常用车辆检测传感器综述
简述汽车上的温度传感器及应用
一、概述随着汽车行业的不断发展和技术的不断进步,汽车上的各种传感器在车辆运行中扮演着越来越重要的角色。
其中,温度传感器作为汽车电子控制系统中的重要组成部分,对于汽车的安全性能和能效性能有着重要的影响。
本文将对汽车上的温度传感器进行简述并介绍其应用。
二、温度传感器的类型1. 热电阻温度传感器热电阻温度传感器是一种使用热电阻作为敏感元件的温度传感器,它的原理是通过测量金属电阻率随温度的变化来间接测量温度。
常见的热电阻材料有铂铑合金、镍铬合金等。
热电阻温度传感器具有精度高、线性好等优点,在汽车发动机的冷却系统、空调系统以及变速器油温监测等方面广泛应用。
2. 热敏电阻温度传感器热敏电阻温度传感器是一种利用热敏电阻的温度特性来测量温度的传感器。
常见的热敏电阻材料有氧化锌、氧化铜等。
热敏电阻温度传感器具有结构简单、成本低等优点,在汽车内部空调系统、发动机温度监测等方面应用较为广泛。
3. 热电偶温度传感器热电偶温度传感器是利用两种不同金属导体与温度有关的热电势来测量温度的传感器。
热电偶温度传感器具有响应速度快、测量范围广等优点,在汽车排气系统、发动机排气温度监测等方面得到广泛应用。
三、温度传感器的应用1. 发动机温度监测温度传感器在发动机温度监测中起到了至关重要的作用。
通过监测发动机的温度,可以及时发现发动机过热或者过冷的情况,从而采取相应的措施,保证发动机的正常运行。
温度传感器还可以为发动机的燃油喷射和点火等系统提供温度数据,从而保证发动机在不同工况下的工作状态。
2. 空调系统温度控制在汽车的空调系统中,温度传感器可以实时监测车内外部的温度情况,并根据设定的温度值来控制空调系统的工作状态,包括制冷量、风速等参数。
通过温度传感器的监测和反馈,可以使车内空调系统始终维持在用户设定的舒适温度范围内。
3. 变速器油温监测变速器油温的过高或者过低都会影响到变速器的正常工作,甚至造成损坏。
而温度传感器可以实时监测变速器油的温度,一旦发现异常情况可以及时警告驾驶员或者通过车辆电控系统自动调整工作状态,以保证变速器的正常工作和延长使用寿命。
交通流量监测中的传感器技术
交通流量监测中的传感器技术在当今社会,交通流量的监测对于城市的规划、交通管理以及公众的出行都具有至关重要的意义。
而在交通流量监测中,传感器技术发挥着不可或缺的作用。
它就像是交通领域的“眼睛”,为我们提供了实时、准确的数据,帮助我们更好地了解交通状况,做出合理的决策。
传感器技术的种类繁多,每种都有其独特的特点和适用场景。
其中,常见的包括电磁感应传感器、微波传感器、视频传感器以及超声波传感器等。
电磁感应传感器是一种较为传统的交通流量监测技术。
它通过检测车辆通过时对电磁场的干扰来获取交通信息。
这种传感器通常安装在道路下方,当车辆驶过,会引起磁场的变化,从而被传感器捕捉到。
电磁感应传感器的优点是稳定性高、可靠性强,能够准确地检测车辆的存在和通过时间。
然而,它的缺点也比较明显,例如安装和维护成本较高,而且对于车辆的类型和速度的分辨能力相对较弱。
微波传感器则是利用微波的反射和散射原理来监测交通流量。
它可以安装在道路旁的杆子上,向道路发射微波,并接收反射回来的信号。
根据信号的变化,可以判断车辆的数量、速度和车型等信息。
微波传感器具有安装方便、检测范围广的优点,能够同时监测多个车道的交通情况。
但它也存在一些局限性,比如容易受到环境因素(如恶劣天气)的影响,测量精度可能会有所下降。
视频传感器是近年来发展迅速的一种交通流量监测技术。
它通过摄像头拍摄道路上的图像或视频,然后利用图像处理和分析算法来提取交通信息。
视频传感器可以提供非常丰富的信息,不仅包括车辆的数量、速度和车型,还可以监测车辆的行驶轨迹、交通拥堵情况以及交通事故等。
然而,视频传感器对光照条件和图像质量要求较高,数据处理量较大,需要较高的计算能力和存储空间。
超声波传感器则是通过发射和接收超声波来测量车辆与传感器之间的距离和速度。
它通常安装在道路上方或路边,适用于短距离的交通监测。
超声波传感器具有响应速度快、精度高的优点,但检测范围相对较小,容易受到其他声音的干扰。
汽车常用传感器的识别与检测
02
温度传感器
热敏电阻式温度传感器
总结词
热敏电阻式温度传感器是一种常见的温度传感器,其工作原理基于热敏电阻的 阻值变化。
详细描述
热敏电阻式温度传感器由热敏电阻和金属导线组成,其阻值随温度变化而变化。 这种传感器通常用于检测发动机冷却液温度、进气温度和排气管温度等。
热电偶式温度传感器
总结词
热电偶式温度传感器是一种基于热电效应的温度传感器,其工作原理是利用两种 不同材料的导体组成的热电偶来测量温度。
汽车常用传感器的识别与检 测
• 汽车传感器概述 • 温度传感器 • 压力传感器 • 流量传感器 • 位置与角度传感器 • 气体浓度传感器 • 安全传感器
01
汽车传感器概述
汽车传感器的定义与作用
定义
汽车传感器是一种将汽车运行状态和 环境信息转换为电信号的装置,用于 监测、控制和调节汽车运行状态。
氧传感器通过检测尾气中的氧含量,将信号传递给发动机管理系统,进而调整空燃比,优化燃烧效率,降低排放。 氧传感器通常安装在排气管中,工作环境温度较高,且易受到尾气中硫化物、铅化物等物质的腐蚀。
NOX传感器
总结词
NOX传感器用于检测汽车尾气中的氮氧化物(NOX)含量,是评估发动机燃烧效率和排放的重要传感器。
节气门位置传感器
节气门位置传感器是用来检测节气门 开度的传感器,它通常安装在节气门 体上。
节气门位置传感器的常见类型有线性 输出式和开关式等。
节气门位置传感器的作用是向发动机 控制单元提供节气门开度信号,以便 控制单元能够精确控制进气量和喷油 量。
车轮角度传感器
车轮角度传感器是用来检测车轮转角和 车轮转速的传感器,它通常安装在车轮
详细描述
安全检测技术——常用传感器
本报告首先介绍了安全检测技术的背景和意义,然后阐述了传感器在安全检测 中的作用,接着详细介绍了常用传感器的原理、特点和应用案例,最后对传感 器的发展趋势进行了展望。
02
CATALOGUE
传感器技术基础
传感器定义与分类
传感器定义
传感器是一种检测装置,能感受到被测量的信息,并能将感 受到的信息,按一定规律变换成为电信号或其他所需形式的 信息输出,以满足信息的传输、处理、存储、显示、记录和 控制等要求。
解决方案
推动传感器标准化工作,制定统一的接口和通信协议标准 ;同时,开发通用型传感器接口模块和中间件,简化系统 集成和应用开发过程。
06
CATALOGUE
总结与展望
报告总结
常用传感器在安全检测领域的应 用已被广泛认可,包括温度、压 力、湿度、气体等多种类型传感
器。
这些传感器在火灾预警、气体泄 漏检测、设备状态监测等方面发 挥着重要作用,有效提高了安全
性能指标
传感器的性能指标包括精度、灵敏度、线性度、重复性、稳定性等。这些指标是 衡量传感器性能优劣的重要标准,也是选择和使用传感器时需要考虑的重要因素 。
传感器选型与配置原则
选型原则
在选择传感器时,需要根据被测量的特点、测量环境、测量精度要求以及经济成本等因素进行综合考虑。同时, 还需要考虑传感器的可靠性、稳定性和可维护性等因素。
红外探测
采用红外传感器探测家庭入侵情况, 提高家庭安全性。
05
CATALOGUE
传感器技术发展趋势与挑战
新型传感器技术发展趋势
微型化
01
随着微电子机械系统(MEMS)技术的发展,传感器正朝着微
型化方向发展,体积更小、功耗更低。
汽车上八大传感器是哪八个?都有什么作用?
汽车上八大传感器是哪八个?都有什么作用?壹车热评,原创不易,谢绝搬运!现代汽车总体上就是一个集机械结构与电路设计于一身的产物,它的核心除了传统认识中的三大件以外,就是它的核心大脑发动机的ECU管理系统。
这个系统通过读取车上传感器所传递的数据信号,随时随刻地检测着汽车的各种工作状态。
下面各位看官就随着壹车热评的脚步,我们来交接一下汽车身上究竟都有哪些传感器1、水温传感器这个算得上是我们最熟知,也最容易直观了解到的传感器,它直接检测的是冷却液的工作温度。
水温传感器是通过在水箱里装设的测温节点器进行感应,这个检测结果我们可以在仪表盘上很容易看到。
2、氧传感器这也是我们经常能听到的一种传感器名字,它的作用从名字上就可以看出是和“含氧量”有关系的。
氧传感器一般有两个,一个在排气歧管后面,另一个在三元催化器后面。
前者被称为前氧传感器,后者被称为后氧传感器。
氧传感器通过检测排期中的含氧量,来判定燃油是否在进行正常燃烧,它的检测结果为ECU提供了控制发动机空燃比值的重要数据。
3、爆燃传感器发动机震动是很多人都遇到过的问题,产生这种现象的原因之一,就是爆震,而爆震传感器所读取的数据,正是为ECU提供识别发动机是否产生爆震的重要依据。
当检测到爆震发生后,ECU就会调整自己的点火提前角,以降低或消除爆震的产生。
4、进气压力传感器后面要讲的就是一些人们很少听到,甚至都想不到会存在的传感器,首先就是进气压力传感器。
这个传感器根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。
5、空气流量传感器空气流量传感器是将吸入的空气转换成电信号送至ECU,从而作为决定喷油的基本信号。
6、节气门位置传感器这是我们踩油门加速时,控制喷油量的关键传感器,其实踩油门控制的是节气门,而不是喷油嘴,所以壹车热评认为“踩油门”三个字应该改为“加气门”更为准确。
说到这里你可能觉得节气门位置传感器和空气流量传感器,不都是控制喷油量的吗?其实这两个传感器的作用是不一样的,节气门位置传感器是检测节气门阀片开合度,以此来控制你加速或减速过程中的喷油量,而空气流量传感器是检测进气量的大小,它给ECU提供了一个喷油的基准信号。
汽车传感器的应用及技术现状
随
越来 越高 ,汽 车传 感器 已成 为 汽车 电子 控制 系统 的重 要组 成部 件 ,也 是汽 车 电子技 术领 域研 究 的核 心技 术之 一 。传感 器 的技术 水平 和 数量 决定 了现代 汽 车控 制系 统 的性能 。 普 通 汽 车 上 大 约 安 装 几 十 只 传 感 器 ,而高级 轿车 上 的传 感器 数量 可 达 2 0 只 。这 些传 感器 主 要 分 布 0多 在 发 动 机 控 制 系 统 、 底 盘 控 制 系 统 、车 身控 制系 统和 导航 系统 中。
The paperi t oduced t e cl n r h assii i fcaton ofsens or s,and expounded t he appI i i o caton faut obi om l sens s e or and dom estc aut i omobie sens echnol l ort ogy,and anal yzed t he devel opm enttend ofau om obi r t l sensor e s.
器 、 变速 器 控 制 传 感器 、悬架 系统 控 制 传 感 器 、 动 力 转 向 系 统 传 感 器 、防 抱 制 动 传 感 器 等 ;底 盘 用 传 感 器 主 要 有 旋 转 位 移 和 压 力 传 感
器。
器 是 整 个汽 车 传 感 器 的 核
心 , 种 类 很
多 ,包括 温 度
11汽 车 传 感 器 分 类 .
汽 车传 感器 把汽 车运 行 中各 种 工 况信 息 转化 成 电信号 并输 送 给 中 央 控制 单元 。它们 主要 用 于汽 车 的
传 感 器 等 。 ( 按 输 出信 号 分 : 3)
汽车常见传感器
流量。
谢谢
THANKS
正温度系数传感器
总结词
正温度系数传感器也是一种热敏电阻,其阻值随温度升高而 增大。
详细描述
这种传感器通常用于检测汽车内部和外部温度,如车外温度 传感器和空调蒸发器温度传感器。由于其阻值随温度升高而 增大,因此可以通过测量电阻值的变化来计算温度。
模拟温度传感器
总结词
模拟温度传感器能够输出连续的模拟信号,以反映所检测的温度变化。
凸轮轴位置传感器用于检测凸轮 轴的位置,从而控制点火和喷油
等操作。
它通常由一个磁感应线圈和一个 转子组成,当凸轮轴转动时,转 子的凸齿与感应线圈相互作用,
产生相应的电压信号。
凸轮轴位置传感器对于控制发动 机的点火和喷油时间也非常重要, 能够提高发动机的启动性能和加
速性能。
04 速度传感器
CHAPTER
曲轴位置传感器
曲轴位置传感器用于检测曲轴的 转速和位置,从而控制点火和喷
油等操作。
它通常由一个磁感应线圈和一个 转子组成,当曲轴转动时,转子 的凸齿与感应线圈相互作用,产
生相应的电压信号。
曲轴位置传感器对于控制发动机 的点火和喷油时间非常关键,直 接影响发动机的性能和燃油经济
性。
凸轮轴位置传感器
热式空气流量传感器
ቤተ መጻሕፍቲ ባይዱ总结词
热式空气流量传感器是一种利用热传导原理测量气体流量的传感器。
详细描述
该传感器内部有一个发热元件,当空气流过时,发热元件会受到冷却作用,其温度变化与空气的流速成正比,通 过测量温度变化即可得到空气的流量。
发动机八大传感器作用简洁解释
发动机八大传感器作用简洁解释发动机是现代汽车的核心组件之一,它负责产生动力,并驱动车辆行驶。
然而,发动机的正常运行和性能表现不仅依赖于其内部构造和机械部件,还依赖于一系列关键的传感器。
这些传感器扮演着监测和控制发动机运行的重要角色。
在本文中,我们将深入探讨发动机的八大传感器的作用,以帮助读者更好地理解和利用这些关键部件。
1. 氧气传感器(O2传感器)氧气传感器监测发动机排气中的氧气含量。
通过检测排气中的氧气水平,氧气传感器能够判断燃烧过程的质量,并根据需要调整燃油供应以实现最优的燃烧效率。
它有助于减少废气排放和提高燃油经济性。
2. 曲轴位置传感器(Crankshaft Position Sensor)曲轴位置传感器用于检测发动机曲轴的旋转速度和位置。
它提供发动机转速的关键信息,以便控制点火系统和燃油喷射系统的操作。
通过准确测量曲轴位置,曲轴位置传感器确保点火系统按时点火,以实现最佳的动力输出。
3. 曲轴相位传感器(Crankshaft Phase Sensor)曲轴相位传感器用于测量曲轴的旋转相位。
通过监测曲轴相位,曲轴相位传感器可以帮助控制发动机的点火和喷射时机,并调整气缸内压强的分布。
它对于发动机的节能、减排和动力输出都起着至关重要的作用。
4. 凸轮轴位置传感器(Camshaft Position Sensor)凸轮轴位置传感器用于检测发动机凸轮轴的位置和速度。
凸轮轴位置传感器的作用类似于曲轴位置传感器,但它专门用于控制凸轮轴的操作,以确保气门的开闭时间和幅度与发动机控制系统的要求相匹配。
5. 气体温度传感器(Intake Air Temperature Sensor)气体温度传感器测量进气道中的空气温度。
准确的气体温度信息对于燃烧过程的控制和发动机性能至关重要。
气体温度传感器可以帮助调整燃油喷射量和点火时机,以适应不同的气温条件。
6. 大气压力传感器(Manifold Absolute Pressure Sensor)大气压力传感器测量进气道中的绝对压力。
汽车上常见的传感器说明
由电阻应变片构成的进气压力传感器主要由半导体应变片、真空室、混合集成电路板等组成。半导体应变片是在一个膜片上用半导体工艺制做的四个等值电阻,并且连接成电桥电阻。半导体电阻电桥应变片放置在一个真空室内,在进气压力的作用下,应变片产生变形,电阻值发生变化,电桥失去平衡,从而将进气压力的变化转换成电阻电桥输出电压的变化。
与电容式传感器配合使用的测量电路有很多种,下面我们来以电桥电路为例说明电容差动式传感器测量电路的工作原理,如图,由于电容是交流参数,所以电桥通过变压器用交流激励。变压器的两个线圈与两个电容组成电桥,当无进气压力时,电桥处于平衡状态,两电容值相等并且为C0,当有压力作用时,其中一个电容值为C0+△C,另一个电容值为C0-△C,(△C为外部压力作用时引起的电容值的变化量),则电桥失去平衡,电容值高的地方电压也高,两个电容之间产生了电压差,由此电桥产生代表进气压力的电压输出U。
涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。
众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。
同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。
工作原理是:在旋涡发生器下游管路两侧相对安装超声波发射探头和超声波接收探头,超声波发射探头不断向超声波接收探头发出一定频率(一般为40KHZ)的超声波,当超声波通过进气气流到达超声波接收器时,由于受到气流移动速度及压力变化的影响,因此接收到的超声波信号的相位(时间间隔)以及相位差(时间间隔之差)就会发生变化,集成控制电路根据相位或相位差的变化情况计量出涡流的频率。涡流频率信号输入ECU后,ECU就可以计算出进气量。
汽车中常见的传感器有哪些?
汽车中常见的传感器有哪些?汽车传感器的类型很多,已由从前⼀般的电磁、光电传感器等发展为利⽤激光、光导纤维、磁敏、⽓敏、⼒敏、热敏、陶瓷、霍尔效应、半导体、光栅、雷达等技术做成的各类传感器,精度也有很⼤提⾼。
且⼀种被测参数可⽤多种不同类型的传感器来测量,⽽同⼀种传感器往往也可以测量多种被测参数。
汽车传感器的常见类型温度传感器如发动机冷却液温度传感器、进⽓温度传感器、排⽓温度传感器、燃油温度传感器,⾃动变速系统采⽤的⾃动传动液温度传感器,空调控制系统采⽤的车内温度传感器等。
压⼒传感器如发动机控制系统采⽤的进⽓歧管压⼒传感器、⼤⽓压⼒传感器、排⽓压⼒传感器、⽓缸压⼒传感器,⾃动变速系统采⽤的燃油压⼒传感器,发动机爆震控制系统采⽤的爆震传感器等。
浓度传感器如发动机控制系统采⽤的氧传感器,安全控制系统采⽤的酒精浓度传感器和烟雾传感器等。
流量传感器如发动机燃油喷射系统采⽤的翼⽚式、量芯式、涡流式、热丝式与热膜式空⽓流量传感器等。
位置传感器如发动机燃油喷射和微机控制点⽕系统采⽤的曲轴位置传感器(⼜称为发动机转速与曲轴转⾓传感器)、凸轮轴位置传感器、节⽓门位置传感器,电⼦调节悬架系统采⽤的车⾝⾼度传感器,信息显⽰系统和液⾯监控系统采⽤的各种液⾯位置(或⾼度)传感器,⾃动变速系统采⽤的选挡操纵⼿柄位置传感器;巡航控制系统采⽤的节⽓门拉线位置传感器,电⼦控制动⼒转向系统采⽤的⽅向盘转⾓传感器等。
速度传感器发动机控制系统采⽤的转速传感器,⾃动变速以及巡航控制系统采⽤的车速传感器、温度传感器、变速器输⼊轴转速传感器、输出轴转速传感器、压⼒传感器,⽅向器上采⽤的转⾓传感器、转矩传感器、液压传感器,防抱死制动系统采⽤的车轮速度传感器、车⾝纵向和横向加(减)速度传感器,悬架上采⽤的车速传感器、加速度传感器、车⾝⾼度传感器、侧倾⾓传感器、转⾓传感器等。
碰撞传感器如辅助防护系统采⽤的滚球式、滚轴式、偏⼼锤式、压电式和⽔银式碰撞传感器等。
汽车常用传感器的介绍
汽车常用传感器的介绍一、曲轴位置传感器(crankshaft position sensor 简写CPS)1、作用:检测发动机转速,因此又称为转速传感器;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。
曲轴位置传感器一般安装于曲轴皮带轮或链轮侧面,有的安装于凸轮轴前端。
现在常用的曲轴位置传感器重要分为三类,磁电式的、霍尔式的、光电式的。
2、检测方法:(1)磁电式的和霍尔式的都要先检查传感器到靶轮之间的间隙。
(2)磁电式的可以用电阻表检测它的电阻,阻值一般在几百到一千多欧之间,视车型而定。
也可以起动发动机测量它的电压,电压应该随着发动机转速的升高而升高。
(3)霍尔式的可以先测其是否有供电电压(注意:测量时要打开电门),然后测量传感器的接地。
霍尔式曲轴位置传感器有三根线,一根是供电线(提供参考电压),一根是接地线,还有一根就是信号线;传感器工作时,信号线会输出方波信号,方波的幅值接近参考电压,方波的底部接近0V,发动机的转速越高方波的频率就会越大。
二、节气门位置传感器(Throttle Position Sensor,简写TPS)1、作用:节气门由驾驶员通过加速踏板来操纵,以改变发动机的进气量,从而控制发动机的运转。
不同的节气门开度标志着发动机的不同运转工况。
为了使喷油量满足不同工况的要求,电子控制汽油喷射系统在节气门体上装有节气门位置传感器。
它可以将节气门的开度转换成电信号输送给ECU,作为ECU判定发动机运转工况的依据。
节气门位置传感器有开关量输出型和线性可变电阻输出型两种.2、检测方法:(1)开关量输出型节气门位置传感器的检测开关量输出型节气门位置传感器又称为节气门开关。
它有两副触点,分别为怠速触点(IDL)和全负荷触点(PSW)。
,由一个和节气门同轴的凸轮控制两开关触点的开启和闭合。
当节气门处于全关闭的位置时,怠速触点IDL闭合,ECU根据怠速开关的闭合信号判定发动机处于怠速工况,从而按怠速工况的要求控制喷油量;当节气门打开时,怠速触点打开,ECU根据这一信号进行从怠速到小负荷的过渡工况的喷油控制;全负荷触点在节气门由全闭位置到中小开度范围内一直处于开启状态,当节气门打开至一定角度(丰田1G-EU车为55°)的位置时,全负荷触点开始闭合,向ECU送出发动机处于全负荷运转工况的信号,ECU根据此信号进行全负荷加浓控制.①就车检查端子间的导通性点火开关置于“OFF”位置,拔下节气门位置传感器连接器,在节气门限位螺钉和限位杆之间插入适当厚度的厚薄规;用万用表Ω档在节气门位置传感器连接器上测量怠速触点和全负荷触点的导通情况。
传感器在车辆智能驾驶中的应用
传感器在车辆智能驾驶中的应用第一章传感器简介传感器是一种将物理量转换为电信号或其他可观测现象的装置,可以感知周围环境并将感知到的信息传送给控制系统。
传感器是车辆智能驾驶的核心组件,通过精确的测量和传输数据,实现车辆对周围环境的感知和自主操作。
常见的车辆传感器有惯性传感器、光学传感器、声学传感器、温度传感器、湿度传感器等,下面将针对这些传感器进行详细介绍。
第二章惯性传感器惯性传感器是衡量车辆点位在空间中分布的基本设备,主要由陀螺仪和加速度计构成。
通过收集车辆加速度、转弯和倾斜等数据,实现车辆姿态信息的传递和处理。
惯性传感器广泛应用在自动驾驶系统中,可以实现精确的导航和定位功能。
此外,惯性传感器还可以通过采集车辆速度和加速度等数据,用于实现自适应巡航控制和自动制动系统。
第三章光学传感器光学传感器可以通过采集环境光线反射、透射信息,实现车辆对周围物体的识别和跟踪。
常见的光学传感器包括摄像头和激光雷达。
摄像头主要用于采集车辆前方的图像信息,可以通过对图像信息进行处理,实现辅助驾驶、人脸识别和车辆安全监控等功能。
激光雷达可以通过探测周围物体的位置和距离信息,实现在恶劣天气和复杂路面条件下的环境感知和避障功能。
第四章声学传感器声学传感器是一种利用声波进行测量和检测的装置,能够通过采集车辆周围的声音信号,获取环境中物体的位置、大小和速度等信息。
常见的声学传感器包括麦克风、超声波传感器和声纳。
麦克风主要用于采集车内语音指令和车辆周围的声音信息,实现语音识别和环境噪声控制。
超声波传感器主要用于实现车辆倒车雷达和智能泊车等功能。
声纳主要用于水下探测和定位。
第五章温湿度传感器温湿度传感器是一种用于测量空气温度和湿度的装置,可用于车内环境监测和控制。
常见的温湿度传感器主要包括热电偶和电容式湿度传感器。
热电偶主要通过测量环境的温度变化,实现车内温度控制和空调自动化调节。
电容式湿度传感器主要通过测量空气中的水气含量,实现车内湿度控制和空气质量监测。
列举自动驾驶汽车传感器的应用
列举自动驾驶汽车传感器的应用随着科技的不断发展,自动驾驶汽车已经成为现实。
自动驾驶汽车依靠各种传感器来感知周围环境,并作出相应的决策和控制。
下面将列举自动驾驶汽车传感器的应用。
1. 激光雷达传感器(LIDAR)激光雷达传感器通过发射激光束并测量其反射时间来感知周围环境。
它可以提供高精度的三维地图,帮助车辆识别和跟踪其他车辆、行人、障碍物等,并测量它们的距离和速度。
2. 摄像头传感器摄像头传感器是自动驾驶汽车中最常见的传感器之一。
它们可以捕捉实时视频图像,帮助车辆识别和分析周围环境。
通过计算机视觉算法,车辆可以检测道路标志、交通信号灯、行人、车辆等,并做出相应的决策。
3. 雷达传感器雷达传感器利用电磁波来感知周围环境。
它们可以提供车辆周围物体的位置和速度信息,帮助车辆避免碰撞和保持安全距离。
雷达传感器在恶劣天气条件下也能够正常工作,使自动驾驶汽车具备良好的适应性。
4. 超声波传感器超声波传感器通过发射超声波脉冲并测量其回应时间来感知周围环境。
它们可以用于测量距离,帮助车辆检测和避免与其他车辆、行人、障碍物等的碰撞。
超声波传感器通常用于低速行驶和近距离感知。
5. 惯性测量单元(IMU)惯性测量单元是一种集成了加速度计和陀螺仪的传感器组合。
它可以测量车辆的加速度、角速度和方向,帮助车辆确定自身的姿态和位置。
IMU传感器对于辅助其他传感器提供更精确的定位和导航信息具有重要作用。
6. GPS传感器GPS传感器通过接收全球定位系统(GPS)卫星信号来确定车辆的位置和速度。
它可以提供高精度的地理定位信息,帮助车辆进行导航和路径规划。
GPS传感器通常与其他传感器结合使用,提供更准确的定位和导航能力。
7. 气象传感器气象传感器用于感知和监测周围的气象条件,如温度、湿度、气压等。
这些信息对于自动驾驶汽车的决策和控制至关重要。
例如,在下雨或雾天时,车辆可以根据气象传感器提供的信息调整行驶策略,确保行车安全。
8. 轮速传感器轮速传感器通过监测车轮的旋转速度来计算车辆的速度和加速度。
传感器综述
绪论:随着科学技术的迅猛发展,世界技术发达国家对传感器技术的开发相当的重视。
因为一个国家的现代化水平是用其自动化水平来衡量的,而自动化水平是用仪表及传感器的种类和数量多少来衡量的。
传感器位于系统之首,其作用相当于人的五官,直接敏感外界信息,是信息采集系统的首要部件,是实现现代化测量和自动控制的主要环节,一切科学研究和生产过程要获取的信息,都要通过它转换成便于传输、处理、记录、显示和控制的可用信号。
所以,测试技术与自动控制水平的高低被认为是衡量一个国家科学技术现代化程度的重要标志,传感器是新技术革命和信息社会的重要技术基础。
传感器技术在近些年来发展迅速,与计算机技术和通信技术一起被称为信息技术的三大支柱。
现代科技中,自动化与智能化已经成为新的发展方向,传感器作为自动测量与控制中的关键环节,在社会的生产生活中应用十分广泛,且具有巨大的发展空间。
本文就传感器技术的历史发展过程及应用趋势进行综述性概况。
一、传感器技术历史回顾传感器技术可以说是仿生学中的一部分,从远古时期就已经渗透到人类生活的各个方面。
在 20 世纪中期传感器技术正式问世,各国信息化产业的发展带动了传感器的研发水平,传感器技术水平不断的提高并快速发展,其大体经历三个历程:结构型传感器、固体传感器、智能传感器。
结构型传感器利用结构参量变化来感受和转化信号;固体传感器由半导体、电介质、磁性材料等固体元件构成,利用某些材料的特殊性质来完成物理特性测试并转化。
智能传感器目前还未有统一的科学定义,IEEE协会从最小化传感器结构的角度,将能提供受控量或待感知量大小且能典型简化其应用于网络环境的集成的传感器称为智能传感器。
相对于仅提供表征待测物理量大小的模拟电压信号的传统传感器,充分利用当代集成技术,微处理器技术等的智能传感器,其本质特征在于其集感知、信息处理与通信于一体,能提供以数字量方式传播具有一定知识级别的信息,具有自诊断、自校正、自补偿等功能。
汽车传感器的应用及技术现状
汽车传感器的应用及技术现状汽车传感器是指安装在汽车上的各种传感器。
它们能够实时感知并传递车辆各个部位的信息,包括车速、转速、油量、温度、环境光照、驾驶员疲劳情况、气囊触发信号等,这些信息被汽车电子控制器用于调节发动机、制动系统、气囊、方向盘等系统。
汽车传感器的应用在汽车工业发展中具有重要意义,已经成为现代智能汽车的重要组成部分,被广泛应用于汽车行业。
汽车传感器的技术现状主要包括以下几个方面:1.多样化:随着汽车的专业化和精细化要求的增加,传感器应用也越来越多样化,如转速传感器、油量传感器、轮胎压力传感器、倒车雷达传感器等等。
2.智能化:智能化传感器在汽车行业得到广泛应用,可以实现动态监测、自我诊断和自我修复等功能,提高汽车的安全性和稳定性。
3.精度:现代汽车传感器要求精度高、稳定性好、抗干扰能力强,以适应高速、高精度的需求。
4.小型化:随着把电子技术应用到汽车上,汽车传感器也逐渐由外置式向小型化转变,如车身传感器和座椅传感器等小型化传感器得到广泛应用。
汽车传感器的应用:1.发动机传感器:汽车发动机的控制需要大量传感器来感知和监控各种指标,如空气流量计、温度传感器、氧气传感器等。
2.轮胎压力传感器:轮胎压力传感器通过感测轮胎胎压,能够有效预防轮胎爆胎,提升了汽车的安全性。
3.倒车雷达传感器:倒车雷达传感器通过超声波检测车后方障碍物,可以实现有效辅助驾驶员倒车。
4.车身传感器:车身传感器能够实时感知车速、方向、姿态等车身状态,并提供数据用于车辆的控制和安全保护。
5.气囊触发传感器:气囊触发传感器能够实时感知车辆碰撞状况,并在必要时触发气囊,保护车内人员安全。
总之,汽车传感器的应用和技术现状得到了快速的发展,为汽车行业的安全、智能提供了强有力支持。
汽车常用传感器的介绍
汽车常用传感器的介绍
1、氧气传感器(Oxygen Sensor)
氧气传感器是汽车排放控制系统中重要的传感器,它可以测量汽车排放的氧气含量,主要用于控制汽车燃油的燃烧程度,改善发动机的排放性能,保持发动机的最佳性能,节省燃油,防止汽车制动后火花塞的损坏。
氧气传感器主要为双芯控制型传感器,在冷却剂以及排气管两端各设置一个传感器,当发动机启动时,热空气从排气管中流过传感器,传感器将热空气中含有的氧气的含量发送到ECU,ECU接收到氧传感器信号后,根据发动机负荷,控制一次喷射量,调整空气燃油比例,达到最佳燃烧状态。
2、温度传感器(Coolant Temperature Sensor)
温度传感器是负责检测发动机冷却液温度的一种电子设备,它通过测量冷却液在冷却系统内的温度,以实时反馈系统温度变化的信号,从而控制发动机温度,使发动机处于最佳的工作状态,避免发动机过热或过冷的问题。
温度传感器一般安装在发动机水箱出口处,它会将发动机冷却液的温度变化信息发送到ECU,ECU根据获取到的信息调整发动机的转速,保持发动机的最佳温度状态,有效地控制汽车油耗。
3、压力传感器(Pressure Sensor)
压力传感器是汽车发动机中常用的传感器。
汽车常见的传感器类型
汽车常见的传感器类型
1. 油压传感器:用于监测发动机油的压力情况。
2. 汽车速度传感器:用于监测车速,大多数情况下,通过汽车速度传感器来实现自动变速器的换挡。
3. 氧气传感器:用于监测发动机尾气中的氧气含量,控制发动机燃油喷射量。
4. 温度传感器:用于监测发动机各部分的温度情况,如冷却液温度、油温等。
5. 气压传感器:用于监测各种气压情况,如进气压力、轮胎气压等。
6. 雨刷传感器:用于检测雨刷工作时,雨刷器的位置、速度等,以控制雨刷器的运转。
7. 离合器传感器:用于感应离合器的开合状态,以便在换挡时控制发动机转速。
8. 倒车雷达:用于探测汽车后方障碍物的距离和位置,以避免碰撞。
9. 车灯开关传感器:用于检测车灯的状态,以便控制车灯的开关。
10. 空调传感器:监测车厢内部的温度、湿度等,以便自动调整空调系统的工作状态。
车辆温度类传感器原理
车辆温度类传感器是用于测量车辆各部分的温度变化的设备,常见的包括发动机温度、冷却液温度、空调出风口温度等。
以下是一个基本的车辆温度类传感器的工作原理的解释:
1.热敏电阻(RTD)原理:
常见的温度传感器之一是基于热敏电阻(RTD)的原理。
它使用具有温度敏感性能的材料,如铂金(Pt100)。
当温度发生变化时,电阻值也会相应改变。
温度升高时,电阻值增加;温度降低时,电阻值减小。
2.热电偶(Thermocouple)原理:
热电偶也是常用的温度传感器类型之一。
它由两种不同金属导线组成,形成一个闭合回路。
当连接点之间存在温度差异时,会产生一个电势差,这被称为热电效应。
根据热电效应的性质,可以计算出温度变化的数值。
3.光纤温度传感器:
光纤温度传感器利用光纤的特性来测量温度变化。
光纤中嵌入了一种具有温度响应特性的材料。
当温度发生变化时,该材料的折射指数会变化,从而改变通过光纤的光信号特性。
通过测量这种变化,可以确定温度的值。
4.热敏电阻(NTC或PTC)原理:
热敏电阻(NTC或PTC)是另一种常用于车辆温度传感器的原理。
它们使用温度敏感材料,其电阻值与温度成反比或正比关系。
NTC热敏电阻的电阻值随温度升高而减小,而PTC热敏电阻的电阻值随温度升高而增加。
这些原理只是车辆温度类传感器的一部分工作原理示例,实际上还有其他不同类型和工作原理的传感器可用于车辆温度监测。
具体选择和应用取决于车辆的需要和技术要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用车辆检测传感器综述
前言随着城市规模的不断扩大以及人口持续增加,人们的工作生活越来越依赖于各种交通工具。
经济不断发展,人们收入的增加,以及国家一系列的购车优惠政策,越来越多的人拥有汽车。
城市各种车辆的增加给人们出行提供了方便,但是由于交通量的增加,容易造成交通拥堵,甚至出现交通事故。
为了解决日益严重的交通问题,不能够仅仅依靠扩宽现有的道路或者修建新的道路,构建智能交通系统(Intelligent Transportation Systems,简称ITS)此时解决日益严重的道路交通问题的有效办法,而车辆检测传感器则是ITS中最重要的交通数据采集部分。
实时准确地检测道路车辆的交通流信息并预测未来道路交通状况,进而将预测信息提供给交通控制中心,才可能有效避免交通阻塞,减少出行时间和交通事故的发生。
精确和可靠的检测数据是在交通控制中进行合理的信号配时优化的基础,有效地利用实时的交通数据预测未来的交通状况,是实现有效的交通控制关键所在。
本文集中介绍了集中生活中常用的几种固定式车辆检测传感器的原理和特点,分析了在不同环境中,车辆检测传感器的选择方式。
固定式车辆检测传感器一般包括感应线圈式检测器、超声波检测器、微波检测器、红外线检测器、视频检测器、磁力检测器以及声学检测器等。
一、感应线圈检测器
1.1 工作原理
感应线圈车辆检测器在检测过程中利用了涡流效应,即根据电磁感应定律,当金属导体置于交变磁场中时,导体内就会产生感应电流,在导体内形成闭合回路电流。
检测器LC谐振电路产生一定频率的正弦振荡信号,同时,正弦振荡信号经互感线圈感应到埋设在路面的环形激励线圈上,使其周围空间形成正弦交变磁场。
图1 线圈检测系统组成示意图
其主要构成包括:埋于路面以下较浅处的绝缘线圈、路边拉紧盒到控制箱的数据输入线以及装于控制箱内的电子元件,如图1所示。
环形线圈检测系统与控制中心的主控机通过电缆连接、通信,主控机可发送信号,设置检测器的检测周期等工作状态,并监测检测器故障;检测器则将检测数据如车辆计数、占有率等传送至主控机,以便完成控制系统的信息存储、优化配置、方案选择和事件检测等功能,实现系统的最佳控制效果。
当汽车停在或驶过绝缘线圈,车辆的金属部分产生涡流电流,且电流方向与线圈电流的方向相反,因此,引起涡流电流产生的磁场与线圈电流产生的磁场方向相反,使得线圈磁场场强减小,而线圈磁场场强的减小使得振荡电路的振荡频率增加,从而引发电子元件向控制箱发出脉冲,以表征车辆的出现和经过。
1.2 典型应用
感应线圈车辆检测器具有稳定性好、技术成熟、正常使用寿命长、性价比和精确度高等
特点。
感应线圈检测器是一种非常容易设置和安装的检测装置,主要应用在道口收费、交通控制、停车场及车辆计数等方面。
但感应线圈式检测器安装和维护比较复杂,需要动用大量人力和物力等缺点和不足,需要进一步改进来提高性能。
二、超声波检测器
2.1 工作原理
超声波检测器是一种在高速公路上应用较多的检测器,它利用车辆形状对超声波波前的影响来实现检测。
超声波车辆检测的探头具有发射和接受双重功能,被设置于道路的正上方或斜上方,向路面发射超声波,并接收来自车辆的反射波。
如图2所示。
图2 超声波检测器示意图
超声波车辆检测器的工作原理可分为两种:传播时间差法和多普勒法。
传播时间差法即将超声波分割成脉冲射向路面并接收其反射波的方法。
当有车辆时,超声波会经车辆提前返回,检测出超前于路面的反射波,就表明车辆存在或通过。
多普勒法即超声波探头向空间发射超声波同时接收信号,如果有移动物体,那么接收到的反射波信号就会呈现多普勒效应。
利用此方法可检测正在驶近或正在远离的车辆,而不能检测出处于检测范围内的静止车辆。
2.2 典型应用
由于超声波传感器的检测区域由超声波发射器的波幅决定,因此,利用超声波传感器发射脉冲波,通过测量由路面或车辆表面发射的脉冲超声波的波形,可确定从传感器到路面或车辆表面的距离;同时,因路上有车和路上无车时的传感器所测信号有差别,可借此确定车辆的出现;传感器再利用接收的声信号转换为电信号,通过信号处理模块进行分析和处理,就可以得出车辆数量、车速以及车道占有率等交通流参数。
三、微波检测器
3.1 工作原理
微波检测器也称为雷达检测器,是基于多普勒效应原理进行工作的。
当发射换能器向地面发射微波时,如果由车辆在微波发射线的覆盖区域内通过,会视部分微波发生反射,且被接收换能器收到。
根据多普勒效应,接收到的微波频率将比原发射频率略高或略低,即产生频差(频率偏差)。
利用检测电路,将频差转化为脉冲信号,即可检测车辆的存在或通过,同时也可以测定车速。
3.2 典型应用
微波车辆检测传感器一般安装在单车道道路中央的上方来测量过往车流的交通参数;也可在多车道道路的路边安装以测量多条车道上车辆的交通参数。
四、红外线检测器
4.1 工作原理
红外检测一般采用反射式或阻断式检测技术。
例如反射式检测探头,它包括一个红外发光管和一个接收管。
无车时,接收管不受光;有车时,接受车体反射的红外线。
其工作原理是由调制脉冲发生器产生调制脉冲,经红外探头向道路上辐射,当由车辆通过时,红外线脉冲从车体反射回来,被探头的接收管接收。
经红外调解器调解,再通过选通、放大、整流和滤波后触发驱动器输出一个检测信号,如图3。
图3 红外检测器工作示意图
4.2 典型应用
主动式红外线检测器可以提供车流中的各种参数,如流量、车道占有率、车速、车辆长度和车辆排队长度及车辆分类。
可在一个交叉口上安装多个红外线检测器,而不存在发射红外线和接收红外线间的相互干扰。
为适应车辆分类的需要,许多先进的红外线检测器能自动生成二维或三维的监视图像。
这类检测器存在的缺点是:工作现场的灰尘、冰雾会影响系统的正常工作。
五、声学检测传感器
5.1 工作原理
声学检测传感器检测来自车辆内部和车辆轮胎与地面接触的声音,可测量车辆通过、车辆出现及车速等交通流参数。
当车辆通过检测区域时,信号处理算法感知到声音能量的提高,并产生车辆出现信号;当车辆驶离检测区域时,声音能量减少,低于传感器的检测阈值时,车辆出现信号消失。
5.2 典型应用
声学检测传感器通常用在高速公路检测现场和路口检测现场。
在高速路处,它们被安装于桥上或者路中间的电杆上,从侧面对车辆进行检测。
其中,在电杆上检测的效果较好。
在路口处,设备在检测停在检测区域的车辆时非常困难,有时会漏记,有时少计。
观察发现:少计和气温较低有关系,路上的积雪和少计也有关系。
六、视频检测器
基于视频图像处理的车辆检测技术是近年来逐步发展起来的一种新型车辆检测方法,它具有无线、可一次检测多参数和检测范围较大的特点,使用灵活,有着良好的应用前景。
图4图像处理车辆检测系统
视频检测传感器通过分析交通场景的图像来确定连续画面之间的变化,以达到检测车辆的目的。
如图4所示,视频图像处理车辆检测系统通常由电子摄像机、图像处理机(包含微处理器)、显示器等部分组成。
摄像机对道路的一定区域范围摄像,图像经传输线送入图像处理机,图像处理机对信号进行模/数转换、格式转换等,再由微处理器处理图像背景,实时识别车辆的存在,判别车型,由此进一步推导其他交通参数。
图像处理机还可根据需要给监控系统的主控机、报警器等设备提供信号,控制中心则根据这些信号制定控制策略,发出整个控制系统的控制信号。
七、磁力检测传感器
由于当铁质物体通过地球磁场时,会引起地磁场的扰动,同理,磁力检测传感器就是通过检测磁场强度的异常来确定车辆出现。
磁力检测传感器是被动接收设备,其工作原理是:当车辆接近磁力检测传感器的检测区域时,检测区域的磁力线受挤压;当车辆将要通过检测区域时,磁力线沿中心聚合;当车辆正在通过检测区域时,磁力线沿中心发散,这样,利用车辆接近、将要通过及正在通过检测区域时的磁力线的变化对车辆进行检测。
八、车辆检测器的选择
在不同的道路、交通和天气条件下,不同的检测技术所表现出来的技术性能也具有一定的差异,检测器的选用也不同,各传感器优缺点对比如下图所示,表1给出了不同应用场所常用的检测技术分析比较(不包括常用的环形线圈)。
表1不同应用场所可选用的检测技术
九、总结
交通检测器以车辆为检测目标,检测车辆的通过或存在状况,也检测路上车流的各种参数,其作用是为控制系统提供足够的信息以便进行最优的控制。
各种车辆检测器分别有各种优点,但也因感应线圈式检测器安装维护比较复杂,需要动用大量人力物力;脉冲超声检测器、雷达检测器的检测精度和抗干扰性能较差,容易受环境的干扰;视频检测器其检测精度受天气、光线的影响比较大,镜头容易受灰尘的影响等各自缺点,所以需要对车辆检测器进行进一步改进,并通过对具体环境进行分析来选择合适的车辆检测传感器,从而使各车辆检测器发挥其最大的作用,为道路安全畅通提供保障。
参考文献
1 梁国伟,蔡武昌.流量测量技术及仪表[M].北京:机械工业出版社.2002.
2吴兴福,撒潮.基于磁阻传感器的无线车辆检测传感器设计[J].中国公路学报.2007.
3杨东凯.智能交通系统及其信息化模型[J].北京航空航天大学学报,2000.
4 彭春华, 刘建业.车辆检测传感器综述[J].传感器与微系统.2007.。