大学物理(简谐振动篇)课件
合集下载
大学物理(简谐振动篇)ppt课件
通过图表展示实验结果,如位移-时间 图、速度-时间图等,以便更直观地分 析振动特性。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
大学物理-11第十一讲简谐振动、振动能量、旋转矢量法
振动方程 x0.15cos5tmxAcost
14
例:边长l的立方体木块浮于静水中,浸入水中部分 的高度为b。今用手将木块压下去,放手让其开始运 动。忽略水的阻力,证明木块作谐振动。 解:以水面为原点建立坐标OX。
任意时刻 F浮水(bx)l2g mgF浮ma
水 b l2g水 l2(bx)gm a
力使 减小.
mgsinmldd2t2
很小,sin mg
ml
d2
dt2
l m
f mg
d 2
dt 2
g
l
0
角谐振动
解为 0cos(t)
g T 2 l
l
g
12
例:如图所示装置,轻弹簧k =50N/m,滑轮 M =1kg,
半径 R =0.2m,物体 m =1.5kg。若将物体由平衡位置
X
P
xAcos(t)
◆可用该旋转矢量末端的投影点 P 的运动来表示简 谐振动。
16
旋转矢量法的应用
1.确定初位相 ●由初始位置 x0 确定旋转矢量两个可能的位置。 (特殊情况下只有一个位置) ●根据初始速度方向,由旋转矢量两个可能的位 置中确定初始位置,从而找出初相.。
A
Ox
17
例:确定下列情况的初位相 (a) 已知 t = 0 时,x = -A。 (b) 已知 t = 0时,x = 0,且向 x 轴正方向运动。 (c) 已知 t = 0,x = -A/2,且向 x 轴负方向运动。 (d) 已知 t = 0,x = -A/2,且向 x 轴正方向运动。
13
d2x dt2
k x0 m(1/2)m
d2x dt 2
14
例:边长l的立方体木块浮于静水中,浸入水中部分 的高度为b。今用手将木块压下去,放手让其开始运 动。忽略水的阻力,证明木块作谐振动。 解:以水面为原点建立坐标OX。
任意时刻 F浮水(bx)l2g mgF浮ma
水 b l2g水 l2(bx)gm a
力使 减小.
mgsinmldd2t2
很小,sin mg
ml
d2
dt2
l m
f mg
d 2
dt 2
g
l
0
角谐振动
解为 0cos(t)
g T 2 l
l
g
12
例:如图所示装置,轻弹簧k =50N/m,滑轮 M =1kg,
半径 R =0.2m,物体 m =1.5kg。若将物体由平衡位置
X
P
xAcos(t)
◆可用该旋转矢量末端的投影点 P 的运动来表示简 谐振动。
16
旋转矢量法的应用
1.确定初位相 ●由初始位置 x0 确定旋转矢量两个可能的位置。 (特殊情况下只有一个位置) ●根据初始速度方向,由旋转矢量两个可能的位 置中确定初始位置,从而找出初相.。
A
Ox
17
例:确定下列情况的初位相 (a) 已知 t = 0 时,x = -A。 (b) 已知 t = 0时,x = 0,且向 x 轴正方向运动。 (c) 已知 t = 0,x = -A/2,且向 x 轴负方向运动。 (d) 已知 t = 0,x = -A/2,且向 x 轴正方向运动。
13
d2x dt2
k x0 m(1/2)m
d2x dt 2
10612_大学物理振动波动优秀ppt课件
01
02
03
声波传播速度
声波在介质中的传播速度 与介质的密度和弹性模量 有关。
2024/1/25
声波衰减
声波在传播过程中会因介 质的吸收和散射而逐渐衰 减。
声波反射和折射
声波在遇到不同介质界面 时会发生反射和折射现象 。
29
案例分析:医学超声诊断技术应用
超声成像原理
利用超声波在人体组织中的反射和折 射特性,将回声信号转换为图像,从 而实现对人体内部结构的可视化。
04
2024/1/25
05
阻尼振动的能量逐渐转化为 热能或其他形式的能量。
9
受迫振动产生条件及规律
受迫振动的定义:物 体在周期性外力作用 下产生的振动。
存在周期性外力作用 。
2024/1/25
受迫振动的产生条件
10
受迫振动产生条件及规律
外力频率与物体固有频率 不同。
2024/1/25
受迫振动的频率等于驱动 力频率,与物体固有频率 无关。
大学物理振动波 动优秀ppt课件
2024/1/25
1
目录
• 振动基本概念与简谐振动 • 阻尼振动、受迫振动与共振 • 波动基本概念与波动方程 • 干涉、衍射与偏振现象 • 多普勒效应与声波传播特性 • 非线性振动与混沌现象初步探讨
2024/1/25
2
01
振动基本概念与简谐振动
2024/1/25
3
受迫振动的规律
当驱动力频率接近物体固 有频率时,振幅显著增大 ,产生共振现象。
11
共振现象及其危害防范
2024/1/25
12
共振现象及其危害防范
对机器、设备等造成损坏 。
对建筑物、桥梁等结构造 成破坏。
简谐振动的动力学特征及运动学-PPT
• 动力学方程
d2 dt
x
2
2
x
0
9
§4-1 简谐振动的动力学特征
x Acos(t )
T 2π 取 0
x xt图
A
o
T
A
v vt 图
t
v A sin(t ) A
o
Tt
A cos(t π ) A
2
a a t图
a A 2 cos(t ) A 2
o
Tt
A 2 cos(t π ) A 2
两振动位相之差
=2- 1
•当=2k ,k=0,±1,±2…,两振动步调相同,称同相
•当=(2k+1) , k=0,±1,±2...
两振动步调相反,称反相
•0<<
2 超前于1 或 1滞后于2
位相差反映了两个振动不同程度的参差错落
•谐振动的位移、速度、加速度之间的位相关系
x
A cos( t
A sin(
§4-2 简谐振动的运动学
例题 质点沿x轴作谐振动, 周期T=s, t=0时, xo 2m ,o 2 2m / s,求振动方程。
解: x =Acos( t+ )
2 2
T
A
xo2
o2 2
2
cos 2
2
sin 2
2
3
4
得x 2cos( 2t 3 )m
4 32
dt 2
x Acos(t 0 )
cos(t
0
)
sin(t
0
2
)
令
'
0
2
x Asin(t ' )
简谐振动的运动规律也可用正弦函数表示.
大学物理简谐运动课件
05
简谐运动的应用领域
物理学领域的应用
振动与波动实验
01
简谐运动是振动的基本形式之一,在物理学实验中常被用来研
究振动和波动现象,如共振、干涉和衍射等。
弦的振动
02
弦的振动是一种常见的简谐运动,在研究弦乐器的发声机制、
弦振动方程等方面有重要应用。
电磁波的发射与接收
03
在无线电通信和雷达技术中,信号的发射和接收都涉及到电磁
详细描述
简谐运动的位移公式为x=A*sin(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公式用于描述简 谐运动物体在任意时刻的位置变化。
简谐运动的速率公式
总结词
描述简谐运动物体速度大小的公式
详细描述
简谐运动的速率公式为v=A*ω*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公 式用于描述简谐运动物体在任意时刻的速度大小。
简谐运动的加速度公式
总结词
描述简谐运动物体加速度大小的公式
详细描述
简谐运动的加速度公式为a=A*ω^2*sin(ωt+φ),其中A为振幅, ω为角频率,t为时间,φ为初相角。 该公式用于描述简谐运动物体在任意 时刻的加速度大小。
简谐运动的能量定理
总结词
描述简谐运动物体能量变化的定理
详细描述
简谐运动的能量定理指出,一个做简谐运动的物体,其振动能量E与振幅A的平方成正 比,即E=1/2*k*A^2,其中k为弹簧的劲度系数。该定理用于描述简谐运动物体能量的
受迫振动与共振
受迫振动的定义
受迫振动是指振动物体受到周期性外力作用下的振动,其振动频率与外力频率相同或相近 。
共振的原理
大学物理学完整10PPT课件
上式还可写为: 2π
上式表明,ω是频率的2π倍,表示物体在2π秒内完成的全 振动次数,故ω称为角频率或圆频率。
周期、频率和角频率都是描述物体振动快慢的物理量。在
国际单位制中,周期的单位为秒(s);频率的单位为赫兹(Hz );角频率的单位为弧度每秒(rad/s)。
对弹簧振子,由于
k m
故有:
T 2π m k
第4篇 振动与波动
第10章 机械振动
.
1
本章学习要点
简谐振动 简谐振动的合成 阻尼振动、受迫振动与共振 本章小结
.2ຫໍສະໝຸດ 10.1 简谐振动物体运动时,如果离开平衡位置的位移(或角位移)按余 弦函数或正弦函数的规律随时间变化,则这种运动称为简谐振 动。在忽略阻力的情况下,弹簧振子的振动及单摆的小角度摆 动等都可视为简谐振动。
当t=0时,相位ωt+φ=φ,φ称为初相位,简称初相,它是 决定初始时刻振动物体运动状态的物理量。在国际单位制中, 相位的单位为弧度(rad)。
.
12
用相位描述物体的运动状态,还能充分体现出振动的周期 性。例如:
ωt+φ=0时,物体位于正位移最大处,且v=0; ωt+φ=π/2时,物体位于平衡位置,且向x轴负方向运动 ,v=ωA; ωt+φ=π时,物体位于负位移最大处,且v=0; ωt+φ=3π/2时,物体位于平衡位置,且向x轴正方向运动 ,v=ωA; ωt+φ=2π时,物体位于正位移最大处,且v=0。
【解】以OO′为平衡位置,设逆时针转向为θ 角正向,棒在任意时刻的角位移都可用棒与OO′ 的夹角θ表示。根据题意,棒所受的重力矩为:
M1mgslin
2
.
7
当摆角θ很小时,sinθ≈θ,故
M 1mgl
最新简谐运动课件-(共28张PPT)课件ppt
②x-------位移:由平衡位置指向振动质点所在位置的有向线段, 是
矢量 ③ “-”表示回复力与位移的方向相反.
5.简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力,所以振动
回复力:使振动物体返回平衡位置的力。
特点:①方向:总指向平衡位置 ②回复力是按效果命名的力,回复力可以是物体受到的一个
力,也可以是物体所受某一个力的分力,还可以是物体受到的合外力 平衡位置:平衡位置是指回复力为零的位置,但并不一定是合外力 为零的位置(单摆)
3.知识回顾:胡克定律
在弹簧发生弹性形变时,弹簧振子的回复力F 与振子偏离平衡位置的位移x大小成正比,且方
A.小球由O向C运动的过程中,加速度越来越大,速 度越来越大
B.小球由C到O运动的过程中,加速度越来越小,速 度越来越大
C.小球由O到B运动的过程中,要克服弹力做功 D.小球由D点运动到C再返回D,所用的时间是1/4周 期
6、一个弹簧振子的振动周期是0.25s,当振子从平衡位
置开始向右运动,经过1.7s时,振子的运动情况是(B )
频率是表示振动快慢的物理量,频率越大表示 振动越快,频率越小表示振动越慢。
思考题:
1、振幅就是最大位移吗?
振幅是一个标量,指物体偏离平衡位置的最大距离。它没 有负值,也无方向,所以振幅不同于最大位移。
2、频率越大,振幅就越大吗?
在简谐运动中,振幅跟频率或周期无关。在一个稳定的振 动中,物体的振幅是不变的。
复习:
x
x
(1)位移:振动中的位移x都是以平衡位置为起点的,因此,方向 就是从平衡位置指向末位置的方向,大小就是这两位置间的距离, 两个“端点”位移最大,在平衡位置位移为零。
矢量 ③ “-”表示回复力与位移的方向相反.
5.简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力,所以振动
回复力:使振动物体返回平衡位置的力。
特点:①方向:总指向平衡位置 ②回复力是按效果命名的力,回复力可以是物体受到的一个
力,也可以是物体所受某一个力的分力,还可以是物体受到的合外力 平衡位置:平衡位置是指回复力为零的位置,但并不一定是合外力 为零的位置(单摆)
3.知识回顾:胡克定律
在弹簧发生弹性形变时,弹簧振子的回复力F 与振子偏离平衡位置的位移x大小成正比,且方
A.小球由O向C运动的过程中,加速度越来越大,速 度越来越大
B.小球由C到O运动的过程中,加速度越来越小,速 度越来越大
C.小球由O到B运动的过程中,要克服弹力做功 D.小球由D点运动到C再返回D,所用的时间是1/4周 期
6、一个弹簧振子的振动周期是0.25s,当振子从平衡位
置开始向右运动,经过1.7s时,振子的运动情况是(B )
频率是表示振动快慢的物理量,频率越大表示 振动越快,频率越小表示振动越慢。
思考题:
1、振幅就是最大位移吗?
振幅是一个标量,指物体偏离平衡位置的最大距离。它没 有负值,也无方向,所以振幅不同于最大位移。
2、频率越大,振幅就越大吗?
在简谐运动中,振幅跟频率或周期无关。在一个稳定的振 动中,物体的振幅是不变的。
复习:
x
x
(1)位移:振动中的位移x都是以平衡位置为起点的,因此,方向 就是从平衡位置指向末位置的方向,大小就是这两位置间的距离, 两个“端点”位移最大,在平衡位置位移为零。
大学物理(简谐振动篇)课件
31
31
例 已知振动曲线,求振动方程。
解 A3cm
x
x(cm )
1
2
T 2s
3
2 s
T
由振动曲线1,
o
1
2
3
t(s)
3
t=0时,x0=0,υ0 > 0
10
2
x1
3cos(t
)
2
由振动曲线2, t=0时,x0=-3,υ0= 0
20
x23cos(t)
第学11习章交机流械PP振T动
32
加速度 a 与位移 x 反相。
o
t
2A T
第学11习章交机流械PP振T动
35
35
小结
简谐振动的三个判据
1)受力特征 f kx
恢复力
劲度系数
2) 振动方程 xAcost0
3)微分方程
d2 dt
x
2
2
x
0
以上1)、2)、3)中任一条成立即可判定为简谐振动。
第学11习章交机流械PP振T动
36
36
简谐振动的三种表示方法
mg kx m d2x
dt2
d2x dt 2
k m
x
g
(不是谐振动)
O'
x 0o
原点取在平衡位置 建立 ox轴
mgk(xx0)mddt22x
xx xx
d 2x dt 2
k m
x
0
xAcos(t0)
第学11习章交机流械PP振T动
kkx(x x0) mg
19
19
推论: 若振动系统除受弹性力外,还受一恒力作 用,则系统的振动规律不变,只是改变了平衡位置, 而坐标原点取在新的平衡位置上。
普通物理9.1简谐振动的定义PPT课件
详细描述
简谐振动的周期性表现为,物体在振动过程中,从任意一个 状态开始,都会在一段时间后回到该状态,这段时间称为周 期。简谐振动的周期是固定的,与振幅和相位无关。
振幅
总结词
振幅是简谐振动中物体离开平衡位置 的最大距离。
详细描述
振幅是描述简谐振动幅度大小的物理量,表 示物体振动强烈程度。在振动曲线中,振幅 表现为曲线的最大值或最小值。振幅的大小 与能量有关,振幅越大,能量越大。
简谐振动的应用
弹簧振荡器
弹簧振荡器是一种利用弹簧的弹性振动原理 来产生振动的装置。在弹簧振荡器中,弹簧 的一端固定,另一端连接质量块。当质量块 在弹簧的弹性力作用下振动时,弹簧的振动 频率和振幅会受到质量块的质量、弹簧的刚 度和阻尼等因素的影响。
弹簧振荡器广泛应用于物理学、工程学和生 物学等领域。在物理学实验中,弹簧振荡器 可以用来研究简谐振动的规律和特性,以及 验证能量守恒定律等基本物理原理。在工程 学中,弹簧振荡器可以用于振动隔离、减震 和振动控制等方面。在生物学中,弹簧振荡 器可以用于研究生物体的振动特性和生理机
观察到弹簧振子在受到周期性外力作用时,会产生周期 性的往复运动。
总结出简谐振动的定义:简谐振动是一种周期性往复运 动,其运动规律可以用正弦或余弦函数描述。
分析振动曲线的形状,发现其呈现正弦或余弦函数的规 律。
通过实验结果,理解简谐振动的物理意义和实际应用。
06
总结与思考Hale Waihona Puke 本节课的重点和难点重点
简谐振动的定义、简谐振动的描 述方式、简谐振动的特点。
难点
如何理解简谐振动的定义,如何 应用简谐振动的描述方式,如何 掌握简谐振动的特点。
下节课预告
主题
简谐振动的运动规律
简谐振动的周期性表现为,物体在振动过程中,从任意一个 状态开始,都会在一段时间后回到该状态,这段时间称为周 期。简谐振动的周期是固定的,与振幅和相位无关。
振幅
总结词
振幅是简谐振动中物体离开平衡位置 的最大距离。
详细描述
振幅是描述简谐振动幅度大小的物理量,表 示物体振动强烈程度。在振动曲线中,振幅 表现为曲线的最大值或最小值。振幅的大小 与能量有关,振幅越大,能量越大。
简谐振动的应用
弹簧振荡器
弹簧振荡器是一种利用弹簧的弹性振动原理 来产生振动的装置。在弹簧振荡器中,弹簧 的一端固定,另一端连接质量块。当质量块 在弹簧的弹性力作用下振动时,弹簧的振动 频率和振幅会受到质量块的质量、弹簧的刚 度和阻尼等因素的影响。
弹簧振荡器广泛应用于物理学、工程学和生 物学等领域。在物理学实验中,弹簧振荡器 可以用来研究简谐振动的规律和特性,以及 验证能量守恒定律等基本物理原理。在工程 学中,弹簧振荡器可以用于振动隔离、减震 和振动控制等方面。在生物学中,弹簧振荡 器可以用于研究生物体的振动特性和生理机
观察到弹簧振子在受到周期性外力作用时,会产生周期 性的往复运动。
总结出简谐振动的定义:简谐振动是一种周期性往复运 动,其运动规律可以用正弦或余弦函数描述。
分析振动曲线的形状,发现其呈现正弦或余弦函数的规 律。
通过实验结果,理解简谐振动的物理意义和实际应用。
06
总结与思考Hale Waihona Puke 本节课的重点和难点重点
简谐振动的定义、简谐振动的描 述方式、简谐振动的特点。
难点
如何理解简谐振动的定义,如何 应用简谐振动的描述方式,如何 掌握简谐振动的特点。
下节课预告
主题
简谐振动的运动规律
简谐振动PPT幻灯片课件
a
2
A cos (t
2
)
以上结果表明:
(1)v,a与x的ω相同
(2) vmax A, amax 2 A
(3)a与x方向相反,且成正比
x、v、a相位依次差π/2。
振幅
10
二、初始条件确定振幅和初相位
初始条件: t 0, x0 , v0
x0 Acos
写为:
v0 Asin
3
利用旋转矢量法求解很直观,
根据初始条件就可画出如图所 示的振幅矢量的初始位置,从 而得到:
O
x0 v0
x
21
(2) v Asin(t ) 0.12 sin(t )
3
a 2 Acos(t ) 0.12 2 cos(t )
3
半径R——振幅A
角速度——角频率ω
初始矢径与x轴的交角—初相位 o
t时刻A矢量在x轴上的投影
x Acos(t 0 )
2.旋转矢量
表示出三个特征量
A
t
t 0 0
x
A
用旋转矢量法处理问题更直观、 动画
O
x
更方便,必须掌握。
17
18
19
[例题3]一质点沿x轴作简谐振动,振幅 A=0.12m,周期T=2s, 当 t=0 时,质点对平衡位置的位移 x0=0.06m,此时向x轴正 向运动。 求:(1)此振动的表达式
由牛顿第二定律,有: kx m d2 x
令:
k 2,
dt2
m
则有:
d2 dt
x
2
大学物理111简谐振动课件
1. 平衡位置 2. 建立坐标 3.受力分析
弹性力 f kx
4.牛顿运动方程
kx
ma
m
d2 dt
x
2
令 k 2 整理得
m
d 2 x 2 x 0 简谐振动动力学方程
dt 2
解微分方程可得
x A cos(t 0 )
简谐振动运动学方程
二、简谐振动的三个特征量
1.振幅 物体离开平衡位置的最大位移的绝对值 A, 由初始条件决定,描述振动的空间范围。
2.周期 振动状态重复一次所需要的时间,描述振 动的快慢.
Acos[(t T ) 0] Acos(t 0)
T 2π T 2π
1
T
物体在单位时间内发生完全振动的次
数,称振动的频率.
2π 称圆频率(角频率).
k T 2 m 1 k
m
k
2 m
反映了系统的固有特性,分别称为谐振子系统 的固有圆频率、固有周期和固有频率.
圆频率 k 由系统决定,与初始条件无关
m
振幅 反映振动的强弱,由初始条件决定.
由
x Acos t 0 v A sin t 0
x0 Acos0
t=0时 v0 A sin0 可得
A
x02
v02
2
初相位 0 已知初始振动状态,用旋转矢量确定
x0<0 v0<0
x0=0 v0<0
x0>0 v0<0
例6 某简谐振动的振动曲线如图,写出振动方程。 x(cm)
O
t(s)
-1
1
-2
解: 设振动方程为 x A cos(t 0 )
则由振动曲线: A=2 cm
xA
简谐运动ppt课件
解:方法1
31.4
15.7
设振动方程为
0
x Acos(t 0 ) 15.7
31.4
1
t(s)
v0 A sin0 15.7cms 1 a0 2 Acos0 0
A vm 31.4cms 1
sin 0
v0
A
15.7 31.4
1 2
0
6
或
5 6
a0
0,则cos0
0
0
6
t 1 v 15.7cms 1 sin( 1 ) v v 1
两振动步调相反,称反相
0
2 超前于1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
谐振动的位移、速度、加速度之间的位相关系
x Acos( t 0 )
v
A
sin(
t
0
)
vm
cos(
t
0
2
)
a A 2 cos( t 0 ) am cos( t 0 )
x.v.a. x
衡位置的运动。
• 平衡位置:质点在某位置所受的力(或沿 运动方向受的力)等于0,则此位置称为平 衡位置。
•线性回复力:若作用于质点的力总与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指向 平衡位置,则称此作用力为线性回复力。
若以平衡位置为原点,以X表示质点相对于平衡
位置的位移,则
f kx
3
a 0.12 2 cos( 0.5 ) 0.103
3
(3) 当x = -0.06m时,该时刻设为t1,得 cos(t ) 1
13
2
t 2 , 4
133 3
因该时刻速度为负,应舍去
简谐运动课件ppt
单摆的简谐运动
总结词
单摆的简谐运动是指一个质点在重力作用下做周期性振 动。
详细描述
单摆的简谐运动是指一个质点在重力作用下绕固定点做 周期性振动。当质点从平衡位置出发,受到重力的作用 向下加速运动,到达最低点时速度达到最大值,然后受 到回复力的作用开始向上减速运动,到达最高点时速度 为零。在摆动过程中,回复力与质点的位移成正比,当 质点回到平衡位置时,回复力为零,质点的速度达到最 大值。
结果
通过实验,可以观察到弹簧振子 的振动轨迹呈正弦波形,并记录
下振幅、周期等数据。
分析
根据记录的数据,可以计算出弹 簧振子的振动频率和相位差,进
一步分析简谐运动的特性。
讨论
简谐运动在现实生活中有着广泛 的应用,如钟摆、乐器振动等。 通过实验,可以深入理解简谐运 动的原理,为后续的学习和实际
应用打下基础。
简谐运动的平衡位置是指 物体受到的回复力为零的 位置,通常也是振动的中 心点。
回复力
回复力是指使物体返回平 衡位置并指向平衡位置的 力,它是使物体做简谐运 动的力。
简谐运动的特点
往复性
简谐运动是一种往复运动 ,物体在运动过程中会不 断重复往返于平衡位置和 最大位移处。
周期性
简谐运动是一种周期性运 动,其运动周期是固定的 ,与振幅和角频率有关。
实验器材与步骤
器材:弹簧振子、示波器、数据采集器、电脑 等。
011. 准备实验器材,源自弹簧振子连接到数据 采集器上。03
02
步骤
04
2. 启动实验,观察弹簧振子的振动情况, 记录振幅、周期等数据。
3. 使用示波器观察振动的波形,了解相位 的概念。
05
06
4. 分析实验数据,得出结论。
大学物理系列之简谐振动PPT课件
同号时为加速 异号时为减速
O
X
A
A
第33页/共66页
振动质点位移、速度与特征点 (t=0时对应的φ)
v
xv x
x0>0时Φ在1,4象限 v0>0时Φ在3,4象限
x
v
x
第34页/共66页
x
x
xv x
例1. 一物体沿 x 轴作简谐振动,A= 12cm, T = 2s
x 当t = 0时, 0= 6cm, 且向x正方向运动。
t 时刻与x轴的夹角
( t﹢ )
相位
A
A
第32页/共66页
11
旋转矢量端续点 上M 作匀速圆周运动
其 速率
A
振子的运动速度(与 X 轴同向为正)
A
t
旋转矢量端点 M 的加速度为
法向加速度,其大小为
A
和
t
A
X O
振子的运动加速度(与 X 轴同向为正)
A
t
任一时刻的 和 值,
其正负号仅表示方向。
• 任意位置
Fmsgin
悬线的张力和重力的合力沿悬线的垂直方向指向平衡位置。
第16页/共66页
Fmsgin
当θ很小时 sinθ ≈ θ ( θ < 5 °)
恢复力 Fmg
符合简谐振动的动力学定义
由牛顿第二定律
mat mg
d2
ml
mg
dt2
令 2 g l
d2 2 0
dt2
T 2 2
l g
单摆运动学方程: mcots()
弹簧振子 t= 0 时
m = 5×10 -3 kg
例三 k = 2×10 -4 N·m -1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A1 A2
x2 x1
x2 比 x1 早 达到正最
O
t
大 , 称 x2 比 x1 超前 (
- A2
或 x1 比 x2 落后 )。
-A1
第学11习章交机流械PP振T动
15
15
2. 同相和反相
2k
两振动步调相同
(2k1)
两振动步调相反
x
A1
A2
o
- A2
-A1
x
A1
A2
o
- A2
-A1
x1
同相
x2
第十一章 机械振动
什么是振动?
一个物理量(如位置、电量、电流、电压、温度……) 在某一确定值附近随时间作周期性的变化,则该物理量的 运动形式称为振动。
机械振动 :位移x 随时间t 的往复变化 电磁振动:电场、磁场等电磁量随t的往复变化
微观振动:如晶格点阵上原子的振动
振动分类
振动
受迫振动 自由振动
共振
1
1
要求
• Attendance • Homework
• 蔡冬梅
• • 办公室:逸夫楼901
学习交流PPT
2
第四篇 振动和波动
学习交流PPT
3
振动与波无所不在
振动与波是横跨物理学各分支学科的 最基本的运动形式。
尽管在各学科里振动与波的具体内容不同, 但在形式上却有很大的相似性。
学习交流PPT
4
x0
Acos0
,cos0
x0 A
1 2
0
3
0Asin00
sin0
0, 0
- 3
振动方程:
x 2cos( k t )
m3
第学11习章交机流械PP振T动
简谐振动是最简单、最基本的振动.
合成
简谐运动
分解
复杂振动
振动的理论建立在简谐振动的基础上。
第学11习章交机流械PP振T动
7
7
一、简谐振动的特征
简谐振动的定义
1 用动力学方程定义
d2x k x m dt2
k m kx
x
0x
d2x k 2dt用2 运动m学x方程0定义
x A2coskt0
或 xAsin m t0
A
x0 2
v
2 0
2
0
tg1( v0
x0
)
第学11习章交机流械PP振T动
17
17
例 一弹簧振子(m,k),已知 k m, A 2 cm,
当t=0时, x0 1cm, 0 0 , 试写出振动方程。
解 取平衡位置为坐标原点
简谐振动的表达式: xAcos(t0)
由初始条件: x0 1cm, 0 0
11
11
x
A
= 2
O
-A
t
(2) 用相位描述振动状态更能深刻反映物体运动的周期性。
(3) 0 ——初相,(取决于时间零点的选择)
t 0 0
xAcos(t0)A
A sin (t 0)0 A
O
t
0
2
t
0
3
2
x0
x0
A
A
Ax
第学11习章交机流械PP振T动
12
12
比较a、b两点: 位移相同,速度 不同,相位 不同 . 比较a、c两点: 位移相同,速度 相同,相位 不同 .
目录:
第四篇 振动和波动:(12)
第十一章 机械振动(5)
第十二章 机械波(7)
第五篇 光学:(18)
第十三章 几何光学 第十四章 波动光学(6\8\4)
第二篇 热学:(14)
第四章 气体动理论(6) 第五章 热力学(8)
第六篇 近代物理基础:(2)
第十五章 狭义相对论基础 第十六章 从经典物理到量子物理 第十七章 量学子习交力流PP学T 基础
阻尼自由振动 无阻尼自由振动
无阻尼自由非谐振动
无阻尼自由谐振动 (简谐振动)
学习交流PPT
5
5
第十一章 机械振动
§11-1 简谐振动
* §11-2 阻尼振动 受迫振动 共振
§11-3 同方向的简谐振动的合成 * §11-4 相互垂直的简谐振动的合成
学习交流PPT
6
6
§11-1 简谐振动
物体离开平衡位置的位移按余弦函数(或正弦函数)的规 律随时间变化,这样的振动称为简谐振动,简称谐振动。
m2 k
k m
T 2 2 m
k
1 1 k T 2 m
• T ω ν 的大小由谐振动系统本身性质决定,反映了系统 的固有特性
——固有圆频率、固有周期和固有频率
4. (t 0)—— t 时刻的相位(位相)
(1) 数学上,相位是一个角度,
物理上,相位是描写振动状态的一个参量。
第学11习章交机流械PP振T动
(3)(tT)
物体所受的力与位移成正比而反向
第学11习章交机流械PP振T动
9
9
二、 振动参量
xAcost0
1. x ——位移 广义上,指振动的物理量
2. A ——振幅 最大位移,恒为正,表征系统的能量
物体离开平衡位置的最大位移的绝对值 A,由初始条件 决定,描述振动的空间范围。
t t t
21
第学11习章交机流械PP振T动
14
14
2.对不同一简谐运动 利用相位差可比较两个振动的步调是否一致
x1A 1cos(t10)
x2A 2cos(t20)
同方向、同频率振动
(t2 0 ) (t1 0 )20 10 (初相差)
1. 超前和落后
x
若 = 2- 1> 0 , 则
x
ab
c
t
O
T
结论:用相位描述物体振动,能反映出时间上的周期性,
而(x,v)则不能。
第学11习章交机流械PP振T动
13
13
相位差
1.对于同一简谐运动
对于简谐运动 t1时刻相位
xAcos(t0)
t1 0
t2时刻相位
t2 0
相位差 (t20 ) (t10 )
相位差可以给出两运动状态间变化所需的时间
d2x dt2
二者2x关系0 ?
——振动方程
第学11习章交机流械PP振T动
8
8
说明 (1) 上述方程对于非机械振动也成立。
例 电磁震荡电路
q C
L
di dt
d2q dt2
1q LC
0
q
C
i
dq dt
L
(2) 从运动学方程 xAcost0
A A co sisn tt 00 2
a A 2co st 0 A 2cost0
T
t
x1 反相
T
t
x2
第学11习章交机流械PP振T动
16
16
三、 谐振动的描述
振动三要素:振幅、周期和相位
1. 解析法 xAcost0
ω由振动系统本身决定
弹簧振子:
k m
单摆:
g l
A, 0 由初始条件决定(t=0)
x(t)Acos(ωt0)
x0 Acos0
vωAsin(ωt0)
v0ωAsin0
cost 0≤1
x ≤A ——振动的强弱
3. T ——周期
振动状态重复一次所需要的时间,描述振动的快慢.
A c o s [( t T ) 0 ] A c o s (t 0 )
T 2π
T 2π
1 ——振动的频率
T 物体在单位时间内发生完全振动的次数
第学11习章交机流械PP振T动
10
10
2π ——角频率(圆频率).