cnc数控设备切削参数表

合集下载

项目工作页-任务2 数控机床参数设置与调试

项目工作页-任务2 数控机床参数设置与调试

能够识记数控机床参数的种类、数据类型、结构形式,理解其在数控机床控制中的作用。

能进行修改数控机床参数,掌握常见数控机床基本参数的设置,能对伺服初始化参数进行设置和操作。

二、任务描述通过本项工作任务实施,学习数控机床参数及作用,识记数控系统参数、机床参数、伺服参数、PLC参数、设备接口参数、螺补参数的存储形式,了解参数对数控系统与机床运行的作用及影响。

能够操作伺服初始化参数的设置。

三、工作目标1、掌握数控机床常用基本参数的设置。

2、掌握伺服始化参数的设置,分析在数控机床运行时的作用。

3、发挥团队合作精神,会修改数控机床、数控系统等参数。

四、任务准备(一)团队组成方案每4人分为一组,每组指定1人为小组长,1人为材料管理员,2人为技术员,小组长负责组织本组任务实施及结果汇报,并负责安全生产。

材料员负责材料领取分发,填写所需材料、工具的相关记录表,并负责工具的保养。

组长、材料员与技术员共同合作进行项目的实施。

(二)仪器、仪表、工具、材料准备万用表一只,螺丝刀一套。

(三)相关理论知识1、参数设定画面用于参数的设置、修改等操作,在操作时需要打开参数开关,按OFSSET键显示图示画面就可以进行修改参数开关,参数开关为1时,可以进入参数进行修改。

图参数开关画面图参数画面1)诊断画面当出现报警时,可以通过诊断画面进行故障的诊断,按上图中的诊断键,如下图所示。

图 诊断画面2、机床常用的参数名称含义1) 数控机床与轴有关的参数:参数号1020: 表示数控机床各轴的程序名称,如在系统显示画面显示的X 、Y 、Z 等,一般设置是,车床为88,90;铣床与加工中心为88,89,90参数号1022: 表示数控机床设定各轴为基本坐标系中的哪个轴,一般设置为1,2,3参数号1023: 表示数控机床各轴的伺服轴号,也可以称为轴的连接顺序,一般设置为1,2,3,设定各控制轴为对应的第几号伺服轴参数号8130:表示数控机床控制的最大轴数轴数CNC 控制的最大轴数2)数控机床与存储行程检测相关的参数:1320:各轴的存储行程限位1的正方向坐标值。

孔加工的切削参数表格(精)

孔加工的切削参数表格(精)

孔加工的切削参数及加工余量1)孔加工的切削参数表 1~表 4 中列出了部分孔加工切削用量,供选择时参照。

表 1 高速钢钻头加工钢件的切削用量材料强δb=520~700MPa δ b=700~900MPa δb=1000~ 1100MPa 切度(35 、 45 钢) (15Cr 、 20Cr) (合金钢 )削钻用量 f f f头υc υ c υc 直径/(m/min) /(mm/r) /(m/min) /(mm/r) /(m/min) /(mm/r) 1~ 6 8~ 25 0.05 ~ 0.1 12~ 30 0.05 ~0.1 8~ 15 0.03 ~ 0.08 6~ 12 8~ 25 0.1 ~0.2 12~ 30 0.1 ~0.2 8~ 15 0.08 ~ 0.15 12~22 8~ 25 0.2 ~0.3 12~ 30 0.2 ~0.3 8~ 15 0.15 ~ 0.25 22~50 8~ 25 0.3 ~0.45 12~ 30 0.3 ~0.54 8~ 15 0.25 ~ 0.35表 2 高速钢钻头加工铸铁的切削用量材料硬度160 ~200HBS 200~400HBS 300~400HBS 切钻削用量υ c f υ c f υ c f 头直径/(m/min) /(mm/r) /(m/min) /(mm/r) /(m/min) /(mm/r) 1~6 16~ 24 0.07 ~0.12 10~ 18 0.05 ~ 0.1 5~12 0.03 ~0.08 6~ 12 16~ 24 0.12 ~ 0.2 10~ 18 0.1 ~0.18 5~12 0.08 ~0.15 12~22 16~ 24 0.2 ~0.4 10~ 18 0.18 ~0.25 5~12 0.15 ~ 0.2 22~50 16~ 24 0.4 ~0.8 10~ 18 0.25 ~ 0.4 5~12 0.2 ~0.3表 3 高速钢铰刀铰孔的切削用量工件资料铸铁钢及合金钢铝铜及其合金切削用量υc f υc f υ c f /(m/min) /(mm/r) /(m/min) /(mm/r) /(m/min) /(mm/r) 铰刀直径6~ 10 2~6 0.3 ~ 0.5 1.2 ~5 0.3 ~ 0.4 8~ 12 0.3 ~0.5 10~15 2~6 0.5 ~1 1.2 ~5 0.4 ~ 0.5 8~ 12 0.5 ~1 15~25 2~6 0.8 ~ 1.5 1.2 ~5 0.5 ~ 0.6 8~ 12 0.8 ~1.5 25~40 2~6 0.8 ~ 1.5 1.2 ~5 0.4 ~ 0.6 8~ 12 0.8 ~1.5 40~60 2~6 1.2 ~ 1.8 1.2 ~5 0.5 ~ 0.6 8~ 12 1.5 ~2表 4 镗孔切削用量工件资料铸铁钢及合金钢铝及其合金工序切削用量υc fυc f υ c f刀具资料/(m/min) /(mm/r) /(m/min) /(mm/r) /(m/min) /(mm/r)高速钢20~2515~300.35 ~0.7100~ 150 0.5 ~ 1.5粗加工35~50 0.4 ~0.45100~ 250 合金 50~70高速钢20~35 15~50 0.15 ~0.45100~ 2000.2 ~ 0.5半精加工50~70 0.15 ~ 0.45 合金 95~135高速钢70~90D1 级<0.08 0.02 ~0.15150~ 4000.06 ~ 0.1精加工100~135合金D 级 0.12 ~0.152)孔加工的加工余量表 5 中列出在实体资料上的孔加工方式及加工余量,供选择时参照。

cnc2000操作手册解读

cnc2000操作手册解读

CNC2000操作手册解读CNC2000是一种常用的数控机床系统,该系统操作手册对于使用者来说至关重要。

本文将对CNC2000操作手册进行解读,帮助初学者快速上手操作。

1. 机床系统的启动开启CNC2000数控机床的电源后,系统会自检,检测过程顺利完成后重置程序,并推荐在对程序进行编辑或读取操作前执行开始/复位操作。

进入操作界面后,按“INPUT” 键进入手动输入模式,按“ESCAPE” 键退出当前模式至主操作界面。

2. 坐标系设定在开始加工前,必须先设置坐标系,以确保后续程序的正确性。

在主操作界面中,可以找到坐标系设定选项,在其中选择相应的设定,按照操作步骤进行设定。

3. 坐标轴操作坐标轴操作是CNC2000的使用中非常关键的一步。

在操作界面中,分别对X、Y、Z三轴进行设定,根据实际需要设定相应参数,例如工件坐标起点、起点位置等。

在进行加工操作时,需要根据不同工件进行相应的设定。

在程序编辑界面中,按照相应的操作指令,设定坐标轴值以及加工参数等信息。

同时,用户还需要注意坐标轴的移动范围,一般而言坐标轴移动不能超过直线行程范围,否则就会出现误操作甚至设备故障。

4. 速度设定在CNC2000系统中,速度设定是一个关键的因素。

速度设定的影响因素非常多,包括所选择的切削工具、材料硬度、切削加工速度等。

在程序编辑界面中,通过设定切削进给速度以及切削转速等参数,来实现切削加工的精度控制与效率提升。

同时,用户还可以根据实际需要,进行速度相关参数的调整,以达到最佳的切削效果。

5. 其他功能除了上述关键功能外,CNC2000还有许多其他实用功能,例如错误报警、计数器和定位器等。

这些功能使得CNC2000系统在数控加工过程中能够更加高效、安全地实现产品加工。

6. 操作技巧在实际操作过程中,用户还需要根据不同的加工要求,掌握相应的操作技巧。

例如,为了防止加工出现误差,用户可以在完成相应操作后,在检查环节对设备和程序进行检查,如果有问题及时加以修正。

CNC加工技术参数

CNC加工技术参数

CNC快速成型加工是现代产品开发的高科技产物,根据3D图形图档要求,选择不同
的软件编程,一般我们用proe、solidworks软件拆图,用mastercam和powermill编程,mastercam是比较传统的编程软件,用起来比较简单实用,对于手机、机壳和雕
刻一些直规的产品加工比较到位,效果也相当不错,而powermill是德国引进的一种科技尖端编程软件。

功能相当强大,特别对公仔玩具一些不规则而比较圆滑的产品编程
出来的刀路,顺畅又简单到位,弧形上的刀痕比较细,精确度高,还有它可以编FreeForm软件STL图档,不是一般编程软件可以达到的功能。

加工方法:一般是对工件进行上下两面加工,特殊情况下会对工件进行三面、四面、五面或六面进行加工。

在加工过程中,我们会对产品(工件)保留围边筐粘胶水,用
边筐拉骨对产品(工件)固定,倒石膏对产品(工件)进行定位,加工时产品(工件)和CNC工作台面不会有粘合作用,更好的保证加工出来的产品(工件)不会变形和产品(工件)的料位准确;
CNC数控设备加工原型是通过对三维数据进行编程、拆分,通过加工ABS、PMMA、
尼龙等材料,直接生产所需的产品,特别是对大件产品的制作,可直接实现功能特点,适用范围广;
CNC加工采用材料:ABS:透明超高耐温,黑色,进口,国产等等。

POM(赛钢)、PMMA(亚加力)、MC(尼龙)、PC、PP、PA、BT、PVC等等。

铝合金、铜等等;
成型特点:成型尺寸大,强度高,韧性好,速度快,同时成本比较低;
CNC最大加工尺寸:1100m。

数控铣床及数控车床技术参数

数控铣床及数控车床技术参数
2
气缸直径
ф30-50mm
3
机械手摆动角度
0-190 °
4
机械手摆动速度
0.2-0.7 s / 90°
5
使用气压
0.1-0.6Mpa
6
手指最大外径夹持力
≧118N
7
手指最大内径夹持力
≧130N
8
手指行程
≧4mm(单边)
9
快移速度
≧50米/分
10
★定位精度最低要求
±0.05mm
11
料仓
循环垛码料盘
12
1-2,机床主要技术参数要求
★床身最大回转直径
mm
≧ф270
托板上最大回转直径
mm
Ф150-250
★最大加工长度
mm
≧320
主轴转速范围
r/mm
50-3000
主轴换挡方式
变频
主电机功率
Kw
≧4
★卡盘形式
液压卡盘
卡盘直径
mm/
≧160(6寸)
主轴通孔直径
mm
Ф30-60
X轴快移速度
m/min
5-11
Z轴快移速度
五、其他要求:
5-1安装、调试要求:主机及附件的免费安装调试并负担所需耗材,直至达到验收指标,提供合格证明书、说明书及质保书等。
5-2培训要求:免费现场培训和售后培训,培训时间不少于2个工作日。
5-3售后服务:自验收之日起,整机提供三包服务一年,终身服务。
m/min
5-15
X轴行程
mm
≧200
Z轴行程
mm
≧200
刀架形式
四工位电动刀塔
刀架转位重复定位精度

CNC加工节拍计算方法

CNC加工节拍计算方法

工序号工件总数辅助时间(min )加工时间(min )实际单件加工时间(min )设备效率设备名称设备需求(台)审核单件时间(min )名称 name直径尺寸size材质mater.切削行程mm 个数件数X、Y轴(min)Z轴(min)A轴(min)B轴(min)刀具检测(min)OP101T01硬质合金刀具8硬质合金 7,9622000.15 1,1943116 186.00 0.160.20.22T02PCD铣刀,刀片60PCD 7,96215000.5 3,9816016 360.00 0.090.20.20.083T03直槽钻 6.5硬质合金 8,8191800.15 1,3232716 162.00 0.120.20.24T04特殊倒角刀具8HSS 1,990500.6 1,1942016 120.00 0.100.20.25T05挤压丝锥8HSS 1,39335 1.25 1,7422716 162.00 0.090.20.26T06硬质合金成型刀具16硬质合金 6,9673500.15 1,0452416 144.00 0.140.20.27T07PCD 成型刀具16PCD 7,9624000.2 1,5922416 144.00 0.090.20.28T08硬质合金刀具7.95硬质合金 8,0122000.4 3,2053116 186.00 0.060.20.20.089T09硬质合金刀具8.67硬质合金8,0812200.43,2321816108.00 0.030.20.20.08Cφ17.86φ11.38φ8.62孔粗加工φ8.0孔再加工去毛刺A 1.8AL60054.45 1.0480%200000.00B 顾客OP1062013,5,211.30主轴回转数rpm切削线速度m/min刀具 tool铣B和C孔所在面,保证垂直度0.1,及平面度0.1钻φ8.0孔M8螺纹底孔加工非切削时间每转进给mm/rev每分钟进给mm/min 进给切削行程*个数*件数总切削行程mm 切削时间(min)B 刀具号Tool No.加工内容 Operation discriptionB &C C φ17.86φ11.38中的φ8.62孔再加工去毛刺B M8螺纹底孔对面倒角C M8螺纹底加工序号No.加工部位machining positionA φ17.86φ11.38φ8.62孔精加工机加工艺分析表材料编制批准日期:零件号零件名称车型年产量4轴单工作台数控铣床 0.60设计重量。

cnc攻丝

cnc攻丝

攻丝cnc攻牙转速进给比例--一格式如下;G84 Z- R- F-Z和R就不需要说了吧~`而进给F就有所不同了;有的是给一个螺距~~比如说M6的是1 ;M8的是1.25; M10的是1.5; M12的是1.75.我想我应该没有记错吧~好长时间没用了` 而有的是F=S之前给定了*螺距这两者是根据G94和G95的模态不一样而决定的~~至于切削丝锥和挤压丝锥;顾名思义;两者的加工形式不一样;一个是切削出来的;一个挤压出来的`~选择时候根据加工材料而定~~例:M3内螺纹的底孔:首先应知道M3的螺距是0.5计算方法: 3-0.5×1.0 8=2.46 ; 直径2.46不好找可以钻成直径2.5..简言之做M3的牙;用2.5的钻头钻孔;用M3的丝攻攻牙..每分钟进给G94、每转进给G95如果每分钟进给模式进给f=转速*牙距;每转进给;进给速度=牙距法拉克系统要指定刚性攻丝M29G284同步攻丝;转速X螺距=进给用加工中心对孔进行攻牙加工时;攻牙的进给速度不知道怎样设定如果有谁知道的将公式发上来谢谢例M6丝攻即牙距1.0 .....S50; .....; M29; G98 G84 Z-10. R2. F50 ; G80; ....主轴转速×螺距=进给量如楼上所说的;螺距是1时是S50 F50;如果螺距是1.5就是S50 F75..但通常还有个问题:最佳转速需通过试验得出;在试验时每改一次转速就得随着改一次进给量..不仅繁琐而且易出错..解决办法是让数控系统根据S值自动计算F值..即:S50 …… F#4119*1.5 假定螺距是1.5..程序中#4119是当前S值..这样只需要修改S值就行了..还有不能攻丝的加工中心那这加工中心真是浪费了..G00G90G54B0X125.-484.5+150.Y-40.+290.S1004M03G00G43Z200.H43M07M08M29G99G84X125.-484.5+150.Y-40.+290.Z-30.-27.R10.F2008.B4302X125.-484.5-150.Y-40.+290.B4301G80G00Z50.看看你们的参数对不对进给/转速是不是你所用丝锥的螺距...攻牙的参数: F进给速度等于S转速乘以P导程P等于螺距乘以螺旋线比如:做M6的单线螺孔;那首先要5的钻头先钻个底孔底孔就是螺孔的中径;F给600. 转速必须是600. 不然做出来的孔会乱牙M6的螺孔P就是1x1=1;我S给600.;F就必须是600.用上面的公式要使攻出的牙不乱参数必须要同步;只要用上面的那个公式就可以拉;至于上面的公式是这样来的;以后有机会在说.螺距不代表牙高啊;牙高有分为牙顶高;中径.和牙底高啊.而螺距只能代表螺纹的公称直径减去螺纹中径. 如M6;公称直径为6;螺距为1;中径就是5.至于用多大的钻头钻底孔;那要看是什么材料;一般比较硬的材料可以大0.1-0.2左右;不然容易断钻头.像铸铁类的可以大0.1;而那些铝件和胶版材料的话直接可以按照你上面列出的螺距来算.注:我干CNC四年了;基本上什么材料的东西都做过;有什么经验的问题可以问我;我很乐意交朋友*********************G03 X132. Y25.I2.J0.Z-2.F500.上面Z-2.为螺距如孔内功牙的话如: 孔深10mm 螺距 2mm 坐标为 0;0G91 X-5. 刀尖碰到工件G03 I5.J0.Z-2.F500. 螺旋下刀G01 X5. 回到0.Z-10G91 X-5.G03 I5.J0.Z-2.F500.G01 X5.以上必须用螺纹刀粒;长度大于8mm; 下刀深度必须与螺距成倍数;否则会乱牙用镗刀功外圆就是用G02 X- Y- I- Z- F-就可以拉数控机床程序编制的一般步骤和手工编程数控机床程序编制的一般步骤和手工编程数控机床程序编制又称数控编程是指编程者程序员或数控机床操作者根据零件图样和工艺文件的要求;编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程..具体来说;数控编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程..一般数控编程步骤如下1.分析零件图样和工艺要求分析零件图样和工艺要求的目的;是为了确定加工方法、制定加工计划;以及确认与生产组织有关的问题;此步骤的内容包括:1确定该零件应安排在哪类或哪台机床上进行加工..2采用何种装夹具或何种装卡位方法..3确定采用何种刀具或采用多少把刀进行加工..4确定加工路线;即选择对刀点、程序起点又称加工起点;加工起点常与对刀点重合、走刀路线、程序终点程序终点常与程序起点重合..5确定切削深度和宽度、进给速度、主轴转速等切削参数..6确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等..2.数值计算根据零件图样几何尺寸;计算零件轮廓数据;或根据零件图样和走刀路线;计算刀具中心或刀尖运行轨迹数据..数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据..3.编写加工程序单在完成上述两个步骤之后;即可根据已确定的加工方案或计划及数值计算获得的数据;按照数控系统要求的程序格式和代码格式编写加工程序等..编程者除应了解所用数控机床及系统的功能、熟悉程序指令外;还应具备与机械加工有关的工艺知识;才能编制出正确、实用的加工程序..4.制作控制介质;输入程序信息程序单完成后;编程者或机床操作者可以通过CNC机床的操作面板;在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据CNC系统输入、输出装置的不同;先将程序单的程序制作成或转移至某种控制介质上..控制介质大多采用穿孔带;也可以是磁带、磁盘等信息载体;利用穿孔带阅读机或磁带机、磁盘驱动器等输入输出装置;可将控制介质上的程序信息输入到CNC系统程序存储器中..5.程序检验编制好的程序;在正式用于生产加工前;必须进行程序运行检查..在某些情况下;还需做零件试加工检查..根据检查结果;对程序进行修改和调整;检查-修改-再检查-再修改……这往往要经过多次反复;直到获得完全满足加工要求的程序为止..上述编程步骤中的各项工作;主要由人工完成;这样的编程方式称为“手式编程”..在各机械制造行业中;均有大量仅由直线、圆弧等几何元素构成的形状并不复杂的零件需要加工..这些零件的数值计算较为简单;程序段数不多;程序检验也容易实现;因而可采用手工编程方式完成编程工作..由于手工编程不需要特别配置专门的编程设备;不同文化程度的人均可掌握和运用;因此在国内外;手工编程仍然是一种运用十分普遍的编程方法..在车床上加工螺纹螺纹车削刀具已经从全面改善车刀性能的涂层及材料等级方面所取得的共同进步中获益..此外;在螺纹车削刀片方面;人们进行了更好的结构设计;实现了更佳的切屑控制..尽管发生了这些变化;制造工程师们倾向花很少的时间来优化螺纹加工操作;将螺纹加工过程看成是一种无法不断取得进步的“黑匣子”..事实上;通过工程设计方式可以提高螺纹加工过程的效率..第一步应该是理解螺纹加工中一些基本的主题..为什么螺纹车削要求如此之高螺纹车削的要求要高于普通车削操作..切削力一般较高;螺纹刀片的切削端部半径较小;比较薄弱..在螺纹加工中;进给速度必须与螺纹的节距精确对应..对于节距为8螺纹/英寸tpi的情况;刀具必须以8转/英寸或者0.125英寸/转的进给速度前进..与普通车削应用其中典型的进给速度大约为0.012ipr相比;螺纹车削的进给速度要高出10倍..螺纹加工刀片刀尖处的作用力可能要高100~1;000倍..承受这种作用力的端部半径一般为0.015英寸;而常规车削刀片的半径为0.032英寸..对于螺纹加工刀片;该半径受许可的螺纹形状根部半径其大小由相关螺纹标准规定的严格限制..它还受所需要的切削动作限制;因为材料无法经受普通车削中的剪切过程;否则会发生螺纹变形..切削力较高和作用力聚集范围较窄导致的结果是:螺纹加工刀片要承受比一般车刀高得多的应力..部分与全轮廓刀片的比较部分轮廓刀片;有时候被称作“非加顶式”刀片;它在不给螺纹加顶或装牙顶的情况下切削螺纹沟槽..参见图1一把刀片可以产生一系列螺纹;直至最粗的节距-即每英寸螺纹数最少处为止-这是刀片端部半径强度许可的..这种端部半径设计得足够小;刀片可以加工各种节距..对于小节距;端部半径会显得尺寸过小..这意味着刀片必须穿透得深一些..例如;用一把部分轮廓刀片加工一个8tpi的螺纹需要螺纹深度为0.108英寸;而用完全轮廓刀片产生的相同螺纹则只需要0.81英寸的指定深度..因此;全轮廓刀片可以产生强度更高的螺纹..此外;全轮廓刀片加工出螺纹的操作可以少4道..多齿刀片多齿刀片连续地带有系列齿;任何齿在螺纹沟槽中切削的深度都要比它前面的一个齿更深..参见图2借助这些刀片;加工一个螺纹所需要的操作道数可以减少80%..刀具寿命要远远长于单顶尖刀片;因为最终的齿只加工某个给定螺纹一半或三分之一的金属..但是;由于它们存在较高的切削力;因此不提倡将这些刀片用于薄壁零件的加工-因为可能会产生颤振..此外;用这些刀片加工工件的结构必须具有足够的螺纹间隙;以便所有齿退出切削..每道进给每道的切削深度;或者说每道进给;在螺纹加工中是非常关键的..每个相连的操作道都要啮合刀片切削刃较大部分..如果每道进给是恒定的不推荐采用这种方式;则切削力和金属去除率从上一道到下一道会剧烈增加..例如;在采用恒定的0.010英寸进给/道的速度加工一个60度螺纹形状时;第二道去除的材料为第一道的3倍..与随后每道操作一样;去除的金属量连续成指数上升..为了避免这种切除量增加并维持比较现实的切削力;切深应该随着各道操作而减少..横切进给法至少有四种横切进给法..参见图3很少有人发现这些方法中某种方法对螺纹加工操作有效性的冲击到底有多大..径向横切进给尽管这可能是加工螺纹最常用的方法;但确是最不提倡采用的一种方法..由于刀具是径向进给的与工件中心线垂直;因此金属从螺纹齿腹两侧去除;从而产生V形切屑..这种切屑很难断裂;因此切屑流动是一个问题..此外;由于刀片端部两侧要承受较高的热和压力;因此刀具寿命通常比其他横切进给法中要短..齿腹横切进给在这种方法中;横切方向与螺纹齿腹之一平行;这一般意味着刀具沿30度直线进给..切屑与普通车削中产生的类似..参见图4..与径向横切相比;这种方法中产生的切屑比较容易成形;并且易于从切削刃中排出;热扩散性更好..但是;在这种横切进给法中;刀片后缘会摩擦齿腹而不会进行切削..这样会烧伤螺纹;导致表面粗糙度很差;甚至发生颤振现象..修改的齿腹横切进给推荐采用这种方法与齿腹横切进给法类似;不同的是横切角度小于螺纹角度-即小于30度..这种方法保留了齿腹横切法的优点;同时又避免了刀片后缘带来的问题..291/2度的横切角一般会产生最佳结果;但在现实操作中;25~291/2度范围内的横切角都是可以接受的..交替式齿腹横切进给这种方法沿两个螺纹齿腹交替进给;因此它采用刀片的两个齿腹来形成螺纹..这种方法可以保证较长的刀具寿命;因为使用的是刀片端部两侧..但也可能导致切屑流问题-这种问题可能影响表面粗糙度和刀具寿命..这种方法通常只用于大节距和英制梯形及斜四边形螺纹等..间隙角补偿某些螺纹加工刀片和刀夹系统具有这样的能力;即通过改变螺旋角而按切削的方向精确地倾斜刀片..这种特征可以加工出较高质量的螺纹;因为它可以防止刀片摩擦螺纹的齿腹..它还可以提供较长的刀具寿命;因为切削力均匀分布在切削刃的整个长度上..没有按这种方式倾斜的刀片-让切削刃与工件中心线平行的方式-会在刀片的前刃和后刃下形成不相等的间隙角..参见图5特别是对比较粗的节距;这种不等性可能会引起齿腹发生摩擦..可调式系统允许通过刀夹头定位一般采用填隙片而倾斜刀片的角度..精确调节会获得类似的前刃和后刃角;确保刃的磨损进展均匀..微型化和专用化现在市面上已经推出对直径大约为0.3英寸的孔进行内螺纹车削加工的转位刀片式刀具..通过车削方式将这样的小孔加工出螺纹具有很多优点..所加工的螺纹质量通常比较高;刀片结构允许切屑流出孔而很少损伤螺纹;且可以对刀片进行分度;因此刀具成本较低..用于这些应用场合的硬质合金的等级一般是允许以较低的表面速度进行加工的那种..对于在小孔中进行内螺纹加工;机床方面所存在的限制一般是低表面速度以外的其他问题..人们取得的技术进步已经扩大了螺纹车刀的应用范围;而进入到小孔内螺纹车削加工就是其中一个实例..但是;尽管扩大了标准刀具的应用范围;制造厂家仍然要遇到特定的问题;这就为定制刀具的存在创造了空间..参见图6与刀具供应商合作开发的特殊刀具是在针对特定作业而搜索正确螺纹加工刀具时不可忽略的一种选项..谈谈操作数控机床的经验数控车床基本坐标关系及几种对刀方法比较在数控车床的操作与编程过程中;弄清楚基本坐标关系和对刀原理是两个非常重要的环节..这对我们更好地理解机床的加工原理;以及在处理加工过程中修改尺寸偏差有很大的帮助..一、基本坐标关系一般来讲;通常使用的有两个坐标系:一个是机械坐标系;另外一个是工件坐标系;也叫做程序坐标系..两者之间的关系可用图1来表示..图1 机械坐标系与工件坐标系的关系在机床的机械坐标系中设有一个固定的参考点假设为X;Z..这个参考点的作用主要是用来给机床本身一个定位..因为每次开机后无论刀架停留在哪个位置;系统都把当前位置设定为0;0;这样势必造成基准的不统一;所以每次开机的第一步操作为参考点回归有的称为回零点;也就是通过确定X;Z来确定原点0;0..为了计算和编程方便;我们通常将程序原点设定在工件右端面的回转中心上;尽量使编程基准与设计、装配基准重合..机械坐标系是机床唯一的基准;所以必须要弄清楚程序原点在机械坐标系中的位置..这通常在接下来的对刀过程中完成..二、对刀方法1. 试切法对刀试切法对刀是实际中应用的最多的一种对刀方法..下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例;来介绍具体操作方法..工件和刀具装夹完毕;驱动主轴旋转;移动刀架至工件试切一段外圆..然后保持X坐标不变移动刀具远离工件;测量出该段外圆的直径..将其输入到相应的刀具参数中的刀长中;系统会自动用刀具当前X坐标减去试切出的那段外圆直径;即得到工件坐标系X原点的位置..再移动刀具试切工件一端端面;在相应刀具参数中的刀宽中输入Z0;系统会自动将此时刀具的Z坐标减去刚才输入的数值;即得工件坐标系Z原点的位置;参见图2..例如;2#刀刀架在X为150.0车出的外圆直径为25.0;那么使用该把刀具切削时的程序原点X值为150.0-25.0=125.0;刀架在Z为180.0时切的端面为0;那么使用该把刀具切削时的程序原点Z值为180.0-0=180.0..分别将125.0;180.0存入到2#刀具参数刀长中的X与Z中;在程序中使用T0202就可以成功建立出工件坐标系..事实上;找工件原点在机械坐标系中的位置并不是求该点的实际位置;而是找刀尖点到达0;0时刀架的位置..采用这种方法对刀一般不使用标准刀;在加工之前需要将所要用刀的刀具全部都对好..图2试切法对刀2. 对刀仪自动对刀现在很多车床上都装备了对刀仪;使用对刀仪对刀可免去测量时产生的误差;大大提高对刀精度..由于使用对刀仪可以自动计算各把刀的刀长与刀宽的差值;并将其存入系统中;在加工另外的零件的时候就只需要对标准刀;这样就大大节约了时间..需要注意的是使用对刀仪对刀一般都设有标准刀具;在对刀的时候先对标准刀..下面以采用FANUC 0T系统的倭国WASINO LJ-10MC车削中心为例介绍对刀仪工作原理及使用方法..对刀仪工作原理如图3所示..刀尖随刀架向已设定好位置的对刀仪位置检测点移动并与之接触;直到内部电路接通发出电信号通常我们可以听到嘀嘀声并且有指示灯显示..在2#刀尖接触到a点时将刀具所在点的X坐标存入到图2所示G02的X中;将刀尖接触到b点时刀具所在点的Z坐标存入到G02的Z中..其他刀具的对刀按照相同的方法操作..图3 对刀仪工作原理事实上;在上一步的操作中只对好了X的零点以及该刀具相对于标准刀在X方向与Z方向的差值;在更换工件加工时再对Z零点即可..由于对刀仪在机械坐标系中的位置总是一定的;所以在更换工件后;只需要用标准刀对Z坐标原点就可以了..操作时提起Z轴功能测量按钮“Z-axis shift measure”;CRT出现如图4所示的界面..图4 对刀数值界面手动移动刀架的X、Z轴;使标准刀具接近工件Z向的右端面;试切工件端面;按下“POSITION RECORDER”按钮;系统会自动记录刀具切削点在工件坐标系中Z向的位置;并将其他刀具与标准刀在Z方向的差值与这个值相加从而得到相应刀具的Z原点;其数值显示在WORK SHIFT工作画面上;如图5所示..图5 WORK SHIFT工作界面三、小结以上根据笔者在多年的数控机床编程与操作中积累的一些经验与体会;介绍了在数控车床操作中容易犯错的几个地方;所述内容皆经过笔者的实际操作验证..Fanuc系统数控车床对刀及编程指令介绍Fanuc系统数控车床设置工件零点常用方法1. 直接用刀具试切对刀1.用外园车刀先试车一外园;记住当前X坐标;测量外园直径后;用X坐标减外园直径;所的值输入offset界面的几何形状X值里..2.用外园车刀先试车一外园端面;记住当前Z坐标;输入offset界面的几何形状Z值里..2. 用G50设置工件零点1.用外园车刀先试车一外园;测量外园直径后;把刀沿Z轴正方向退点;切端面到中心..2.选择MDI方式;输入G50 X0 Z0;启动START键;把当前点设为零点..3.选择MDI方式;输入G0 X150 Z150 ;使刀具离开工件进刀加工..4.这时程序开头:G50 X150 Z150 ……...5.注意:用G50 X150 Z150;你起点和终点必须一致即X150 Z150;这样才能保证重复加工不乱刀..6.如用第二参考点G30;即能保证重复加工不乱刀;这时程序开头 G30 U0 W0 G50 X150 Z1507.在FANUC系统里;第二参考点的位置在参数里设置;在Yhcnc软件里;按鼠标右键出现对话框;按鼠标左键确认即可..3. 用工件移设置工件零点1.在FANUC0-TD系统的Offset里;有一工件移界面;可输入零点偏移值..2.用外园车刀先试切工件端面;这时Z坐标的位置如:Z200;直接输入到偏移值里..3.选择“Ref”回参考点方式;按X、Z轴回参考点;这时工件零点坐标系即建立..4.注意:这个零点一直保持;只有从新设置偏移值Z0;才清除..4. 用G54-G59设置工件零点1.用外园车刀先试车一外园;测量外园直径后;把刀沿Z轴正方向退点;切端面到中心..2.把当前的X和Z轴坐标直接输入到G54----G59里;程序直接调用如:G54X50Z50……..3.注意:可用G53指令清除G54-----G59工件坐标系..Fanuc系统数控车床常用固定循环G70-G80祥解1. 外园粗车固定循环G71如果在下图用程序决定A至A’至B的精加工形状;用△d切削深度车掉指定的区域;留精加工预留量△u/2及△w..G71U△dReG71PnsQnfU△uW△wFfSsTtNns…………….F__从序号ns至nf的程序段;指定A及B间的移动指令...S__.T__Nnf……△d:切削深度半径指定不指定正负符号..切削方向依照AA’的方向决定;在另一个值指定前不会改变..FANUC系统参数NO.0717指定..e:退刀行程本指定是状态指定;在另一个值指定前不会改变..FANUC系统参数NO.0718指定..ns:精加工形状程序的第一个段号..nf:精加工形状程序的最后一个段号..△u:X方向精加工预留量的距离及方向..直径/半径△w: Z方向精加工预留量的距离及方向..2. 端面车削固定循环G72如下图所示;除了是平行于X轴外;本循环与G71相同..G72W△dReG72PnsQnfU△uW△wFfSsTt△t;e;ns;nf; △u; △w;f;s及t的含义与G71相同..3. 成型加工复式循环G73本功能用于重复切削一个逐渐变换的固定形式;用本循环;可有效的切削一个用粗加工段造或铸造等方式已经加工成型的工件.程序指令的形式如下:A A’ BG73U△iW△kRdG73PnsQnfU△uW△wFfSsTtNns…………………沿A A’ B的程序段号Nnf………△i:X轴方向退刀距离半径指定; FANUC系统参数NO.0719指定..△k: Z轴方向退刀距离半径指定; FANUC系统参数NO.0720指定..d:分割次数这个值与粗加工重复次数相同;FANUC系统参数NO.0719指定..ns: 精加工形状程序的第一个段号..nf:精加工形状程序的最后一个段号..△u:X方向精加工预留量的距离及方向..直径/半径△w: Z方向精加工预留量的距离及方向..4. 精加工循环G70用G71、G72或G73粗车削后;G70精车削..G70 PnsQnfns:精加工形状程序的第一个段号..nf:精加工形状程序的最后一个段号..5. 端面啄式钻孔循环G74如下图所示在本循环可处理断削;如果省略XU及P;结果只在Z轴操作;用于钻孔..G74 Re;G74 Xu Zw P△i Q△k R△d Ffe:后退量本指定是状态指定;在另一个值指定前不会改变..FANUC系统参数NO.0722指定..x:B点的X坐标u:从a至b增量z:c点的Z坐标w:从A至C增量△i:X方向的移动量△k:Z方向的移动量△d:在切削底部的刀具退刀量..△d的符号一定是+..但是;如果XU及△I省略;可用所要的正负符号指定刀具退刀量..f:进给率:6. 外经/内径啄式钻孔循环G75以下指令操作如下图所示;除X用Z代替外与G74相同;在本循环可处理断削;可在X轴割槽及X轴啄式钻孔..G75 Re;G75 Xu Zw P△i Q△k R△d Ff7. 螺纹切削循环G76G76 Pmra Q△dmin RdG76 Xu Zw Ri Pk Q△d Ffm:精加工重复次数1至99本指定是状态指定;在另一个值指定前不会改变..FANUC系统参数NO.0723指定..r:到角量本指定是状态指定;在另一个值指定前不会改变..FANUC系统参数NO.0109指定..a:刀尖角度:可选择80度、60度、55度、30度、29度、0度;用2位数指定..本指定是状态指定;在另一个值指定前不会改变..FANUC系统参数NO.0724指定..如:P02/m、12/r、60/a △dmin:最小切削深度本指定是状态指定;在另一个值指定前不会改变..FANUC系统参数NO.0726指定..i:螺纹部分的半径差如果i=0;可作一般直线螺纹切削..k:螺纹高度这个值在X轴方向用半径值指定..△d:第一次的切削深度半径值l:螺纹导程与G32Fanuc系统数控铣床常用固定循环祥解1. 高速啄式深孔钻循环G73指令格式:G73 X---Y---Z---R---Q---P---F---K--- 加工方式:进给孔底快速退刀2. 攻左牙循环G74指令格式:G74 X---Y---Z---R---Q---P---F---K--- 加工方式:进给孔底主轴暂停正转快速退刀3. 精镗孔循环G76指令格式:G76 X---Y---Z---R---Q---P---F---K--- 加工方式:进给孔底主轴定位停止快速退刀4. 钻空循环;点钻空循环G81指令格式:G81 X---Y---Z---R---F---K---加工方式:进给孔底快速退刀5. 钻孔循环;反镗孔循环G82指令格式:G82 X---Y---Z---R---F---K---加工方式:进给孔底快速退刀6. 啄式钻空循环G83指令格式:G83 X---Y---Z---Q---R---F---加工方式:中间进给孔底快速退刀7. 攻牙循环G84指令格式:G84 X---Y---Z---R---P---F---K---加工方式:进给孔底主轴反转快速退刀8. 镗孔循环G85指令格式:G85 X---Y---Z---R---F---K---加工方式:中间进给孔底快速退刀9. 镗孔循环G86指令格式:G86 X---Y---Z---R---F---K---加工方式:进给孔底主轴停止快速退刀10. 反镗孔循环G87指令格式:G87 X---Y---Z---R---F---K---加工方式:进给孔底主轴正转快速退刀11. 镗孔循环G88指令格式:G88 X---Y---Z---R---F---K---加工方式:进给孔底暂停; 主轴停止快速退刀12. 镗孔循环G89指令格式:G89 X---Y---Z---R---F---K---加工方式:进给孔底暂停快速退刀13. 取消固定循环G80指令格式:G80。

车削零件数控加工工艺编制

车削零件数控加工工艺编制

毕业设计论文题目:车削零件数控加工工艺编制系别专业班级姓名学号指导教师目录前言 (3)摘要 (4)第一章数控加工慨述 (6)一、数控车床原理介绍及发展 (6)二、数控车床加工的优越性 (6)第二章数控加工零件图纸 (8)一、零件图纸 (8)二、图纸分析 (8)第三章制定工艺方案 (9)一、确定加工内容及加工设备 (9)二、工序与装夹方式 (9)三、进给路线的确定 (11)四、切削用量的选择 (14)五、刀具的选择 (16)第四章编制数控加工程序 (18)一、零件基点、节点的计算 (18)二、编程误差及其控制 (18)三、加工程序的编制 (19)第五章零件的加工 (23)一、零件加工模拟运行 (23)二、零件加工 (23)三、精度检查 (23)小结 (24)致谢词 (25)参考文献 (26)前言本次毕业设计是学院为了提高学生的数控技术及相关技能等综合运用能力,通过毕业设计和完成毕业论文也是学院对毕业生生毕业资格的审核条件,同时也为我们以后的工作打下理论基础,本次设计是在指导老师倪祥明老师精心指导下和同学的共同协作下完成的。

数控技术是数字程序控制数控机械实现自动工作的技术。

它广泛用于机械制造和自动化领域,较好地解决多品种、小批量和复杂零件加工以及生产过程自动化问题。

随着科技的迅猛发展,自动控制技术已广泛地应用于数控机床、机器人以及各类机电一体化设备上。

同时,社会经济的飞速发展,对数控装置和数控机械要求在理论和应用方面有迅速的发展和提高。

数控加工和编程毕业设计是数控专业教学体系中构成数控加工技术专业知识及专业技能的重要组成部分,通过毕业设计使我们学会了对相关学科中的基本理论、基本知识进行综合运用,同时使对本专业有较完整的、系统的认识,从而达到巩固、扩大、深化所学知识的目的,培养和提高了综合分析问题和解决问题的能力,以及培养了科学的研究和创造能力。

数控技术不断的发展,数控技术很快会普极中国工业基地,成为工业发展的标志,数控技术的成熟也是当代科技发展的标志,所以数控技术也是国家经济的体现,中国经济正加快向新兴工业化道路发展,制造业已成为国民经济的支柱产业。

数控机床的参数调试

数控机床的参数调试

表7-3-3 发那科Oi-D参数号分类
起始参数号
功能
0000 0100
输入输出信号 参数 显示编辑参数
1000
编程参数
1200
螺补参数
1300
刀具补偿参数
1400
固定循环参数
1600
宏程序参数
1800
跳步功能参数
起始参数号 3000
3100 3400 3600 5000 5100 6000 6200
在参数设定支援画面上,将光标指向要进行初始化的项目。按下软键【操作】,显 示如下软键【初始化】,如图7-3-1。
03 数控机床的参数调试
图7-3-1 发那科Oi-D数控系统参数设定支 援画面
按下软键[初始化]。软键按如下方式切换,显示警告信息“是否设定初始值?”, 按下软键[执行],设定所选项目的标准值。通过本操作,自动地将该项目所包含的参数 设定为标准值。不希望设定标准值时,按下软键[取消],即可中止设定。另外,没有提 供标准值的参数,不会被变更。
03 数控机床的参数调试 (2)按照用途分类
用途 分类 路径 型
用途
与路径相 关的设定
轴 型
主轴 型
与控制轴 相关的设 定 与主轴相 关的设定
表7-3-2 发那科Oi-D数控系统参数用途分类
参数举例
03 数控机床的参数调试 (3)根据使用目的,参数号分类
功能 设定参数
输入/输出通道参数 轴控制参数 坐标系参数 软限位检测参数 速度参数 加减速参数 伺服参数
(5)主轴监视画面
主要是进行主轴状态的监视,如主轴报警、运行方式、速度、负载表等。按【 SYSTEM】键后按右扩展键出现【SP设定】软键,按下【SP监测】软键出现图7-3-7画 面。

木质材料CNC数控加工刀具的选择与切削用量确定

木质材料CNC数控加工刀具的选择与切削用量确定

李黎:博士,北京林业大学教授木质材料CNC 数控加工刀具的选择与切削用量确定李黎(北京林业大学材料科学与技术学院,北京100083)摘要:根据木材数控加工的特点,铣削加工要素,材料性质等几方面介绍了木质材料CNC 数控加工刀具技术参数、角度参数、结构形式、切削用量的选用原则和方法。

关键词:木质材料;CNC 数控加工;刀具中图分类号:TS 643文献标识码:A文章编号:2095-2953(2012)02-0014-06Wood Material CNC Cutting Tool Selection and CuttingSpecification DeterminationLI Li(College of Materials Science and Technology,Beijing Forestry University,Beijing 100083,China )Abstract :The s e le ction principle a nd m e tho d fo r the te chnica l pa ra m e te rs ,a ngle pa ra m e te rs ,s tructura l fo rm s and cutting s pecifica tio n o f w o o d m a te ria l CNC cutting to o ls a re introduce d in te rm s o f the cha racte ris tics o f wo o d C NC pro ce s s ing ,m illingele m e ntsand m a te ria l na ture .Key words :wo o d m a te ria l;CNC m a chining ;to ol在数控机床加工中,数控刀具的选择和切削用量的确定是数控加工工艺的重要内容,其不仅影响数控机床的加工效率,而且还直接影响加工质量。

Cnc机床主轴拉力及点检表

Cnc机床主轴拉力及点检表

Cnc机床主轴拉力及点检表主轴是机床中的核心部件,通过与主轴相连接的丝杠、刀架、摇臂等部件来实现刀具的切削运动。

机床主轴通常有以下三种形式:直线运动式、滚珠丝杠式。

直线运动式:工件在直线运动过程中产生的切削力和轴向运动产生的切削力相等和方向相反的作用力作用在工件上,使之在一定方向上发生垂直移动。

中心运动式:由工件中心点受力矩和滑动面受力矩作用于滑动面所产生的位移量所组成。

工件在中心点产生垂直位移时,受到固定点位移力与固定点旋转方向相反的作用力所产生的垂直位移所组成的一个夹角,该夹角称为中心点夹角或是叫做主轴中心角。

通常使用在机械制造中用来测量径向或轴向位置和曲面位置值的仪器设备中。

Cnc机床主轴拉力和点检表就使用在这类仪器中的产品的不同部位:它可用来测量数控机床的主轴轴向位置值。

这类仪器一般采用钢制背垫和夹具固定。

用来测量轴承座和主轴轴向位置及曲面位置值,用以校正或调整机床主轴轴承座和主轴轴向位置、曲面位置及轴向方向值等参数。

1、设备是根据用户的需求而设计,仪器功能齐全,精度高。

可测量主轴轴向、圆周和方向的位移,同时可测量轴向向数。

使用方便、准确,精度高,误差小。

能用来检测数控机床的主轴上的曲面或圆周位置。

具有多种型号,从500 mm-2000 mm 可选,用户可根据自己的需要进行选择、加工。

具有较高的性价比。

有精密滚珠丝杠用于滚珠丝杠主轴、滑块、刀架下部等表面的粗糙度。

有旋转刀架用于刀架上切削运动、刀架下部也可以作旋转运动。

有用于各种轴上、轴下、直线轴及曲率等处的转速、位移量。

有用于多面体、多轴向速度变化处的转速、位移量,具有多种选择、加工。

在数控机床上可以作直线和圆周方向的轴与面位置或转动的速度调整值,具有非常高的精度和实用性。

2、仪器外形美观大方,且设备可以调节,方便使用。

可以根据不同的要求来制作,满足不同的测量需求。

也可以直接将测试结果输入电脑后,再由电脑自动计算出来。

此项功能使仪器更易与其它仪器配套使用,并且大大降低了测量成本,提高了测量效率。

CNC机床加工中的加工速度与表面粗糙度

CNC机床加工中的加工速度与表面粗糙度

CNC机床加工中的加工速度与表面粗糙度CNC(Computer Numerical Control,计算机数控)机床在现代制造业中起着至关重要的作用。

它通过计算机程序控制机器的移动和操作,实现了高效、精确的零部件加工。

在CNC机床加工过程中,加工速度与表面粗糙度是两个关键参数,它们直接影响着加工质量和效率。

本文将探讨CNC机床加工中加工速度与表面粗糙度之间的关系,并分析如何优化加工过程以获得更好的加工结果。

一. 加工速度对表面粗糙度的影响CNC机床加工速度是指工件在刀具与工件之间的相对速度,通常以每分钟刀具移动距离来衡量。

加工速度的选择对表面粗糙度有直接的影响。

1. 速度过快当加工速度过快时,切削过程中容易产生较大的切削力和热量,这会导致刀具磨损加剧、工件变形以及表面粗糙度增加。

特别是对于切削性能较差的材料,提高加工速度可能会导致刀具立即磨损甚至断裂,从而降低加工质量。

2. 速度过慢相反,当加工速度过慢时,切削力和热量相对较小,但切削过程中可能会出现副切削和系统刚度误差的影响,导致表面粗糙度增加。

二. 加工速度与切削参数的关系为了平衡加工速度与表面粗糙度的关系,需要综合考虑多个切削参数。

1. 切削速度切削速度是刀具在切削工件时的线速度,通常以米/分钟(m/min)作为单位。

切削速度的选择应根据具体材料和刀具来确定,过高的切削速度容易导致表面烧伤和磨损,而过低的切削速度则可能导致表面粗糙度增加。

2. 进给速度进给速度是刀具在工件上的移动速度,通常以毫米/转(mm/rev)或毫米/分钟(mm/min)作为单位。

进给速度的选择应根据切削深度、刀具直径和材料硬度等因素来确定。

适当的进给速度可以降低表面粗糙度,但过高的进给速度可能导致切削力过大。

3. 切削深度切削深度是指刀具在一次切削中与工件接触的最大距离,通常以毫米(mm)作为单位。

切削深度的选择应考虑到机床的刚度和刀具的性能。

较大的切削深度可能会导致振动和刚度变形,从而使表面粗糙度增加。

CNC加工时间

CNC加工时间

在编程时,编程人员必须确定每道工序的切削用量。

选择切削用量时,一定要充分考虑影响切削的各种因素,正确的选择切削条件,合理地确定切削用量,可有效地提高机械加工质量和产量。

影响切削条件的因素有:机床、工具、刀具及工件的刚性;切削速度、切削深度、切削进给率;工件精度及表面粗糙度;刀具预期寿命及最大生产率;切削液的种类、冷却方式;工件材料的硬度及热处理状况;工件数量;机床的寿命。

上述诸因素中以切削速度、切削深度、切削进给率为主要因素。

切削速度快慢直接影响切削效率。

若切削速度过小,则切削时间会加长,刀具无法发挥其功能;若切削速度太快,虽然可以缩短切削时间,但是刀具容易产生高热,影响刀具的寿命。

决定切削速度的因素很多,概括起来有:(1)刀具材料。

刀具材料不同,允许的最高切削速度也不同。

高速钢刀具耐高温切削速度不到50m/min,碳化物刀具耐高温切削速度可达100m/min以上,陶瓷刀具的耐高温切削速度可高达1000m/min。

(2)工件材料。

工件材料硬度高低会影响刀具切削速度,同一刀具加工硬材料时切削速度应降低,而加工较软材料时,切削速度可以提高。

(3)刀具寿命。

刀具使用时间(寿命)要求长,则应采用较低的切削速度。

反之,可采用较高的切削速度。

(4)切削深度与进刀量。

切削深度与进刀量大,切削抗力也大,切削热会增加,故切削速度应降低。

(5)刀具的形状。

刀具的形状、角度的大小、刃口的锋利程度都会影响切削速度的选取。

(6)冷却液使用。

机床刚性好、精度高可提高切削速度;反之,则需降低切削速度。

上述影响切削速度的诸因素中,刀具材质的影响最为主要。

切削深度主要受机床刚度的制约,在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。

这样可以减少走刀次数。

主轴转速要根据机床和刀具允许的切削速度来确定。

可以用计算法或查表法来选取。

进给量f(mm/r)或进给速度F(mm/min)要根据零件的加工精度、表面粗糙度、刀具和工件材料来选。

数控车床零件图15加工及工艺分析

数控车床零件图15加工及工艺分析

数控车床零件图(15)加工及工艺分析作者:李沂摘要:当前数控技术的发展速度很快,作为一个机加工行业的人来说做好一份设计是非常重要的。

根据零件图纸的要求,从材料的选择,刀具的选用,装夹方案的确定,加工路线的设计,数值的计算,加工参数的设定,程序的编写,仿真加工,最后加工出符合零件图纸尺寸要求和形状要求的产品。

关键字:数控 , 加工 ,工艺分析 , 刀具一、课程设计的目的课程设计是在学完本专业所设的相关课程,并进行生产实习的基础上检查学生所学的基础理论知识与实际生产经验相结合的能力。

它要求学生较全面地综合运用本专业及其有关课程的理论和实践知识,进行相应科目的课程设计。

本课程设计是数控加工工艺与编程课程设计,具体设计内容为:根据给定工件图纸,编写加工工艺规程,并说明工艺装备仪器和各项参数的计算和选取方法。

其设计目的在于:1、培养学生运用机械制造工艺学与所涉及的有关课程(机械制造基础与实践、机械设计基础、互换性与检测技术、机械制图、AutoCAD、数控机床等)的知识,结合生产实习中掌握的实践技能,独立地分析和解决工艺问题,编写工艺规程的能力。

2、培养学生熟悉并运用有关手册、规范、图表等技术资料的能力。

3、进一步巩固和加深学生识图、计算机绘图、参数计算、数控编程和编写技术文件等基本技能。

二、数控机床故障诊断与维修随着电子技术和自动化技术的发展,数控技术的应用越来越广泛。

以微处理器为基础,以大规模集成电路为标志的数控设备,已在我国批量生产、大量引进和推广应用,它们给机械制造业的发展创造了条件,并带来很大的效益。

但同时,由于它们的先进性、复杂性和智能化高的特点,在维修理论、技术和手段上都发生了飞跃的变化。

数控维修技术不仅是保障正常运行的前提,对数控技术的发展和完善也起到了巨大的推动作用,因此,目前它已经成为一门专门的学科。

另外任何一台数控设备都是一种过程控制设备,这就要求它在实时控制的每一时刻都准确无误地工作。

机械加工工艺手册切削速度表

机械加工工艺手册切削速度表

机械加工工艺手册切削速度表
机械加工工艺手册中的切削速度表是用来指导机械加工过程中
切削速度的选择和调整。

切削速度表通常包括不同材料和刀具类型
的推荐切削速度范围,以确保在加工过程中获得最佳的切削效果和
工件质量。

首先,切削速度表会列出各种常见材料(如钢、铝、铜等)的
推荐切削速度范围。

这些推荐数值是根据材料的硬度、塑性、热导
率等特性来确定的,以确保在加工过程中既能够有效地去除材料,
又不会造成刀具磨损过快或者工件表面质量不佳的问题。

其次,切削速度表也会考虑不同类型的刀具,比如钻头、铣刀、车刀等,针对不同刀具的材料、涂层、刃数等特点,给出相应的推
荐切削速度范围。

这些推荐数值能够帮助操作人员根据具体的加工
任务选择合适的刀具和切削参数,以提高加工效率和工件精度。

另外,切削速度表也可能会考虑到不同加工方式(如车削、铣削、钻削等)对切削速度的影响,因为不同的加工方式会对刀具和
工件产生不同的切削力和热量,需要相应地调整切削速度以获得最
佳的加工效果。

总之,切削速度表是机械加工过程中的重要参考依据,能够帮
助操作人员根据材料、刀具、加工方式等因素选择合适的切削速度,从而确保加工质量和效率。

操作人员在使用切削速度表时应该根据
实际情况综合考虑各种因素,灵活调整切削参数,以满足具体加工
任务的要求。

6140数控车床参数

6140数控车床参数

6140数控车床参数数控车床(CNC车床)是一种通过计算机数控系统驱动工作台和刀架进行半自动加工的机床。

下面将对数控车床常见的一些参数进行详细介绍。

1.加工能力数控车床的加工能力是指其加工零件的最大尺寸和最大重量。

一般来说,数控车床的最大加工直径和最大加工长度是两个关键参数。

最大加工直径决定了数控车床能够加工零件的最大尺寸,而最大加工长度则决定了数控车床能够加工零件的最大长度。

此外,数控车床还有最大工件重量的限制,这是由其主轴的承载能力决定的。

2.主轴转速范围主轴转速范围是指数控车床主轴的最小转速和最大转速之间的范围。

主轴转速是控制加工质量和加工效率的重要因素之一、一般来说,数控车床的主轴转速范围越宽,就能够适应更多种类的加工需求。

3.主轴功率主轴功率是指数控车床主轴的功率大小。

主轴功率决定了数控车床可以承载的切削负荷大小。

一般来说,主轴功率越大,数控车床就能够加工更硬的材料,或者进行更重的切削加工。

4.伺服系统伺服系统是数控车床的核心控制系统之一,它负责驱动工作台、刀架等组件进行运动。

数控车床的伺服系统通常包括伺服电机、伺服放大器、编码器等组成。

伺服系统的性能直接影响着数控车床的精度和稳定性。

5.控制系统控制系统是数控车床的另一个核心控制系统,它负责接收操作员的指令,将其转化为机床运动或切削参数等信号,并控制数控车床按照设定的路径进行加工。

控制系统通常由数控设备、计算机和控制软件组成。

6.刀架形式数控车床的刀架形式决定了其可用的切削工具类型和数量。

常见的刀架形式有东西刀架和上下刀架两种。

东西刀架可以同时安装多个刀具,适用于多种切削工艺。

而上下刀架则只能安装一个刀具,适用于一些简单的加工工艺。

7.供给方式供给方式是指数控车床的工作台移动方式。

常见的供给方式有车床床身滑块供给和龙门式供给两种。

车床床身滑块供给适用于小型和中型数控车床,龙门式供给适用于大型数控车床。

8.加工精度加工精度是指数控车床在加工过程中能够达到的尺寸精度和形状精度。

FANUC CNC参数指南

FANUC CNC参数指南

FANUC 16系统参数系统参数不正确也会使系统报警。

另外,工作中常常遇到工作台不能回到零点、位置显示值不对或是用MDI键盘不能输入刀偏量等数值,这些故障往往和参数值有关,因此维修时若确认PMC信号或连线无误,应检查有关参数。

一.16系统类参数1.SETTING 参数参数号符号意义16-T 16-M0/0 TVC 代码竖向校验O O0/1 ISO EIA/ISO代码O O0/2 INI MDI方式公/英制O O0/5 SEQ 自动加顺序号O O2/0 RDG 远程诊断O O3216 自动加程序段号时程序段号的间隔O O2.RS232C口参数20 I/O通道(接口板):0,1: 主CPU板JD5A2: 主CPU板JD5B3: 远程缓冲JD5C或选择板1的JD6A(RS-422)5: Data Server10 :DNC1/DNC2接口O O100/3 NCR 程序段结束的输出码O O100/5 ND3 DNC运行时:读一段/读至缓冲器满O OI/O 通道0的参数:101/0 SB2 停止位数O O101/3 ASII 数据输入代码:ASCII或EIA/ISO O O101/7 NFD 数据输出时数据后的同步孔的输出O O102 输入输出设备号:0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3″软盘驱动器)O O103 波特率:10:480011:960012:19200 O OI/O 通道1的参数:111/0 SB2 停止位数O O111/3 ASI 数据输入代码:ASCII或EIA/ISO O O111/7 NFD 数据输出时数据后的同步孔的输出O O112 输入输出设备号:0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3″软盘驱动器)O O113 波特率:10:480011:960012:19200 O O其它通道参数请见参数说明书。

3.进给伺服控制参数1001/0 INM 公/英制丝杠O O1002/2 SFD 是否移动参考点O O1002/3 AZR 未回参考点时是否报警(#90号)O 1006/0,1 ROT,ROS 设定回转轴和回转方式O O 1006/3 DIA 指定直径/半径值编程O1006/5 ZMI 回参考点方向O O1007/3 RAA 回转轴的转向(与1008/1:RAB合用) O O 1008/0 ROA 回转轴的循环功能O O1008/1 RAB 绝对回转指令时,是否近距回转O O 1008/2 RRL 相对回转指令时是否规算O O1260 回转轴一转的回转量O O1010 CNC的控制轴数(不包括PMC轴) O O1020 各轴的编程轴名O O1022 基本坐标系的轴指定O O1023 各轴的伺服轴号O O1410 空运行速度O O1420 快速移动(G00)速度O O1421 快速移动倍率的低速(Fo) O O1422 最高进给速度允许值(所有轴一样) O O1423 最高进给速度允许值(各轴分别设) O O1424 手动快速移动速度O O1425 回参考点的慢速FL O O1620 快速移动G00时直线加减速时间常数O O 1622 切削进给时指数加减速时间常数O O1624 JOG方式的指数加减速时间常数O O1626 螺纹切削时的加减速时间常数O1815/1 OPT 用分离型编码器O O1815/5 APC 用绝对位置编码器O O1816/4,5,6 DM1--3 检测倍乘比DMR O O1820 指令倍乘比CMR O O1819/0 FUP 位置跟踪功能生效O O1825 位置环伺服增益O O1826 到位宽度O O1828 运动时的允许位置误差O O1829 停止时的允许位置误差O O1850 参考点的栅格偏移量O O1851 反向间隙补偿量O O1852 快速移动时的反向间隙补偿量O O1800/4 RBK 进给/快移时反向间补量分开O O 4.坐标系参数1201/0 ZPR 手动回零点后自动设定工件坐标系O O 1250 自动设定工件坐标系的坐标值O O1201/2 ZCL 手动回零点后是否取消局部坐标系O O1202/3 RLC 复位时是否取消局部坐标系O O 1240 第一参考点的坐标值O O1241 第二参考点的坐标值O O1242 第三参考点的坐标值O O1243 第四参考点的坐标值O O5.行程限位参数1300/0 OUT 第二行程限位的禁止区(内/外)O O 1320 第一行程限位的正向值O O1322 第一行程限位的反向值O O1323 第二行程限位的正向值O O1324 第二行程限位的反向值O O1325 第三行程限位的正向值O O1321 第三行程限位的反向值O O6.DI/DO参数3003/0 ITL 互锁信号的生效O O3003/2 ITX 各轴互锁信号的生效O O3003/3 DIT 各轴各方向互锁信号的生效O O 3004/5 OTH 超程限位信号的检测O O3010 MF,SF,TF,BF滞后的时间O O3011 FIN宽度O O3017 RST信号的输出时间O O3030 M代码位数O O3031 S 代码位数O O3032 T代码位数O O3033 B代码位数O Ofanuc gm功能代码全解(叁菱也基本通用)最新fanuc数控铣床gm功能代码全解G代码组别功能附注g00 01 快速定位模态g01 直线插补模态g02 顺时针圆弧插补模态g03 逆时针圆弧插补模态g04 00 暂停非模态*g10 数据设置模态g11 数据设置取消模态g17 16 xy平面选择模态g18 zx平面选择(缺省)模态g19 yz平面选择模态g20 06 英制(in) 模态g21 米制(mm) 模态*g22 09 行程检查功能打开模态g23 行程检查功能关闭模态*g25 08 主轴速度波动检查关闭模态g26 主轴速度波动检查打开非模态g27 00 参考点返回检查非模态g28 参考点返回非模态g31 跳步功能非模态*g40 07 刀具半径补尝取消模态g41 刀具半径左补尝模态g42 刀具半径右补尝模态g43 00 刀具长度正补尝模态g44 刀具长度负补尝模态g45 刀具长度补尝取消模态g50 00 工件坐标原点设置,最大主轴速度设置非模态g52局部坐标系设置非模态g53 机床坐标系设置非模态*g54 14 第一工件坐标系设置模态g55 第二工件坐标系设置模态g56 第三工件坐标系设置模态g57 第四工件坐标系设置模态g58 第五工件坐标系设置模态g59 第六工件坐标系设置模态g65 00 宏程序调用非模态g66 12 宏程序模态调用模态*g67 宏程序模态调用取消模态g73 00 高速深孔钻孔循环非模态g74 工旋攻螺纹循环非模态g75 精镗循环非模态*g80 10 钻孔固定循环取消模态g81 钻孔循环g84 攻螺纹循环模态g85 镗孔循环g86 镗孔循环模态g87 背镗循环模态g89 镗孔循环模态g90 01 绝对坐标编程模态g91 增量坐标编程模态g92 工件坐标原点设置模态G5.1功能是在18M加工圆滑刀具轨迹,开关参数Q1/Q0注:1.当机床电源打开或按重置键时,标有"* "符号的g代码被激活,即缺省状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档