第六章 开环聚合
开环聚合
特殊基团
聚合条件
3、环状单体的聚合活性
的聚合物的重复单元与环状单体开裂时的结构相同 聚合条件温和,副反应少 开环聚合可自动保持官能团等物质的量,所得聚合 物的平均相对分子质量高 自由焓的变化较小,其聚合过程的热效应是环张力 的变化造成的 活性中心的稳定性大,不易发生链终止或链转移反 应,具有活性聚合倾向
2、聚合方法比较
4、开环聚合反应机理
开环聚合反应机理较为复杂。大多数环状单体开 环聚合机理与离子聚合机理类似,根据单体种类、 引发剂种类及增长活性中心电荷的不同,可分为阴 离子开环聚合、阳离子开环聚合及配位聚合。除分 析聚合反应的动力学特性外,还通过实验测定出的 产物聚合度与反应时间的变化关系来确定开环聚合 反应机理。
A CH2CH2O n CH2CH2O-M+ + CH2 O CH2 A CH2CH2O CH2CH2O-M+ n+1
CH2
A
CH2CH2OCH2CH2O-M+
环氧化物的阴离子开环聚合具有活性聚合的特点。 如不加入终止剂,则不发生终止反应。 ② 交换反应
在醇存在下,增长链与醇之间可发生交换反应:
R CH2CH2O n O Na + ROH
第二节
逐步开环聚合
己内酰胺的水解聚合反应比较复杂,包括己内酰 胺水解开环反应、通过加成聚合和缩合聚合使分子 链增长的反应、通过酰胺链交换改变分子量分布的 反应、环状低聚物的生成及其它副反应。
开环聚合课件解读
① 链引发
② 链增长
引发反应生成的三级氧鎓离子活性种后,单体分 子上的氧易亲核进攻活性种中的碳原子而加成增长。
③ 链终止
阳离子开环聚合的链终止反应主要为增长链氧鎓 离子与抗衡阴离子结合,如:
四氢呋喃阳离子均聚反应的实质是四氢呋喃 分子中的o原子按SN2反应机理进攻五元环氧鎓离 子增长物种的α位C原子,从而不断生成新的叔 氧鎓离子增长物种。四氢呋喃与仲氧鎓离子之间 的反应路径由两步组成,首先四氢呋喃与仲氧鎓 离子生成中间体,此步为无能垒的放热反应,放 出的能量为128.438kJ/mol,然后中间体经过渡 态生成叔氧鎓离子,该步反应的能垒为182.012 kJ/mol[28]。
第二节 逐步开环聚合
己内酰胺的水解聚合反应比较复杂,包括己内酰 胺水解开环反应、通过加成聚合和缩合聚合使分子 链增长的反应、通过酰胺链交换改变分子量分布的 反应、环状低聚物的生成及其它副反应。 己内酰胺的水解聚合反应: 开环聚合:在有水存在和一定温度条件下,己内 酰胺水解,在酰胺键处开环,形成氨基己酸
2、自由基开环活性的影响因素
•① 环上取代基的类型
当R1和R2为氢和烷基 取代基时,由于引发生成 的链自由基有较大的位阻, 因而难与烯丙基阻聚反应 相竞争,易与自由基偶合 终止。如果R1和R2中有 一个为苯取代基,则由于 开环生成了稳定的苄基自 由基,单体能进行开环聚 合反应。
②环的大小
环大小对自由基开环聚合的影响是由环张力的大 小和环的位阻综合决定的。 环张力: 六元环(很稳定,开环活性小,聚合物 内总会有一定量的未开环结构单元)<四元环(张 力大,开环活性较大)<七元环单体(任何条件下 自由基开环聚合反应完全)。
2、三聚甲醛的阳离子开环聚合
以三聚甲醛为单体,BF3-H2O为催化剂体系,聚 合过程: 链引发
开环聚合-2010
表示分子之间连接的几率,即 生成线型聚合物的几率
分子内连接的几率,即生成环状物 的几率,与分子链两端的距离成反 比
8.2 阴离子开环聚合
阴离子开环聚合的环状单体:环氧化合物、环内酯、 单体 环内酰胺、环脲和环硫醚等。 阴离子开环聚合的引发剂:烷氧基碱金属(NaOR、 引发剂 KOR、LiOR)、氢氧化物、氢化物、萘钠、芴衍生物 碱金属盐及叔胺等。 阴离子开环聚合的两种机理: 机理 • 环氧烷烃:由引发反应产生的阴离子与环状单体的 α-碳原子进行亲核加成而增长。环硫醚和环内酯 等属此类。 • 己内酰胺:阴离子开环聚合具有特殊的机理。
从热力学角度分析,取决于聚合自由焓的变化ΔG, 它与焓变ΔH 及熵变ΔS 值有关。
ΔG =ΔH - T ΔS
• 影响ΔG值的另一因素为熵变ΔS值。ΔS值可用 分子链 ( CH2 )n 两端进行分子内连接和分子间连 接的相对几率之差值来量度。
S2为一常数
Δ S = S2 - S1
S1值随n值增大而减少 ΔS值随n值增大而增大
R为疏水基,X为连接元素,H为活泼氢
起始剂(RXH): • 脂肪醇(ROH)、烷基酚(RC6H4OH) 脂肪酸(RCOOH)、胺类(RNH2) • 聚环氧丙烷:n > 15时为疏水基团
8.2.2 己内酰胺的阴离子开环聚合
己内酰胺是七元环,热力学上,有开环聚合倾向。 产物中线形聚合物和环状单体并存,构成平衡。 动力学上,己内酰胺可用酸、碱或水引发开环。 阳离子(酸)引发:转化率和分子量都不高,最高 分子量可以达到1-2万,工业上较少采用。 逐步聚合:采用水引发,在250-270℃的高温下 聚合,合成尼龙-6纤维。 阴离子(碱)引发:以碱金属或其衍生物引发,引 发由两步组成。
链增长
阳离子开环聚合包括环醚
链碳阳离子与抗衡阴离子间的相互作用:链碳阳离子与抗 衡阴离子的相互作用越弱,两者越易离解,链增长活性越高。
溶剂极性或溶剂化能力:极性大或溶剂化能力强的溶剂有利 于链增长活性中心与抗衡阴离子的离解,有利于聚合反应速率 的增大,如果溶剂极性太弱以致不能使两者离解而形成不具有 链增长活性的共价化合物,则聚合反应不能顺利进行。
6.1 阳 离 子 聚 合 反 应
(3)链增长碳阳离子与与亲核性杂质的链终止
在聚合体系中,若存在亲核性杂质,如水、醇、酸、酐、 酯、醚等,它们虽然可以作为质子或碳阳离子源在Lewis酸 活化下引发阳离子聚合。但它们的含量过高时,则可导致转 移性链终止反应,以水为例:
(2)向反离子链转移 增长链碳阳离子上的β-质子也可向反离子转移,这种转移
方式又称自发终止:
(3)向高分子的链转移反应: 如在苯乙烯以及衍生物的阳离子聚合中,可通过分子内亲
电芳香取代机理发生链转移:
6.1 阳 离 子 聚 合 反 应
(4)向引发剂的链转移,如:
该反应中
既是引发剂又是链转移剂,通常叫做
此外,凡是容易与碳阳离子反应使之失去活性的溶剂都不 宜选做阳离子聚合溶剂。
因此,适合于用做阳离子聚合的溶剂并不多,常用的有 芳香烃(如甲苯、苯、硝基苯)、卤代烃(如CH2Cl2)等。
6.1 阳 离 子 聚 合 反 应
(2)链增长过程中单体单元链接方式: 与自由基聚合相似,通常乙烯基单体阳离子聚合一般得到能使链增
聚合反应。如:
6.1 阳 离 子 聚 合 反 应
两种Lewis酸复合时,酸性较强的起受体作用,从 酸性较弱的一方夺取负离子而产生离子化,如:
(3)碳阳离子引发剂:碳阳离子源/Lewis酸复合引发体系 碳阳离子源是指一些在Lewis酸的活化下能产生碳
第六章 开环聚合(完整资料).doc
【最新整理,下载后即可编辑】第六章 开环聚合 习题参考答案1. 试讨论环状单体环的大小与开环聚合反应倾向的关系。
解答:环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。
以环烷烃为例,由液态的环烷烃(I )转变为无定型的聚合物(c ):聚合过程中的自由能变化:ΔG lc 0 =ΔH lc 0 — T ΔS lc 0≤ 0由表6-1可以看出,除六元环外,其他环烷烃的ΔG lc 0均小于0,开环聚合在热力学上是有利的。
除六元环烷烃外,其他环烷烃的聚合可行性为:三元环,四元环>八元环>五元环,七元环。
对于三元环、四元环来讲,ΔH lc 0是决定ΔG lc 0的主要因素,是开环聚合的主要推动力;而对于五元环、六元环和七元环来说,ΔH lc 0和ΔS lc 0对ΔG lc 0的贡献都重要。
随着环节数的增加,熵变对自由能变化的贡献增大,十二元环以上的环状单体,熵变是开环聚合的主要推动力。
以上仅是通过热力学分析的结果,事实上环烷烃的开环聚合通常难于进行,主要是因为环烷烃的结构中不存在容易被引发物种进攻的键,这是动力学原因。
其他的环状单体如内酰胺、内酯、环醚等杂环单体与环烷烃不同,由于杂原子的存在提供了可接受引发物种亲核或亲电进攻的部位,从而能够进行开环聚合。
2. 氧化丙烯的负离子聚合通常仅能得到低分子量的聚合物,试讨论原因。
解答:在氧化丙烯的负离子开环聚合过程中,由于存在副反应如交换反应、向单体的转移反应等,使得聚合物的相对分子质量降低,仅能得到低聚物。
具体原因如下:(CH 2)n x x n (CH 2)[](l)(c)交换反应 氧化丙烯的负离子开环聚合,常在醇(常采用醇盐相应的醇)的存在下,由醇盐或氢氧化物等引发聚合。
醇的存在,可以溶解引发剂,形成均相体系,同时能明显地提高聚合反应的速率,但醇可与增长链之间发生交换反应:新生成的高分子醇也会与增长链发生类似的交换反应:从而引起分子质量的降低及分子质量分布的变宽。
第六章 开环聚合
8.1 环烷烃开环聚合热力学
➢ 按碳的四面体结构,C-C-C键角为109°28’,而环状化合物的键角
有不同程度的变形,因此产生张力。
三、四元环环张力很大,环不稳定而易开环聚合;
五元环键角接近正常键角,张力较小,环较稳定;
六元环常呈椅式结构,键角变形趋于0,不能开环聚合;
八元环上氢或取代基处于拥挤状态,因斥力而形成跨环张力(构象张
分子量降低。
当前您浏览到是第十八页,共五十页。
8.3 三元环醚的阴离子开环聚合
❖ 向单体链转移时,单体消失速率为:
d[N]
CM
d[M] 1 CM
❖
无终止,聚合物仅由链转移生成,由转移生成的聚合物链的速率
为:
[M]0 -[M]
Xn
[N]
[N]:聚合物链的浓度
两式相除
[M]
0 -[M]
(Xn)0
CH2O Na
8.3 三元环醚的阴离子开环聚合
3)环氧丙烷的阴离子开环聚合机理和动力学
❖ 环氧丙烷结构不对称,可能有2种开环方式,其中β-C(CH2)原子
空间位阻较小,易受亲核进攻。但2种开环方式最终产物的头尾结构
相同。
d[N]
ktr,M[C][M]
dt
❖
环氧乙烷阴离子聚合产物的分子量可达(3~4)
质子引发环醚开环,先形成二级氧鎓离子,再次开环,才形成三级
杨鎓离子,因而产生诱导期。
环氧乙烷却很容易被引发开环,直接形成三级氧鎓离子,从
而缩短或消除诱导期,因此环氧乙烷或丁氧烷用作THF聚合的活
化剂。
O
RXH nEO RX(EO)nH
环氧乙烷的开环
聚合具有阴离子
开 环 聚 合
H (BF3OH)
三聚甲醛
HOCH2OCH2OCH2
OCH2OCH2OH
17
存在聚甲醛—甲醛平衡现象,诱导期相当于产生平衡甲醛的时 间,因此可以通过添加适量甲醛来消除诱导期,减少聚合时间。
OCH2OCH2OCH2 OCH2OCH2
+
CH2O
降低聚甲醛解聚倾向的方法:
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其 从端基开始解聚。称为均聚甲醛。
O C (CH2)5 NH - + + B M
碱金属衍生物
O C (CH2)5 (I) N- M + + BH
22
O C (CH2)5 (I) N - M+ +
O C (CH2)5 NH ý Â
O C (CH2)5 N H C (CH2)5 N M+
O
存在“诱导期”
( II )
二聚体胺负离子(Ⅱ)
1、 环醚(cyclic ether)
简单的环醚中,常见有3、4、5元环可以开环聚合。
3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O O O O
环氧化物的开环聚合
3元环醚即环氧化物(epoxide)
阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
量很高的聚合物。
环氧丙烷用适当的引发剂还可制得光学活性聚合物。
11
环氧化合物的阴离子开环聚合
引发剂:氢氧化物、烷氧基化合物等; 作用:制得重要的聚醚类非离子表面活性剂。
特点:无终止反应,具有活性聚合特征,加入
终止剂(如酚类)使链终止。
第六章开环聚合-1详解
Outline 8.3 三元环醚的阴离子开环聚合
1)环氧乙烷的阴离子开环聚合的机理和动力学
CH3O-Na
A CH2
CH2 O CH2
以醇钠CH3ONa为引发剂为例,环氧化物开环聚合的机理如下:
CH3OH NaOH
CH2 O CH2
H2O
CH2O-B+
A CH2CH2O CH2CH2O-B+
引发
Outline 8.1 环烷烃开环聚合热力学
2)取代基的影响 环上取代基的存在不利于开环聚合
有大侧基的线形大分子不稳定,易解聚成环。环上侧基 间距大(图a),斥力或内能小;线形大分子上侧基间或 侧基与链中原子间距离小(图b和c),斥力或内能相对 较大,不利于开环。
b a c
无取代的和有取代的环烷烃,随着取代程度的增加, (- △H)依次递减,聚合难度递增。
增长
A-B+
+ A CH 2 CH2O- B
活性阴离子聚合机理,即由引发和增长两步基元反应组 成, 难终止。欲结束聚合,须人为地加入草酸、磷酸等质子 酸,使活性链失活。
Outline 8.3 三元环醚的阴离子开环聚合
聚合速率和数均聚合度为:
R Xn
___
d[ M ] kp[C][M] dt [ M ]0 [ M ] [C ]0
Outline
第八章 开环聚合 (Ring opening polymerization)
引言
Outline
定义:环状单体在引发剂或催化剂作用下开环后聚合,形成 线形聚合物的反应。 反应通式
nR X R X n
在环状单体中, R为烷基, X为杂原子O, S, N, P, Si 或-CONH-, -COO-,-CH=CH-等。 开环聚合与缩聚反应相比,无小分子(无副产物)生成;与 烯烃加聚相比,无双键断裂,聚合物与单体到元素组成相同, 是一类独特的聚合反应。可与缩聚、加聚并列。
高分子化学课件-开环聚合
聚碳酸亚丙酯的开环聚合是通过丙二酸和环氧乙烷的反应实现的。在催化剂的作用下,丙二酸和环氧 乙烷发生开环聚合反应,形成聚碳酸亚丙酯。聚碳酸亚丙酯具有优异的耐热性能、阻隔性能和加工性 能,广泛应用于食品包装、电子器件等领域。
聚己内酯的开环聚合
总结词
聚己内酯的开环聚合是一种高效、可控 的聚合方法,可制备出高分子量聚合物 。
能源消耗,实现聚合过程的可持续发展。
循环利用
02
通过循环利用聚合物材料,降低生产成本和资源消耗,同时减
少对环境的污染。
生物降解性
03
研究和发展具有生物降解性的聚合物材料,使其在完成使用寿
命后能够自然降解,减少对环境的长期影响。
05 开环聚合的实例分析
聚乳酸的开环聚合
总结词
聚乳酸的开环聚合是一种环保、可持续的聚合方法,具有广泛的应用前景。
03
02
配位聚合
配位聚合是一种通过过渡金属催化剂将烯烃单体聚合的 方法,具有高活性、高定向性和高立构规整性的特点, 是开环聚合领域的研究热点。
活性聚合技术
活性聚合技术能够实现聚合过程中链自由基的稳定,从 而控制聚合物的分子量和分子量分布,提高聚合物的性 能。
聚合产物的性能改进
功能化聚合物
共聚物
通过在聚合物分子链上引入特定的功 能基团,可以获得具有特殊性能的功 能化聚合物,如导电、发光、磁性等 功能。
合成聚醚类高分子材料
通过开环聚合反应,将环状单体转化为聚醚类高分子材料, 如聚四氟乙烯、聚乙二醇等。这些高分子材料具有优异的耐 化学腐蚀性和生物相容性,广泛应用于制药、电子和化工等 领域。
合成功能性高分子材料
合成导电高分子材料
通过开环聚合反应,将环状单体转化为导电高分子材料,如聚吡咯、聚苯胺等 。这些高分子材料具有良好的导电性能和稳定性,广泛应用于电子器件、传感 器和电池等领域。
开环聚合
(3) 链终止、链转移和活性聚合
环状单体的正离子开环聚合的链终止及 链转移反应甚为复杂,大致存在如下几种 情况:
① 暂时(可逆)终止
离子对活性种暂时地转变为低活性或 无活性的(潜伏的)共价键活性种,两者 处于平衡。
+
O(CH2)4O
,
CF SO
3 3
O(CH2)4OSO2CF3
(3) 链终止、链转移和活性聚合
O
( II )
存在“诱导期”
(2) 环酰胺的负离子开环聚合
O C (CH2)5 N H C (CH2)5 N M+ O C + (CH2)5 NH
O
O C ì ¿ (CH2)5 N O C
C (CH2)5 N H2 O
+
(CH2)5
N- M +
(2) 环酰胺的负离子开环聚合
O C (CH2)5 N - M+ + O C (CH2)5 N C (CH2)5 NH O
3.4自由基型开环聚合
应用价值:
精密浇铸, 固体喷气燃料粘结, 高强度的 粘结及充填
3.5自由基型开环聚合
能否进行自由基开环聚合, 取决于开环的推动力
能否释放三元环的张力
4 正离子开环聚合
大多数杂环化合物如环醚、环缩醛、环硫醚、 环酯、环酰胺、环有机硅氧烷等,都具有亲电 中心,所以可用正离子引发开环聚合。
N- M +
(2) 环酰胺的负离子开环聚合
内酰胺负离子开环聚合有两个与其他聚合明显 不同的特点:
一是活性种特殊,不是自由基、 正离子或负离子,而是N-酰 化了的环酰胺键 二是增长反应不是单体加到活性 链上,而是单体负离子(又称 活化单体)加到活性链上。
开环聚合
这是一个平衡反应,必须真空除去副产物BH, 使平衡向右移动。然后,内酰胺阴离子与单体 反应而开环,生成活泼的胺阴离子(II)。
(2)内酰胺阴离子活性种(I)与另一己内酰胺单 体分子反应,形成活泼的胺阴离子活性种(II):
O C (H2C)5 (I) N M HN O C (CH2)5
慢
O C (H2C)5 N C O (CH2)5 (II) (反应2) H N M
8.4环醚的阳离子开环聚合 (3、4、5元环)
8.4 环醚的阳离子开环聚合机理
有些环醚阳离子开环聚合具有活性聚合的特性,如活 性种寿命长,分子量分布窄,引发比增长速率快,所 谓快引发慢增长。但往往伴有链转移和解聚反应,使 分子量分布变宽;也有终止反应。结合四、五元环醚 阳离子开环聚合,介绍各基元反应的特征。 (1)链引发与活化 有许多种阳离子引发剂可使四、 五元环醚开环聚合。 ①质子酸和Lewis酸。如浓硫酸、三氟乙酸、氟磺酸、 三氟甲基磺酸等强质子酸(H+A-),以及BF3、PF5、 SnCl4、SbCl5等Lewis酸,都可用来引发环醚开环聚合。 • Lewis酸与微量共引发剂(如水、醇等)形成络合物, 而后转变成离子对(B+A-),提供质子或阳离子。有些 Lewis酸自身也能形成离子对。
M O N C (CH2)5 NH
(反应4)
(反应4)
增长反应首先是活性较高的N—酰化内酰胺与内 酰胺阴离子反应,使N—酰化内酰胺开环。
O C (CH2)3 N M O C (CH2)3 N O C (CH2)5 + O C (CH2)5 N O C (CH2)5 NH2
( III )
M N O C (CH2)5
胺阴离子(II)无共轭作用,较活泼,很快夺取 另一单体己内酰胺分子上的一个质子,生成二聚 体( III ),同时再生内酰胺阴离子(I)。
开环聚合课件
要因素。
对五、六元环来说,环张力小,且ΔS对反应也不很有利, 所以ΔG常为正值,难以开环聚合。
对更大的环,ΔS与ΔH的贡献相近。因为ΔH 与ΔS 均为负值,
当温度不高时,ΔG 将为负值,热力学理论上可以聚合。 实际上较少用到九元以上的环状单体。环烷烃在热力学上容 易开环聚合的程度为3、4 > 8 > 7、5。
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其
从端基开始解聚。称为均聚甲醛。
O HOCH2OCH2OCH2 OCH2OCH2OH
(RCO)2O
O O [ CH2O ] n CH2 O CR
RC
2. 与少量二氧五环共聚,在主链中引入 —OCH2CH2— 链 节,使聚甲醛降解直此即停止。称为共聚甲醛。
(3) 链终止、链转移 环状单体的阳离子开环聚合的链终止及链转移反应甚为复杂,
大致存在如下几种情况:
①暂时(可逆)终止
+
O(CH2)4O
,
CF3SO3
O(CH2)4OSO2CF3
②活性种离子对发生内偶合而终止
亲核性的反阴离子向氧鎓离子α-CH2进攻,发生内偶合而
使链终止。如:
CH2
+
_
O
,
MtX n+1
碳原子与杂原子间键的强度等有关。
环烷烃中环张力与环的大小之间的关系:
三元、四元环烷烃的键角偏离正常键角很大,环张力主
要由角张力引起,环张力大而不稳定。 五元和七元环因邻近氢原子的相斥,引起一定的扭转应 力而带有一些构象张力。 八元以上的环有跨环张力,是由环内氢或其他基团处于 拥挤状态所造成的斥力引起的。 十一元以上的环,跨环张力消失。
第六章开环聚合(RingOpeningPolymerization)
(kcal/mole)
27.6 26.4 6.5 0.0 6.4 10.0 12.9 12.0 1.5
(kJ/mole)
115 110 27
0 27 42 54 50 6
Ring Size 3,4
Ring Strain
5,6,7
8
Free Energy G= H -TS
# atoms H S
• 内酯可发生阳离子开环聚合,阴离子开环聚合和配位聚合.
• 内酰胺中已内酰胺研究得最多,工业上生产的尼龙-6即由己
内酰胺单体开环聚合制备的。
• 内酰胺除能够发生阳离子开环聚合和阴离子开环聚合外,还 可进行水解聚合.
• 工业上用水解聚合来生产尼龙-6合成纤维。 • ⒌ 含膦和氮的环状化合物 • 由PCl5和NH3制得的环状二氯化氮化膦的三聚体(NPCl2)3 加热到230℃以上发生开环聚合而形成线型高分子。
撑亚胺。四元环亚胺称为吖丁啶或氮杂环丁烷。
•
环亚胺一般只能发生阳离子开环聚合。
6.1 开环聚合概述
环亚胺要紧有以下两种:
CH2 CH2 N H
吖丙啶
CH2 N H CH2 CH2
吖丁啶
• 环硫化合物中,三元环环硫化合物称为硫化乙烯或噻丙环, 四元环环硫化合物称为噻丁环。
• 三元环硫化合物可发生阳离子开环聚合, 阴离子开环聚合 和配位聚合。按配位聚合可得到立构规整性聚合物。 • 重要的环硫化合物要紧有以下几种。
in Ring
G
[M]e
ext. of pzn @ Equil
3,4 5,6,7
large, neg.
small or zero
small, neg. large, neg. v. low
有机化学 开环聚合
传统酚醛树脂
苯并噁嗪树脂固化过程 中进行开环聚合,不释 放出低分子物,改变了 酚醛树脂传统的工艺路 线,成型工艺简单,原 料广泛。
但 是
3 新型材料的制备
2.1苯并噁嗪的合成和聚合
合成:
酚醛式结构
聚合:
芳香醚式结构
3 新型材料的应用
1986年Gilliom等人发表了以Ti
杂烷丁环为催化剂的降冰片烯 开环易位聚合,所得产物的分 子量分布窄。并跟踪聚合反应 发现开环易位聚合是活性聚合。
烯烃的均相催化歧化,他将这一
反应命名为“烯烃易位反应”。
1
3
2
1976年开环易位聚降冰片
4
至今,利用开环易位聚合除了可以获 得特殊结构的均聚物外,还可以得到 严格交替的共聚物,而且反应速度很
分子结构中实际含有卡 宾部分,活性大,能使低 环张力的单体发生聚合。 同,Grubbs催化剂对极 性官能团、痕量氧和湿 气都不敏感。
烯烃复分解反应式 反应产物保留了 C=C
3 新型材料的制备
环烯烃的开环易位聚合是环烯烃通过链聚合转化成聚合物材料 的过程。聚合的机理主要是依据烯烃的易位反应,金属中间体 和 C=C 之间交换,生成一种含有不饱和 C=C 的聚合物。该过 程区别于典型的烯烃加成反应,如乙烯加成得到聚乙烯。
1967年,Calderon用WCl6Et2OH催化体系由2-戊烯得到了 2-丁烯和3-己烯,成功地实现了
1
开环聚合的分类和机理
——能否开环及聚合能力的大小
环状化合物很多,开环聚合的倾向各异: 三、四元环容易开环聚合; 五、六元环能否开环聚合与环中杂原子有关,由于杂原子提 供了引发剂亲核或亲电进攻的位置,所以在动力学上它们比 环烷烃更有利于开环聚合。 七元环以上的聚合可能性又加大,七、八元环也能开环聚合, 但环与线性聚合物往往构成平衡。
自由基开环聚合
自由基开环聚合自由基开环聚合是一种重要的有机合成方法,通过利用自由基的特性,实现将简单的单体分子连接成更复杂的化合物。
在有机化学领域,自由基开环聚合被广泛应用于药物合成、材料科学以及生命科学等领域。
自由基是具有未成对电子的分子或原子,具有很高的反应活性。
在自由基开环聚合中,最常用的自由基包括自由基过氧化物、自由基氯、自由基溴等。
这些自由基通过与单体分子发生反应,实现了开环聚合的目的。
在自由基开环聚合中,最常见的反应是自由基聚合反应。
这种反应通过引入自由基引发剂,将单体分子转化为自由基,然后自由基与其他单体分子相互反应,形成聚合物链。
自由基聚合反应具有反应条件温和、反应速度快、适用范围广等优点,因此被广泛应用于聚合物的合成。
自由基开环聚合还可以用于合成环状化合物。
在这种反应中,自由基开环聚合的产物经过进一步的反应,形成环状结构。
这种方法可以合成具有特殊环结构的化合物,如环状多肽、环状聚合物等,具有重要的生物活性和应用潜力。
自由基开环聚合在药物合成中发挥着重要作用。
通过合理设计反应条件和选择适当的自由基引发剂,可以合成出具有特定生物活性的化合物,如抗肿瘤药物、抗生素等。
此外,自由基开环聚合还可以用于合成有机金属配合物,为金属催化反应提供高效的底物。
在材料科学中,自由基开环聚合被广泛应用于合成高分子材料。
通过自由基聚合反应,可以合成出具有特殊结构和性质的高分子材料,如高分子电解质、高分子光伏材料等。
这些材料具有重要的应用价值,可用于制备新型电池、太阳能电池等。
自由基开环聚合还在生命科学领域发挥着重要作用。
通过自由基开环聚合,可以合成出具有特殊功能的生物分子,如核酸、蛋白质等。
这些生物分子具有重要的生物学功能,对于研究生物过程、开发生物药物等具有重要意义。
自由基开环聚合是一种重要的有机合成方法。
通过利用自由基的特性,可以将简单的单体分子连接成更复杂的化合物,广泛应用于药物合成、材料科学以及生命科学等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Outline 8.3 三元环醚的阴离子开环聚合
三元环氧化物主要品种:
CH2 O CH2 CH2 O CHCH3 CH2 O CHC2H5 CH2 O CHCH2Cl
三元环氧化物的张力大,开环倾向较大,阳离子、阴离子 甚至水均可使C-O 键断裂开环。 阳离子开环聚合常伴有链转移反应,故工业上环氧烷多采 用阴离子引发剂开环聚合。 阴离子引发剂常采用氢氧化物(如NaOH)、烷氧基化合 物(如CH3ONa),并以含活泼氢的化合物(如醇类)为起 始剂,产物主要用于非离子表面活性剂、聚氨酯的预聚体等。
Outline 8.3 三元环醚的阴离子开环聚合
环氧丙烷开环易发生向单体转移反应,使分子量降低。
CH3 CH2 CH O Na CH3 O CH CH2
CH3 CH2 CH OH
O CH2 CH CH2 Na CH2 CH CH2O Na
环氧丙烷分子中甲基上的氢原子容易被夺取而转移, 转移后形成的单体活性种很快转变成烯丙醇钠离子对,可 继续引发聚合,但使分子量降低。
Outline 8.4 环醚的阳离子开环聚合
3)环醚的阳离子开环聚合机理 链引发与活化 引发剂 质子酸:浓硫酸,三氟乙酸,氟磺酸,三氟甲基磺酸等。 Lewis酸:BF3,PF5,SnCl4,SbCl5等 Lewis酸与微量共引发剂(如水、醇等)形成络合物,提 供质子或者阳离子;或者自身也形成离子对。
[N]:聚合物链的浓度
CM:向单体转移常数
Outline 8.3 三元环醚的阴离子开环聚合
上式积分,得:
CM [ N] [N] 0 ([ M]0 - [M]) 1 CM
d[N] CM d[M] 1 CM
[N]0:无向单体转移时的聚合物链浓度 有、无向单体链转移时的平均聚合度分别为:
Outline 8.3 三元环醚的阴离子开环聚合
环醚(Cyclic Ether),无取代的三、四、五元环 醚分别称环氧乙烷、环丁氧烷、四氢呋喃,其聚合 活性依次递减。 醚属Lewis碱,环醚的氧原子易受阳离子进攻,一 般用可阳离子引发开环。但三元环醚(环氧化合物) 其环张力大,很易开环,也可用阴离子引发剂引发 开环。 工业上有价值进行开环聚合的环醚有: 环氧乙烷、环氧丙烷阴离子开环聚合成聚醚、三 聚甲醛聚合成聚甲醛等。
Outline 8.1 环烷烃开环聚合热力学
2)取代基的影响 环上取代基的存在不利于开环聚合
有大侧基的线形大分子不稳定,易解聚成环。环上侧基 间距大(图a),斥力或内能小;线形大分子上侧基间或 侧基与链中原子间距离小(图b和c),斥力或内能相对 较大,不利于开环。
b a c
无取代的和有取代的环烷烃,随着取代程度的增加, (- △H)依次递减,聚合难度递增。
[M]0 - [M] Xn [N]
[M]0 - [M] (Xn)0 [N]0
Outline 8.3 三元环醚的阴离子开环聚合
综合上几式可得:
1 1 CM Xn (Xn)0 1 CM
开环聚合的CM一般为10-2,比自由基聚合的CM(10-4 ~10-5)大102~103倍。环氧丙烷聚合中链转移的影响很 大,因此一般得不到高分子量聚合物,分子量通常3000~4 000(聚合度50~70)左右。
Outline 8.4 环醚的阳离子开环聚合
O
CH2
CH2 CH2 丁氧烷 1)丁氧环(四元环醚) 在0℃或较低温度下,丁氧环经Lewis酸引发,易开环聚合 成聚氧化三亚甲基。但有应用价值的单体却是3,3’-二氯 亚甲基丁氧环(丁氧环的衍生物,聚合产物俗称氯化聚 醚),是结晶性成膜材料,熔点为177oC,机械强度比氟树脂 好,吸水性低,耐化学药品,尺寸稳定性好,电性能优良, 可用作工程塑料。
按碳的四面体结构,C-C-C键角为109°28’,而环状化合物 的键角有不同程度的变形,因此产生张力。 三、四元环环张力很大,环不稳定而易开环聚合; 五元环键角接近正常键角,张力较小,环较稳定; 六元环常呈椅式结构,键角变形趋于0,不能开环聚合;
八元环上氢或取代基处于拥挤状态,因斥力而形成跨环张力 (构象张力),聚合能力较强; 十一元以上跨环张力消失,环较稳定,不易聚合。 环烷烃开环聚合能力为: 3, 4>8>5, 7 ,九元以上的环很少见
O
CH2 CH2Cl
CH2 C CH2Cl
BF3
CH2Cl O CH2 C CH2 CH2Cl n
Outline 8.4 环醚的阳离子开环聚合
2)四氢呋喃(Tetrahydrofuran)的阳离子开环聚合 四氢呋喃为五元环,环张力较小,对引发剂选择和单体 精制要求高。PF5为引发剂,分子量30万左右;以五氯化 锑作催化剂,聚合速率和分子量低得多。
Outline 8.1 环烷烃开环聚合热力学
1)环大小的影响 环张力的表示方法: 键角大小 键的变形程度愈大,环的张 键的变形程度 力能和聚合热愈大;聚合自由 环的张力能 焓越负,环的稳定性愈低,愈 聚合热 易开环聚合。 聚合自由焓等
Outline 8.1 环烷烃开环聚合热力学
Outline 8.2 杂环开环聚合热力学和动力学
1)热力学因素 环酯、环醚、环酰胺等杂环化合物通常比环烷 烃易聚合,因为杂环中杂原子提供了引发剂亲核 或亲电进攻的位臵。
聚合能力与环中杂原子性质有关。 如五元环中的四氢呋喃能够聚合,而γ-丁氧内 酯却不能聚合。六元环醚不能聚合,如1,4-二氧六 环,但相应的环酯却都能聚合,如环戊内酯。其 他六元的如环酰胺、环酐都较易聚合。
•
环氧乙烷却很容易被引发开环,直接形成三级氧鎓离子, 从而缩短或消除诱导期,因此环氧乙烷或丁氧烷用作THF 聚合的活化剂。
CH2
3)环氧丙烷的阴离子开环聚合机理和动力学 环氧丙烷结构不对称,可能有2种开环方式,其中β-C(CH2) 原子空间位阻较小,易受亲核进攻。但2种开环方式最终产物 的头尾结构相同。
CH3CH CH2 O CHCH2O-B+ or CH3 (主) CH2CHO-B+ CH3 (副)
环氧乙烷阴离子聚合产物的分子量可达(3~4) ×104 ,而环氧丙烷聚合物的分子量仅3000~4000
RXH
n EO
RX(EO)nH
以OP-10[C8H17C6H4O(EO)10H]为例,辛基酚起始剂 提供端基分子量为189,10单元的环氧乙烷分子量440, 属于低聚物,端基所占比例不能忽略。
Outline 8.3 三元环醚的阴离子开环聚合
改变疏水基R、连接元素X、环氧烷烃种类及聚合度n, 可衍生出上万种聚醚产品。起始剂有脂肪醇、烷基酚、 脂肪酸、胺类等,可形成多种聚醚型表面活性剂系列
PF5 THF O OCH2CH2CH2CH2 n
少量环氧乙烷可作四氢呋喃开环促进剂。Lewis 酸直接 引发四氢呋喃开环速率较慢,但易引发高活性的环氧乙 烷开环,形成氧鎓离子,氧鎓离子加速其开环聚合。
O HA CH2 CH2 CH2 HO CH2 A THF THF
HOCH2CH2 O A
PTHF
引 言
Outline
定义:环状单体在引发剂或催化剂作用下开环后聚合,形成 线形聚合物的反应。 反应通式
nR X R X n
在环状单体中, R为烷基, X为杂原子O, S, N, P, Si 或-CONH-, -COO-,-CH=CH-等。 开环聚合与缩聚反应相比,无小分子(无副产物)生成;与 烯烃加聚相比,无双键断裂,聚合物与但提到元素组成相同, 是一类独特的聚合反应。可与缩聚、加聚并列。
引 言
Outline
开环聚合的推动力: 环张力的释放 开环聚合的机理: 大部分属离子聚合(连锁),小部分属逐步聚合 开环聚合的单体: 环醚、环缩醛、环酯、环酰胺、环硅氧烷等。 环氧乙烷、环氧丙烷、己内酰胺、三聚甲醛等的 开环聚合都是重要的工业化开环聚合反应
Outline 8.1 环烷烃开环聚合热力学
起始剂RXH 烷基酚 R-C6H4OH(C=89) 脂肪酸 ROH(C=12-18) 脂肪醇 ROH(C=8-18) 脂肪酸 RCOOH(C=1117) 丙二醇 HOC3H6OH 环氧乙烷加成物 C9H19-C6H4O(EO)n-H n 1.5-40 wt%EO 20-90 HLB 4.6-17.8
增长
A-B+
+ A CH 2 CH2O- B
活性阴离子聚合机理,即由引发和增长两步基元反应 组成, 难终止。欲结束聚合,须人为地加入草酸、磷酸等 质子酸,使活性链失活。
Outline 8.3 三元环醚的阴离子开环聚合
聚合速率和数均聚合度为:
R Xn
___
d[ M ] kp[C][M] dt [ M ]0 [ M ] [C ]0
CH3(OE)nO-Na+ ROH CH3(OE)nOH RO-Na+
交换反应形成的新起始剂活性种RO-Na+可再引发单体 增长,聚合速率并不降低,但使原来活性链终止,导致分子 量降低,聚合度为:
[M]0 - [M] Xn [C]0 [ROH]0
Outline 8.3 三元环醚的阴离子开环聚合
PF5 + H2O PF5 H2O H PF5OH
或
2 PF5
PF4
PF6
Outline 8.4 环醚的阳离子开环聚合
环氧乙烷活化剂
•
引发初始活性种是碳阳离子,而环醚阳离子聚合的增长 活性种却是三级氧鎓离子。 • 质子引发环醚开环,先形成二级氧鎓离子,再次开环,才 形成三级杨鎓离子,因而产生诱导期。
C16H33O(EO)nH RO(PO)m-(EO)n-H RCOO(EO)n-H
2-50 m>8
15-90 25-95
HO(EO)a- (PO) b(EO)aH
b=15-56
10-80