信息论复习笔记

合集下载

信息论复习提纲

信息论复习提纲

信息论复习提纲第一章1、信息的概念。

信息是事物运动状态或存在方式的不确定性的描述。

2、信息论的研究对象、研究目的。

对象:通信系统模型。

目的:找到信息传输过程的共同规律,以提高信息传输的可靠性、有效性、保密性和认证性,以达到信息传输系统最优化。

3、通信系统模型的组成,及各部分的功能(1)信息源:产生消息的源,消息可以是文字,语言,图像。

可以离散,可以连续。

随机发生。

(2)编码器:信源编码器:对信源输出进行变换(消去冗余,压缩),提高信息传输的有效性信道编码器:对信源编码输出变换(加入冗余),提高抗干扰能力,提高信息传输的可靠性(3)信道:信号从发端传到收端的介质(4)译码器:译码就是把信道输出(已叠加了干扰)的编码信号进行反变换。

(5)信宿:信宿是消息传送的对象,即接受消息的人或机器。

(6)干扰源:系统各部分引入的干扰,包括衰落,多径,码间干扰,非线性失真,加性噪声,主要研究的是统计特性。

4、消息,信号,信息三者之间的关系信息---可以认为是具体的物理信号、数学描述的消息的内涵,即信号具体载荷的内容、消息描述的含义。

信号---则是抽象信息在物理层表达的外延;消息---则是抽象信息在数学层表达的外延第二章1、信源的分类,着重单符号信源。

信源的概率空间的构成形式。

单消息(符号)信源,离散信源,连续变量信源,平稳信源,无/有记忆信源,马尔可夫信源,随机波形信源。

单消息(符号)信源:单消息(符号)信源--离散信源单消息(符号)信源--连续信源2、自信息的计算及物理含义,单位与底数的关系,含义。

计算:含义:当事件ai发生以前,表示事件ai发生的不确定性当事件ai发生以后表示事件ai所含有(所提供)的信息量单位与底数的关系:通信与信息中最常用的是以2为底,这时单位为比特(bit);理论推导中用以e为底较方便,这时单位为奈特(Nat);工程上用以10为底较方便,这时单位为哈特(Hart)。

它们之间可以引用对数换底公式进行互换。

信息论复习资料

信息论复习资料

判断30名词解释4*5计算3道20分第一章1、自信息和互信息P6 公式2、信道P9 概念第二章1、离散平稳信源P18概念2、离散无记忆信源P19概念3、时齐马尔可夫信源P20概念4、自信息P22概念5、信息熵P25概念6、信息熵的基本性质P281)对称性2)确定性3)非负性4)扩展性5)可加性6)强可加性7)递增性8)极值性9)上凸性7、联合熵条件熵P42公式P43例题8、马尔克夫信源P54公式P55例题9、信源剩余度P5810、熵的相对率信源剩余度P5811、课后作业:2、4、13、21、22第三章1、有记忆信道P73概念2、二元对称信道BSC P743、前向概率、后向概率、先验概率、后验概率P764、条件熵信道疑义度、平均互信息P775、平均互信息、联合熵、信道疑义度、噪声熵计算公式P786、损失熵噪声熵 P797、平均互信息的特性P821)非负性2)极值性3)交互性4)凸状性8、信息传输率R P869、无噪无损信道P87概念10、有噪无损信道P88概念11、对称离散信道 P89概念12、对称离散信道的信道容量P90公式张亚威2012/06/20张亚威2012/06/2116、 数据处理定理 P113定理 17、 信道剩余度 P118公式 18、 课后作业:1、 3、 9第五章1、 编码:实质上是对信源的原始符号按一定的数学规则进行的一种变换。

2、 等长码 P172概念3、 等长信源编码定理 P1784、 编码效率 P1805、 克拉夫特不等式 P1846、 香农第一定理 P1917、 码的剩余度 P194第六章1、 最大后验概率准则 最小错误概率准则 P2002、 最大似然译码准则 P2013、 费诺不等式 P2024、 信息传输率(码率) P2055、 香农第二定理 P2156、 课后习题 3、第八章1、 霍夫曼码 最佳码 P2732、 费诺码 P2793、 课后习题 11、第八章1、 编码原则 译码原则 P3072、 定理9.1 P3133、 分组码的码率 P314公式4、 课后习题 3、一、 填空题1、 在现代通信系统中,信源编码主要用于解决信息传输中的 有效性 ,信道编码主要用于解决信息传输中的 可靠性 ,加密编码主要用于解决信息传输中的 安全性 。

信息论重点 (新)

信息论重点 (新)

1.消息定义信息的通俗概念:消息就是信息,用文字、符号、数据、语言、音符、图片、图像等能够被人们感觉器官所感知的形式,把客观物质运动和主观思维活动的状态表达出来,就成为消息,消息中包含信息,消息是信息的载体。

信号是表示消息的物理量,包括电信号、光信号等。

信号中携带着消息,信号是消息的载体。

信息的狭义概念(香农信息):信息是对事物运动状态或存在方式的不确定性的描述。

信息的广义概念 信息是认识主体(人、生物、机器)所感受的和表达的事物运动的状态和运动状态变化的方式。

➢ 语法信息(语法信息是指信息存在和运动的状态与方式。

) ➢ 语义信息(语义信息是指信宿接收和理解的信息的内容。

) ➢ 语用信息(语用信息是指信息内容对信宿的有用性。

)2.狭义信息论、广义信息论。

狭义信息论:信息论是在信息可以量度的基础上,对如何有效,可靠地传递信息进行研究的科学。

它涉及信息量度,信息特性,信息传输速率,信道容量,干扰对信息传输的影响等方面的知识。

广义信息论:信息是物质的普遍属性,所谓物质系统的信息是指它所属的物理系统在同一切其他物质系统全面相互作用(或联系)过程中,以质、能和波动的形式所呈现的结构、状态和历史。

包含通信的全部统计问题的研究,除了香农信息论之外,还包括信号设计,噪声理论,信号的检测与估值等。

3.自信息 互信息 定义 性质及物理意义 自信息量: ()log ()i x i I x P x =-是无量纲的,一般根据对数的底来定义单位:当对数底为2时,自信息量的单位为比特;对数底为e 时,其单位为奈特;对数底为10时,其单位为哈特自信息量性质:I(x i )是随机量;I(x i )是非负值;I(x i )是P(x i )的单调递减函数。

自信息物理意义: 1.事件发生前描述该事件发生的不确定性的大小 2.事件发生后表示该事件所含有(提供)的信息量 互信息量:互信息量的性质:1) 互信息的对称性2) 互信息可为零3) 互信息可为正值或负值4) 任何两个事件之间的互信息不可能大于其中任一事件的自信息互信息物理意义: 1.表示事件 yj 出现前后关于事件xi 的不确定性减少的量 2.事件 yj 出现以后信宿获得的关于事件 xi 的信息量4.平均自信息性质 平均互信息性质平均自信息(信息熵/信源熵/香农熵/无条件熵/熵函数/熵):(;)()(|)i j i i j I x y I x I x y =-log ()log (|)(1,2,,;1,2,,)i i jp x p x y i n j m =-+=⋯=⋯(|)log ()i j i p x y p x =1()[()][log ()]()log ()ni i i i i H X E I x E p x p x p x ===-=-∑熵函数的数学特性包括:(1)对称性 p =(p1p2…pn)各分量次序可调换 (2)确定性p 中只要有为1的分量,H(p )为0(3)非负性离散信源的熵满足非负性,而连续信源的熵可能为负。

(完整版)老师整理的信息论知识点

(完整版)老师整理的信息论知识点

Chp02知识点: 自信息量:1))(log )(i i x p x I -=2)对数采用的底不同,自信息量的单位不同。

2----比特(bit )、e----奈特(nat )、10----哈特(Hart ) 3)物理意义:事件i x 发生以前,表示事件i x 发生的不确定性的大小;事件i x 发生以后,表示事件i x 所含有或所能提供的信息量。

平均自信息量(信息熵):1))(log )()]([)(1i qi i i x p x p x I E x H ∑=-==2)对数采用的底不同,平均自信息量的单位不同。

2----比特/符号、e----奈特/符号、10----哈特/符号。

3)物理意义:对信源的整体的不确定性的统计描述。

表示信源输出前,信源的平均不确定性;信源输出后每个消息或符号所提供的平均信息量。

4)信息熵的基本性质:对称性、确定性、非负性、扩展性、连续性、递推性、极值性、上凸性。

互信息:1))()|(log)|()();(i j i j i i j i x p y x p y x I x I y x I =-=2)含义:已知事件j y 后所消除的关于事件i x 的不确定性,对信息的传递起到了定量表示。

平均互信息:1)定义:2)性质:联合熵和条件熵:各类熵之间的关系:数据处理定理:Chp03知识点:依据不同标准信源的分类: 离散单符号信源:1)概率空间表示:2)信息熵:)(log )()]([)(1i qi i i x p x p x I E x H ∑=-==,表示离散单符号信源的平均不确定性。

离散多符号信源:用平均符号熵和极限熵来描述离散多符号信源的平均不确定性。

平均符号熵:)...(1)(21N N X X X H NX H =极限熵(熵率):)(lim )(X H X H N N ∞>-∞= (1)离散平稳信源(各维联合概率分布均与时间起点无关的信源。

)(2)离散无记忆信源:信源各消息符号彼此互不相关。

信息论总结与复习

信息论总结与复习

i 1 k 1
i 1
k 1
结论:N阶马氏信源稳态信息熵(即极限熵)等于N+1阶条件熵。
H lN iN 1 m H (X 1 X 2 X N 1 X N ) H (X N 1 |X 1 X 2 X N )
第一部分、信息论基础
1.1 信源的信息理论
[例1] 已知二阶马尔可夫信源的条件概率:
第一部分、信息论基础
1.1 信源的信息理论
(4)序列信息熵的性质:
《1》条件熵不大于无条件熵,强条件熵不大于弱
条件熵:H(X1) ≥ H(X2|X1) ≥ H(X3|X1X2) ≥ …
…… ≥H (XN|X1X2……XN-1)
《2》条件熵不大于同阶的平均符号熵:
HN ≥H (XN|X1X2……XN-1)
[例3]求对称信道
P00..32
0.3 0.2
0.2 0.3
00..23的信道容量。
解:C =log4-H(0.2,0.3,0.2,0.3)
=2+(0.2log0.2+0.3log0.3)×2 = 0.03 bit/符号;
第二部分、无失真信源编码
2.1 信源编码理论
第二部分、无失真信源编码
1.1 信源编码理论:
稳态方程组是:
QQ((EE32
) )
0.2Q(E1 0.6Q(E2
) )
0.6Q(E3 ) 0.2Q(E4 )
Q(E4 ) 0.4Q(E2 ) 0.8Q(E4 )
Q(E1) Q(E2 ) Q(E3 ) Q(E4 ) 1
第一部分、信息论基础
1.1 信源的信息理论
可解得:
Q (E1 )
[例5] 以下哪些编码一定不是惟一可译码?写出每 种编码克拉夫特不等式的计算结果。

信息论基础复习提纲

信息论基础复习提纲

第一章绪论1、什么是信息?香农对于信息是如何定义的。

答:信息是事物运动状态或存在方式的不确定性的描述(Informationisameasureofone'sfreedomofchoicewhenoneselectsamessage )。

2、简述通信系统模型的组成及各部分的含义。

第二章信息的度量2.1自信息和互信息1、自信息(量):(1)、定义:一个事件(消息)本身所包含的信息量,它是由事件的不确定性决定的。

某个消息i x出现的不确定()()()i i i x p x p x I 1loglog =-=性的大小定义为自信息,用这个消息出现的概率的对数的负值来表示: (2)、性质:①、()i x I是()i x p 的严格递减函数。

当()()21x p x p <时()()21x I x I >概率越小,事件发生的不确定性越大,事件发生以后所包含的自信息量越大。

②、极限情况下,当()0=i x p 时()∞→i x I ;当()1=i x p 时,()0→i x I 。

(8)、上凸性: 3、联合熵:联合自信息的 数学期望。

它是二维随机 变量XY 的不确定性的度量。

4、条件熵:5、各类熵之间的关系: 21111()()()()log ()n m n mi j i j i j i j i j i j H XY p x y I x y p x y p x y ======-∑∑∑∑22(/)(/)X Y (/X)()log(/) (X /)()log (/)i i i ijj i i j i j ijijx H Y x H Y x H Y p x y p y x H Y p x y p x y =-=-∑∑∑∑由于不同的,是变化的,对的所有可能值进行统计平均,就得出给定时,的条件熵122()n n n n1212[(1)]()(1)()f x x f x f x λλλλ+-≥+-(1)、联合熵与信息熵、条件熵之间的关系:)/()()(X Y H X H XY H +=。

信息论复习要点

信息论复习要点

信息论复习要点1. 非奇异码:若一个码子中各码子都不相同,则称非奇异码,否则称为奇异码;2. 唯一可以码:若任何有限长信源序列都能译成唯一的信源消息序列,则称为唯一可译码;3. 二元最优码:就某一信源,存在最优的二进制码,其中至少有两个最长的码子有相同长度且仅最后一个码位有别。

4. AWGN 信道的容量:一个加性高斯白噪声(AWGN )信道的噪声功率谱为N 0/2,输入信号平均功率为P ,信道带宽为W ,那么信道每单位时间的容量为:0log 1P C W N W ⎛⎫=+ ⎪⎝⎭(容量单位为比特/秒)5. 对于输入平均功率受限的加性高斯噪声信道,当传输速率R<=C 时,总可以找到一种编码方式,使得差错率任意小;反之,找不到使译码错误概率任意小的编码。

6. 信息率失真理论是有损数据压缩的理论基础,该理论的核心是在保真度准则下的信源编码定理,即香农第三定理。

7. 限失真信源编码定理:()D R R D >→≤存在平均失真的信源编码8. 限失真信源信道编码定理:()D C R D >→≤存在平均失真的信源信道编码9. 和信道及其容量:若一个信道分为若干子信道,且各子信道输入之间互不相交,输出之间也互不相交,信道总的输出与输入集合分为各子信道输出与输入之并集,而且每次传输只能用某个子信道,则称此信道为和信道。

和信道容量:21log 2i NC i C ==∑其中,i C 为每个子信道的容量,第i 个子信道的使用概率为:1222ii iC C Ci NC i r -===∑达到容量时的输入概率为各子信道达到容量时的输入概率乘以i r ,N 为子信道的个数。

10. 各种信息的概率公式:自信息:()()log I x p x =-;联合自信息:()()log I xy p xy =-;条件自信息:()()|log |I x y p x y =-三者的关系:()()()()()||I xy I x I y x I y I x y =+=+; 互信息:()()()()()|,loglog|p x p x y I x y p x y p x =-=; 互信息与自信息和条件自信息的关系:()()(),|I x y I x I x y =-;11. 最佳判决与译码准则: MAP 准则:(输入不等概)(1)信道转移概率矩阵乘以信道输入符号概率得到联合概率矩阵; (2)联合概率矩阵每一列中找到一个最大的概率对应的输入符号就是译码; (3)正确概率是所有译码的概率和,错误概率是1与正确概率的差; ML 准则:(输入等概)(1)信道转移概率矩阵中最大的概率对应的输入符号作为译码输出; (2)正确概率是联合概率分布中译码概率的和,错误概率是1与之的差; 无记忆二元对称信道,最大似然准则等价于最小汉明距离准则;12. 并联高斯信道的容量,能量分布和输入概率分布:(输入均值为0) (1) 并联独立高斯信道:利用注水定理对能量进行分配,计算信道容量,达到容量时,两个信道的输入是独立的,所以输入的概率密度为:()2212122212,22x x p x x σσ⎛⎫=-- ⎪⎝⎭(2) 关联相关高斯信道:将噪声自协方差矩阵分解(如下公式所示),找出等价矩阵,利用注水定理计算信道容量,得到能量分配和输入概率密度公式;41501110122211⎛⎫⎫⎛⎫= ⎪⎪ ⎝⎭⎭⎝⎝ (3) 反推得到输入概率的协方差矩阵,进而得到输入概率的密度公式; (4) 对于独立并联高斯信道,达到容量时各子信道输入是独立的; (5) 对于相关并联高斯信道,达到容量时各子信道输入是相关的; (6) 在总噪声和输入平均能量约束都相同的条件下,相关并联高斯信道的容量大于独立并联高斯信道容量。

信息论复习要点总结

信息论复习要点总结

自信息量:Harta p Nata p bit a p a I i i ei i )(log)(log)(log )(102-=-=-=联合信息量:)(log)(2j i j i b a p b a I -=条件信息量:)/(log)/(2j i j i b a p b a I -=互信息量: )](/)/([log );(2i j i j i a p b a p b a I =信息的熵:∑=-=ni i i a p a p X H 12)(log)()(条件熵:∑∑==-=mj ni i j j i a b p b a p X Y H 112)/(log)()/(联合熵:∑∑==-=m j ni j i j i b a p b a p XY H 112)(log)()(平均互信息量:)](/)/([log )();(112j mj ni i j j i b p a b p b a p X Y I ∑∑===马尔可夫信源问题: 1.n 元m 阶马尔科夫信源共有n m个稳定状态。

2.用∑==mni i j i js s p s p s p 1)/()()(和1)(1=∑=mni i s p 求各状态)(i s p ;3.极限熵:)/(log )/()(11i j ni nj i j i s s p s s p s p Hmm∑∑==∞-=4.冗余度:0/1H H ∞-=ξ (H0表示等概分布信源的熵,2进制时为1)变长编码定理:m X H K m X H 22log/)(log/)(1≥>+信道容量问题:n 表示输入符号数,m 表示输出符号数。

bit/sign 无噪信道1(一一对应)信道容量:nC2log=无噪信道2(一对多)信道容量:nC 2log =无噪信道3(多对一)信道容量:mC 2log=对称信道(行列均可排列)信道容量:)..(log212m q q q H m C -=当输入X 等概分布时,输出Y 也等概分布,此时达到信道容量。

信息论与编码复习重点整理(1页版)

信息论与编码复习重点整理(1页版)

1第1章 概论1. 信号(适合信道传输的物理量)、信息(抽象的意识/知识,是系统传输、转换、处理的对象)和消息(信息的载体)定义;相互关系:(1信号携带消息,是消息的运载工具(2信号携带信息但不是信息本身(3同一信息可用不同的信号来表示(4同一信号也可表示不同的信息。

2. 通信的系统模型及目的:提高信息系统可靠性、有效性和安全性,以达到系统最优化.第2章 信源及信息量1. 单符号离散信源数学模型2. 自信息量定义:一随机事件发生某一结果时带来的信息量I(xi)=-log2P(xi)、单位:bit 、物理意义:确定事件信息量为0;0概率事件发生信息量巨大、性质:I(xi)非负;P(xi)=1时I(xi)=0;P(xi)=0时I(xi)无穷;I(xi)单调递减;I(xi)是随机变量。

3. 联合自信息量:I(xiyi)=- log2P(xiyj) 物理意义:两独立事件同时发生的信息量=各自发生的信息量的和、条件自信息量:I(xi/yi)=- log2P(xi/yj);物理意义:特定条件下(yj 已定)随机事件xi 所带来的信息量。

三者关系:I(xi/yi)= I(xi)+ I(yi/xi)= I(yi)+ I(xi/yi)4. 熵:定义(信源中离散消息自信息量的数学期望)、单位(比特/符号)、物理意义(输出消息后每个离散消息提供的平均信息量;输出消息前信源的平均不确定度;变量的随机性)、计算:(H(X)=-∑P(xi)log2 P(xi)) 1)连续熵和离散的区别:离散熵是非负的2)离散信源当且仅当各消息P相等时信息熵最大H (X )=log 2 n 。

3)连续信源的最大熵:定义域内的极值. 5.条件熵H(Y/X) = -∑∑P(xiyj) log2P(yj/xi),H (X /Y )= -∑∑P(xiyj) log2P(xi/yj) 、物理意义:信道疑义度H(X/Y):信宿收到Y 后,信源X 仍存在的不确定度,有噪信道传输引起信息量的损失,也称损失熵。

信息论-复习资料(傅祖芸版本)

信息论-复习资料(傅祖芸版本)
信息论与编码
简介
是一门应用概率论、随机过程、数理统计和近 代代数的方法,来研究信息传输、提取和处理 中一般规律的学科。
奠基人:美国数学家香农(C.E.Shannon) 1948年“通信的数学理论”
2
简介
信息论的基本问题—信息的度量 无失真信源编码定理—香农第一定理 信道编码定理—香农第二定理 信源编码、信道编码
当 时 : rH = (X ) E 2 lo p ( 1 a i g ) i q 1 p ( a i)lo p ( a ig )
H r(X ) H (X )/lo rg
32
熵的含义
熵是从整个集合的统计特性来考虑的,它从平均意 义上来表征信源的总体特征。
信源输出前,熵H(X)表示信源的平均不确定性; 信源输出后,熵H(X)表示每个消息的平均信息量; 信息熵H(X)表征了变量X的随机性。
P X (x ) P ( a a 1 1 )
a 2 P (a 2 )
P ( a a 3 3 )..........P ..( a a q q ) iq1
P
(ai
)
1
问题:这样的信源能输出多少信息? 每个消息的出现携带多少信息量?
27
信息的度量
要点:
信息的度量(信息量)和不确定性消除的程度有关,消除的不 确定性=获得的信息量;
2.1 信源的数学模型及分类
信源 产生消息或消息序列的源。消息携带信息, 是信息的具体形式。
描述方法 通信过程中,信源发出何种消息是不确定的、 是随机的。 因此,信源可用随机变量、随机矢量或随机 过程(或样本空间及其概率测度)来描述。 不同的信源根据其输出消息的不同的随机性 质进行分类。
20
1、随机变量描述的信源(单符号)

信息论复习知识点

信息论复习知识点

1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

3、最大熵值为。

4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。

7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

按照信息的性质,可以把信息分成 语法信息、语义信息和语用信息 。

按照信息的地位,可以把信息分成 客观信息和主观信息 。

人们研究信息论的目的是为了 高效、可靠、安全 地交换和利用各种各样的信息。

信息的 可度量性 是建立信息论的基础。

统计度量 是信息度量最常用的方法。

熵 是香农信息论最基本最重要的概念。

事物的不确定度是用时间统计发生 概率的对数 来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。

18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。

信息论知识点总结

信息论知识点总结

信息论知识点总结信息论是一门研究信息传递和处理的科学,主要涉及信息量度、信息特性、信息传输速率、信道容量、干扰对信息传输的影响等方面的知识。

以下是信息论的一些重要知识点:1. 信息量度:信息量是对信息的度量,用于衡量信息的多少。

信息的大小与随机事件的概率有关,熵是衡量随机变量分布的混乱程度,即随机分布各事件发生的信息量的期望值。

2. 信道容量:信道容量是描述信道传输信息能力的指标,表示信道在每秒内所能传输的最大信息量。

对于有噪声的信道,需要通过编码技术来达到信道容量。

3. 条件熵:条件熵是在给定某个条件下的熵,用于衡量在已知某个条件的情况下,随机变量的不确定性。

4. 相对熵(KL散度):相对熵是衡量两个概率分布之间的差异,也称为KL 散度。

如果两个分布相同,相对熵为0。

5. 信息传输速率:信息传输速率是指单位时间内传输的信息量,是评价通信系统性能的重要参数。

6. 干扰对信息传输的影响:在信息传输过程中,各种干扰因素会对信息传输产生影响,如噪声、失真、衰减等。

为了提高信息传输的可靠性和有效性,需要采取抗干扰措施。

7. 信息压缩:信息压缩是减少数据存储空间和提高数据传输效率的一种技术。

常见的压缩算法有Huffman编码、LZ77、LZ78等。

8. 纠错编码:纠错编码是一种用于检测和纠正错误的技术,广泛应用于通信和存储领域。

常见的纠错编码有奇偶校验、CRC等。

9. 加密编码:加密编码是一种保护信息安全的技术,通过对数据进行加密处理,防止未经授权的访问和泄露。

常见的加密编码有AES、RSA等。

以上是信息论的一些重要知识点,希望对您有所帮助。

信息论复习要点总结(word文档良心出品)

信息论复习要点总结(word文档良心出品)

自信息量:Harta p Nat a p bit a p a I i i e i i )(log )(log )(log )(102-=-=-=联合信息量:)(log )(2j i j i b a p b a I -=条件信息量:)/(log )/(2j i j ib a p b a I -=互信息量:)](/)/([log );(2i j i j i a p b a p b a I =信息的熵:∑=-=ni i i a p a p X H 12)(log )()(条件熵:∑∑==-=m j ni i j j i a b p b a p X YH 112)/(log )()/(联合熵:∑∑==-=m j ni j i j i b a p b a p XY H 112)(log )()(平均互信息量:)](/)/([log )();(112j mj ni i j j i b p a b p b a p X Y I ∑∑===马尔可夫信源问题: 1.n 元m 阶马尔科夫信源共有n m个稳定状态。

2. 用∑==mni i j i j s s p s p s p 1)/()()(和1)(1=∑=mni i s p 求各状态)(i s p ;3.极限熵:)/(log )/()(11i j ni nj i j i s s p s s p s p Hmm∑∑==∞-=4. 冗余度:0/1H H ∞-=ξ (H0表示等概分布信源的熵,2进制时为1)变长编码定理:m X H K m X H 22log /)(log /)(1≥>+信道容量问题:n 表示输入符号数,m 表示输出符号数。

bit/sign 无噪信道1(一一对应)信道容量:n C 2log =无噪信道2(一对多)信道容量:n C 2log =无噪信道3(多对一)信道容量:m C 2log = 对称信道(行列均可排列)信道容量:)..(log 212m q q q H m C-=当输入X 等概分布时,输出Y 也等概分布,此时达到信道容量。

信息论与编码基础知识点总结

信息论与编码基础知识点总结
离散信源和连续信源都是单符 号信源。
输出一系列符号。Βιβλιοθήκη 多符号序列信源输出的消息在 时间或空间任一点上每个符号 的出现都是随机的,其取值也都 可以是离散或连续随机变量。
输出的消息是时间或空间 上离散的一系列随机变量。 输出的消息是时间或空间 的连续函数且其取值也是 连续的、随机的。
数学模型
特性
无记忆信源 有记忆信源
17、 通信系统的基本任务要求
①可靠:使信源发出的消息经过传输后,尽可能准确地、不失真或限定失真地再现在接收端。 ②有效:用尽可能短的时间和尽可能少的设备来传输最大的消息。 18、 通信系统的一些基本概念 ①信源:产生消息的源。可以用随机变量或随机过程来描述信息。 ②信宿:是消息的归宿,也就是消息传输的对象,即接收消息的人或者机器。 ③编码器:编码器是将信源发出的消息变换成适合于在信道上传输的信号的设备。执行提高信息传输的有效性 和可靠性两项功能。
信源编码器:目的在于提高信息传输的有效性。 信道编码器:用以提高信息传输的抗干扰能力。 ④信道:信道是将载荷着消息的信号从通信系统的发送端传送到接收端的媒质或通道。信道除了具有传输信号 的功能,还具有存储信号的作用。 ⑤噪声源:是消息在传输过程中受到的干扰的来源。 通信系统设计中的一个基本问题就是提高抗干扰能力。 加性噪声:由外界引入的随机噪声。 乘性噪声:信号在传播过程中由于物理条件的变化引起信号参量的随机变化而形成的噪声。 ⑥译码器:指编码的逆变换器。信道译码器是信道编码的逆变换器;信源译码器是信源编码的逆变换器。
第一章 绪论
1、 识记内容
1、 信息论是应用近代数理统计的方法研究信息传输、存储和处理的科学,是在长期通信工程实践中发展起来的一 门新兴学科,亦称为通信的数学理论。

信息论复习笔记

信息论复习笔记

1. 绪论信息论回答了通信的两个最基本问题:(1)数据压缩的极限;(2)信道传输速率的极限;信息、消息和信号消息:信息的載體(能被感知和理解、進行傳遞和獲取)信息:事物運動狀態或存在方式的不確定性的描述(香農)先驗概率:P(a i)自信息:I(a i)=log[P-1(a i)];(信息接收的不確定性)互信息:I(a i;b i)= log[P-1(a i)]- log[P-1(a i|b i)];(信息接收的多少度量)(若信道無干擾,則互信息等於自信息等於0)優點:明確的數學模型、定量計算;缺點:有適用範圍;信號;通信系统的模型通信系统的基本要求:有效、可靠、保密、认证2. 离散信源及其信息测度﹣离散信源的定义:輸出信息數有限、每次只輸出一個;﹣自信息的定义及物理意义事件發生前:事件發生的不確定性;事件發生后:時間含有的信息量;信息熵的定义及物理意义,信息熵的基本性质定義:自信息的數學期望( H(X)= -∑[ P(a i)logP(a i) ] )信源的總體信息測度(1)每個消息所提供的平均信息量;(2)信源輸出前,信源的平均不確定性;性質:(1)對稱性;(2)確定性;(3)非負性;(4)擴展性(可拆開);(5)可加性;[ H(XY)=H(X)+H(Y) ](6)強可加性;[ H(XY)=H(X)+H(Y|X) ](7)遞增性;(8)極值性; [ H(p1,p2,p3…,p q)≤H(q-1,,…, q-1)= logq ] 等概率分佈信源的平均不確定性最大,稱為最大離散熵定理;—离散无记忆信源的扩展信源—扩展信源的熵H(X) = NH(X)—离散平稳信源:联合概率分布与时间起点无关;熵:联合熵H(X1X2)=∑∑P(a i a j)logP(a i a j)条件熵H(X2|X1)=-∑∑P(a i a j)logP(a i|a j)关系:H(X1X2)=H(X1)+H(X2|X1)熵率:离散平稳信源的极限熵 = limH(X N|X1X2…X N-1)—马尔可夫信源:某一时刻的输出只与此刻信源所处的状态有关而与以前的状态及以前的输出符号都无关;—马尔可夫信源的熵:H m+1=H(X m+1|X1X2…X m)—信源剩余度熵的相对率η= H极限/H0信源剩余度(输出符号间依赖强度)γ= 1-η=1-H极限/H0 3. 离散信道及其信道容量—H(X;Y)=H(X)-H(X|Y)—离散信道的数学模型—信道矩阵性質(1)P(a i bj)=P(a i)P(b j|a i)=P(b j)P(a i|b j);(2)[ P(b1) ] [ P(a1) ][ P(b2) ] [ P(a2) ][ P(b3) ] = [ P(a4) ] (r≠s)[ … ] [ … ][ P(b s) ] [ P(a r) ](3)輸出端收到的任一b j一定是輸入符號a r中的某一個送入信道;─信道疑义度的定义:收到Y後對變量X尚存在的平均不確定性:H(X|Y)=E[H(X|b j)]=∑P(xy)log-1P(X|Y)物理意义:噪聲造成的影響大小;─平均互信息的定义:收到Y後平均每個符號獲得的關於X的信息量(物理意義:反映輸入輸出兩個隨機變量之間的統計約束關係):I(X;Y)= H(X)-H(X|Y) = ∑P(xy)P(y|x)P-1(y)無噪一一對應信道中:I(X;Y)=H(X)=H(Y)=0—信道容量的定义:信道每秒鐘平均傳輸的信息量稱為信息傳輸速率,最大信息傳輸率稱為信道容量;—信道容量的计算:无噪信道(求H(X)極值):C = logr对称信道(信道矩陣的每一行或列是另一行或列的置換):C = logs-H(p1,p2,…,p s)强对称信道:C = logr-plog(r-1)-H(p);准对称信道:C = logr-H(p1,p2,…,p s)-∑N k logM k(Nk是第k個子矩陣行元素之和,Mk是第k個子矩陣列元素之和)一般离散信道(對所有可能的輸入概率分佈求平均互信息的最大值):C =λ+loge條件:I(x i;Y) = ∑s j=1P(b j|a i)*log[P(b j|a i)/P(b j)]≤C—数据处理定理如果X、Y、Z组成一个马尔科夫链,则有I(X;Z)≤I(X;Y)I(X;Z)≤I(Y;Z) 信息不增性原理一般的数据处理原理I(S;Z)≤I(S;Y)I(S;Z)≤I(X;Z)I(S;Z)≤I(X;Y)—信道剩余度= C-I(X;Y)相对剩余度= 1-I(X;Y)/C无损信道的相对剩余度= 1-H(X)/logr4. 波形信源和波形信道連續信源的相對熵: h(X)Δ= ﹣∫R p(x)logp(x)dx 波形信源的差熵:h(x(t))Δ=lim N->★h(X1X2…X N)连续信源的差熵:均匀分布连续信源的差熵:N維均勻分佈:高斯信源的差熵:N維高斯信源的差熵:差熵的性质:(1)可加性;(2)凸性;(3)可負性;(4)變換性(X1->X2,差熵會變化);(5)極值性:離散信源的信源符號等概率分佈時信源的熵最大;連續信源:﹣當峰值功率受限為p^時(輸出信號的瞬時電壓限制為±(p^)1/2),此時信源輸出的連續隨機變量限制在[a,b]內,信源具有最大熵:h=log(b-a)如果隨機矢量取值受限,則各隨機分量統計獨立并均勻分佈時具有最大熵;﹣當信源輸出信號的平均功率被限定為P,則其信號幅度的概率密度分佈為高斯分佈時,信源有最大熵:h=1/2*log2πePN維連續平穩信源如果其N維隨機序列的協方差矩陣C被限定,則N維隨機矢量為正太分佈時信源的熵最大。

《信息论》复习资料

《信息论》复习资料

《信息论》复习资料信息论导论参考资料第⼀章概论●在认识论层次研究信息时,把只考虑到形式因素的部分称为语法信息,把只考虑到含义因素的部分称为语义信息;把只考虑到效⽤因素的部分称为语⽤信息。

⽬前,信息论中主要研究语法信息●归纳起来,⾹农信息论的研究内容包括: 1) 信息熵、信道容量和信息率失真函数2) ⽆失真信源编码定理、信道编码定理和保真度准则下的信源编码定理 3) 信源编码、信道编码理论与⽅法●⼀般认为,⼀般信息论的研究内容除⾹农信息论的研究内容外,还包括维纳的微弱信号检测理论:包括噪声理论、信号滤波与预测、统计检测与估计理论、调制理论等。

信息科学以信息为研究对象,信息科学以信息运动规律为研究内容,信息运动包括获取、传递、存储、处理和施⽤等环节。

消息、信息、信号●消息是由图像、声⾳、⽂字、数字等符号组成的序列。

●承载消息的载体称为信号●信息是通信系统传输和处理的对象,泛指消息和信号的具体内容和意义. ●三者关系:通信系统传输的是信号,信号承载着消息,消息中的不确定成分是信息。

第⼆章离散信源及离散熵●单符号离散信源的数学模型:1212()()()()n n x x x X P x P x P x P X = ⾃信息量:()log ()i x i I x P x =-,是⽆量纲的,⼀般根据对数的底来定义单位:当对数底为2时,⾃信息量的单位为⽐特(bit,binary unit);对数底为e 时,其单位为奈特(nat,nature unit);对数底为10时,其单位为哈特(Hart, Hartley)⾃信息量性质:I(x i )是随机量;I(x i )是⾮负值;I(x i )是P(x i )的单调递减函数。

●单符号离散信源的离散熵:1()[()]()()ni i i i H X E I x P x lbP x ===-∑,单位是⽐特/符号(bit/symbol)。

离散熵的性质和定理:H(X)的⾮负性;H(X)的上凸性;最⼤离散熵定理:()H X lbn ≤(证明)●如果除概率分布相同外,直到N 维的各维联合概率分布也都与时间起点⽆关,即:111111()()()()()()k l k k l l k k k N l l l N P X P X P X X P X X P X X X P X X X ++++-++-===则称该多符号离散信源为N 维离散平稳信源。

信息论复习知识点

信息论复习知识点

信息论复习知识点本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

3、最大熵值为。

4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。

7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

按照信息的地位,可以把信息分成客观信息和主观信息。

人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

信息的可度量性是建立信息论的基础。

统计度量是信息度量最常用的方法。

熵是香农信息论最基本最重要的概念。

事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论回答了通信的两个最基本问题:(1)数据压缩的极限;(2)信道传输速率的极限;信息、消息和信号消息:信息的載體(能被感知和理解、進行傳遞和獲取)信息:事物運動狀態或存在方式的不確定性的描述(香農)先驗概率:P(a i)自信息:I(a i)=log[P-1(a i)];(信息接收的不確定性)互信息:I(a i;b i)= log[P-1(a i)]- log[P-1(a i|b i)];(信息接收的多少度量)(若信道無干擾,則互信息等於自信息等於0)優點:明確的數學模型、定量計算;缺點:有適用範圍;信號;通信系统的模型通信系统的基本要求:有效、可靠、保密、认证2. 离散信源及其信息测度﹣离散信源的定义:輸出信息數有限、每次只輸出一個;﹣自信息的定义及物理意义事件發生前:事件發生的不確定性;事件發生后:時間含有的信息量;信息熵的定义及物理意义,信息熵的基本性质定義:自信息的數學期望( H(X)= -∑[ P(a i)logP(a i) ] )信源的總體信息測度(1)每個消息所提供的平均信息量;(2)信源輸出前,信源的平均不確定性;性質:(1)對稱性;(2)確定性;(3)非負性;(4)擴展性(可拆開);(5)可加性;[ H(XY)=H(X)+H(Y) ](6)強可加性;[ H(XY)=H(X)+H(Y|X) ](7)遞增性;(8)極值性; [ H(p1,p2,p3…,p q)≤H(q-1,,…, q-1)= logq ]等概率分佈信源的平均不確定性最大,稱為最大離散熵定理;—离散无记忆信源的扩展信源—扩展信源的熵 H(X) = NH(X)—离散平稳信源:联合概率分布与时间起点无关;熵:联合熵 H(X1X2)=∑∑P(a i a j)logP(a i a j)条件熵 H(X2|X1)=-∑∑P(a i a j)logP(a i|a j)关系:H(X1X2)=H(X1)+H(X2|X1)熵率:离散平稳信源的极限熵 = limH(X N|X1X2…X N-1)—马尔可夫信源:某一时刻的输出只与此刻信源所处的状态有关而与以前的状态及以前的输出符号都无关;—马尔可夫信源的熵:H m+1=H(X m+1|X1X2…X m)—信源剩余度熵的相对率η= H极限/H0信源剩余度(输出符号间依赖强度)γ= 1-η=1-H极限/H0 3. 离散信道及其信道容量—H(X;Y)=H(X)-H(X|Y)—离散信道的数学模型—信道矩阵性質(1)P(a i bj)=P(a i)P(b j|a i)=P(b j)P(a i|b j);(2)[ P(b1) ] [ P(a1) ][ P(b2) ] [ P(a2) ][ P(b3) ] = [ P(a4) ] (r≠s)[ … ] [ … ][ P(b s) ] [ P(a r) ](3)輸出端收到的任一b j一定是輸入符號a r中的某一個送入信道;─信道疑义度的定义:收到Y後對變量X尚存在的平均不確定性:H(X|Y)=E[H(X|b j)]=∑P(xy)log-1P(X|Y)物理意义:噪聲造成的影響大小;─平均互信息的定义:收到Y後平均每個符號獲得的關於X的信息量(物理意義:反映輸入輸出兩個隨機變量之間的統計約束關係):I(X;Y)= H(X)-H(X|Y) = ∑P(xy)P(y|x)P-1(y)無噪一一對應信道中:I(X;Y)=H(X)=H(Y)=0—信道容量的定义:信道每秒鐘平均傳輸的信息量稱為信息傳輸速率,最大信息傳輸率稱為信道容量;—信道容量的计算:无噪信道(求H(X)極值):C = logr对称信道(信道矩陣的每一行或列是另一行或列的置換):C = logs-H(p1,p2,…,p s)强对称信道:C = logr-plog(r-1)-H(p);准对称信道:C = logr-H(p1,p2,…,p s)-∑N k logM k(Nk是第k個子矩陣行元素之和,Mk是第k個子矩陣列元素之和)一般离散信道(對所有可能的輸入概率分佈求平均互信息的最大值):C =λ+loge條件:I(x i;Y) = ∑s j=1P(b j|a i)*log[P(b j|a i)/P(b j)]≤ C—数据处理定理如果X、Y、Z组成一个马尔科夫链,则有I(X;Z)≤I(X;Y)I(X;Z)≤I(Y;Z)信息不增性原理一般的数据处理原理I(S;Z)≤I(S;Y)I(S;Z)≤I(X;Z)I(S;Z)≤I(X;Y)—信道剩余度= C-I(X;Y)相对剩余度 = 1-I(X;Y)/C无损信道的相对剩余度 = 1-H(X)/logr4. 波形信源和波形信道連續信源的相對熵: h(X)Δ= ﹣∫R p(x)logp(x)dx 波形信源的差熵:h(x(t))Δ=lim N->★h(X1X2…X N)连续信源的差熵:均匀分布连续信源的差熵:N維均勻分佈:高斯信源的差熵:N維高斯信源的差熵:差熵的性质:(1)可加性;(2)凸性;(3)可負性;(4)變換性(X1->X2,差熵會變化);(5)極值性:離散信源的信源符號等概率分佈時信源的熵最大;連續信源:﹣當峰值功率受限為p^時(輸出信號的瞬時電壓限制為±(p^)1/2),此時信源輸出的連續隨機變量限制在[a,b]內,信源具有最大熵:h=log(b-a)如果隨機矢量取值受限,則各隨機分量統計獨立并均勻分佈時具有最大熵;﹣當信源輸出信號的平均功率被限定為P,則其信號幅度的概率密度分佈為高斯分佈時,信源有最大熵:h=1/2*log2πePN維連續平穩信源如果其N維隨機序列的協方差矩陣C被限定,則N維隨機矢量為正太分佈時信源的熵最大。

也就是N維高斯信源的熵最大,其值為* 熵功率:如果平均功率為P的非高斯分佈的信源的熵為h,稱熵也為h的高斯信源的平均功率為熵功率* 連續信源的剩餘度* 熵功率不等式:─香农公式意义:(1)提高信噪比能增加信道容量,趨於0時信道容量趨於無窮;(2)給出了無錯誤通信的傳輸速率的理論極限,稱為香農極限;5. 无失真信源编码定理信源編碼﹣壓縮剩餘度信道編碼﹣增加剩餘度─编码:對信源的原始符號按一定的數學規則進行變換;─码:(1)碼字;(2)碼元(碼符號);(3)碼字長度(碼長);─码的分类:二元碼碼符號集只有0和1兩種元素等長碼等長非奇異碼一定是唯一可譯碼;用等長碼對信源S編碼,必須滿足q≤r l;變長碼、非奇異碼(碼字都不相同)、奇異碼(存在相同)、同價碼(每個碼元的傳輸時間都相同);唯一可譯碼:渐近等分割性獨立等分佈的隨機序列S1S2…SN,有αi=(S i1S i2…S iN)∈S1S2…S N則─典型序列集的性质出現概率趨近1:,接近等概率分佈:個數趨近2NH個:─典型序列:─信源编码等長編碼定理:滿足時,當N足夠大則可以實現幾乎無失真編碼,反之如果時,則不可能實現無失真編碼,當N足夠大時,譯碼錯誤概率近似等於1;變形:(1)llogr>NH(S):只要碼字傳輸的信息量大於信源序列攜帶的信息量,總可以實現幾乎無失真編碼;(2)編碼后信源的信息傳輸率:(3)信息傳輸率大於信源的熵,才能實現幾乎無失真編碼:編碼效率:(最佳等長碼=)信源序列長度N與錯誤概率的關係:─克拉夫特不等式:如果碼長滿足克拉夫特不等式,則一定存在具有這樣碼長的r 元唯一可譯碼,且一定存在一個具有相同碼長的即時碼;─唯一可译码的判断:沒有一個後綴分解集中包含有碼字;碼C的後綴分解集為{S i},S0=C,S i由所有滿足下面兩個條件的S i組成:(1)S i-1S i=c;(2)S i-1=CS i;(沒有一個碼字是另一個碼字的前綴)─变长信源编码定理碼的平均長度(平均碼長)碼率:, (信道每秒鐘的信息量) (平均每個碼元攜帶的信息量;編碼後信道的信息傳輸率)─无失真变长信源(無噪信道)编码定理(香农第一定理)信源的信息熵是無失真信源壓縮的極限值意義:在信道信息傳輸率R不大於信道容量C的情況下,總能對信源的輸出進行適當的編碼,是的在無噪無損信道上能無差錯地以最大信息傳輸率C傳輸信息,但要令R大於C則是不可能的;─编码效率─码的剩余度6. 有噪信道编码定理費諾不等式:H(P E)﹣接收到Y後是否會產生P E錯誤的不確定性;P E log(r-1)﹣當P E發生後,到底是由哪個輸入符號造成的錯誤的最大不確定性;當信源信道給定時,信道疑義度H(X|Y)就給定了譯碼錯誤概率的下限;可通過重複發送,使接收端接收消息時的錯誤減小;─信息传输率:()─码字距离:長度為n的兩個碼字之間的距離指兩個碼字之間對應位置上不同碼元的個數,通常稱為漢明距離:碼C的最小距離:d min=min{D(C i,C j)};編碼選擇碼字時,碼字間的距離越大越好;譯碼規則、編碼方法的選擇:(1)最小距離儘可能大;(2)譯碼將收到的序列譯成與之距離最近的哪個碼字;(3)令碼長足夠長;─联合渐近等分割性─有噪信道编码定理(香农第二定理)及其意义對有噪信道編碼定理的說明:─联合信源信道编码定理及其意义7. 保真度准则下的信源编码—失真度 d(u i,v j)≥0(单个符号)—失真矩阵——平均失真度:某个信源在某一试验信道下的失真大小;長度為N的信源符號序列的失真函數:長度為N的信源符號序列的平均失真度:單個符號的平均失真度:信源和信道都是無記憶的,N為信源序列的平均失真度:信源的平均失真度:─信息率失真函数的定义:在滿足保真度準則下,信源信息傳輸率的下限是多少;信息率失真函數和信道容量具有對偶性:其他性質:(1)在一定約束條件下是平均互信息的極小值;(2)非負性,下限值為0;(3)當R(D)=0時,所對應就是平均失真度的上界D max;(4)R(D)是允許失真度D的凸函數;(5)R(D)在定義域內連續;(6)R(D)是嚴格的單調遞減函數;─保真度准则下的信源编码定理(香农第三定理)及其意义反之,意義:說明在允許失真D的條件下,信源最小的,可達的信息傳輸率是信源的R(D)。

─联合有失真信源信道编码定理及其意义.香農第一定理+香農第二定理:(1)只要信道的信道容量大於信源的極限熵,就能在信道中做到有效地、無錯誤地傳輸信息;(2)分兩步編碼處理方法與一步處理方法效果一樣好;.香農第三定理+香農第二定理:(1)如果信源的極限熵大於信道的信道容量,只要在允許一定失真的條件下,仍能做到有效和可靠地傳輸信息;如此可歸納出信息傳輸定理:(1)離散無記憶信源S的信息率失真函數為R(D),離散無記憶信道的信道容量為C,如果滿足:則信源輸出的信源序列能再次信道輸出端重現,其失真小於等於D。

(2)離散無記憶信源S,其信息率失真函數為R(D)比特/信源符號,每秒輸出個信源符號;離散無記憶信道的信道容量為C比特/信道符號,每秒傳輸個信道符號,如果滿足:則信源輸出的信息能再此信道輸出端重現,其失真小於等於D。

相关文档
最新文档