二次函数复习学案
二次函数复习学案
课题:二次函数总编号:NO.20课型:复习课授课人:王德文单位:山东省高密市银鹰文昌中学一、复习要点(1)能结合实例说出二次函数的意义。
(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。
(3)掌握二次函数的平移规律。
(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。
(5)会用待定系数法灵活求出二次函数关系式。
(6)熟悉二次函数与一元二次方程及方程组的关系。
(7)会用二次函数的有关知识解决实际生活中的问题。
二、需要注意的问题在学习二次函数时,要注重数形结合的思想方法。
在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。
三、课前自我构建:完成以下复习内容:1、二次函数的定义:_____________________________________2、二次函数的图象与性质:二次函数的图象是一条__________。
以下从它们的顶点,对称轴、开口方向,增减性及最值方面记住各自的性质:(1)二次函数y=ax2的性质:顶点坐标为__________(2)二次函数y=a(x-h)2+k的性质:顶点坐标为__________(3)二次函数y=ax2+bx+c的性质:顶点坐标为__________3.对于二次函数y=a(x-x1)(x-x2),它的图象的对称轴是___________,其中的x1 x2表示的意义是______________________________________。
4.对于二次函数y=ax2+bx+c的符号问题:a的符号看_____________;c的符号看________________;b的符号看________________,b2-4ac的符号看_________________________;a+b+c看_____________________;a-b+c看_____________________________。
二次函数中考复习专题教案
二次函数中考复习专题教案第一章:二次函数的基本概念1.1 二次函数的定义解释二次函数的一般形式:y = ax^2 + bx + c强调a、b、c系数的含义和作用1.2 二次函数的图像介绍二次函数图像的特点:开口方向、顶点、对称轴、与y轴的交点等利用图形软件绘制几个典型二次函数的图像,让学生观察和分析1.3 二次函数的性质讨论二次函数的增减性、对称性、周期性等性质引导学生通过图像理解二次函数的性质第二章:二次函数的顶点式2.1 顶点式的定义解释顶点式:y = a(x h)^2 + k强调顶点(h, k)对二次函数图像的影响2.2 利用顶点式求解二次函数的图像和性质引导学生通过顶点式确定二次函数的图像和性质举例说明如何利用顶点式求解最值问题2.3 顶点式的应用讨论顶点式在实际问题中的应用,如抛物线运动、几何问题等给出几个实际问题,让学生运用顶点式解决第三章:二次函数的解析式3.1 解析式的定义解释二次函数的解析式:y = ax^2 + bx + c强调解析式与顶点式的关系3.2 利用解析式求解二次函数的图像和性质引导学生通过解析式确定二次函数的图像和性质举例说明如何利用解析式求解最值问题3.3 解析式的应用讨论解析式在实际问题中的应用,如物理、化学等领域的方程求解给出几个实际问题,让学生运用解析式解决第四章:二次函数的图像与性质4.1 图像与性质的关系讨论二次函数图像与性质之间的关系引导学生通过图像判断二次函数的性质4.2 开口方向与a的关系解释开口方向与a的关系:a > 0时开口向上,a < 0时开口向下举例说明如何通过开口方向判断二次函数的性质4.3 对称轴与顶点的关系解释对称轴与顶点的关系:对称轴为x = h举例说明如何通过对称轴判断二次函数的性质第五章:二次函数的实际应用5.1 实际应用的基本形式讨论二次函数在实际应用中的基本形式举例说明如何将实际问题转化为二次函数问题5.2 利用二次函数解决实际问题引导学生运用二次函数解决实际问题,如最值问题、优化问题等给出几个实际问题,让学生运用二次函数解决5.3 实际应用的拓展讨论二次函数在其他领域的应用,如经济学、生物学等引导学生思考如何将二次函数应用于解决其他实际问题第六章:二次函数的综合应用6.1 二次函数与线性函数的组合解释二次函数与线性函数组合的形式,如y = ax^2 + bx + c 与y = dx + e 的组合强调组合函数的图像和性质6.2 利用综合应用解决实际问题引导学生运用综合应用解决实际问题,如函数交点问题、不等式问题等给出几个实际问题,让学生运用综合应用解决6.3 综合应用的拓展讨论综合应用在其他领域的应用,如物理学、工程学等引导学生思考如何将综合应用应用于解决其他实际问题第七章:二次函数与不等式7.1 二次不等式的定义解释二次不等式的形式,如ax^2 + bx + c > 0强调解二次不等式的方法和步骤7.2 利用图像解决二次不等式问题引导学生通过图像解决二次不等式问题,如找出不等式的解集举例说明如何利用图像解决实际问题7.3 二次不等式的拓展讨论二次不等式在其他领域的应用,如经济学、工程学等引导学生思考如何将二次不等式应用于解决其他实际问题第八章:二次函数的最值问题8.1 二次函数最值的概念解释二次函数最值的概念,如最大值、最小值强调最值与对称轴、顶点的关系8.2 利用顶点式求解最值问题引导学生通过顶点式求解二次函数的最值问题举例说明如何利用顶点式求解实际问题中的最值8.3 最值问题的拓展讨论最值问题在其他领域的应用,如物理学、工程学等引导学生思考如何将最值问题应用于解决其他实际问题第九章:二次函数与几何问题9.1 二次函数与几何图形的关系解释二次函数与几何图形的关系,如圆、椭圆、抛物线等强调二次函数在几何问题中的应用9.2 利用二次函数解决几何问题引导学生运用二次函数解决几何问题,如求解三角形面积、距离问题等举例说明如何利用二次函数解决实际问题中的几何问题9.3 几何问题的拓展讨论几何问题在其他领域的应用,如物理学、工程学等引导学生思考如何将几何问题应用于解决其他实际问题第十章:二次函数的综合训练10.1 综合训练的目的强调综合训练的重要性,提高学生对二次函数知识的综合运用能力引导学生通过综合训练巩固所学知识10.2 综合训练的内容设计几个综合训练题目,包括不同类型的二次函数问题,如图像分析、性质判断、实际应用等让学生在规定时间内完成综合训练题目给予学生综合训练的反馈,指出错误和不足之处重点和难点解析1. 第一章中二次函数的基本概念:理解二次函数的一般形式和系数含义是学习二次函数的基础,对于图像的特点和性质的理解也是解决复杂问题的关键。
“二次函数”复习优秀教案
“二次函数”复习教学设计二次函数是函数问题中的主要内容,中考试题中年年考查,题型涵盖选择题、填空题、解答题,难度也是梯度上升到综合性难题,但其中有相当一部分的题都跟二次函数的图像与性质有关,故我们今天主要通过对二次函数性质与图像的结合,使大家掌握解决一些问题的技巧。
一、引入新课引入:同学们,今天老师将和大家一起来回顾二次函数的知识.(板书课题:二次函数的复习)二、基础交流,初步感知1.小组交流,初步感知已知二次函数y =x 2- x -2.1232(1)求抛物线开口方向,对称轴和顶点M 的坐标;(2)画出函数示意图;(3)x 为何值时,y 随x 的增大而减小,x 为何值时,y 有最大(小)值,这个最大(小)值是多少?(4)将抛物线先向左平移2个单位,再向下平移1个单位,求得到的新抛物线的函数表达式;(5)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标;(6)x 为何值时,y <0?x 为何值时,y >0?师:我们先交流一下前置任务单中的各小题,请交流各题的答案,用到的数学知识、方法及数学思想.学生活动、全班交流.师:我们在解决前置任务单中的小题时,不仅用到了二次函数的基本知识,还用到了“数形结合”的数学思想方法.(板书:数形结合)数形结合是一种非常重要的数学思想,接下来,我们将结合前置任务单中的题目谈谈它.2.师生互动,强化感知师:请一位同学说说第一题的解法. (展示答案)师:请一位同学说说你是怎么画这个图象的?(学生描述画图过程.)师:要画这个函数的图象,(点击进入函数图象)我们在平面直角坐标系中先画出这条对称轴,描出顶点.师:在对称轴的两边取两对对称点,用平滑的曲线将所描的点连起来,就得到了图象.师:从“形”上看,什么没有变?什么变了? (学生叙述形的变与不变)师:根据这些“形”的变与不变,你能得出新的抛物线的解析式吗?(生叙述,教师展示新抛物线的解析式)师:你是怎么得到的?(学生叙述得到抛物线解析式的过程.)师:(过渡语)通过数形结合,我们解决了抛物线的变换问题.当然,由变换所带来的其它问题我们也可以借助数形结合来解决,来完成(一)自学检测.如图,一次函数y =- x +2分别交y 轴、x 轴于A 、B 两点,抛物线y =-x2+bx +c 12过A 、B 两点. (1)求这个抛物线的解析式;(2)求抛物线与x 轴另一个交点的坐标;(2)交流(点击进入)师:请一位同学说说你的解题思路.学生交流解题思路和结果.(根据学生的交流,教师画图,写出结果)3.阶段小结,铺垫引入师:(小结)在前面的交流中,我们通过“形”的直觉发现了“数”的关系,再通过“数”的计算阐释了“形”的变换.这就是“数形结合”.数形结合思想,在确定二次函数视角下的平行四边形、三角形未知顶点时也有着广泛的应用.接下来的探究,将对此作出很好的诠释.(点击进入探究)三、问题深究,感悟提升1.形数互换,求取极值作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.请和你的同伴一起探究:师:从“形”上看,MN是直线x=t的一部分,我们能用含有t的式子表示MN吗?师:(对照图形和解题过程)我们从形中得出了数,这叫“以形助数”(板书),再通过数的计算得出了形的极值,这叫“以数解形”(板书).2.确定等腰三角形的第三个顶点师:AM为腰,在△ANM中,还有两条边AN和NM.这两条边中,哪条可以作为腰?学生作答师:显然,这里就涉及到初中数学中的一个重要的数学思想:分类讨论。
第18课时 二次函数(复习学案))
第18课时 二次函数一、 复习目标1、 识记二次函数的一般形式和顶点式,并能用待定系数法求它的解析式。
2、 掌握二次函数的图像和性质。
二、 重点、难点重点:⑴用待定系数法求二次函数的解析式;⑵用配方法求二次函数的最值。
难点:深入理解二次函数图像的特征。
三、 复习过程 ㈠知识梳理1、 二次函数的解析式⑴一般形式: 。
⑵顶点式: 。
2、 二次函数的图像与性质二次函数k h x a y +-=2)(的图像是 ,它的对称轴是直线 ,顶点坐标是 当0>a 时,抛物线开口 ,函数在=x 时,达到最 值 ;当0<a 时,抛物线开口 ,函数在=x 时,达到最 值 。
3、 二次函数与一元二次方程的联系 抛物线c bx ax y ++=2与x 轴是否有交点取决于一元二次方程02=++c bx ax是否有实数根。
⑴当ac b 42- 时,一元二次方程02=++c bx ax有两个不相等的实数根(21x x ≠),抛物线就与x 轴有两个不同的交点,其坐标是( )和( )。
反之亦然。
⑵当ac b 42- 时,一元二次方程02=++c bx ax有两个相等的实数根( 21x x = ),抛物线就与x 轴只有一个交点,其坐标是( ),这一点就是抛物线的顶点。
反之亦然。
⑶当ac b 42- 时,一元二次方程02=++c bx ax 没有实数根,抛物线就与x 轴没有交点。
反之亦然.㈡问题导学2、已知抛物线的顶点是(1,-4),且经过点(0,-3),则这条抛物线的解析式是 。
(第2题)3、抛物线322--=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 4、二次函数322-+-=x x y 的最大值是 。
5、将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位后得到的抛物线的解析式为 . ㈢合作探究例1 求满足下列条件的二次函数的解析式 ⑴图像经过A (-1,3)、B (1,3)、C (2,6)三点; ⑵图像经过A (-1,0)、B (3,0),函数有最大值8; ⑶图像顶点坐标是(-1,9),与x 轴两交点的距离是6.㈣达标检测1.抛物线()412--=x y 的顶点坐标是( )A .(1,4)B .(1.-4)C .(-1,4)D .(-1,-4)2、抛物线c bx x y ++-=2的部分图象如图所示,当0>y 时,x 的取值范围是( ) A .14<<-x B .4-<x 或1>x C .13<<-x D .3-<x 或1>x3、抛物线的对称轴是直线2=x ,与x 轴的两个交点的 距离是8,则这两个交点的坐标是 。
二次函数复习教案.doc
二次函数基础知识复习课(教案)一、复习目标1、理解二次函数的概念;2、会把二次函数的一般式转化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象。
3、会用平移二次函数“启(心o)图象得到二次函数y =心_ /疔+ £的图象,了解特殊到一般相互联系和转化的思想。
4、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与X轴的交点坐标和函数的最值。
二、复习重难点:二次函数的图象和特征;二次函数图象及其性质的应用。
三、复习过程:(1)重温二次函数的定义,判断二次函数的方法,并且加以训练。
1、若y =(加—是二次函数,则m二。
2、对于任意实数m,是二次函数。
Ay二(m-1) 2x2B> y二(m+1) x2、Cy= (m2+l) x2D^ y= (m2-l) x2、3、下列函数中,哪些是二次函数?是二次函数,说出它的二次项系数、一次项系数和常数项(1 ) y = S 厂—39 1(2)------------------------------------------- y = — " + 3x函数y = a x 2+ b x c (其中a>b、C为常数)当3、b、C满足什么条件时,(1)它是二次函数;当。
工0时,是二次函数;(2)它是一次函数;当d = o;/?HO 时,是一次函数;(3)它是正比例函数;当° = 0;方工0;(? = 0时,是正比例函数(2)通过几何画板演示,再次总结归纳二次函数各类图象的性质特征。
分别说出特殊的二次函数①y=ax2(2工0)(2)y=ax2 +c (aHO,c 丰 0)③y二a(x-h)2(2工0)④y=a(x-h)2+k (aHO)图象的开口方向、对称轴、顶点坐标、函数的增减性及最值。
(3)通过几何画板体会和理解二次函数图象之间的平移,增进对图形的理解,加以训练。
(4) 训练二次函数一般式转化为顶点式,计算二次函数的对称 轴,顶点坐标,以及与坐标轴的交点坐标。
二次函数复习学案(1)
二次函数复习学案(1)班级姓名等级【考点透视】1、理解二次函数的概念;2、会化二次函数的一般式为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3、会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(x-h)2+k的图象,了解特殊与一般相互联系和转化的思想;4、会用待定系数法求二次函数的解析式(一般式、顶点式、交点式);5、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和一元二次不等式之间的联系。
【知识梳理】1.二次函数的图象:在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质:我们通常从以下5个方面来理解二次函数的性质,并利用性质解决问题:1、开口方向:由a决定;2、顶点坐标( , );3、对称轴: ;4、极值: ;5函数增减性: 3.利用待定系数法确定二次函数解析式:(1)一般地,所给条件是抛物线上任意三点(或任意三对x,y•的值)•可设一般式为:y=ax2+bx+c,组成三元一次方程组来求解,这是通用的,也是最复杂的方法;(2)若已知顶点坐标或对称轴或最大值时,可设顶点式为:y=a(x-h)2+k,顶点是(h,k),这是简便方法;(3)若已知抛物线与x•轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴或已知一元二次方程ax2+bx+c=0的两个根,都可设交点式为:y=a(x-x1)(x-x2)来求解,简便方法.4.二次函数与一元二次方程的关系:抛物线y=ax2+bx+c,当y=0时转化为一元二次方程ax2+bx+c=0,即(1)当抛物线与x轴有两个交点时==>方程ax2+bx+c=0有两个不相等实根==>⊿ 0,反之,也成立;(2)当抛物线y=ax2+bx+c与x轴有一个交点==>方程ax2+bx+c=0有两个相等实根==>⊿ 0,反之,也成立;(3)当抛物线y=ax2+bx+c与x轴有交点==>•方程ax2+bx+c=0有实根==>⊿ 0,反之,也成立;(4)当抛物线y=ax2+bx+c与x轴无交点==>•方程ax2+bx+c=0无实根==>⊿ 0,反之,也成立;5.二次函数与一元二次不等式的关系:利用二次函数的图象可以解一元二次不等式:1、求一元二次方程ax2+bx+c=0的根;2、利用抛物线与x轴的交点和a 的取值画出二次函数y=ax 2+bx+c 的大致图象;2、结合函数图形解一元二次不等式。
人教版九年级数学上册第22章二次函数《复习课》导学案
人教版九年级数学上册第22章二次函数《复习课》导学案第二十二章复课1.知道二次函数的概念、图象和性质,能根据解析式判断抛物线的开口方向、对称轴、顶点坐标和函数的增减性.2.知道抛物线与对应的一元二次方程的关系,会用待定系数法求二次函数的解析式.3.能够运用二次函数解决一些实际问题,从中体会数学建模思想.4.重点:二次函数解析式的求法,二次函数的图象、性质和应用.◆体系构建◆核心梳理1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.2.二次函数y=ax2+bx+c(a≠0)与一元二次方程的关系:(1)当b2-4ac>时,抛物线与x轴有2个交点,对应的一元二次方程有两个不相等的实数解;(2)当b2-4ac=时,抛物线与x轴有1个交点,对应的一元二次方程有两个相等的实数解;(3)当b2-4ac<时,抛物线与x轴无交点,对应的一元二次方程无实数解.3.填表:特征函数启齿偏向对称轴极点坐标(0,0)(0,k)(h,0)(h,k)最值最小值最大值最小值k最大值k最小值最大值最小值k最大值k最小值y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k a>时启齿向上a<时开口向下a>时开口向上a<时启齿向下a>时启齿向上a<时启齿向下a>时开口向上a<时开口向下a>时启齿向上y轴y轴x=hx=hy=ax2+bx+ca<时开口向下x=-(-,)最大值专题一:二次函数的概念、图象和性质1.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c这四个代数式中,值为正数的有(B)A.4个B.3个C.2个D.1个2.二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象可能是(C)3.如图,已知二次函数y 1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-2,4),B(8,2),则能使y1>y2成立的x的取值范围是x<-2或x>8.【方法归纳交流】根据抛物线的开口方向判断a的正负;根据抛物线与y轴的交点判断c的值;若抛物线的对称轴在y 轴左侧,则a与b同号,若抛物线的对称轴在y轴右侧,则a与b异号;根据抛物线与x轴交点的个数判断b2-4ac的符号.专题二:求抛物线的顶点和对称轴4.求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标.(用两种方法)解:(1)y=(x2-8x+10)=[(x2-8x+16)-16+10]=(x-4)2-3,所以抛物线的开口向上,对称轴是x=4,顶点坐标是(4,-3).(2)对称轴:x=-=4,y最小==-3,顶点坐标为(4,-3).【方法归纳交流】求抛物线的顶点和对称轴一般有两种方法:配方法和公式法.专题三:抛物线的平移5.申明抛物线y=-3x2-6x+8通过如何的平移,可获得抛物线y=-3x2.解:配方:y=-3x2-6x+8=-3(x2+2x-)=-3[(x2+2x+1)-1-]=-3(x+1)2+11,∴抛物线的顶点坐标是(-1,11),∴把抛物线y=-3x2-6x+8先向右平移1个单位长度,再向下平移11个单位长度得到y=-3x2.6.如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把C(5,4)代入y=ax2-5ax+4a,得25a-25a+4a=4。
二次函数复习学案
《二次函数》复习学案设计教师:福永中学 林颖 2012.12班级____________姓名____________座号_____________复习目标:1、 理解二次函数的概念,会判断是否是二次函数;2、 熟知二次函数的图象与性质,并能利用图象和性质解决问题3、 熟练掌握二次函数平移、对称变化规律并利用规律解决问题。
知识梳理:1. 二次函数的概念二次函数:一般地,形如 ______ 的函数叫做x 的二次函数. 二次函数的特殊形式:当b =0,c =0时, y =ax²;当b =0时, y =ax²+c ;当c =0时, y =ax²+bx3. 二次函数图象的平移变化规律222()y ax y ax k y a x h k =⇔=+⇔=-+,口诀典例分析:例1、若函数22(2)my m x -=-为二次函数,则m 的值为 。
引例、如果把抛物线2(1)4y x =-++向右平移2个单位,向下平移3个单位,则得到抛物线对应的解析式为____________;若再把新抛物线关于x 轴对称后函数解析式是______________;例2 、如图已知点C (n,3)在抛物线2(1)4y x =-++上,抛物线与x 轴的交点为A 、B ,向右平移抛 物线,记平移后点C 的对应点为C ′,点B 的对应点为B ′,若四边形CC ′B′B 的面积为12,则平移后抛物线的表达式为__________________ 例3、如图,已知抛物线l 1:2)2(212--=x y 与x 轴分别交于O 、A 两点,将抛物线l 1向上平移得到l 2,过点A 作AB ⊥x 轴交抛物线l 2于点B ,如果由抛物线l 1、l 2、直线AB 及y 轴所围成的阴影部分的面积为16,则抛物线l 2的函数表达式为______________ 变式练习:1、如图,平行于y 轴直线l 被抛物线2112y x =+、2112y x =-所截.当直线l 向右平移3个单位时,直线l 被两条抛物线所截得的线段扫过的图形面积为_____平方单位.B ′例4、如图,设抛物线l 1:2(1)4y x =-++的顶点为P ,将抛物线沿x 轴对折后,再向左平移,使得抛物线l 2经过点A ,且与x 轴另一个交点为D ,顶点为P ′,求抛物线l 2的解析式_____________和四边形PDP ′B 的面积___________ 自我挑战:如图,已知抛物线C 1:y=a (x+2)2-5的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(2)如图(1),将抛物线C 1沿x 轴翻折后再向左平移得到抛物线C 2.若抛物线C 2过点B ,与x 轴的另一个交点为C ,顶点为M ,求C 2的解析式; (3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 3.抛物线C 3的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标?小结反思:1、 在应用二次函数的知识时,你容易出现哪些错漏?2、 本节课你学习到了哪些解决问题的方法?《二次函数》小测1、下列关系式中,属于二次函数的是(x 为自变量) ( )A 、2y ax bx c =++B 、y =、22(2)y x x =-- D 、218y x =2、抛物线23y x =,23y x =-,2133y x =+共有的性质是( )A.开口向上B.对称轴是y 轴C.都有最高点D.y 随x 值的增大而增大 3、二次函数y=(m +1)x22-m 的图象开口向下,则m=4、二次函数222y x x =-+-通过向 (左、右)平移 个单位,再向___________(上、下)平移 个单位,便可得到二次函数2y x =-的图象.;5、二次函数2162y x =--,当x=_____时,y 有最______值为______; 6、二次函数c bx x y ++=2的图象上有两点(3,-5)和(-1,-5),则此拋物线的对称轴是_______7、设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线2(1)y x a =-+-上的三点,则y 1,y 2,y 3的大小关系为_____________8、已知抛物线2y ax bx =+,当00a b ><,时,它的图象经过( )A.一、二、三象限B.一、二、四象限 C .一、三、四象限 D.一、二、三、四象限.C《二次函数》课后作业1、函数2241y x x =-+的对称轴是_______,顶点坐标为_________,函数有最____值是______。
九上数学期末复习二次函数期末复习学案
新人教九年级(上)数学期末复习学案第26章二次函数班级:座号:姓名:日期:月日考点解析:一、认识二次函数1、二次函数的常见解析式(1)(2) (3)(4)(5)2、抛物线的三要素:开口方向、对称轴、顶点.的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.对称轴:平行于轴(或重合)的直线记作.特别地,轴记作直线.顶点坐标:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.│a│越大,开口越小,图像两边越靠近y轴,│a│越小,开口越大,•图像两边越靠近x轴当时,,即抛物线的对称轴就是轴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.3、求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是( ),对称轴是直线(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为( , ),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.4、二次函数的图象及性质:二次函数的图象是一条对称轴平行y轴或者与y轴重合的抛物线.顶点为(-,),对称轴x=-;当a>0时,抛物线开口向上,图象有最低点,且x>-,y随x的增大而增大,x<-,y 随x的增大而减小;当a<0时,抛物线开口向下,图象有最高点,且x>-,y随x的增大而减小,x<-,y随x的增大而增大.当a>0时,当x=-时,函数有最小值;当a<0时,当x =-时,函数有最大值⑴增减性:以对称轴为界,具有双向性。
⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线.即:若、两点是抛物线上关于对称轴对称的两点,则有:①;②(即)练习题:1、抛物线y = - 2 ( x– 3 )2 – 7 对称轴x = , 顶点坐标为;2、抛物线y = 2x2 + 12x– 25的对称轴为x = , 顶点坐标为.3、若将二次函数y=x2-2x + 3配方为y =(x-h)2 + k的形式,则y=4、抛物线y= - 4(x+2)2+5的对称轴是。
二次函数复习教学设计
二次函数复习教学设计一、教材分析二次函数是每年必考的题型。
本部分包括了初中代数的重要数学思想和方法,复习时必须高度重视。
本节课通过对二次函数的图象与性质的复习,加深学生对函数知识的理解和应用。
二、复习目标1.知识目标会画二次函数的图象,能通过图象得出二次函数的性质;会求二次函数的最大值或最小值,并能确定相应自变量的值;知道二次函数系数与图象的关系。
2.技能目标理解数形结合的数学思想的应用,学会用数形结合的思想解决问题。
3.情感目标通过对数学问题的解决,培养学生的钻研精神,激发学生学习数学的兴趣。
三、教材处理针对初三复习时间紧、任务重的实际情况,我决定利用梳理知识点的复习方法展开复习,对常考的知识点进行归纳整理,让学生先掌握基础知识,再让学生构建二次函数的知识体系,然后通过一些应用性的题目提升学生的能力以提高学生运用知识分析问题、解决问题的能力。
四、学情分析二次函数部分在年前学习时由于时间比较紧,一部分同学对二次函数的性质掌握不是太好。
再者,函数是初中数学的难点,学生理解和学习起来有一定的难度,所以,基础比较差一些的学生学习起来还是有一些困难。
在复习时要针对学生的实际,先掌握基础知识,再让学生构建二次函数的知识体系,然后通过一些应用性的题目提升学生的能力。
第一轮复习一定要注重基础,要注重实效。
五、教法分析梳理知识、查漏补缺、讲练结合、归纳总结。
六、复习过程1、知识梳理(1)二次函数的概念;(2)二次函数的图象与性质;(3)二次函数解析式的确定;(4)二次函数的图象与a,b,c的关系。
设计意图:通过回顾、整理学过的二次函数的图像与性质,目的是让学生掌握基础知识,能用其解决要探究的问题。
2、考点突破(1)(2022·平凉校级二模)如果函数y=(m-2)x^m^2+m-4是二次函数,则m的值为().(2)已知点(-1,y1),(2,y2),(4,y3)都在二次函数y=ax2-2ax+3的图象上,当x=1时,y<3,则y1,y2,y3的大小为( )3、聚焦真题(1)(2014·省卷)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点( )(2)(2022·兰州)已知二次函数y=2x2-4x+5,当函数值y随x值的增大而增大时,x的取值范围是( )(3)(2019·兰州)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则y1与y2的大小( )(4)(2020·兰州)点A(-4,3),B(0,k)在二次函数y =-(x+2)2+h的图象上,则k=( )七、作业布置1、第一二组学生完成试题研究精讲本和精练本中二次函数图象与性质的练习题。
第26章 二次函数 复习学案
第26章 二次函数 复习学案一、复习目标:1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3、会根据公式确定图象的顶点、开口方向和对称轴,并能解决简单的实际问题;4、会利用二次函数的图象求一元二次方程的近似解。
二、本章知识结构框图三、知识点与方法 (一)二次函数的意义(1)二次函数的意义中包含的条件① ,② ,③ ,④ 。
【练习】 1、函数()322-+-=mx m y (m 为常数),试求: (1)当m 时,该函数为二次函数; (2)当m 时,该函数为一次函数。
2、下列函数中是二次函数的是( )A .y =x +12B .()21-=x yC .()221x x y -+=D .x x y -=213、有n 个人参加一次研讨会,每两个人握手一次,则握手次数y 与参加会议的人数n 之间的函数关系式为 ,它是 函数。
(二)平移规律(1)抛物线左右平移与 有关,规律是 ;上下平移与 有关,规律是 。
【练习】4、抛物线()4232+--=x y 的开口 ,对称轴是 ,顶点坐标是 。
当 时,有最 值为 。
它可有y=-3x 2向 平移 个单位,再向 平移 个单位得到。
5、若抛物线2x y =的图象不动,把x 轴向上平移3个单位,把y 轴向右平移2个单位,则抛物线在新坐标系中的解析式为( ) A 、B 、C 、D 、6、322-+=x x y 向右平移3个单位,再向上平移1个单位后的解析式为 。
(三)五点画函数图像(草图)(1)画抛物线的草图时,一般要描出五点,分别为 。
【练习】 7、画出322-+=x x y 的草图。
(四)求函数的解析式(1)用待定系数法求函数解析式的步骤为 。
(2)二次函数的一般形式为 ,顶点式为 。
【练习】8、已知二次函数y=ax 2-4x+c 的图像过点A 和点B (1) 求该二次函数的表达式。
二次函数复习学案
二次函数复习学案Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT二次函数复习学案寒亭实验中学韩芳清一、复习目标(心中有目标才会有方向)1、掌握二次函数的有关概念:二次函数的定义、二次函数的顶点坐标、二次函数的三种表达式、平移规律、各系数在二次函数的性质中起的作用等。
2、以数形结合的思想为基础把握二次函数的主要数学思想方法:(1)如何求顶点坐标及二次函数的最值;(2)如何求抛物线与坐标轴的交点坐标;(3)如何求二次函数的解析式.二、知识梳理(课前延伸)课前复习有关概念,上课时请同学们分小组回忆、总结本章的知识点,并回答下列问题:1.抛物线的平移规律。
2.如何求抛物线与两坐标轴的交点3.如何求一般式情况下的二次函数的最值4.若抛物线与X轴相交于A、B两点,则AB= 。
5.根据条件求二次函数的解析式(课前解决)(1)抛物线过(-1,-22),(0,-8),(2,8)三点;(2)抛物线过(-1,0),(3,0),(1,-5)三点;(3)二次函数的图象经过点(-1,0),(3,0),且最大值是3.三、小题大做 (小问题大道理,思考、探究是数学的灵魂)1.(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y2.(2009年桂林市、百色市)二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .233.(2009威海)二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,4.(2009年南宁市)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③ ④0a b c -+<,其中正确的个数有( ) A .1个B .2个C .3个D .4个5.抛物线)0(2≠++=a c bx ax y ,对称轴为直线x =2,且经过点P (3,0),则c b a ++的值为( )A 、-1B 、0C 、1D 、36.在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )7.若二次函数2223m m x mx y -+-=的图象经过原点,则m =_________; 8.抛物线1662--=x x y 与x 轴交点的坐标为_________; 9.已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m=________;10.(2009年本溪)如图所示,抛物线2y ax bx c=++(0a ≠)与x 轴的两个交点分别为(10)A -,和(20)B ,,当0y <时,x 的取值范围是 .四、生活实际链接 (学以致用)11.(2009*包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元五、课堂达标1.(2009湖北省荆门市)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )O x y O xy O xy O xy2.抛物线1232++-=x x y 与坐标轴交点的个数是( ) A .0个 B.一个 C.两个 D.三个3.若抛物线c bx ax y ++=2过(-2,6)和(6,6)两点,那么抛物线c bx ax y ++=2的图象的对称轴是直线( )A 、x =2 B 、x =-2 C 、x =-1 D 、x =14.若抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2); 求其解析式。
《二次函数复习》教案
《二次函数复习》教案教学目的:经过温习,使先生能熟习二次函数的几种基本表达式,会选用适宜的表达式解题;学会数形结合的数学思想;学会知识的迁移才干,会实际联络实践,处置实践效果。
六、教学进程:二次函数是初中代数的重要内容之一,也是历年中考的重点。
这局部知识命题方式比拟灵敏,既有填空题、选择题,又有解答题,而且常与方程、几何、三角等综合在一同,出如今压轴题之中。
因此,熟练掌握二次函数的相关知识,会灵敏运用普通式、顶点式、交点式求二次函数的解析式是处置综合运用题的基础和关键。
一、二次函数常用的几种解析式确实定普通式:顶点式:交点式:平移式:二、求二次函数解析式的思想方法1、求二次函数解析式的常用方法:待定系数法、配方法、数形结合等。
2、求二次函数解析式的常用思想:转化思想 : 解方程或方程组3、二次函数解析式的最终方式:无论采用哪一种解析式求解,最后结果最好化为普通式。
三、运用举例例1、二次函数的图像如下图,求其解析式。
针对练习:1、二次函数的图像过原点,当x=1时,y有最小值为-1,求其解析式。
2、二次函数与x 轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。
例2、将抛物线向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式。
针对练习:3、将二次函数的图像向右平移1个单位,再向上平移4个单位,求其解析式。
例3、:如图,是某一抛物线形拱形桥,拱桥底面宽度OB是12米,当水位是2米时,测得水面宽度AC是8米。
(1)求拱桥所在抛物线的解析式;(2)当水位是2.5米时,高1.4米的船能否经过拱桥?请说明理由(不思索船的宽度。
船的高度指船在水面上的高度)。
针对练习:4、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大高度为3.6m,跨度为7.2m.一辆卡车车高3米,宽1.6米,它能否经过隧道?5. 刘炜在距离篮下4米处跳起投篮,篮球运转的路途是抛物线,当球运转的水平距离为2.5米时,到达最高度3.5米,然后准确落入蓝筐.蓝筐中心到空中距离为3.05米.假设刘炜的身高为1.9米,在这次跳投中,球在头顶上方0.15米处出手,问求出手时,他跳离空中的高度是多少?七、课堂小结1、二次函数常用解析式2、求二次函数解析式的普通方法:图象上三点坐标,通常选择普通式。
期末二次函数复习学案 文档
二次函数复习学案一、基础知识点:1、二次函数的一般形式:y=ax ²+bx+c(a ≠0) 顶点为 ,对称轴是 。
2、如果函数y=(k-3) +kx+1是二次函数,则k 的值一定是______ .3、y=ax 2, y=ax 2+k, y=a(x-h)2, y=a(x-h)2+k 写出它们的顶点,对称轴。
。
4、y = -2(x -3)²+4的图像的顶点为 , 其图像是由y= -2x 2向 平移 个单位,再向5 把 y=2x²- 8x+7 配方成 ,其顶点为 ,对称轴为 。
6 、 y=2x 2-x+1 的顶点是______,对称轴是______;当x ______时,y 随x 的增大而减小;当x ______时, y 有最______值是______。
7、二次函数y=2x 2+x -n 的最小值是2,那么n = 8、y=x 2(1≤ x ≤2)的最小值是 。
9、函数 y=2x ²- 8x+7 的图象是由y=2x ²的图象怎样平移得到的? 二、知识拓展1、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 。
2、已知二次函数y=ax 2+bx+c 的图象如图,则a 、b 、c 满足( ).(A )a <0,b <0,c >0;(B )a <0,b <0,c <0; (C )a <0,b >0,c >0;(D )a >0,b <0,c >0。
口诀: 。
.3、 已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、54、比较大小:1、已知12(2,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 2、已知12(0,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 3、若二次函数24y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0),此抛物线上121,2x x =-=,对应的y 1 与y 2的大小关系是 。
第26章 二次函数 复习学案
第26章 二次函数 复习学案一、复习目标:1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3、会根据公式确定图象的顶点、开口方向和对称轴,并能解决简单的实际问题;4、会利用二次函数的图象求一元二次方程的近似解。
二、本章知识结构框图三、知识点与方法 (一)二次函数的意义(1)二次函数的意义中包含的条件① ,② ,③ ,④ 。
【练习】 1、函数()322-+-=mx m y (m 为常数),试求: (1)当m 时,该函数为二次函数; (2)当m 时,该函数为一次函数。
2、下列函数中是二次函数的是( )A .y =x +12B .()21-=x y C .()221x x y -+= D .x x y -=213、有n 个人参加一次研讨会,每两个人握手一次,则握手次数y 与参加会议的人数n 之间的函数关系式为 ,它是 函数。
(二)平移规律(1)抛物线左右平移与 有关,规律是 ;上下平移与 有关,规律是 。
【练习】4、抛物线()4232+--=x y 的开口 ,对称轴是 ,顶点坐标是 。
当 时,有最 值为 。
它可有y=-3x 2向 平移 个单位,再向 平移 个单位得到。
5、若抛物线2x y =的图象不动,把x 轴向上平移3个单位,把y 轴向右平移2个单位,则抛物线在新坐标系中的解析式为( ) A 、B 、C 、D 、6、322-+=x x y 向右平移3个单位,再向上平移1个单位后的解析式为 。
(三)五点画函数图像(草图)(1)画抛物线的草图时,一般要描出五点,分别为 。
【练习】 7、画出322-+=x x y 的草图。
(四)求函数的解析式(1)用待定系数法求函数解析式的步骤为 。
(2)二次函数的一般形式为 ,顶点式为 ,两根式为 。
【练习】8、已知二次函数y=ax 2-4x+c 的图像过点A 和点B (1) 求该二次函数的表达式。
二次函数复习教学设计
二次函数复习教学设计
一、课程内容
1.二次函数的定义及表达式形式
2.二次函数的性质
3.二次函数的图像及极值,包括函数图像的反比例性质
4.二次函数的导数,包括驻点求导法
5.实际求解问题,如平面上两圆的条件
二、授课目标
1、能够正确理解二次函数的概念,掌握相关定义;
2、掌握二次函数的性质及图像;
3、掌握二次函数的导数概念,能够求解实际问题中涉及的二次函数
的导数;
4、掌握平面上两圆的条件,并能够求解实际问题中涉及的复合的平
面两圆问题。
三、教学策略
1、理论讲授法:通过理论讲授,让学生了解二次函数的概念、表达式,了解二次函数的性质、图像及极值、导数概念及复合的平面两圆问题;
2、素材分析法:通过实际素材,让学生理解二次函数的性质、极值点、驻点求导法及实际求解问题;
3、课堂练习法:让学生在讲授完二次函数的相关知识后,布置课堂练习,帮助学生加深对二次函数的理解。
四、实施步骤
1、讲授二次函数的定义及表达式形式:
(1)首先介绍什么是二次函数,二次函数的定义;
(2)接着介绍二次函数的表达式形式,介绍二次函数的a、b、c系数,及其系数含义;。
初三二次函数复习学案
二次函数【知识点一:二次函数的定义】1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.2.二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 3.二次函数常见形式:(1)一般形式:2y ax bx c =++(a b c ,,是常数,0a ≠);(2)顶点式:()k h x a y +-=2(a ,h ,k 为常数,0a ≠).由二次函数的一般形式经过配方法转换得到;(3)交点式:()()21x x x x a y --=(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 【典型例题】1.下列函数中是二次函数的有( )①y = x +x 1;②y =3(x -1)2+2;③ y =(x +3)2-2x 2;④ y =21x+x .A .1个B .2个C .3个D .4个2.当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数. 3.当m 时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数.【变式练习】1.下列函数是二次函数的是( )A .y =2x +1B .y =-2x +1C .y =x 2+2D .y =12x -2 2.下列函数:① 23y x =;② ()21y x x x =-+;③ ()224y x x x =+-;④21y x x=+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = . 3.如果函数 y =(m +2)x22-m +2x -1是二次函数,则m = .【知识点二:抛物线】1. 二次函数2y ax bx c =++图象的画法(1)五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). (2)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【典型例题】二次函数y =x 2与y =-x 2的图象都是____________,都是______对称图形.性质如下: 函数 y =x 2y =-x 2对称轴顶点坐标开口方向增减性当x >0时,y 随着x 的增大而______; 当x <0时,y 随着x 的增大而______. 当x >0时,y 随着x 的增大而_______;当x <0时,y 随着x 的增大而_______.最值 当x 为____时,函数y 取得最____值当x 为____时,函数y 取得最_____值【知识点三:二次函数的图象与性质】 1.几种特殊的二次函数的图像特征如下:函数的解析式开口方向对称轴顶点坐标 2ax y = 当0>a 时,开口向上当0<a 时,开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2abx 2-=(ab ac a b 4422--,)2.抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.(1)a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.(2)对称轴:平行于y 轴(或重合)的直线记作2b x a=-.特别地,y 轴记作直线0=x .(3)顶点坐标:),(ab ac a b 4422-- 3.抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系(1)二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大. a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.(2)一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ①在0a >的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a-=,即抛物线的对称轴就是y 轴;当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.② 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a->,即抛物线的对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴;当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧. 在a 确定的前提下,b 决定了抛物线对称轴的位置. (3)常数项c① 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ② 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ③当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 【典型例题】A .B .C .D .1111xo yyo x yo xxoy1图8O xy31.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)2.二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、333.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y4.函数y = ax +1与y = ax 2+bx +1(a ≠0)的图象可能是( )5.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图7所示,给出以下结论: ① a > 0;② 该函数的图象关于直线1x =对称; ③ 当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( ) A .3 B .2 C .1 D .06.已知二次函数2y ax bx c =++(0a ≠)的图象如图8所示, 有下列四个结论:20040b c b ac <>->①②③④0a b c -+<, 其中正确的个数有( )A .1个B .2个C .3个D .4个【变式练习】1.把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式是( )A .()22412+--=x y B . ()42412+-=x y C .()42412++-=x y D .321212+⎪⎭⎫ ⎝⎛-=x y2.二次函数2(1)2y x =--的图象上最低点的坐标是( )图7O111-O xyA .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)3.抛物线942++=x x y 的对称轴是 .4.抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .5.抛物线的图象如右图所示,根据图象可知,抛物线的解析式可能..是( ) A 、y = x 2-x -2 B 、y =121212++-x C 、y = 121212+--x x D 、y =22++-x x6.如下图,直角坐标系中,两条抛物线有相同的对称 轴,下列关系不正确...的是( ) A .h m = B .k n =C .k n >D .00h k >>,7.2(0)y ax bx c a =++≠的图象如右图所示,对称轴是 直线1x =,则下列四个结论错误..的是( ) A .0c > B .20a b += B . C .240b ac -> D .0a b c -+>8.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x =9.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )误区警示1、遗漏隐含条件。
《二次函数复习》公开课教学设计
《二次函数复习》教学设计【教学目标】1、理解二次函数的概念,掌握二次函数y=ax 的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax 经过适当平移得到y=a(x-h) +k的图象。
2、会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质。
3、使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。
【教学过程】一、结合例题精析,强化练习,剖析知识点1、二次函数的概念,二次函数y=ax2+bx+c(a≠0)的图象性质。
例:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?强化练习:已知函数是二次函数,其图象开口方向向下,则m=_____,顶点为_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。
2、用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律。
例:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y=-3x2。
强化练习:(1)抛物线y=x2+bx+c的图象向左平移2个单位。
再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。
(2)通过配方,求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标,再画出图象。
3、用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=- x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y =a(x-h)2+k的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数复习
(一)知识点归纳:
1.二次函数的定义:
一般地,形如c b a c bx ax y ,,(2++=为常数,)0≠a 的函数,叫做二次函数.(其中x 是自变量,c b a ,,分别是函数表达式的二次项系数,一次项系数和常数项)
2.二次函数解析式的三种形式:
一般式:)0(2≠++=a c bx ax y
顶点式:)0()(2≠+-=a k h x a y
交点式:)0)()((21≠--=a x x x x a y
3.)0(2≠++=a c bx ax y 图象的特征:
(1)a 决定了抛物线的形状与大小:其中a 的正负决定其开口方向;||a 越大图象相对开口越小.
(2 c b a ,,共同决定了抛物线在坐标系中的位置,其中顶点坐标为:)44,2(2
a
b a
c a b --,对称轴为:直线a
b x 2-=,图象在y 轴的截距为
c .
4.待定系数法求二次函数解析式:(已知函数类型时,求函数解析式的方法)
(二) 例题分析
例1.考查二次函数的定义:
(1)若函数m m x m y --=2)1(2为二次函数,则m 的值为 .
(2)函数)1(x x y -=的二项式系数为 ;一次项系数为 ;常数项为 .
(3)已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2的图像经过原点,则m 的值是 .
例2.综合考查正比例、反比例、一次函数、二次函数的图像特征:
(1) 在同一坐标系中一次函数y ax b =+和二次函数2
例3 考查函数、方程、不等式之间的关系:
(1)抛物线y=x 2+6x+8与y 轴交点坐标( )
(A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)(
(2)二次函数2(0)y ax bx c a =++≠(a )写出方程20ax bx c ++=的两个根.
(b )写出不等式20ax bx c ++>的解集. (c )写出y 随x 的增大而减小的自变量x
的取值范围.
(d )若方程2ax bx c k ++=有两个不相等的实数根,
求k 的取值范围.
(3).如图,是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图
象,观察图
象写出y 2≥y 1时,x 的取值范围______________.
例4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的最值: (1)二次函数y=x2+x-5取最小值是,自变量x的值是
(2)抛物线()y x =-+23212的顶点坐标是( )
A. (2,1)
B. (-21,)
C. 231,⎛⎝ ⎫⎭⎪
D. -⎛⎝ ⎫⎭⎪231, (3) 心理学家发现,学生对概念的接受能力y 与接受概念所用时间x (单位:min )之间满足()y x x x =-++≤≤0126430302...y 值越大,表示接受能力越强.
①x 在什么范围内时,学生的接受能力逐渐增强?x 在什么范围内时,学生的接受能力逐渐降低?
②第10 min 时,学生的接受能力是多少?
③第几分钟时,学生的接受能力最强?
例5.考查用待定系数法求二次函数的解析式:
(1)已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53
,求这条抛物线的解析式。
(2)已知一个二次函数的图象经过)7,2(),4,1(),10,1(-三点,求这个函数的解析式;
(3)已知二次函数与x 轴的两交点坐标为)0,3(),0,1(-,且图象过)1,2(点,求此二次函数解析式。
(4)已知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点C (2,8).
①求该抛物线的解析式; ②求该抛物线的顶点坐标.
(5). 如图,一次函数y kx n =+的图象与x 轴、y 轴分别交于点A (6,0)和B (0,23),线段AB 的垂直平分线交x 轴于点C ,交AB 于点D .
①确定这个一次函数的关系式;
②求过A 、B 、C 三点的抛物线的函数关系式.
强化练习
1.抛物线y =-2(x -1)2-3与y 轴的交点纵坐标为( )
(A )-3 (B )-4 (C )-5 (D)-1
2.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )
(A) y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-4
3.抛物线y =21x 2,y =-3x 2
,y =x 2的图象开口最大的是( )
(A) y =21x 2
(B)y =-3x 2 (C)y =x 2 (D)无法确定
4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )
(A)4 (B)8 (C)-4 (D)16
5.抛物线y =-2x 2+4x +3的顶点坐标是( )
(A)(-1,-5) (B)(1,5) (C)(-1,-4) (D) (-2,-7)
6.过点(1,0),B (3,0),C (-1,2)三点的抛物线的顶点坐标是( )
(A)(1,2) (B )(1,32
) (C) (-1,5) (D)(2,41
-)
7. 若二次函数y =ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为(
) (A )a +c (B )a -c (C )-c (D )c
8.抛物线y =ax 2+bx +c 的图象如图1,则下列结论:①abc >0;②a +b +c =2;③a >
21;④b <1.其中正确的结论是( ) (A )①② (B )②③ (C )②④ (D )③④
9.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx +c =0(a ≠0)的解是_______.
10.用配方法把二次函数y =2x 2+2x -5化成y =a (x -h )2+k 的形式为___________.
11.抛物线y =(m -4)x 2-2mx -m -6的顶点在x 轴上,则m =______.
12.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相同,则此函数关系
式 .
13. 已知点A(-1,-1)在抛物线y=(k 2-1)x 2-2(k-2)x+1上,
(1)求抛物线的对称轴.
(2)若点B 与点A 关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B 的直线?如果存在,求出符合条件的直线;如果不存在,说明理由.
14. 已知二次函数y=x 2-(m 2+8)x +2(m 2+6).
(1)求证:不论m 取任何实数,此函数的图像都与x 轴有两个交点,且两个交点都不在x 轴的正半轴上.
(2)设这个函数的图像与x 轴交于B 、C 两点,与y 轴交于点A ,若⊿ABC 的面积为48,求m 的值.
(3)设抛物线的顶点为P ,是否存在实数m ,使⊿BPC 为等腰直角三角形.如果存在,求出m 的值;如果不存在说明理由.。