《分式的加减》word版 公开课一等奖教案 (8)
八年级数学优质课《分式的加减》教案
八年级数学优质课《分式的加减》教案教学任务分析教学目标知识技能一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.数学思考在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.解决问题一、会进行同分母和异分母分式的加减运算.二、会解决与分式的加减有关的简单实际问题.三、能进行分式的加、剪、乘、除、乘方的混合运算.情感态度通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.重点分式的加减法.难点异分母分式的加减法及简单的分式混合运算.教学流程安排活动流程图活动内容和目的活动1:问题引入活动2:学习同分母分式的加减活动3:探究异分母分式的加减活动4:发现分式加减运算法则活动5:巩固练习、总结、作业向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.通过练习、作业进一步巩固分式的运算.课前准备教具学具补充材料课件教学过程设计问题与情境师生行为设计意图[活动1]1.问题一:比较电脑与手抄的录入时间.2.问题二;帮帮小明算算时间所需时间为,如何求出的值?3.这里用到了分式的加减,提出本节课的主题.教师通过课件展示问题.学生积极动脑解决问题,提出困惑:分式如何进行加减?通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.[活动2]1.提出小学数学中一道简单的分数加法题目.2.用课件引导学生用类比法,归纳总结同分母分式加法法则.3.教师使用课件展示[例1]4.教师通过课件出两个小练习.教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.学生在教师的'引导下,探索同分母分式加减的运算方法.通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.由两个学生板书自主完成练习,教师巡视指导学生练习.运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.让学生进一步体会同分母分式的加减运算.[活动3]1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.2.教师提出思考题:异分母的分式加减法要遵守什么法则呢?教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.[活动4]1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.2.教师使用课件展示[例2]3.教师通过课件出4个小练习.4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;试用含有R1的式子表示总电阻R5.教师使用课件展示[例4]教师提出要求,由学生说出分式加减法则的字母表示形式.通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.让学生体会运用的公式解决问题的过程.锻炼学生运用法则解决问题的能力,既准确又有速度.提高学生的计算能力.通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.提高学生综合应用知识的能力.[活动5]1.教师通过课件出2个分式混合运算的小练习.2.总结:a)这节课我们学习了哪些知识?你能说一说吗?b)⑴方法思路;c)⑵计算中的主意事项;d)⑶结果要化简.3.作业:a)教科书习题16.2第4、5、6题.学生练习、巩固.教师巡视指导.学生完成、交流.,师生评价.教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.教师布置作业.锻炼学生运用法则进行运算的能力,提高准确性及速度.提高学生归纳总结的能力.。
公开课教案---分式的加减
分式的加减(异分母的分式相加减)一、复习:1.同分母分式加减法的法则:同分母的分式相加减, 不变, 相加减.b c a a ±= 2.计算:(1)b a a --a b a - (2)a 1+a21; 3.最简公分母的确定方法:(1)分母是单项式: a.系数取各系数的 ,b.字母取所有字母的 。
(2)分母是多项式: a.能分解因式的先 , b. 系数取各系数的 ,c. 取所有整式的 。
4.确定下列各分式的最简公分母:(1)21,,234y x x y xy; (2)11,33x x +-; (3)2235,2y xy x x y -+- 二、探索新知:(一).计算: (1) 4156+ = (2)2132-= (3)241a a -= (4)11a b+= (二)对比总结:异分母分数相加减,先 ,化为 的分数,然后再按同分母分数的加减法则进行运算。
异分母分式相加减,先 ,化为 的分式,然后再按同分母分式的加减法则进行运算。
b d a c±= (三).应用新知:1.化简:(1)221a b+ (2)21223x xy -2.化简:(1)31-x -- 31+x (2)412-a -21-a3.化简:(1)122a a --+ (2)2112444x x x -+++(四).巩固应用:(阅读下列运算过程,回答所提问题) 化简:2333311(1)(1)1x x x x x x x ---=---+-- A 33(1)(1)(1)(1)(1)x x x x x x --=-+-+- B 33(1)x x =--+ C26x =-- D(1)上述计算过程中,从哪一步开始出现错误?( )(2)从B 到C 是否正确? 。
若不正确,错误的原因是- 。
(3)请你原题旁边正确解答:(五).拓展延伸:化简:2142122+⋅--÷⎪⎭⎫ ⎝⎛+-a a a a a a a(六).合作探究:1111a a +=-+ ,222211a a +=-+ ,444411a a +=-+ 。
《分式的加减-同分母、异分母分式加减》 word版 公开课一等奖教案
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!分式的加减---同分母、异分母分式加减本课教学反思英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进。
因此, 写作教案具有重要地位。
然而, 当前的写作教案存在“ 重结果轻过程”的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。
在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。
此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。
再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。
《分式的加减法》教案
《分式的加减法》教案1教学目标教学知识点:同分母的分式的加减法的运算法则及其应用.能力训练要求:1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.情感与价值观要求:1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.教学重、难点教学重点:同分母的分式加减法.教学难点:将分式化为同分母进行加减.教学过程Ⅰ.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:问题一:从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有1km 的上坡路、2km的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2v k m/h,在下坡路上的骑车速度为3v km/h,那么:(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题二:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?[生]问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v 23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.[生]如果要比较(v 1+v 32)与v23的大小,就比较难了,因为它们的分母中都含有字母. [生]比较两个数的大小,我们可以用作差法.例如有两个数a ,b . 如果a -b >0,则a >b ; 如果a -b =0,则a =b ; 如果a -b <0,则a <b .[师]这位同学想得方法很好,显然(v 1+v 32)和v23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生]如果用作差的方法,例如(v 1+v 32)-v23,如何判断它大于零,等于零,小于零呢?[师]我们不妨观察(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢? [生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 我们再来看一下问题二.[生]问题二中这个人用电脑录入3000字的文稿需a33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时. [生]a 3000,a 1000是分式,a 3000-a1000是分式的加减法. [师]但和问题一中加减法比较一下,你会发现什么?[生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法. Ⅱ.讲授新课1.同分母的加减法[师]我们接着看下面的问题 想一想(1)同分母的分数如何加减?你能举例说明吗? (2)你认为分母相同的分式应该如何加减? 例1计算:1;+--()a b a b ab ab 24222;---()x x x 243;-+-++()m n m n m n m n 3214111-+-+-+++().x x x x x x 解:()22(1) ===;+-+---a b a b a b a b b ab ab ab ab a2244(2)(2)(2)22222===;--+-+----x x x x x x x x x 24243333===-3;-+--+-+++--+-+=+()()()m n m n m n m n m n m n m n m n m n m n m n 321321411111-+--++--+-==+++++()().x x x x x x x x x x x x 例2计算:1;+--()x yx y y x212211;----()a a a a 解:(1)===1;-+------x y x y x y x y y x x y x y x y2222121221211111111---+-=+=------==--()().a a a a a a a a a a a a a a做一做 (1)a 1+a2=____________. (2)22-x x -24-x =____________.(3)12++x x -11+-x x +13+-x x =____________. [生]同分母的分数的加减是分母不变,把分子相加减,例如134+133-1317=131734-+=-1310. 我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着到黑板上板演“做一做”中的三个小题. [生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ;[生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x=12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2.[师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为: (3)12++x x -11+-x x +13+-x x=1)3()1()2(+++--+x x x x=1312+-++-+x x x x=1+x x. [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步. 通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cba ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 前面问题二现在可以完成了吧!大胆地试一试. [生]a 3000-a1000=a 10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a2000个小时. 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法,这是我们下节课的知识.Ⅲ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.分式的加减》教案2教学目标:教学知识点:1.同分母的分式的加减法的运算法则及其应用. 2.简单的异分母的分式相加减的运算. 能力训练要求:1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.情感与价值观要求:1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.教学重、难点:教学重点:1.同分母的分式加减法. 2.简单的异分母的分式加减法. 教学难点:当分式的分子是多项式时的分式的减法.教学过程:一.讲授新课1.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.通过上节课想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cb a (其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如a 3+a41应如何计算. [生]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法.[生]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同:小明:a 3+a 41=a a a 443⋅⋅+aa a⋅4 =2412a a +24a a =2413a a =a413. 小亮:a 3+a 41=443⋅⨯a +a41 =a 412+a 41=a413. 你对这两种做法有何评论?与同伴交流.[生]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41.如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125. [生]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[1]计算:(1)a 3+a a 515-;(2)12-x +xx --11 [生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算. [1]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a 515即可.解:(1)a 3+a a 515-=a 515+aa 515- =a a 5)15(15-+=a a 5=51;[生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x.所以第(2)题的解法如下: (2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起. [生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h .(2)小丽走第一条路所用的时间为v23h . 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h . 例3 计算:315(1)5;-+a a a 11233;--+()x x 221342---().a a a 解:3151515151511555555===;--+-++=()a a a a a a a a a a221133233333333969=-==;+---++-+-+----()()()()()()()x x x x x x x x x x x x 221223422222222222212=-;=+----+-+-+-+-=-+=+()()()()()()()()()().a a a a a a a a a a a a a a a a a例4 小刚家和小丽家到学校的路程都是3km ,其中小丽走的是平路,骑车速度是2v km/h .小刚需要走1km 的上坡路、2km 的下坡路,在上坡路上的速度是v km/h ,在下坡路上的车速是3v km/h .那么(1)小刚从家到学校需要多长时间?(2)小刚和小丽谁在路上花费的时间少?少用多长时间? 解:(1)小刚从家到学校需要125(h).33+=v v v(2)小丽从家到学校需要3h.2v因为5332,>v v所以小丽在路上花费的时间少. 小丽在路上花费的时间比小刚少531-=(h).326v v vⅢ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.分式的加减法》教案3教学目标:知识目标:1.熟悉分式四则运算的运算顺序. 2.熟练地进行分式的四则运算. 能力目标:通过分式四则运算的学习,进一步提高学生的分析能力和运算能力.教学重、难点:重点:熟练地进行分式四则运算. 难点:分式四则运算的顺序. 关键:分式四则运算的顺序.教学过程:一.复习1.类似分数,分式有:乘法法则——分式乘分式,用分子的积作为积的分母,分母的积作为积的分母.除法法则——分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示为:a c acb d bd =;ac ad adb d bc bc÷==. 2.类似分数的加减法,分式的加减法则是:同分母分式相加减,分母不变,把分子相加减,异分母分式相加减,选通分,变为同分母的分式,再加减,用式子表示为:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±=. 3.整数指数幂有以下运算性质:(1)a m a n =a m+n (m ,n 是整数);(2)(am)n =a mn (m ,n 是整数) (3)(ab)n =a n b n (n 是整数);(4)a m ÷a n =a m-n (m ,n 是整数)(5)(a b )n =n n a b(n 是整数);(6)a -n =1n a (a≠0);特别地,当a≠0时,a 0=1.计算:1.xxx x x x ----+-+3433522.168841412-+--+-+-x x x x x x 3.xyx xy y x xy x +--⋅-222222)( 通过计算帮助学生复习分式的有关知识.提问:分数的四则运算是如何进行的?(先乘除,再加减,有括号先算括号里的)新课讲解二.例题讲解例5.计算2111()-;++x x x 112()().--+÷+a a b a b a b 解:22222222111111111111111111 ( )--()()()--()()=-()-===;+=-++-+=++-++-++++x x x x x x x x x x x x x x x x x x x x x x 1122()()--()().+÷+-++-=⋅+-=+a a b a b a ba b a b a b a b a b aa b例6.已知2,=x y 求222---+-x y y x y x y x y 的值. 2222222222 ()()()().()()---+-+---=-++-+-==-+-x y y x y x y x y x x y y x y y x y x y x xy xy y y x x y x y x y 因为2,=x y即x =2y , 所以,原式22222244323().()===-y y y y y 做一做根据规划设计,某市工程队准备在开发区修建一条长1120m 的盲道.由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10m ,从而缩短了工期.假设原计划每天修建盲道x m ,那么(1)原计划修建这条盲道需要多少天?(2)实际修建这条盲道的工期比原计划缩短了几天?解:(1)原计划修建这条盲道需要1120x天; (2)∵实际每天修建盲道的长度=(x+10)m , ∴实际修建这条盲道用了112010+x 天. 因此 , 实际修建这条盲道的工期比原计划缩短了11201120112001010-=++()x x x x 天. 小结(引导学生自己小结)1.分式混合运算要注意顺序.(先乘除,再加减,有括号先算括号里的)2.计算时要求步骤详细,每步能说出变形依据.3.运算时要注意符号.4.注意在实际问题中的应用.。
2021年公开课《分式的加减》精品教案(市一等奖)(市优)
本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
在本节课的教学中,我始终坚持以引导为起点,以问题为主线,以能力培养为核心,遵照教师为主导,学生为主体,训练为主线的教学原则;通过师生双边活动,通过对单元的复习,使学生对本单元的知识系统化,重点知识突出化,能力培养阶梯化;在选择题目时注意了以基本题为主,少量思考性较强的题目为辅,兼顾了不同层次学生的不同要求。
本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。
由于剪的方法不同,展开图的形状也可能是不同的。
《分式的加减》教案
一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算规则。
2. 培养学生运用分式加减法解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 分式的加减法概念及运算规则。
2. 分式加减法的实际应用问题。
三、教学重点与难点:1. 重点:分式的加减法概念、运算规则及实际应用。
2. 难点:分式加减法在实际问题中的运用。
四、教学方法:1. 采用案例分析法,让学生通过实际例子理解分式的加减法。
2. 运用小组讨论法,培养学生合作解决问题的能力。
3. 采用问答法,激发学生思考,引导学生深入理解分式加减法。
五、教学过程:1. 导入新课:通过生活实例引入分式的加减法概念。
2. 讲解与演示:讲解分式的加减法运算规则,并通过多媒体演示分式加减法的运算过程。
3. 案例分析:分析实际问题,让学生运用分式加减法解决问题。
4. 小组讨论:学生分组讨论,分享各自解决问题的方法。
5. 问答环节:教师提问,学生回答,巩固所学知识。
6. 课堂练习:布置练习题,让学生巩固所学内容。
8. 作业布置:布置课后作业,巩固所学知识。
9. 课后辅导:针对学生作业中的问题进行辅导。
10. 教学评价:对学生的学习情况进行评价,为下一步教学提供参考。
六、教学准备:1. 准备PPT课件,展示分式的加减法运算过程。
2. 准备实际应用问题案例,用于课堂讲解和练习。
3. 准备课后作业,巩固学生所学知识。
七、教学步骤:1. 回顾上节课的内容,复习分式的加减法概念和运算规则。
2. 通过PPT课件,展示分式加减法的运算过程,让学生跟随步骤进行学习。
3. 讲解实际应用问题,让学生运用分式加减法解决问题。
4. 分组讨论,让学生分享自己解决问题的方法和思路。
5. 问答环节,教师提问,学生回答,巩固所学知识。
八、课堂练习:1. 布置练习题,让学生独立完成,巩固分式的加减法运算。
2. 挑选部分学生的作业进行讲解和点评,指出其中的错误和不足。
数学八年级下册《分式的加减法》省优质课一等奖教案
5.3 分式的加减法同分母分式的加减第1课时1.使学生理解和掌握同分母分式的加减法法则,并能熟练地进行同分母分式的加减运算.2.渗透类比数学思想方法.重点同分母分式的加减法法则和运算.难点分式的分子或分母是多项式的分式加减时的变形和去括号法则正确应用.一、创设情境,导入新课1.回忆:同分母的分数的加减法.2.类似地,同分母的分式的加减法法则如下: 同分母的分式相加减,分母不变,把分子相加减.式子表示:a c ±b c =a ±bc要注意分数线的括号作用:在处理符号变化问题时,需考虑分子或分母的整体性.二、合作交流,探究新知[例1] 计算:(1)2a +3b 5a 2b +2a -3b 5a 2b -a -2b5a 2b;(2)x -y 2x -3y -y -x3y -2x; (3)3a 2-5a a 2-1-2a 2-5a +1a 2-1-2a 2-21-a 2.分析:(1)按同分母分式的加减法直接进行计算;(2)由于2x -3y 与3y -2x 是互为相反数,故可用分式的符号变化法则将分母3y -2x 化为2x -3y ,转化为同分母分式的加减法;(3)分母情况与(2)类似.解:(1)原式=(2a +3b )+(2a -3b )-(a -2b )5a 2b=2a +3b +2a -3b -a +2b 5a 2b =3a +2b 5a 2b.(2)原式=x -y 2x -3y +y -x2x -3y=(x -y )+(y -x )2x -3y =x -y +y -x 2x -3y =0.(3)原式=3a 2-5a a 2-1-2a 2-5a +1a 2-1+2a 2-2a 2-1=(3a 2-5a )-(2a 2-5a +1)+(2a 2-2)a 2-1=3a 2-5a -2a 2+5a -1+2a 2-2a 2-1=3a 2-3a 2-1=3.说明:在做减法时,为了避免出错误,最好添上一个括号,去括号时注意变号.[例2] 计算:x +3y x 2-y 2+x +2y y 2-x 2+2x -3yx 2-y 2. 分析:分母中字母的排列顺序不同,首先统一字母的排列顺序,这样分母就相同了.解:原式=x +3y x 2-y 2-x +2y x 2-y 2+2x -3yx 2-y 2=(x+3y)-(x+2y)+(2x-3y)x2-y2=x+3y-x-2y+2x-3yx2-y2=2x-2yx2-y2=2(x-y)(x+y)(x-y)=2x+y注意:运算结果应该是最简分式,必须约去分子、分母中的公因式.三、课堂练习,巩固提高完成《·高效课堂》“自主检测”部分.四、反思小结,梳理新知1.运用同分母分式加减法则时要及时添括号和去括号,并注意符号;2.同分母的分式相加减,计算时把分子看成一个整体,注意添加括号;3.观察题目中的隐含条件,有些题的表面不是同分母,但稍加变形即可;4.结果要化成最简分式或整式.五、布置作业完成《·高效课堂》“课时作业”部分.第2课时异分母分式的加减1.理解掌握异分母分式加减法法则.2.能正确熟练地进行异分母分式的加减运算.3.在课堂活动中培养学生乐于探究、合作学习的习惯;渗透类比、化归数学思想方法,提高运算能力.重点异分母分式的加减法法则及其运用.难点正确确定最简公分母和灵活运用法则.一、创设情境,导入新课从甲地到乙地有两条路,每条路都是3 km,其中第一条是平路,第二条有1 km的上坡路,2 km的下坡路,小丽在上坡路上的骑车速度为v km/h ,在平路上的骑车速度为2v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需要多长时间?解:⎝ ⎛⎭⎪⎫1v +23v h.(2)她走哪条路花费时间少?少用多长时间?解:她走第一条路花费时间少,少⎝ ⎛⎭⎪⎫1v +23v -32v h.二、合作交流,探究新知1.想一想,异分母分数如何加减?(学生举例)你认为异分母的分式应该如何加减?比如3a +14a应该怎样计算?议一议,小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同.小明:3a +14a =3·4a a ·4a +a 4a ·a =12a 4a 2+a 4a 2=13a 4a 2=134a小亮: 3a +14a =3×4a ·4+14a =124a +14a =134a你对这两种做法有何评论?与同伴交流.小结:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.与异分母分数的加减法类似,异分母分式相加减,需要先通分,变为同分母的分式,然后再加减.为了计算方便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的共同分母.异分母分式的加减法――→通分同分母分式的加减法――→法则分母不变分子相加减2.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减.用式子表示为:a b ±c d =ad ±bcbd.3.分式通分时,要注意几点:(1)最简公分母的系数,取各分母系数的最小公倍数; (2)最简公分母的字母,取各分母所有字母的最高次幂的积;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面; (4)分母是多项式时一般需先因式分解. 三、运用新知,深化理解[例1] 计算:(1)3x +2+12-x +2xx 2-4 ;(2)2x 2x -1-x -1.分析:(1)把分母的各多项式按x 的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法.(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x -1=-x +11,要注意符号问题.解:(1)原式=3x +2-1x -2+2x(x +2)(x -2)=3(x -2)(x +2)(x -2)-x +2(x +2)(x -2)+2x (x +2)(x -2) =3(x -2)-(x +2)+2x (x +2)(x -2)=3x -6-x -2+2x (x +2)(x -2)=4x -8(x +2)(x -2)=4x +2; (2)原式=2x 2x -1-x +11=2x 2x -1 -(x +1)(x -1)x -1=2x 2-(x +1)(x -1)x -1=2x 2-(x 2-1)x -1=2x 2-x 2+1x -1=x 2+1x -1.[例2] 计算:11-x +11+x +21+x 2+41+x 4.分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的.各式的分母适用于平方差公式,所以采取分步通分的方法进行加减.解:原式=(1+x )+(1-x )(1+x )(1-x )+21+x 2+41+x 4=21-x 2+21+x 2+41+x 4=2(1+x 2)+2(1-x 2)(1+x 2)(1-x 2)+41+x 4=41-x 4+41+x 4=4(1+x 4)+4(1-x 4)(1+x 4)(1-x 4)=81-x 8. 四、课堂练习,巩固提高完成《·高效课堂》“自主检测”部分. 五、反思小结,梳理新知 异分母分式的加减法步骤:1.正确地找出各分式的最简公分母.2.用公分母通分后,进行同分母分式的加减运算. 3.公分母保持积的形式,将各分子展开. 4.将得到的结果化成最简分式.六、布置作业完成《·高效课堂》“课时作业”部分.第3课时分式的加减乘除混合运算1.分式的知识的综合应用.2.培养学生的独立的运算能力和分析能力.重点考查学生的综合知识的能力.难点准确地计算出各小题的结果.一、创设情境,导入新课师生共同回忆并整理1.分式的定义;2.分式有意义的条件;3.分式的基本性质;4.分式的乘除法;5.分式的加减法.二、合作交流,探究新知[例1] 下列各式,哪些是整式,哪些是分式?1x ,a 3 ,x x -y ,ab a ,x +2x -2,x +1π,14(x -y ),1y (a +b ),a 2+2ab +b 2a +b. 整式________________________________________________________________________分式________________________________________________________________________[例2] 当x 为何值时,下列分式有意义?(1)1x -1;(2)2|x |-1;(3)x 2-6x +5x 2+1.[例3] x 为何值时,下列分式的值为0?(1)x -1x +1;(2)(x -2)(x -3)x 2-9. [例4] 把分式x x +y中的x 和y 都扩大5倍,即分式的值( ) A .扩大5倍 B .不变C .缩小5倍D .缩小10倍[例5] 下列约分的四式中,正确的是() A.y 2x 2=y x B.a +c 2b +c 2=a bC.a +bma +mb =12m D.a -bb -a =-1[例6] 若(a -3)x (3-a )(x -1)=x1-x 成立,a 应取何值? [例7] 计算:(1)-3m 24n 2÷6mn 4;(2)a 2+2ab +b 2ab -b 2÷ab +b 2a 2-2ab +b 2;(3)4x 2-4xy +y 22x -y ÷(4x 2-y 2);(4)ax a 2-2ax +x 2÷ab a 2-x 2÷bx a 2-x 2. [例8] 计算:(1)x +9y 3xy -x +3y 3xy; (2)112xy 2-23x 2y; (3)a 2a -b -b 2-2ab b -a; (4)4x 2-4+2x +2-1x -2. 三、课堂练习,巩固提高完成《·高效课堂》“自主检测”部分.四、课堂练习,巩固提高分式的加减乘除混合运算要注意以下几点:1.一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便.2.要随时注意分子,分母可进行因式分解的式子,可避免运算繁琐.3.注意括号的“添”或“去”.4.结果要化为最简分式.五、布置作业完成《·高效课堂》“课时作业”部分.。
分式的加减法说课稿名师公开课获奖课件百校联赛一等奖课件
2 5
1 2
-
1 3
=
3-2= 66
1 6
1、从上面旳计算过程,你能想到分数旳加减是怎样 进行旳吗?(分数加法法则)
2、思索:类比分数旳加减法则,你能归纳出分式旳 加减法则吗?
老师活动:组织学生分组讨论,再共同研究 学生活动:小组讨论、探究、讲话 设计意图:引导学生经过类比分数运算法则, 为大胆猜测分式旳加减法则做铺垫
分式旳加减法
分式旳加减法
1
2
3
4
5
6
教材 学情 教学 教法 教学 分析 分析 目的 学法 过程
板书 设计
一、教材分析
分式旳加减法是在学生学习了分数 旳加减法以及分式旳基本性质基础上 进行旳,是进一步掌握分式旳约分、 通分及四则运算旳基础,更是进一步 学习《分式方程》旳关键。
返回
在学习本节课之前,学生原有旳知识是分 数旳加减。八年级旳学生一方面可能会对原 有知识有所遗忘,从心理上乐意去验证,乐 意去猜测,从而激活原有知识;另一方面八 年级学生已经具有了一定旳归纳总结能力, 怎样让学生灵活用分式旳加减运算法则进行 计算就是本节内容要突破旳难点。
(二)动手演练,主动探究
第二环节:同、异分母旳分式相加减
想一想:(1)b
a
+
2 a
(2) a +
m
b m
(3) 1 + 1
ab
(4) 2 - 3
a2
ab
老师活动:提出问题,引导、启发学生经过异 分母分数相加减旳措施类比得到异分母分式相加减 旳措施
学生活动:参加交流、讨论、归纳同、异分母分式 加减旳法则。(同分母旳分式相加减,分母不变,把分 子相加减;异分母分式相加减,先通分,变为同分母旳 分式,然后相加减。)
《分式的加减法》教案设计范文
《分式的加减法》教案设计范文
《分式的加减法》教案设计范文
教学目标
(一)教学知识点
1.异分母的分式加减法的法则.
2.分式的通分.
(二)能力训练要求
1.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力.
2.进一步通过实例发展学生的符号感.
(三)情感与价值观要求
1.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐.
2.提高学生用数学意识.
教学重点
1.掌握异分母的.分式加减运算.
2.理解通分的意义.
教学难点
1.化异分母分式为同分母分式的过程.
2.符号法则、去括号法则的应用.
教学方法
启发、探索相结合
教具准备
投影片五张
第一张:做一做,(记作3.3.2 A)
第二张:例1,(记作3.3.2 B)
第三张:例2,(记作3.3.2 C)
第四张:例3,(记作3.3.2 D)
第五张:补充练习,(记作3.3.2 E)
教学过程
Ⅰ.创设问题情境,类比异分母分数的加减法引入新课
[师]大家知道,对于异分母的分数相加减必须利用分数的基本性质,化成同分母的分数相加减,然后才能运算.
上一节课,我们讨论较简单的异分母的分式加减法.下面我们再来看几个异分母的加减法.(出示投影片 3.3.2 A)。
初中八年级数学教案-分式的加减教学设计-全国公开课一等奖
《分式的加减》教学设计教学目标(1)知识与技能:理解并掌握分式的加减法则,并会运用它们进行分式的加减运算。
(2)过程与方法:分式的加减法则是对分数加减法则的抽象,两者本质相同,通过类比的方法经历探索分式加减运算法则的过程,理解其算理,会进行简单分式的加减运算。
(3)情感态度与价值观:在活动中培养学生乐于探究,合作学习的习惯,培养学生应用数学的意识和能力。
教学重点:简单的同分母分式和异分母分式的加减运算是本节课重点教学难点:异分母分式的加减法学生知识状况分析(1)学生的知识技能基础:学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,并且经历过用字母表示现实情境中数量关系的过程。
由此类比分式的加减,可以猜想分式的加减运算法则。
(2)学生活动经验基础:在相关知识的学习过程中,它还与分数、分解因式、通分、约分、整式的加减等有密切联系,因此可以加强知识之间的纵向联系。
教法与学法(1)引导学生结合已有知识解决新问题,多为学生创造自主学习,合作学习的机会,让他们主动参与,勤于动手,充分感受知识的产生和发展过程,使学生处于积极思维状态之中,乐于探究,获得成就感;并锻炼学生克服困难的勇气。
(2)采用“引导---发现”的教学模式,让学生亲历发现事物特征,事物规律的过程,激发学生的学习兴趣,增强自信心,引发学生自主学习的内在动机;教学过程分析本节课设计了7个环节:系统回顾,新知引入—-观察类比,探究新知——类比分数,自主归纳——同分母分式加减—-—异分母分式加减——整式与分式加减-——课时小结第一环节系统回顾,复习重点把近期所学分式约分,分式通分,分式乘除步骤原理简单回顾。
第二环节=(3)学会用类比的方法解决分析问题。
通过提问方式引导学生小结主要的数学知识、数学思想方法及学习活动,养成学习——总结——再学习的良好习惯,发挥自我评价的作用,培养学生的语言表达能力鼓励学生结合本节课的学习,谈自己的收获与感想。
最新冀教版八年级数学上册《分式的加减》教案(优质课一等奖教学设计)
《分式的加减》教案教学目标1、知识与技能(1)通过实例和分数的加减法,了解分式的加减法法则.(2)运用分式的加减法法则进行分式运算.2、数学思考(1)用分数的加减法法则得出分式的加减法法则.(2)能正确的进行分式的加减运算.3、解决问题能运用分式的加减法法则解决实际问题.4、情感态度通过师生互动,学生自主探究,让学生充分参与到数学学习的过程中来.教学重点理解分式的加减法法则.教学难点对异分母分式的加减运算.教学设计情境设计:回顾上节所讲的分式的乘除运算知识,出示本节所要学的分式的加减运算题,由此将学生引入问题情境,引入新课.教学方法独立探究,合作交流与教师引导相结合.教具准备小黑板、彩色粉笔等.教学过程一、创设问题情境引入新课(预计5分钟)铺垫:在上一节课我们学习了分式的乘除运算,请问大家还能否会相继一份是的乘除法法则吗?(倾听同学们的回答)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;分式的除法:分式除以分式,把除式的分子、分母颠倒位置,与被除式相乘.那请同学们看一看这两道题,他们又有什么新特点呢?(出示小黑板)学生根据已有的知识列出了这两道题的式子,并请两位同学到黑板上写出答案.然后大家一起来讨论这两个式子的最后结果正确吗?从上面的问题可知,为讨论数量关系有需要进行分式的加减运算.这就是今天我们要学习的新内容“分式的加减”(板书).二、层层递进,探索新知(预计20分钟)1、分式的加减法法则:请大家计算出这些分数的加减式子,并且同学之间相互讨论,是否分数的加减与分式的加减法类似呢?又能否由此推广出分式的加减法法则呢?出去同学回答,并师生共同总结出分式的加减法法则:(板书)同分母分式相加减,分母不变,把分子相加减.异分母分式相加减,先通风,变为同分母的分式,再加减.如果我们为了记忆简单明了,用字母表示上述法则,应该是:c b a c b c a ±=±bd bc ad d c b a ±=±2、基本练习,加深对分式的加减法的理解与运用. 老师与学生共同完成例12222235y x x y x y x ---+ =22235y x x y x --+ =2233y x y x -+ =y x -3 例2q p q p 321321-++ =)32)(32(32)32)(32(32q p q p q p q p q p q p -+++-+- =)32)(32(3232q p q p q p q p -+++- =22944q p p -学生自己完成一组练习.课本P16练习.三、巩固练习(预计10分钟)例3:计算41)2(2b b a b a b a ÷--⋅解:41)2(2b b a b a b a ÷--⋅ =b b a b a b a 41422⨯--⋅ =)()(4)(4222b a b b a a b a b a ---- =)(444222b a b ab a a -+- =24b ab a -通过例3我们又可以了解到:式与数有相通的混合运算顺序,先乘除,再乘除,然后加减.课堂小结以提问的方式对本节课内容进行总结.1、分式的加减法法则是怎样的?2、如何用字母表示分式的加减法则?布置作业P17习题A 组1、2两题.。
(word版)浙教版数学七年级下《分式的加减》精品教案
5.4分式的加减(1)【教学内容分析】 分式的加减是分式的基本运算之一.本节课是同分母分式的加减,是异分母分式加减基础.教材中先让学生做两道同分母分数加减的题目,目的是通过与同分母分数加减类比,说明同分母分式的加减法法则.【教学目标】1、理解和掌握同分母的分式加减法法则.2、能运用法则进行同分母分式的加减运算.3、能将分母绝对值相等的分式转化为同分母分式,并进行加减运算.【教学重点】同分母分式加减法法则【教学难点】 分母中只有符号不同的分式加减运算中的符号处理.【教学过程】(一)类比引入,探求新知. 计算:17 +27 = _________ 510 -310 = 这一法则能否推广到分式运算中? 请尝试计算1a +3a , x -1x +1 - x x +1, 并分别取a=3,x=4检验你的计算方程是否正确 检验后,类比得到同分母的分式相加减的法则:同分母的分式相加减,把分子相加减,分母不变.用式子表示是:a c ±b c =a ±b c(二)理解应用,体验成功练一练:(课内练习)1、口答:计算:(1)3a +12a -15a (2)1m --3m(3)a x-y -a y-x (4)y x-y -x x-y在学生回答的过程中,教师反问:(3)中x-y 与y-x 相同吗?怎么处理?(可能学生会讲出:y-x =-(x-y ),教师肯定后再加以强调.)设计说明:让学生经历应用新知的过程,从中体会和理解法则中字母含义的广泛性.教师的反问起到了强调作用.做一做:例1:计算(1)a+3b a+b +a-b a+b (2)2xy 2+1(x-y)2 -1+2x 2y (y-x)2 教学建议:把主动权交给学生,待学生完成后,教师反问:在(2)中(x-y )2与(y-x )2是同分母吗?为什么?(多数学生应该知道:(x-y )2=x 2-2xy+y 2 而(y-x )2=y 2-2xy+x 2所以(x-y )2=(y-x )2或(y-x )2=[-(y-x )]2=(x-y )2),再问(x-y )3=(y-x )3吗?为什么?在师生的互动过程中,归纳出:(1)(x-y )2n =(y-x )2n ;(x-y )2n-1=(y-x )2n-1(2)分子相加减:应是分子“整体”相加减,注意添括号.(3)结果一定要最简.设计说明:培养学生解题后进行反思、归纳的好习惯,可使知识形成体系,以不变应万变. 试一试:(课内练习)2、计算:(1)a2a-b -b2a-b(2)2a2a-b+bb-2a(3)4x-2+x+22-x(4)a-ca2-b2-b-ca2-b2(三)综合应用,巩固提高做一做:例2:先化简,再求值:x2-1x2-2x +x-12x-x2,其中x=3教学建议:在解答过程中,应强调解题格式和步骤.课内练习:先化简,再求值:x2x-1+11-x,其中x=-32设计说明:分式的化简求值题是代数式的求值题中的一种,此两题的设计让学生体会到知识间的密切联系.(四)清点收获由教师开出清单,学生进行清点1、同分母的分式相加减法则2、绝对值相等的分母如何化为同分母.3、当分子是多项式时应注意什么?5、结果应的形式设计说明:为了避免学生毫无目的、流于形式的讲讲,由教师根据本节课的教学目标开出清单,让学生有的放矢.(五)作业:课后作业题设计思路:本课时用类比的方法得出同分母分式相加减的法则,通过例题让学生体会当分子分母分别为单项式与多项式时的相同之处和不同之处,引导学生学会用已有的知识经验,探索新的知识.第2课时有理数的乘除混合运算教学目标:1、知识与技能: 进一步理解有理数乘法、除法法则,能熟练地进行有理数乘除的混合运算。
2022年《分式的加减》教案 (省一等奖)
15.2.2分式的加减〔一〕一、教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、教学过程:〔一〕板书标题,呈现教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 〔二〕引导学生自学:阅读P15-16练习,并思考以下问题:1. 分数的加减运算法那么是什么?分式的加减运算法那么又是什么? 2. 异分母的分式加减法的一般步骤是什么?8分钟后,检查自学效果〔三〕学生自学,教师巡视: 学生认真自学,并完成P16练习 〔四〕检查自学效果:1.学生答复老师所提出的问题 2.学生答复P16练习〔五〕引导学生更正,归纳: 1.更正学生错误;2.P16例6. 第〔1〕题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比拟简单;第〔2〕题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.[分析] 第〔1〕题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.[分析] 第〔2〕题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 3.进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法那么计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:〔1〕取各分母系数的最小公倍数;〔2〕所出现的字母(或含字母的式子)为底的幂的因式都要取;〔3〕相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.4.异分母的分式加减法的一般步骤:〔1〕通分,将异分母的分式化成同分母的分式;〔2〕写成“分母不变,分子相加减〞的形式;〔3〕分子去括号,合并同类项;〔4〕分子、分母约分,将结果化成最简分式或整式. 〔六〕课堂练习 1.计算:〔1〕 〔2〕 〔3〕2.计算:〔1〕 〔2〕 111---x x x b a ab b a a +++2329122---m m aa a a a a a a a 2444122222--÷⎪⎭⎫ ⎝⎛+----+)225(423---÷-+x x x x作业:1.习题15.2第4,5题〔A本〕2.?感悟?P8-9分式的加减〔一〕3.预习P17-18练习[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
《分式的加法与减法》教案 (公开课获奖)分式的加减教案
分式的加减有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。
教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。
同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。
根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。
2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。
同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。
分式的加减 公开课大赛(省)优教案 教学设计
15.2.2 分式的加减 第1课时 分式的加减1.理解并掌握分式加减法法则.(重点)2.会利用分式加减法法则熟练地进行异分母分式加减法计算.(难点)一、情境导入 1.请同学们说出12x 2y3,13x 4y2,19xy2的最简公分母是什么?你能说出最简公分母的确定方法吗?2.你能举例说明分数的加减法法则吗?仿照分数加法与减法的法则,你会做以下题目吗?(1)1x +3x ;(2)2xy +4xy -5xy.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则吗? 今天我们就学习分式加减法.二、合作探究探究点一:同分母分式的加减法计算:(1)a 2+1a +b -b 2+1a +b ;(2)2x -1+x -11-x.解析:按照同分母分式相加减的方法进行运算.解:(1)a 2+1a +b -b 2+1a +b =a 2+1-(b 2+1)a +b =a 2+1-b 2-1a +b =a 2-b 2a +b =(a +b )(a -b )a +b =a -b ;(2)2x -1+x -11-x =2x -1-x -1x -1=2-(x -1)x -1=3-x x -1. 方法总结:(1)当分子是多项式,把分子相减时,千万不要忘记加括号;(2)分式加减运算的结果,必须要化成最简分式或整式;(3)当两个分式的分母互为相反数时可变形为同分母的分式.探究点二:异分母分式的加减【类型一】 异分母分式的加减运算计算:(1)x 2x -1-x -1;(2)x +2x 2-2x -x -1x 2-4x +4. 解析:(1)先将整式-x -1变形为分母为x -1的分式,再根据同分母分式加减法法则计算即可;(2)先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.解:(1)x 2x -1-x -1=x 2x -1-x 2-1x -1=1x -1;(2)x +2x 2-2x -x -1x 2-4x +4=(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2=x 2-4-x 2+x x (x -2)2=x -4x 3-4x 2+4x. 方法总结:在分式的加减运算中,如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.【类型二】 分式的化简求值先化简,再求值:3x -3-18x 2-9,其中x =2016. 解析:先通分并利用同分母分式的减法法则计算,后约分化简,最后代入求值. 解:原式=3x -3-18(x +3)(x -3)=3(x +3)-18(x +3)(x -3)=3(x -3)(x +3)(x -3)=3x +3,当x =2016时,原式=32019.方法总结:在解题的过程中要注意通分和化简.【类型三】 分式的简便运算已知下面一列等式:1×12=1-12;12×13=12-13; 13×14=13-14;14×15=14-15;… (1)请你从左边这些等式的结构特征写出它的一般性等式; (2)验证一下你写出的等式是否成立; (3)利用等式计算:1x (x +1)+1(x +1)(x +2)+1(x +2)(x +3)+1(x +3)(x +4).解析:(1)观察已知的四个等式,发现等式的左边是两个分数之积,这两个分数的分子都是1,后面一个分数的分母比前面一个分数的分母大1,并且第一个分数的分母与等式的序号相等,等式的右边是这两个分数之差,据此可写出一般性等式;(2)根据分式的运算法则即可验证;(3)根据(1)中的结论求解.解:(1)1n ·1n +1=1n -1n +1;(2)∵1n -1n +1=n +1n (n +1)-n n (n +1)=1n (n +1)=1n ·1n +1,∴1n ·1n +1=1n -1n +1;(3)原式=(1x -1x +1)+(1x +1-1x +2)+(1x +2-1x +3)+(1x +3-1x +4)=1x -1x +4=4x 2+4x. 方法总结:本题是寻找规律的题型,考查了学生分析问题、归纳问题及解决问题的能力.总结规律要从整体和部分两个方面入手,防止片面总结出错误结论.【类型四】关于分式的实际应用在下图的电路中,已测定CAD 支路的电阻是R 1,又知CBD 支路的电阻R 2比R 1大50欧姆,根据电学有关定律可知总电阻R 与R 1、R 2满足关系式1R =1R 1+1R 2,试用含有R 1的式子表示总电阻R .解析:由题意知R 2=R 1+50,代入1R =1R 1+1R 2,然后整理成用R 1表示R 的形式.解:由题意得R 2=R 1+50,代入1R=1R 1+1R 2得1R =1R 1+1R 1+50,则R =11R 1+1R 1+50=12R 1+50R 1(R 1+50)=R 1(R 1+50)2R 1+50.方法总结:此题属于物理知识与数学知识的综合,熟练掌握分式运算法则是解本题的关键.三、板书设计分式的加法与减法1.同分母分式的加减法:分母不变,把分子相加减,用式子表示为a c ±b c =a ±bc.2.异分母分式的加减法:先通分,变为同分母的分式,再加减,用式子表示为a b ±c d =adbd±bc bd =ad ±bcbd.从分数加减法引入,类比得出分式的加减法,最关键的是法则的探究,重点是法则的运用,易错点是分母互为相反数,要化成同分母分式,在这个过程中要注意变号.学生在教师的指导下,先独立进行自学,自己解决不了的问题在小组内讨论交流进行解决.第2课时含30°角的直角三角形的性质1.理解并掌握含30°角的直角三角形的性质定理.(重点)2.能灵活运用含30°角的直角三角形的性质定理解决有关问题.(难点)一、情境导入 问题:1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】 与角平分线或垂直平分线性质的综合运用如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD等于( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,PD ⊥OA ,∴PD =PE =1.5.故选C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到CD =12DB .解:CD =12DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =90°.∵DE 是∠ADB 的平分线,∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA),∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =12∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =90°,∴∠B =∠BAD =∠CAD=30°.在Rt △ACD 中,∵∠CAD =30°,∴CD =12AD =12BD ,即CD =12DB .方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】 利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC =50m ,AB =40m ,∠BAC =150°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150°,∴∠DAB =30°.∵AB =40m ,∴BD =12AB =20m ,∴S △ABC =12×50×20=500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,正确的计算出△ABC 的面积.三、板书设计含30°角的直角三角形的性质性质:在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.。
人教初中数学八上《分式的加减-同分母、异分母分式加减》教案 (公开课获奖)
分式的加减---同分母、异分母分式加减xx x 32教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.A BICABI作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连接AB 、BC 、CA ,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线. [师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30° 2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,DCA B12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.E DC A B P教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
数学八年级下册《分式的加减法》省优质课一等奖教案
5.3 分式的加减法(二)一、教学知识点:1、异分母的分式加减法的法则;2、分式的通分;3、异分母的分式加减法计算。
二、教学目标:通过异分母分式的加减运算和通分的过程,训练学生的分式运算能力。
三、教学重点:1、掌握异分母的通分方法;2、掌握异分母的分式加减运算。
四、教学难点:1、化异分母分式为同分母分式的过程;2、符号法则、去括号法则的应用。
五、教学方法:启发、探索相结合,一讲一练。
六、教具准备课件投影与黑板板书相结合。
七、教学过程:(一)、复习引入:(用8分钟)1、提问:问题1:同分母分式是怎样进行加减运算的?问题2:异分母分式是怎样进行加减运算的?问题3:确定最简公分母的方法与步骤是怎样的? 这3个问题在课件中解析。
(课件投影)(由学生到黑板写出答案)提问:确定最简公分母的方法是什么?(每点答案选一个学生回答) 答案:1、最简公分母的系数是各分母的系数的最小公倍数; 2、各分母中所含的相同字母或多项式取最低次幂;3、对于只在一些分母中含有的字母或多项式,连同它的指数一起当作最简公分母的一个因式。
22121xy a )答案:(()()()332-+x x ()()()223-+a a ()()24y x -(课件投影)(请学生到黑板写出答案)异分母的分式的加减法,应先把异分母的分式加减法转化为同分母的分式的加减法.(二)、例题解析:(用12分钟)(课件投影)(与学生互动问答的形式解决)();123,124,1261:2222222223xy a ya xy a x a xy a y 解()()();333,)3)(3(32-++-+-x x x x x x ()()()()();222,2213-++-+a a a a a ()()()().3,5422y x y x y x ---注意:对于分母是能分解因式的多项式的,一般要先对分母分解因式。
(课件投影)(由学生板演,学生之间互查互纠,师生互动).(课件投影)(由学生板演,学生之间互查互纠,师生互动)(由学生板演,学生之间互查互纠). (三)、深化拓展:(6分钟)(课件投影)(由学生小组讨论解答).(四)、本节内容小结(2分钟)(课件投影)(提出问题,由学生抢答). (五)、课后作业习题5.5第1、2、3题八、课内小测(15分钟)(课前印好试题)1.计算:23124ab a+=________. 2.计算:2211(1)a a +=--________.3.化简11123x x x++等于( ) A .12x B .32x C .116x D .56x4.若222222m xy y x yx y x y x y--=+--+,则m =( ).A .yB .y 2C .xD .2x5.当分式2121111x x x ---+-的值等于零时,则x =( ). A .1 B .23C .-1D .36.计算:(1)2221244x x x x x x +----+. (2) 21222933m m m ++--+ (3) 211x x x --- (4) (23-x x -2+x x )·xx 42-7.先化简,再求值:26333a a a a a a +-+--,其中32a =.九、课后思考:若)1)(1(3-+-x x x =1+x A +1-x B ,求A 、B 的值.十、学生向老师提问:(2分钟)问。
教学设计 分式的加减 “十校联赛”一等奖
【教学目标】
●知识与技能
使学生会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;
●过程与方法
使学生经历探索分式加减运算法则的过程,理解其算理;
●情感、态度与价值观
培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。
【教学重点与难点】
教学重点:掌握分式的加减运算法则进行运算
教学难点:异分母的分式加减运算
【教学流程图】
问题导入→提出议题→深入探究→当堂检测→课堂小结→布置作业
)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!
5.4分式的加减(2)
[教材内容分析]
分式的加减是分式的基本运算之一.是在学生学习了同分母的分式相加减的基础上学习的,通过与异分母分数加减的类比,容易知道只要把异分母转化为同分母就可以了,即是通分.通分的依据是分式的基本性质,通分充分体显了转化的思想;异分母的分式相加减是分式混合运算的基础,所以本节课的教学内容是前面知识的综合应用.
[教学目标]
1、理解分式的通分,最简公分母的概念,会确定几个异分母分式的最简公分母.
2、理解异分母分式加减法则,能对分母是单项式或简单的多项式的异分母分式加减运算.
3、能进行分式与整式的加减运算.
[教学重点]确定最简公分母并正确通分
[教学难点]分母是多项式的异分母分式的通分
[教学过程]
(一)创设情景,引入新课
情景:(出示节前图片):
台风中心距A 市s 千米,正以b 千米/时的速度向A 市移动,救援车队从B 市出发,以4倍于台风中心的移动的速度向A 市前进,已知A 、B 两地的路程为3s 千米,问救援车队能否在台风中心到来前赶到A 城,若能赶到,提前了几分钟,若不能赶到,还差几分钟?
分析:由题意可列式子:s b -3s 4b
让学生说出与上节课的分式加减有何不同?(学生应该能说出:异分母)从而引出课题
设计说明:通过创设情景,使学生体验到数学知识在生活中的实用价值;同时使学生引起认知冲突,同分母的分式加减已学会了,异分母的分式加减又怎样做呢?激发学生学习的欲望.
(二)复习旧知,探求新知
计算:312 -58
待学生完成后,教师反问:这是什么运算?怎么做的?关键是什么?
类似地,你能完成下面的计算吗?
(1)1a + 1b (2) b 2a 2 -b a
? 待学生完成后,教师反问:你以什么作为公分母?在师生互动的过程中归纳总结出通分的概念: (板书)把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.
设计说明:与异分母分数的加减作类比,说明异分母分式的加减也是通过转化为同分母的分式再加减.
试一试: 计算:s b -3s 4b =4s 4b -3s 4b =4s-3s 4b =s 4b
反思: (1)分式通分的依据是什么?
(2)如何确定公分母?
教学建议:先让学生充分讨论,然后让学生归纳,可能学生归纳不是很完全,但只要学生得有点正确,教师应该给予肯定,最好教师与学生一起归纳.
通分时一般取各分式分母系数的最小公倍数与各分母所有因式的最高次幂的积为公分母.这个公分母也称为最简公分母.
异分母通分简公分母
→ 同分母 (三)理解应用,体验成功
做一做:例3:计算
(1)76x 2y -23xy 2 (2)x x-3 -x x-2 (3)x-2-x 2
x+2
教学建议:把主动权让给学生,先让学生自己计算,当学生遇到困难时,适当提示.当学生完成后,教师反问:(1)异分母分式加减的一般步骤是什么?
(2)在解第(2)与第(3)时与第(1)题有什么不同的地方?(待学生回答后)
教师与学生一起归纳:(一)解题步骤:(1)确定最简公分母
(2)通分
(3)加减计算(结果要最简)
(二)注意点:整式与分式相加减,将整式看成分母是1的分式进行通分.
设计说明:分式与分数有许多相似之处,通过类比几个浅显的例子,直观易懂,让学生经历应用的过程,让学生感悟异分母分式加减的实质是通分和通分的关键是如何找最简公分母.
练一练:
课内练习:1、计算:(1)b 24a 2 -c a (2)1-1x+1
2、用两种不同的运算顺序计算:(x x-2 - x x+2 )2-x x
(三)综合应用,巩固提高
做一做:1、计算:4a 2-4 +12-a
,并求当a =-3时,原式的值. 2、计算:2m 2-m +m-22m 2-2
,并求当m =3时,原式的值?
教学建议:按学生座位分两组,每组做一题.待学生完成后展示学生的解题过程并让学生评价
得出:当分母是能分解的多项式时,应先分解因式再通分,通分时要将原分子看成一个整体,运算结果保留最简分式或整式,至于分子、分母的形式是多项式,还是因式的积,以形式简洁为准.
课内练习:计算:2m 2-m +m-22m 2-2
,并求当m =3时,原式的值?
(四)归纳小结:
(五)作业:课后作业题
设计思路:
本课时用类比的方法得出异分母分式相加减的实质是通分后转化为同分母,再加减.通分的关键是如何找最简公分母,通过应用让学生体会转化思想.
本课教学反思
英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进。
因此, 写作教案具有重要地位。
然而, 当前的写作教案存在“ 重结果轻过程”的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。
在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。
此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。
再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。