数据处理模块:对采集到的数据进行处理,筛选异常值,并将有效数据上传至服务器进行存储。
3. 运行控制模块:根据系统设定的运行逻辑和策略,自动控制冷水机组的开关机、模式选择、温度设定等。
4. 告警管理模块:监控系统的运行状态,一旦发现异常情况,如机组故障、温度超标等,及时发出告警信息,并采取相应的应急措施。
5. 数据分析模块:对历史数据进行分析和统计,生成报表和趋势图,用于评估冷水机组的运行状态和能耗情况。
6. 远程监控模块:通过互联网或局域网,实现对冷水机组的远程监控和控制,方便用户进行实时查看和操作。
三、系统优势1. 实时性:系统采用实时数据采集和处理,能够及时反馈冷水机组的各项参数和运行状态。
2. 高效性:通过自动化控制,减少了人工干预,降低了运行成本,提高了系统的运行效率。
3. 可视化:系统提供直观的界面展示,用户可以清晰地查看冷水机组的运行情况和能耗情况。
4. 可拓展性:系统可根据实际需求进行功能模块的添加和调整,满足不同规模和复杂度的应用场景。
5. 灵活性:系统支持远程监控和控制,用户可以随时随地对冷水机组进行操作和管理。
四、系统应用冷水机组群控系统适用于大型商业建筑、医院、工业厂房等场所,特别是需要同时运行多台冷水机组的场合。
制冷机房群控BA系统
唯进步 不止步
顿汉布什 享誉世界的空调专家 Dunham-Bush, Your Comfort Specialist!
中央空调的三代控制系统
Dunham-Bush Since 1894
第一代
唯进步 不止步
第二代
第三代
基于多变量关联、按需主动控制, 高效节能、稳定可靠
分散自动化:基于简单独立控制的集中群控
如何解决中央空调系统的疑难杂症
Dunham-Bush Since 1894
中央空调系统特性
运行管理普遍现状
运行不善导致后果
气象多变 系统复杂 设备多样 管道隐蔽
人员不专业 操作无规程 运行不调节 使用不维护
运行费用高 空调效果差 事故故障多 使用寿命短
答案:合理的空调系统+优秀的智能节能控制系统!!!
中央空调系统主要耗能设备
唯进步 不止步
Dunham-Bush Since 1894
耗能约占59%
耗能约占17% 耗能约占3%
耗能约占19%
顿汉布什 享誉世界的空调专家 Dunham-Bush, Your Comfort Specialist!
需要改善的中央空调机房
冷冻机房综合能效EER
杰出
优良 可以
效率尚可的中央空调机房
冷冻机房综合能效EER
杰出
优良 可以
Dunham-Bush Since 1894
需要改善
11.7 8.8 7.0 5.9 5.0 4.4 3.9 3.5 3.2 2.9
手动定期测量报告 部分优化回路 计划保养
传统的反馈控制 设备选型合适 设备效率中等 部分设备变频
综合能效EER:3.5-5.0
Dunham-Bush Since 1894
冷水机组群控系统方案
冷水机组群控系统方案随着工业自动化程度的不断提高,机组设备的控制系统也在不断完善和更新。
冷水机组群控系统是一种集中管理和控制多台冷水机组的系统,通过该系统可以实现对冷水机组群的集中监控和自动化控制,提高了冷水机组的运行效率和管理水平。
本文将围绕冷水机组群控系统方案进行详细介绍。
一、系统架构冷水机组群控系统的架构通常包括监控层、控制层和执行层三个主要部分。
1.监控层监控层是冷水机组群控系统的上层管理部分,主要负责实时监测冷水机组的运行状态和参数,并对其进行集中化管理。
监控层一般包括监控主机、监控软件、人机界面等组成部分,通过这些设备可以实现对冷水机组群的远程实时监控和参数设置。
2.控制层控制层是冷水机组群控系统的中间层,主要负责决策和控制冷水机组的运行状态。
控制层通过接收来自监控层的实时数据,并进行数据处理和分析,然后下发控制命令给执行层,对冷水机组进行自动调节和控制。
3.执行层执行层是冷水机组群控系统的底层执行部分,主要由冷水机组和其相关设备组成。
执行层接收来自控制层的控制命令,并执行相应的动作,包括启停、调节、换热模式切换等操作。
二、功能特点冷水机组群控系统具有以下几个显著的功能特点:1.集中管理3.远程监控冷水机组群控系统支持远程监控功能,可以通过互联网等方式实现对冷水机组的远程实时监控和管理,方便了设备的远程管理和维护。
4.故障诊断冷水机组群控系统支持故障诊断功能,可以对冷水机组进行故障诊断和预测,提前预警,减少了设备的故障停机时间。
5.节能环保冷水机组群控系统可以实现对冷水机组的智能调度和节能控制,通过对冷水机组的运行参数进行优化调整,降低了能耗,达到了节能环保的目的。
三、系统优势冷水机组群控系统在实际应用中具有明显的优势和价值:1. 提高了设备的管理水平和运行效率,降低了人工干预的频率,减少了人力成本。
2. 降低了设备的运行成本,通过节能控制和优化调度,降低了设备的耗能。
3. 提高了设备的稳定性和可靠性,通过自动控制和故障诊断,减少了设备的故障停机时间。
中央空调冷水机组群控系统策略探讨
中央空调制冷机房是能耗大户,制冷机房主要的能耗来自于制冷机组、冷冻水泵、冷却塔、冷却水泵,其中冷水机组占据了其中的50%到60%,冷水泵加上冷却水泵的配送约占25%到30%左右,合理的冷水机组群控策略对于中央空调冷冻机房系统的运行有着积极的意义。
下面是深圳邦德瑞厂家的小编带来的中央空调冷水机组群控系统策略探讨。
节能根据系统负荷的大小,优化控制相应的机组,从而节能,并节省运行费用,节能20-30%。
优化启停相应水泵,或调节水泵电机转速,从而达到节能的目的。
延长设备使用寿命通过合理的自动控制,优化设备,有助于延长机组寿命,提高设备利用效率。
设备保护合理的控制策略,实现设备故障自动切换,系统运行更稳定可靠。
冷水机组系统的设计和控制意义影响深远,我们从自控控制角度来探讨几种控制策略,理论结合实践,在项目实施过程中选择合适的控制策略,达到最优的控制效果。
一、回水温度控制策略回水温度控制逻辑:通过测量空调系统中冷冻水系统回水的温度,根据其值与设定值比较来判断增减冷冻机的启停,实现冷水机组台数控制。
回水温度控制优缺点:1.回水温度适应性较差,尤其温差小时,误差大,对节能不利。
2.可用于冷冻机的低温保护和报警。
3.回水温度控制系统简单,容易实施二、热量控制策略热量控制逻辑:通过测量冷冻水供回水温度和供(回)水流量获得温差和流量信号,依据热力学公式计算当前需冷量,与当前冷水机组的额定冷量做判断,根据当前需求来增减冷冻机的启停,实现冷水机组的台数控制。
有关热量控制控制优缺点:1. 较好的调节系统负荷,节能效果较好。
2. 无法保证机组最低流量,避免冷水机组蒸发器结冰。
三、流量/热量控制策略流量/热量控制策略:同时考虑流量与热量因素,综合判断机组的台数控制。
冷冻机加机判断:1、系统负荷需求超过当前机组额定冷量2、系统流量需求超过当前机组额定流量3、以上二条判据任意一条成立,既有效,为充分条件。
冷冻机减机判断:系统当前需求负荷可以由当前运行机组N-1台满足时,并且机组运行在高效区四.回水温度/供回水温差控制策略回水温度/供回水温差控制策略:测量空调系统中冷冻水系统回水的温度,冷冻水的供回水温差,调节水泵流量控制温差恒定,根据回水温度值与设定值比较来判断增减冷冻机的启停,实现冷水机组台数控制。
冷水机组群控系统方案
冷水机组群控系统方案冷水机组群控系统是指通过一台主控制器对多台冷水机组进行集中控制与管理的系统。
它能够实现对冷水机组的启停控制、温度设定、运行模式选择等功能,以提高冷水机组的运行效率和能源利用率。
1. 硬件设备:冷水机组群控系统需要使用主控制器、监测仪表、温度传感器、电动阀等硬件设备。
主控制器负责接收和处理来自冷水机组的信号,并发送控制指令;监测仪表用于实时监测冷水机组的运行状态和性能参数;温度传感器用于测量冷水机组的进出水温度,以及环境温度;电动阀用于控制冷水机组的供水和回水。
2. 软件系统:冷水机组群控系统需要一个完善的软件系统来支持其运行。
软件系统应具备以下功能:实时监测和记录冷水机组的运行数据;提供故障诊断和报警功能,及时发现和处理冷水机组的故障;根据实时需求调整冷水机组的运行模式和参数;实现冷水机组的远程监控和控制。
3. 网络通信:冷水机组群控系统需要通过网络与冷水机组进行通信。
可以采用有线网络或者无线网络进行通信,确保冷水机组与主控制器之间的数据传输稳定和可靠。
冷水机组群控系统也可以通过网络与人机界面进行通信,方便用户对冷水机组进行监控和操作。
4. 数据管理:冷水机组群控系统需要对冷水机组的运行数据进行管理和分析。
可以将运行数据存储在数据库中,并使用数据分析工具进行数据处理,以实现对冷水机组运行情况的评估和改进。
冷水机组群控系统的优势主要体现在以下几个方面:1. 能耗优化:通过对多台冷水机组的集中控制和管理,可以实现冷水机组的联动运行,避免重复启停和低负载运行,从而提高能源利用率,降低能耗。
2. 运行稳定性:冷水机组群控系统能够实时监测和记录冷水机组的运行数据,及时发现和处理故障,并提供报警功能,保证了冷水机组的稳定运行。
3. 远程监控:冷水机组群控系统支持远程监控和控制,可以实时了解冷水机组的运行情况,减少人工巡检的工作量,提高管理效率。
冷水机组群控系统方案能够有效提升冷水机组的运行效率和能源利用率,实现对冷水机组的集中控制和管理,为用户提供更加便捷、高效的使用体验。
楼宇自控系统(BA)一冷热源监控
楼宇自控系统(BA)一冷热源监控楼宇自动化系统或建筑设备自动化系统(BAS系统)是将建筑物或建筑群内的电力、照明、空调、给排水等管理设备或系统,以集中监视、控制和管理为目的而构成的综合系统。
BAS通过对建筑(群)的各种设备实施综合自动化监控与管理,为业主和用户提供安全、舒适、便捷高效的工作与生活环境,并使整个系统和其中的各种设备处在最佳的工作状态,从而保证系统运行的经济性和管理的现代化、信息化和智能化。
因此,采用BAS系统可以大量的节省医院人力、能源、降低设备故障率、提高设备运行效率、延长设备使用寿命、减少维护及营运成本,提高建筑物总体运作管理水平。
需求分析采用楼宇自动化控制系统对大楼的主要建筑机电设备进行集中监视和控制,以实现节能和降低运行成本为目标,保证大楼空气质量和环境舒适度,同时,提高物业管理人员的工作效率,保证设备的正常运转和日常保养,最终达到舒适、高效、节能的目标。
该项目BAS系统主要包括以下主要内容:空调冷热源系统包括对冷冻站及热源系统的运行工况进行监视、控制、测量与记录。
空调机组及通风系统包括空调机组、新风机组、送排风机。
通过楼宇自动化控制系统保证室内的空气温湿度、环境质量等参数在一定控制范围内,同时程序化机组启停,实现舒适、节能的目标。
给排水系统包括对生活水系统、排水系统、集水井高低液位监测,相关水泵运行监视和联动控制。
变配电系统通过接口方式读取主要电力参数,监视电力配电情况,记录和分析不同时段电力负荷,提交能源管理系统和集成管理系统。
照明控制监视主要照明回路的手/自动状态和开关状态的记录,控制以及联动控制部分照明回路。
电梯系统通过接口方式监视电梯的运行数据与其它系统的数据交换和通信一方面通过通讯接口实现与冷热源系统、智能照明系统、变配电系统、电梯系统的数据通讯,另一方通过建筑设备控制与管理系统与大楼集成管理系统的集成,实现与消防集成管理系统数据通讯和联动控制功能。
系统结构楼宇自控系统结构本系统采用共享总线型网络拓扑结构,本系统管理层设置了1个中央监控中心、N个操作员终端、1个BCM-ETH/MSTP网络控制器,通过MS/TP现场控制总线,连接若干个DDC控制器。
浅析BA系统中冷水机组群控策略
浅析BA系统中冷水机组群控策略目前随着中央空调系统的广泛应用,系统节能已经成为最终用户所关注的焦点。
对于空调系统中能耗最大的冷水机组系统,它的高效节能成为空调系统节能的关键问题。
实现冷水机组节能高效稳定运行的一个非常有效的技术手段就是采用冷水机组群控。
冷水机组群控是利用自动控制技术对制冷站内部的相关设备〔冷水机组、水泵、冷却塔、阀门〕进展自动化的监控,使制冷站内的设备到达最高效率的运行状态。
1、冷水机组群控的目的〔1〕节能:根据系统负荷的大小,准确控制制冷机组的运行数量和每台制冷机组的运行工况,从而到达节能并降低运行费用的目的。
〔2〕延长机组使用寿命:通过机组轮换、故障保护、负荷调节等控制程序,确保冷水机组的平安,延长机组的使用寿命,提高设备利用效率。
〔3〕设备保护:合理群控,使系统更舒适,防止过冷,更容易到达设计要求。
2、几种常见的群控模式分析第一种:每30分钟把计算出的实际冷负荷与当前运行机组的额定冷量比拟,当实际冷负荷小于当前机组的额定总负荷一定量时,减少相应的机组运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组运行。
这种控制策略的采用其结果是可悲的,因为空调冷负荷的实测量不可能大于目前正在运行的冷机所提供的冷量。
打个比方:有一台电扇〔在常规的环境和标准的供电下,其出厂的标注是〕最大转速25转/秒,但你说在同样的环境、条件下,通过某种“科学〞手段实测出的转速是30转/秒,大于25转/秒。
这显然是不符的,有点本末倒置。
实际运行中发现,机组根本无法实现根据实际冷负荷调整冷水机组的台数控制。
例如,实际情况开启冷水机组的冷量负荷远不能满足空调末端需要,此时,冷冻水温由于制冷负荷的缺乏而水温升高,冷水机组出水温度超过设定值,冷水与盘管内空气的热交换效率不断下降,供回水温差减小,供水流量未发生变化,而计算出的冷负荷却减小。
这显然非真实所需的冷负荷。
实际运行中发现,分水器的水温达16℃℃,而冷却量计算的负荷却很小,不需增加冷水机组的台数。
冷机群控系统控制策略
冷机群控系统控制策略摘要:我国能源紧缺、能耗高,尤其空调能耗巨大,为了提高中央空调(冷机)的运行效率,方便操作、使用,提高空调能耗比,冷机群控系统越来越得到用户的重视和应用,不同的空调冷水系统对应有不同的群控策略,冷机群控作为独立的控制系统我们非常有必要做仔细的研究,从制冷原理和冷机工作原理以及围绕冷机运行的各个机电设备工作原理出发,从而实现对整个暖通空调系统冷源的全面自动控制、能源管理及分析系统,控制对象包括冷水机组、冷却塔、冷冻水泵、冷却水泵、过渡季板换、补水系统和各种相应的阀门等设备。
本文介绍了一次泵变流量空调水系统冷机群控系统设计方案,从中可以了解到建筑物中空调冷水系统配置了哪些机电设备,水路系统是怎么构建工作的。
论文介绍了冷机群控的定义、作用、特点、功能和控制对象。
详细分析了各类受控对象启动顺序,得出了针对不同受控设备科学的控制策略从而分析受控对象最佳的的节能手段。
并且对冷机群控系统调试做出基本分析,使冷机群控系统达到最佳运行效果。
关键词:冷机群控,能耗比,节能引言随着经济的快速发展与人民生活水平的不断提高,城市建设中现代化建筑的不断增多与新型建筑的蓬勃发展,使国家对能源有巨大的需求。
但我国目前能源储存有限、能源利用率较低,这就迫使我们要把节能问题提到一个重要的位置上来。
空调系统的出现为人们创造了舒适的空调环境,空调应用日益广泛,节能降耗成为空调系统设计的关键。
另外,目前我国大多数建筑的空调系统仍采用人工操作、维护、记录的方式进行监测、控制和管理。
随着计算机技术、信息技术和自控技术的高速发展,以及它们在暖通空调领域的广泛应用,利用自动化控制系统代替传统的仪器、仪表能够更有效的对空调系统进行科学、精确控制,在保证舒适性的同时提高空调系统的运行性能,节省运行能耗,以及降低运行管理费用和降低管理人员的劳动强度。
冷机群控系统的研究与设计对空调系统节能具有重要意义。
1.冷机群控系统的概念1、冷机群控系统定义依据建筑物的空调负荷需求,自动调节优化控制多台冷水机组及相关外围设备的运行[1]。
冷机群控控制逻辑说明
关于联想的网络调研方案●调研目标:1.了解现在笔记本电脑市场的情况,从而明白联想笔记本电脑在笔记本电脑市场的地位。
2.了解了消费者购买笔记本电脑的基本渠道以及方式、地点。
3.了解了消费者选择笔记本电脑的重点,给下一步公司制造新型笔记本电脑分类指明了道路。
●调研方法:在线搜索法问卷调查法●调研内容:一、品牌关注比例格局分析品牌格局稳固华硕、联想、宏碁保持领先地位2011年9月,中国上网本市场品牌关注比例格局保持稳定,品牌排名与8月保持一致。
其中华硕以27.7%的关注比例领衔市场,位居亚军和季军的联想、宏碁人气较上月则均有提升,联想与华硕之间的差距缩小至一成以下。
第三梯队品牌关注比例变动甚小上网本市场第三梯队的品牌众多,变动频繁,但在本月都以平稳态势发展。
从ZDC数据统计来看,神舟的关注比例较上月小幅上涨,其余品牌人气则均有小幅下滑,但品牌关注比例变动幅度均在1.0%以内。
图)2011年9月中国上网本市场品牌关注比例分布(表)2011年8-9月中国上网本市场品牌关注比例对比图)2011年9月中国上网本市场产品关注排名(表) 2011年9月中国上网本市场最受用户关注的十四款产品及参数二、产品特征1、不同价位段产品分析入门级产品关注比例飙升至近二成9月,不同价位段上网本产品的关注比例格局发生明显变动,2000元以上产品人气急速下滑。
其中主流的2000-2999元产品关注比例降至76.2%,较8月下降了5.1个百分点,降幅达6.3%。
同时3000-3999元和4000元以上产品则分别吸引了4.4%和0.6%的用户目光,关注比例较8月下降了2.4%和0.9%。
1999元以下入门级产品则在本月关注比例迅速飙升至近二成,达到2011年以来的最高值18.8%,较8月提升了8.4%(图)2011年9月中国上网本市场不同价位段产品关注比例分布2、不同CPU产品分析Intel Atom N455处理器产品人气达全年峰值搭载不同处理器的上网本关注比例格局在本月也表现出了新面貌,Intel Atom N455产品人气继8月开始回升后,9月继续攀升至全年最高值,关注比例首度过半,涨幅达10.1%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析BA系统中冷水机组群控策略
目前随着中央空调系统的广泛应用,系统节能已经成为最终用户所关注的焦点。
对于空调系统中能耗最大的冷水机组系统,它的高效节能成为空调系统节能的关键问题。
实现冷水机组节能高效稳定运行的一个非常有效的技术手段就是采用冷水机组群控。
冷水机组群控是利用自动控制技术对制冷站内部的相关设备(冷水机组、水泵、冷却塔、阀门)进行自动化的监控,使制冷站内的设备达到最高效率的运行状态。
1、冷水机组群控的目的
(1)节能:根据系统负荷的大小,准确控制制冷机组的运行数量和每台制冷机组的运行工况,从而达到节能并降低运行费用的目的。
(2)延长机组使用寿命:通过机组轮换、故障保护、负荷调节等控制程序,确保冷水机组的安全,延长机组的使用寿命,提高设备利用效率。
(3)设备保护:合理群控,使系统更舒适,避免过冷,更容易达到设计要求。
2、几种常见的群控模式分析
第一种:每30分钟把计算出的实际冷负荷与当前运行机组的额定冷量比较,当实际冷负荷小于当前机组的额定总负荷一定量时,减少相应的机组运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组运行。
这种控制策略的采用其结果是可悲的,因为空调冷负荷的实测量不可能大于目前正在运行的冷机所提供的冷
量。
打个比方:有一台电扇(在常规的环境和标准的供电下,其出厂的标注是)最大转速25转/秒,但你说在同样的环境、条件下,通过某种“科学”手段实测出的转速是30转/秒,大于25转/秒。
这显然是不符的,有点本末倒置。
实际运行中发现,机组根本无法实现根据实际冷负荷调整冷水机组的台数控制。
例如,实际情况开启冷水机组的冷量负荷远不能满足空调末端需要,此时,冷冻水温由于制冷负荷的不足而水温升高,冷水机组出水温度超过设定值,冷水与盘管内空气的热交换效率不断下降,供回水温差减小,供水流量未发生变化,而计算出的冷负荷却减小。
这显然非真实所需的冷负荷。
实际运行中发现,分水器的水温达16℃,集水器的水温为16.3℃,而冷却量计算的负荷却很小,不需增加冷水机组的台数。
第二种:测量每个环路进/回水温度差及水流量,计算各个环路之负荷。
当负荷大于一台机组的80%(可根据实际情况修改),则第二台机组运行。
以此类推。
我们假设有如下工况(这种情况也是常见的):由于冷却水回路冷却效果不佳,使这台冷机的制冷量被限制在70%的最大制冷量。
如果按这种控制策略,可能永远只能开一台冷机了。
这样看起来以上两种策略都不能作为冷机群控的控制策略,这是为什么呢?这是因为从冷冻水处实测的冷负荷应小于或近似等于运行冷机提供的冷量(如果忽略管路中的损耗),也即冷机的负荷。
换句话说,测冷负荷实际上只是测知了目前运行冷机的负荷。
如果只知道目前冷机的负荷又怎么能判断冷机应该加载还是卸载呢?这正是
以上控制策略难以实用的原因。
那么,合理的冷机群控策略是什么
呢?这里需要引入测量冷冻水供水或回水温度这个判断依据。
因为多数冷机生产厂商其冷机负荷(制冷量)的控制是根据冷冻水的供水或回水温度。
当供水或回水温度大于(远离)本机设定温度时,其冷机压缩机做功就加大,使冷机负荷(制冷量)增大,直至100%。
当供水或回水温度降低接近于本机设定温度时,其冷机压缩机做功就维持不变,使冷机负荷(制冷量)不变。
当供水或回水温度小于本机设定温度时,其冷机压缩机做功就减小,使冷机负荷(制冷量)减小。
所以有一种冷机群控策略说明如下:
✧判断冷机是否要加载时,应根据冷冻水总管的供水或回水温度。
A.当供水或回水温度接近或等于设定温度时,冷机不应加载。
而该设定温度应等于单台冷机的本体控制设定值(温度),并且参与群控的所有冷机的本体控制设定温度应该一致。
B.当供水或回水温度远离(高于)设定温度时,冷机应加载。
当然还应受其它一些条件的约束,如:加载延时判断时间,冷源系统运行时间段,是否有待命的可加载冷机等。
✧判断冷机是否要卸载时,应根据冷冻水总管的供水或回水温度及
目前冷机的负荷。
A.当供水或回水温度远离(高于)设定温度时,冷机不应卸载。
B.当供水或回水温度低于或接近于设定温度时,表明已运行的冷机已提供了足够的冷量来满足建筑物的需求。
但能否卸载一台冷机还必须检查当前冷机的负荷(制冷量)。
例如:有3台1000冷吨的冷机运行的负荷都是70%,那么,即使冷冻水供水或回水温度已接近于
设定温度,但仍不能卸载。
因为如果只运行2台冷机,其最大的制冷量只有2000冷吨。
如果这3台冷机的运行负荷都是65%,那么就可以卸载一台冷机。
以上控制策略中是测量供水温度还是回水温度应跟随单台冷机的本体控制逻辑。
如冷机本体的控制逻辑是比较冷冻水的供水温度与设定温度来控制压缩机的做功,那么冷机群控策略中应根据冷冻水总管的供水温度;反之,应根据冷冻水总管的回水温度。
以上讨论的这种冷机群控策略仅是可行的,但是否是节能的,还需考察COP值。
空调暖通设计单位根据建筑物当地的常用负荷段来对冷水机组选型。
如某个地区的某个建筑80%满负荷运行时段是大多数的情况,那么冷机的选型应使在80%满负荷运行时的COP值最大。
这样的话,就可能出现开5台运行在80%负荷的冷机比开4台运行在100%负荷的冷机更节能的情况。
这就会造成在已满足建筑物冷量需求的情况下还需加载冷机,整个冷机群控的策略将会变得更加复杂。
幸运的是有些冷机生产厂商其冷机性能在75%~100%负荷时的COP值是相差不大的(在同样的冷却条件下),这就不必考虑不同负荷段的节能效果了。
合理的冷机群控策略可能有多种,但必须经得起实践的检验,本文中提出的根据冷冻水温度及冷机负荷来进行群控的策略是科学的,已在多个工程中得以应用效果非常理想。