不等式恒成立与有解

合集下载

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

专题11 不等式恒成立与有解问题考点预测江苏高考近几年不等式常以压轴题的题型出现,常见的考试题型有恒成立,有解问题,此类题型丰富多变,综合性强,有一定的难度,但只要我们理解问题的本质,就能解决这类问题,常用的知识点如下:1.若)(x f 在区间D 上存在最小值,A x f >)(在区间D 上恒成立,则A x f >min )(.2.若)(x f 在区间D 上存在最大值,B x f <)(在区间D 上恒成立,则B x f <max )(.3.若)(x f 在区间D 上存在最大值,A x f >)(在区间D 上有解,则A x f >max )(.4.若)(x f 在区间D 上存在最小值,B x f <)(在区间D 上有解,则B x f <min )(.5.],,[,21b a x x ∈∀)()(21x g x f ≤,则min max )()(x g x f ≤.6.],,[1b a x ∈∀],[2n m x ∈∃,)()(21x g x f ≤,则max max )()(x g x f ≤.7.],,[1b a x ∈∃],[2n m x ∈∃,)()(21x g x f ≤,则max min )()(x g x f ≤.8.],,[b a x ∈∀)()(x g x f ≤,则0)()(≤-x g x f .典型例题1.已知函数f (x )=x ﹣2(e x ﹣e ﹣x ),则不等式f (x 2﹣2x )>0的解集为 .2.已知a ,b ∈R ,若关于x 的不等式lnx ≤a (x ﹣2)+b 对一切正实数x 恒成立,则当a +b 取最小值时,b 的值为 ﹣ .3.已知函数f(x)=,设a∈R,若关于x的不等式在R上恒成立,则a的取值范围是﹣专项突破一、填空题(共12小题)1.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.2.对于任意的正数a,b,不等式(2ab+a2)k≤4b2+4ab+3a2恒成立,则k的最大值为.3.设a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,则a的取值范围为.4.不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,则实数a的取值范围是.5.若存在实数b使得关于x的不等式|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4恒成立,则实数a的取值范围是﹣.6.已知等比数列{a n}的前n项和为S n,且S n=,若对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则实数λ的取值范围是.7.若关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,则2a+b的最小值为.8.若对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为.9.若不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,则a的取值范围是.10.若对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,则实数x的取值范围是﹣∞﹣11.若不等式2kx2+kx+<0对于一切实数x都成立,则k的取值范围是﹣∞﹣.12.已知函数f(x)=x2+(1﹣a)x﹣a,若关于x的不等式f(f(x))<0的解集为空集,则实数a的取值范围是﹣.。

浅析“有解”与“恒成立”问题

浅析“有解”与“恒成立”问题

浅析“有解”与“恒成立”问题作者:邓卫和来源:《中学课程辅导高考版·教师版》2014年第24期摘要:在近年的高考中经常出现“有解”与“恒成立”问题,许多同学混淆了这两个概念,在解题时出错。

现对这两个概念进行阐述:“有解”是指“至少有一个满足条件的值使式子成立,则称该问题有解”。

“恒成立”是指“在某一范围内所有的变量值都使该问题成立,则称该问题恒成立”。

本文现通过具体问题进行阐述。

关键词:“有解”;“恒成立”;例析中图分类号:G427文献标识码:A ; ; 文章编号:1992-7711(2014)24-125-1一、有解问题例1方程x2-a|x|+4=0在x∈[-2,2]上有解,求a的范围。

分析:方程x2-a|x|+4=0在x∈[-2,2]上有解,可能有一解,也可能有两解,讨论比较复杂。

可通过分离变量a,转化为求函数的值域来解。

解:x2-a|x|+4=0当x=0时,方程不成立,因此x≠0故方程两边同除以|x|得a=|x|+4|x|≥2|x|·4|x|=4(当且仅当|x|=2时取到“=”)此时x=±2∈[-2,2],所以:当a≥4时该方程x2-a|x|+4=0在x∈[-2,2]上有解。

点评:本题通过“分离变量a”求值域,方法简单易行,在以后的学习中经常用到这一方法。

例2(2013重庆.理.16)若关于x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是。

分析:要使|x-5|+|x+3|<a无解,只要求|x-5|+|x+3|<a有解时实数a的范围,然后求a的补集即可。

要使|x-5|+|x+3|<a有解,则至少有一个或一个以上的x值使要|x-5|+|x+3|<a成立,因此,只要求a大于代数式|x-5|+|x+3|的最小值。

解:函数y=|x-5|+|x+3|=2-2xx≤-38-3<x<52x-2x≥5由此可知,该函数的值域为[8,+∞),因此:当a>8时,不等式|x-5|+|x+3|<a有解。

高考数学一轮复习专题训练—不等式恒成立或有解问题

高考数学一轮复习专题训练—不等式恒成立或有解问题

微课2 不等式恒成立或有解问题题型一 分离法求参数的取值范围【例1】(2020·全国Ⅰ卷)已知函数f (x )=e x +ax 2-x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.解 (1)当a =1时,f (x )=e x +x 2-x ,x ∈R , f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)由f (x )≥12x 3+1得,e x +ax 2-x ≥12x 3+1,其中x ≥0,①当x =0时,不等式为1≥1,显然成立,此时a ∈R . ②当x >0时,分离参数a ,得a ≥-e x -12x 3-x -1x 2,记g (x )=-e x -12x 3-x -1x 2,g ′(x )=-(x -2)⎝⎛⎭⎫e x -12x 2-x -1x 3.令h (x )=e x -12x 2-x -1(x >0),则h ′(x )=e x -x -1,令H (x )=e x -x -1, H ′(x )=e x -1>0,故h ′(x )在(0,+∞)上是增函数,因此h ′(x )>h ′(0)=0,故函数h (x )在(0,+∞)上递增, ∴h (x )>h (0)=0,即e x -12x 2-x -1>0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增; 当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减. 因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎡⎭⎫7-e 24,+∞. 感悟升华 分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实数)恒成立问题中参数取值范围的基本步骤(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 【训练1】已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围. 解 (1)f (x )的定义域为(0,+∞),且f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,∴f (x )在(0, +∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ,由f ′(x )>0得x >1a ,∴f (x )在⎝⎛⎭⎫0,1a 上递减,在⎝⎛⎭⎫1a ,+∞上递增,即f (x )在x =1a处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点,当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值, ∴a =1,∴f (x )≥bx -2⇒1+1x -ln xx≥b ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝⎛⎦⎤-∞,1-1e 2. 题型二 等价转化法求参数范围 【例2】函数f (x )=x 2-2ax +ln x (a ∈R ).(1)若函数y =f (x )在点(1,f (1))处的切线与直线x -2y +1=0垂直,求a 的值; (2)若不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2a +1x ,f ′(1)=3-2a ,由题意f ′(1)·12=(3-2a )·12=-1,解得a =52.(2)不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立等价于2ln x ≥-x +a -3x ,令g (x )=2ln x +x -a +3x,则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2,则在区间(0,1)上,g ′(x )<0,函数g (x )为减函数; 在区间(1,e]上,g ′(x )>0,函数g (x )为增函数. 由题意知g (x )min =g (1)=1-a +3≥0,得a ≤4, 所以实数a 的取值范围是(-∞,4].感悟升华 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,如f (x )≥a 恒成立,则f (x )min ≥a ,然后利用最值确定参数满足的不等式,解不等式即得参数范围. 【训练2】已知f (x )=e x -ax 2,若f (x )≥x +(1-x ) e x 在[0,+∞)恒成立,求实数a 的取值范围. 解 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].题型三 可化为不等式恒成立求参数的取值范围(含有解问题) 【例3】已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解 (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立, 即a ≥-(x +1)2+1在[1,+∞)上恒成立, 而函数y =-(x +1)2+1在[1,+∞)单调递减, 则y max =-3,所以a ≥-3,所以a 的最小值为-3. (2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2, 使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.因为f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增,所以f ′(x )max =f ′(2)=8+a . 而g ′(x )=1-xe x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1, 所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 所以当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,所以实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. 感悟升华 含参不等式能成立问题(有解问题)可转化为恒成立问题解决,常见的转化有: (1)∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min . (2)∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max . (3)∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)min . (4)∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max . 【训练3】已知函数f (x )=ax -e x (a ∈R ),g (x )=ln xx .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 解 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x , 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max . 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) + 0 - h (x )极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e .1.已知函数f (x )=ax -1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是( )A.a >2B.a <3C.a ≤1D.a ≥3答案 C解析 函数f (x )的定义域是(0,+∞),不等式ax -1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解.令h (x )=x -x ln x ,则h ′(x )=-ln x . 由h ′(x )=0,得x =1.当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0. 故当x =1时,函数h (x )=x -x ln x 取得最大值1, 所以要使不等式a ≤x -x ln x 在(0,+∞)上有解, 只要a ≤h (x )max 即可,即a ≤1.2.已知a ∈R ,设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( ) A.[0,1] B.[0,2]C.[0,e]D.[1,e]答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a , 所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. 综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立, 即a ≤xln x恒成立.设g (x )=xln x (x >1),则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0, ∴g (x )min =g (e)=e ,∴a ≤e. 综上,a 的取值范围是[0,e].3.已知函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围. 解 依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx 能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e.由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e . 4.设f (x )=x e x ,g (x )=12x 2+x .(1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解 (1)因为F (x )=f (x )+g (x )=x e x +12x 2+x ,所以F ′(x )=(x +1)(e x +1), 令F ′(x )>0,解得x >-1, 令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增. 故F (x )min =F (-1)=-12-1e.(2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立, 所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立.令h (x )=mf (x )-g (x )=mx e x -12x 2-x ,x ∈[-1,+∞),即只需h (x )在[-1,+∞)上单调递增即可.故h ′(x )=(x +1)(m e x -1)≥0在[-1,+∞)上恒成立,故m ≥1e x ,而1e x ≤e ,故m ≥e ,即实数m 的取值范围是[e ,+∞). 5.已知函数f (x )=m e x -x 2.(1)若m =1,求曲线y =f (x )在(0,f (0))处的切线方程;(2)若关于x 的不等式f (x )≥x (4-m e x )在[0,+∞)上恒成立,求实数m 的取值范围.解 (1)当m =1时,f (x )=e x -x 2,则f ′(x )=e x -2x . 所以f (0)=1,且斜率k =f ′(0)=1.故所求切线方程为y -1=x ,即x -y +1=0. (2)由m e x -x 2≥x (4-m e x )得m e x (x +1)≥x 2+4x . 故问题转化为当x ≥0时,m ≥⎝ ⎛⎭⎪⎫x 2+4x e x (x +1)max . 令g (x )=x 2+4xe x (x +1),x ≥0,则g ′(x )=-(x +2)(x 2+2x -2)(x +1)2e x .由g ′(x )=0及x ≥0,得x =3-1.当x ∈(0,3-1)时,g ′(x )>0,g (x )单调递增; 当x ∈(3-1,+∞)时,g ′(x )<0,g (x )单调递减. 所以当x =3-1时,g (x )max =g (3-1)=2e 1-3.所以m ≥2e 1-3.即实数m 的取值范围为[2e 1-3,+∞).。

高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具. 在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。

其中,特别是一些含自然对数和指数函数的不等式恒成立与有解问题,将新增内容与传统知识有机融合,用初等方法难以处理,而利用导数来解,思路明确,过程简捷流畅,淡化繁难的技巧,它不仅考查函数、不等式等有关的传统知识和方法,而且还考查极限、导数等新增内容的掌握和灵活运用. 它常与思想方法紧密结合,体现能力立意的原则,带有时代特征,突出了高考试题与时俱进的改革方向. 因此,越来越受到高考命题者的青睐. 下面通过一些典型实例作一剖析.1.不等式恒成立与有解的区别不等式恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团.(1)不等式f(x)<k 在x ∈I 时恒成立•k•x f ,)(max <⇔x ∈I. 或f(x)的上界小于或等于k ;(2)不等式f(x)<k 在x ∈I 时有解•k•x f ,)(min <⇔x ∈I. 或f(x)的下界小于k ;(3)不等式f(x)>k 在x ∈I 时恒成立•k•x f ,)(min >⇔x ∈I. 或f(x)的下界大于或等于k ;(4)不等式f(x)>k 在x ∈I 时有解•k•x f ,)(max >⇔x ∈I. 或f(x)的上界大于k ;解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.例1 已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数.(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围;(2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;(3)对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围.解析 (1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h m in (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2.由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h m in (x)=-45+k ,由k-45≥0,得k≥45.(2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h m ax (x)≥0,由(1)知h m ax (x )=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在[-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:]3,3[,)()(min max ••x •x g x f -∈≤,由g′(x)=6x 2+10x+4=0,得x=-32或-1,易得21)3()(min -=-=g x g ,又f(x)=8(x+1)2-8-k ,]3,3[•x -∈. 故.120)3()(max k f x f -==令120-k≤-21,得k≥141.点评 本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件2.不等式有解问题例3 设x=3是函数f(x)=(x 2+ax+b)e x -3,x ∈R 的一个极值点.(1)求a 与b 的关系(用a 表示b ),并求f(x)的的单调区间;(2)设a>0,g(x)=x e a ⎪⎭⎫ ⎝⎛+4252,若存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,求a 的取值范围.解析 (1)x e a b x a x x f --+-+-='32])2([)(,由)3(f '=0得b=-2a-3. 故f(x)=(x 2+ax-2a-3)x e -3. 因为)(x f '=-[x 2+(a-2)x-3a-3] x e -3=-(x-3)(x+a+1) x e -3. 由)(x f '=0得:x 1=3,x 2==-a-1. 由于x=3是f(x)的极值点,故x 1≠x 2,即a≠-4.当a<-4时,x 1<x 2,故f(x)在(]3,•∞-上为减函数,在[3,-a-1]上为增函数,在[)+∞--,1•a 上为减函数.当a>-4时,x 1>x 2,故f(x)在(]1,--∞-a •上为减函数,在[-a-1,3]上为增函数,在[)+∞,3•上为减函数.(2)由题意,存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,即不等式|f(S 1)-g(S 2)|<1在S 1,S 2∈[0,4]上有解.于是问题转化为|f(S 1)-g(S 2)|m in <1,由于两个不同自变量取值的任意性,因此首先要求出f(S 1)和g(S 2)在[0,4]上值域.因为a>0,则-a-1<0,由(1)知:f(x)在[0,3]递增;在[3,4]递减. 故f(x)在[0,4]上的值域为[min{f(0),f(4)},f(3)]=[-(2a+3)e 3,a+6],而g(x)=x e a ⎪⎭⎫ ⎝⎛+4252在[0,4]上显然为增函数,其值域⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++422425,425e a •a . 因为4252+a -(a+6)=⎪⎭⎫ ⎝⎛-21a 2≥0, 故4252+a ≥(a+6).|f(S 1)-g(S 2)|m in =4252+a -(a+6)从而解230,01)6(4252<<⎪⎩⎪⎨⎧><+-+a ••••a a a 得. 故a 的取值范围为⎪⎭⎫ ⎝⎛23,0••. 假若问题变成:“对任意的S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1都成立,求a 的取值范围.”则可将其转化为|f(S 1)-g(S 2)|m ax <1点评 函数、不等式、导数既是研究的对象,又是决问题的工具. 本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数 闭区间上的值域,再处理不等式有解问题. 这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.3.不等式恒成立问题例2 设函数f(x)=(x+1)ln(x+1),若对所有x≥0,都有f(x)≥ax 成立,求实数a 的取值范围.解析 构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax ,原问题变为g(x)≥0对所有的 x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在[)∞+••,0为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=l n(x+1)+1-a ,由g′(x)=0,得x=e1-a -1. 当x>e 1-a -1时,g′(x)>0,g(x)为增函数.当-1<x<e 1-a -1时,g′(x)<0,g(x)为减函数.那么对所有的x≥0,都有g(x)≥g(0),其充要条件是e 1-a -1≤0,故得a 的取值范围是(]1,••∞-.假若我们没有注意到g(0)=0,那么在解g(x)≥0对所有的x≥0恒成立时,也可转化为)0(0)(min ≥≥x x g ,再以导数为工具,稍作讨论即可得解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax 对所有的x≥0恒成立可得:(1)当x=0时,a ∈R . (2)当x>0时,.)1ln()1(x x x a ++≤设g(x)=xx x )1ln()1(++,问题转化为求g(x)在开区间(0,+∞)上最小值或下界,2)1ln()(x x x x g +-=',试图通过g′(x)=0直接解得稳定点,困难重重!退一步令h(x)=x-ln(x+1),因为0,111)(>+-='•x •x x h ,故)(x h '>0,则h(x)在(0,+∞)单调递增,即h(x)>h(0)=0,从而)(x g '>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:)(lim )(0x g x g x →>,然而求此极限却又超出所学知识范围,于是大部分考生被此难关扫落下马,无果而终. 事实上采用洛比达法则可得:1]1)1[ln(lim )1ln()1(lim )(lim 000=++=++=→→→x xx x x g x x x ,故x>0时,g(x)>1,因而a≤1.综合(1)(2),得a 的取值范围是:(]1,••∞-. 点评 采用参数分离法求解本题,最大的难点在于求分离后所得函数的下界.它需要考生拥有扎实的综合素质和过硬的极限、导数知识,并能灵活地运用这些工具来研究函数的性态,包括函数的单调性,极值(最值)或上下界.突出考查了函数与方程思想、有限与无限的思想.。

数学中恒成立与有解问题

数学中恒成立与有解问题

数学中的恒成立与有解问题一、恒成立问题若不等式 f x A 在区间 D 上恒成立 , 则等价于在区间 D 上 f x若不等式 f xB 在区间 D 上恒成立 , 则等价于在区间D 上 f x minmaxAB常用方法1、分别变量法;2、数形结合法;3、利用函数的性质;4、改正主元等;1、由二次函数的性质求参数的取值范围例题 1. 若关于 x 的不等式 ax 22x2 0 在 R 上恒成立 , 求实数 a 的取值范围 .解题思路 :结合二次函数的图象求解解析:当 a0 时 , 不等式 2x2 0 解集不为 R , 故 a 0 不满足题意 ;当 a0 时 , 要使原不等式解集为a 0, 解得a1R , 只要4 2a 0 222综上 , 所求实数 a 的取值范围为 ( 1,)22、转变成二次函数的最值求参数的取值范围例题 2:已知二次函数满足 f (0) 1,而且 f ( x 1) f ( x) 2x ,请解决以下问题( 1) 求二次函数的解析式。

,求 m 的取值范围。

( 2) 若 f (x) 2x m 在区间 [ 1,1] 上恒成立解题思路 :先分别系数 , 再由二次函数最值确定取值范围.解析: (1)设 f ( x)ax 2 bx c(a 0) .由 f (0)1 得 c 1,故 f ( x) ax2 bx 1.∵ f ( x 1) f ( x)2x ∴ a( x1)2 b( x 1)1 (ax2 bx 1) 2x即 2axa b 2x ,因此 2a 2, a b 0 ,解得 a 1,b1 ∴ f ( x)x 2x 1(2)由 (1) 知 x 2x 12x m 在 [ 1,1]恒成立 ,即 m x 2 3x 1 在 [ 1,1] 恒成立 .令 g( x)x 23x 1 (x 3)2 5 , 则 g(x) 在 [ 1,1] 上单调递减 . 因此 g(x) 在 [ 1,1] 上的最小值为g(1)1 .2 ( 4 , 1) .m 的取值范围是因此 规律总结 :m f (x) 对所有 x R 恒成立 , 则 m [ f (x)]min ; m f ( x) 对所有 x R 恒成立 , 则 m [ f (x)]max ;注意参数的端点值能否取到需检验。

不等式有解与恒成立问题

不等式有解与恒成立问题

不等式恒成立与能成立问题学号 姓名不等式恒成立指不等式对指定其间上的任意值都成立;不等式能成立指不等式在指定其间上至少有一个解(或称有解)。

下面从三个例子针对这两类问题的解决策略作比较说明。

例1.(1)若不等式()350x a -+<在[]1,1x ∈-内恒成立,求实数a 的取值范围。

(2).若不等式()350x a -+<在[]1,1x ∈-内能成立,求实数a 的取值范围。

例2.(1)若不等式22310x x m ++-≥在[]0,1x ∈内恒成立,求实数m的取值范围. (2)若不等式22310x x m ++-≥在[]0,1x ∈有解,求实数m的取值范围.例3.(1)若不等式245462x x a x -+≤+-在[]3,5x ∈内恒成立,求实数a的取值范围. (2)若不等式245462x x a x -+≤+-在[]3,5x ∈内有解,求实数a的取值范围。

总结:1.不等式恒成立与能成立(有解)解法策略比较:2.恒成立的参数范围是有解的参数范围的子集。

3. 不等式恒成立与能成立(有解)问题都是转化为最值解决。

作业:1.已知关于x 的不等式2350x a +-<。

(1)若此不等式对[]1,5x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,5x ∈上能成立,求实数a的取值范围。

2.已知关于x 的不等式20x a +>。

(1)若此不等式对[]1,2x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,2x ∈上能成立,求实数a的取值范围。

3. 已知关于x 的不等式2+2310x x a -+>。

(1)若此不等式对[]0,1x ∈上恒成立,求实数a的取值范围。

(2)若此不等式在[]0,1x ∈上有解,求实数a的取值范围。

4. 若不等式4213a x x +≤+-在[]0,1x ∈内有解,求实数a的取值范围。

数学中的恒成立与有解问题

数学中的恒成立与有解问题

数学中的恒成立与有解问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN数学中的恒成立与有解问题一、恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <常用方法1、分离变量法;2、数形结合法;3、利用函数的性质;4、变更主元等;1、由二次函数的性质求参数的取值范围例题1.若关于x 的不等式2220ax x ++>在R 上恒成立,求实数a 的取值范围. 解题思路:结合二次函数的图象求解解析:当0a =时,不等式220x +>解集不为R ,故0a =不满足题意;当0a ≠时,要使原不等式解集为R ,只需202420a a >⎧⎨-⨯<⎩,解得12a >综上,所求实数a 的取值范围为1(,)2+∞2、转化为二次函数的最值求参数的取值范围例题2:已知二次函数满足(0)1f =,而且(1)()2f x f x x +-=,请解决下列问题 (1) 求二次函数的解析式。

(2) 若()2f x x m >+在区间[1,1]-上恒成立 ,求m 的取值范围。

解题思路:先分离系数,再由二次函数最值确定取值范围.解析:(1)设2()(0)f x ax bx c a =++≠.由(0)1f =得1c =,故2()1f x ax bx =++.∵(1)()2f x f x x +-= ∴22(1)(1)1(1)2a x b x ax bx x ++++-++=即22ax a b x ++=,所以22,0a a b =+=,解得1,1a b ==- ∴2()1f x x x =-+ (2)由(1)知212x x x m -+>+在[1,1]-恒成立,即231m x x <-+在[1,1]-恒成立.令2235()31()24g x x x x =-+=--,则()g x 在[1,1]-上单调递减.所以()g x 在[1,1]-上的最小值为(1)1g =-.所以m 的取值范围是(,1)-∞-.规律总结:()m f x ≤对一切x R ∈恒成立,则min [()]m f x ≤;()m f x ≥对一切x R ∈恒成立,则max [()]m f x ≥;注意参数的端点值能否取到需检验。

不等式恒成立有解问题

不等式恒成立有解问题

不等式恒成立、有解问题1.已知()22f x x x a =++对任意x R ∈()0f x >恒成立,试求实数a 的取值范围;★提炼:最高次项系数含有参数时要注意讨论其为0的时候2.已知()223f x ax x =-+(2()2f x x ax =-+)(1)1,3,2x ⎡⎤∃∈⎢⎥⎣⎦()0f x ≥,试求实数a 的取值范围; (2)1,3,2x ⎡⎤∃∈⎢⎥⎣⎦()0f x <,试求实数a 的取值范围;★提炼:(1)不管当0>a 还是0<a 时,],[0)(βα∈>x x f 在有解⇔()0f α>或()0f β>(2)也可以用该命题的否定转化为恒成立的问题求解(如上一题)(3)也可以分离参数用数形结合求解(4)若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.3.设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是变型题1:对于R x ∈,不等式031222>++-x a x 恒成立,则实数a 的取值范围是变型题2:已知函数xa x f 21)(+-=。

(1)解关于x 的不等式0)(>x f 。

(2)若02)(≥+x x f 在(0,+∞)上恒成立,求a 的取值范围。

★提炼:(1)解决恒成立问题通常可以利用分离变量转化,其中分离的可能是关于参数的代数式。

分离过的变量的代数式通常有对号函数式、二次函数式、反比例函数式、分子分母分别为一次和二次代数式等。

(2) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式;(3) 求()f x 在x D ∈上的最大(或最小)值;(4) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。

不等式恒成立有解问题

不等式恒成立有解问题

不等式恒成立有解问题不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容.它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具.在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目,比如2021年高考江西卷以及湖北卷.其中,特别就是一些不含自然对数和指数函数的不等式恒设立与欠阻尼问题,将追加内容与传统科学知识有机融合,用初等方法难以处置,而利用导数能解,思路明晰,过程简便简洁,淡化郧荆道的技巧,它不仅考查函数、不等式等有关的传统科学知识和方法,而且还考查音速、导数等追加内容的掌控和灵活运用.它常与思想方法紧密结合,彰显能力立意的原则,具有时代特征,注重了低考试题与时俱进的改革方向.因此,越来越受中考命题者的亲睐.下面通过一些典型实例并作一剖析.1.不等式恒成立与有解的区别不等式恒设立和欠阻尼就是存有显著区别的,以下充要条件应当细心思索,筛选差异,恰当采用,等价转变,切勿搭为一团.(1)不等式f(x)(2)不等式f(x)(3)不等式f(x)>k在x i时恒成立fmin(x)k•x i.或f(x)的下界大于或等于k;,•(4)不等式f(x)>k在x i时存有求解fmax(x)k•x i.或f(x)的上界大于k;,•解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.基准1未知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x[-3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存有x[-3,3],并使f(x)≤g(x)设立,谋k的值域范围;(3)对任意x1x2[-3,3],都有f(x1)≤g(x2),求k的取值范围.解析(1)设h(x)=g(x)-f(x)=2x2-3x2-12x+k,问题转变为x[-3,3]时,h(x)≥0恒设立,故hmin(x)≥0.令h′(x)=6x2-6x-12=0,得x=-1或2.由h(-1)=7+k,h(2)=-20+k,h(-3)=k-45,h(3)=k-9,故hmin(x)=-45+k,由k-45≥0,得k≥45.(2)据题意:存有x[-3,3],并使f(x)≤g(x)设立,即为为:h(x)=g(x)-f(x)≥0在x[-3,3]存有求解,故hmax(x)≥0,由(1)言hmax(x)=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x1x2[-3,3],都有f(x1)≤g(x2)成立,不等式的左右两端函数的自变量不同,x1,x2的取值在[-3,3]上具备任意性,因而要使原不等式恒设立的充要条件就是:fmax(x)gmin(x)•,•x[3•,3],由g′(x)=6x2+10x+4=0,得x=-2或-1,易得3,3].故fmax(x)f(3)120k.令gmin(x)g(3)21,又f(x)=8(x+1)2-8-k,x[3•120-k≤-21,得k≥141.评测本题的三个大题,表面形式非常相近,究其本质却大相径庭,应当深入细致审题,深入细致思索,多提训练,精确采用其设立的充要条件.2.不等式恒成立问题基准2(06年全国)设立函数f(x)=(x+1)ln(x+1),若对所有x≥0,都存有f(x)≥ax设立,谋实数a的值域范围.解析构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax,原问题变为g(x)≥0对所有的x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在0•,•为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=ln(x+1)+1-a,由g′(x)=0,得x=e当x>ea1a1-1.-1时,g′(x)>0,g(x)为增函数.a1那么对所有的x≥0,都存有g(x)≥g(0),其充要条件就是e-1≤0,故得a的值域范围就是•,1.假若我们没注意到g(0)=0,那么在求解g(x)≥0对所有的x≥0恒设立时,也可以转变为gmin(x)0(x0),再以导数为工具,稍加探讨即可暂解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax对所有的x≥0恒成立可得:(1)当x=0时,a r.(2)当x>0时,a设g(x)=(x1)ln(x1).x(x1)ln(x1),问题转变以求g(x)在开区间(0,+∞)上最小值或下界,xx ln(x1)g(x),试图通过g′(x)=0直接解得稳定点,困难重重!退一步令x21•,•x0,故h(x)>0,则h(x)在(0,+∞)单调递减,h(x)=x-ln(x+1),因为h(x)1x1即h(x)>h(0)=0,从而g(x)>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:g(x)limg(x),然x0而谋此音速却又远远超过所学科学知识范围,于是大部分学生被此困境洗落马,无果而终.事实上采用洛比达法则可得:limg(x)limx0(x1)ln(x1)lim[ln(x1)1]1,故x>0x0x0x时,g(x)>1,因而a≤1.综合(1)(2),得a的取值范围是:•,1•.评测使用参数分离法解本题,最小的难点是谋拆分后税金函数的下界.它须要学生具有坚实的综合素质和优良的音速、导数科学知识,并能够有效率地运用这些工具去研究函数的性态,包含函数的单调性,极值(最值)或上时下界.注重考查了函数与方程思想、非常有限与无穷的思想.3.不等式有解问题基准3(06年湖北)设x=3就是函数f(x)=(x2+ax+b)e3x,x r的一个极值点.(1)求a与b的关系(用a表示b),并求f(x)的的单调区间;(2)设a>0,g(x)=aa的取值范围.解析(1)f(x)[x2(a2)x b a]e3x,由f(3)=0得b=-2a-3.故f(x)=(x2+ax-2a-3)e3x225x e,若存在s1,s2[0,4],使得|f(s1)-g(s2)|当a>-4时,x1>x2,故f(x)在•,a1上以减至函数,在[-a-1,3]上以增函数,在3•,上以减至函数.(2)由题意,存在s1,s2[0,4],使得|f(s1)-g(s2)|于是问题转变为|f(s1)-g(s2)|min因为a>0,则-a-1225x e在[0,4]上似乎为减4函数,其值域a2252254•,a e.442因为a2251-(a+6)=a42≥0,故a225≥(a+6).4225(a6)125a2|f(s1)-g(s2)|min=a-(a+6)从而求解,•44a0值范围为0•,.得0a 3.故a的取2假若问题变为:“对任一的s1,s2[0,4],使|f(s1)-g(s2)|点评函数、不等式、导数既是研究的对象,又是决问题的工具.本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数闭区间上的值域,再处理不等式有解问题.这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.。

2022年高考数学基础题型重难题型突破类型二 恒成立问题与有解问题(解析版)

2022年高考数学基础题型重难题型突破类型二 恒成立问题与有解问题(解析版)

2022年高考数学基础题型重难题型突破类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【典例8】已知函数f(x)=ln x-ax,g(x)=x2,a∈R.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a的取值范围.【典例9】已知x=1e为函数f(x)=x a ln x的极值点.(1)求a的值;(2)设函数g(x)=kxe x∀x1∈(0,+∞),∃x2∈R,使得f(x1)-g(x2)≥0,求k的取值范围.【典例10】设函数f(x)=ax2-a-ln x,g(x)=1x-ee x,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【解析】解(1)f ′(x )=-x e x,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2x ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x=m t,等价于方程ln x =mx有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x h ′(x )<0,h (x )单调递减,当x h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解析】解f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0),易知当x ∈(0,+∞)时,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1).当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意;当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0,显然不符合题意,a ≤0舍去;当0<a <12时,由ln x ≤x -1,得ln1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x ax -1),∵0<a <12,∴12a>1.当x ∈1,12a 时,f ′(x )≤0恒成立,∴f (x )在1,12a 上单调递减,∴当x ∈1,12a 时,f (x )≤f (1)=0,显然不符合题意,0<a <12舍去.综上可得,a ∈12,+∞【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】(1)因为f (x )=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f ′(x )=2x -4-6x ,且f ′(1)=-8,f (1)=-3,所以切线方程为y =-8x +5.又f ′(x )=2x (x +1)(x -3),令f ′(x )>0解得x >3,令f ′(x )<0解得0<x <3,所以f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf ′(x )-f (x )>x 2+6等价于k <x +x ln x x -1,记h (x )=x +x ln x x -1,则k <h (x )min ,且h ′(x )=x -2-ln x (x -1)2,记m (x )=x -2-ln x ,则m ′(x )=1-1x>0,所以m (x )为(1,+∞)上的单调递增函数,且m (3)=1-ln 3<0,m (4)=2-ln 4>0,所以存在x 0∈(3,4),使得m (x 0)=0,即x 0-2-ln x 0=0,所以h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h (x )min =h (x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g (x )=x 2-a ln x ,则g ′(x )=2x -a x =(2x +a )(2x -a )x,令g ′(x )=0,得x 0=a2,当x g ′(x )<0,当x g ′(x )>0,所以g (x上单调递增,而要使g (x )有两个零点,要满足g (x 0)<0,即-a lna 2<0⇒a >2e.因为0<x 1<a2,x 2>a 2,令x 2x 1=t (t >1),由g (x 1)=g (x 2),可得x 21-a ln x 1=x 22-a ln x 2,即x 21-a ln x 1=t 2x 21-a ln tx 1,所以x 21=a ln tt 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2a ln t t 2-1>8a ,又a >0,t >1,所以只需证(3t+1)2ln t -8t 2+8>0,令h (t )=(3t +1)2ln t -8t 2+8,则h ′(t )=(18t +6)ln t -7t +6+1t ,令n (t )=(18t +6)ln t -7t +6+1t,则n ′(t )=18ln t +11+6t -1t 2>0(t >1),故n (t )在(1,+∞)上单调递增,n (t )>n (1)=0,故h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,所以x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【解析】(1)易知函数f (x )为偶函数,故只需求x ∈[0,+∞)时f (x )的最小值.f ′(x )=2x -πsin x ,当x h (x )=2x -πsin x ,h ′(x )=2-πcos x ,显然h ′(x )单调递增,而h ′(0)<0,h x 0得h ′(x 0)=0.当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减,当x 0h ′(x )>0,h (x )单调递增,而h (0)=0,x h (x )<0,即x f ′(x )<0,f (x )单调递减,又当x x >π>πsin x ,f ′(x )>0,f (x )单调递增,所以f (x )min ==π24.(2)证明:依题意得x 1x 2F (x )=f (x )-f (π-x ),x F ′(x )=f ′(x )+f ′(π-x )=2π-2πsin x >0,即函数F (x )单调递增,所以F (x )<x f (x )<f (π-x ),而x 1,所以f (x 1)<f (π-x 1),又f (x 1)=f (x 2),即f (x 2)<f (π-x 1),此时x 2,π-x 1由(1)可知,f (x x 2<π-x 1,即x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【解析】解f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=ex -1-ln x ,f ′(x )=ex -1-1x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a ex -1-ln x +ln a ≥ex -1-ln x ≥1.综上,a 的取值范围是[1,+∞).【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【解析】解(1)f ′(x )=ax+(1-a )x -b .由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x x -1).①若a ≤12,则a1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x f ′(x )<0,当x f ′(x )>0,f (x 增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f<aa -1.而fa lna 1-a +a 221-a +a a -1>a a -1,所以不符合题意.③若a >1,则f (1)=1-a 2-1=-a -12<aa -1.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【解析】解设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h ′(x )=2x -2.当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c .故当-1-c ≤0,即c ≥-1时,f (x )≤2x +c .所以c 的取值范围为[-1,+∞).【典例8】已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R .(1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围.【解析】解(1)f (x )=ln x -ax 的定义域为(0,+∞),f ′(x )=1x-a .当a ≤0时,f ′(x )=1x-a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,由f ′(x )=1x -a >0,得0<x <1a ,由f ′(x )=1x -a <0,得x >1a ,所以f (x f (x )有极大值点1a,无极小值点.(2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立,则当x >0时,a ≥ln xx-x 恒成立,令h (x )=ln x x -x ,x >0,则h ′(x )=1-x 2-ln xx 2,令k (x )=1-x 2-ln x ,x >0,则当x >0时,k ′(x )=-2x -1x <0,所以k (x )在(0,+∞)上单调递减,又k (1)=0,所以在(0,1)上,h ′(x )>0,在(1,+∞)上,h ′(x )<0,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以h (x )max =h (1)=-1,所以a ≥-1.即a 的取值范围为a ≥-1.【典例9】已知x =1e为函数f (x )=x aln x 的极值点.(1)求a 的值;(2)设函数g (x )=kxe x∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,求k 的取值范围.【解析】解(1)f ′(x )=axa -1ln x +x a ·1x=x a -1(a ln x +1),f ln1e+1a =2,当a =2时,f ′(x )=x (2ln x +1),函数f (x 递增,所以x =1e为函数f (x )=x aln x 的极小值点,因此a =2.(2)由(1)知f (x )min =f =-12e,函数g (x )的导函数g ′(x )=k (1-x )e -x.①当k >0时,当x <1时,g ′(x )>0,g (x )在(-∞,1)上单调递增;当x >1时,g ′(x )<0,g (x )在(1,+∞)上单调递减,对∀x 1∈(0,+∞),∃x 2=-1k ,使得g (x 2)=1e k <-1<-12e ≤f (x 1),符合题意.②当k =0时,g (x )=0,取x 1=1e,对∀x 2∈R 有f (x 1)-g (x 2)<0,不符合题意.③当k <0时,当x <1时,g ′(x )<0,g (x )在(-∞,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增,g (x )min =g (1)=ke,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,只需g (x )min ≤f (x )min ,即k e ≤-12e,解得k ≤-12.综上所述,k -∞,-12∪(0,+∞).规律方法(1)由不等式恒成立求参数的取值范围问题的策略①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.【典例10】设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.【解析】.(1)解f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a.当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.(2)证明令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)解由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1,由(1)有f (1)=0,而所以f (x )>g (x )在区间(1,+∞)内不恒成立;当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈12,+【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).【解析】.解(1)f ′(x )=1x -x +1=-x 2+x +1x ,x ∈(0,+∞).由f ′(x )>0>0,x 2+x +1>0.解得0<x <1+52.故f (x )(2)令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).。

微专题33 不等式恒成立或有解问题

微专题33 不等式恒成立或有解问题

微专题33不等式恒成立或有解问题高考定位利用导数解决不等式恒成立或有解问题,是高考的热点之一,多以解答题的形式出现,为压轴题,难度较大.[高考真题](2022·新高考Ⅱ卷节选)已知函数f(x)=x e ax-e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<-1,求a的取值范围.解(1)当a=1时,f(x)=(x-1)e x,x∈R,则f′(x)=x e x,当x<0时,f′(x)<0,当x>0时,f′(x)>0,故f(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)设h(x)=x e ax-e x+1,则h(0)=0,又h′(x)=(1+ax)e ax-e x,设g(x)=(1+ax)e ax-e x,则g′(x)=(2a+a2x)e ax-e x,,若a>12则g′(0)=2a-1>0,因为g′(x)为连续不间断函数,故存在x0∈(0,+∞),使得∀x∈(0,x0),总有g′(x)>0,故g (x )在(0,x 0)上单调递增,故g (x )>g (0)=0,故h (x )在(0,x 0)上单调递增,故h (x )>h (0)=0,与题设矛盾.若0<a ≤12,则h ′(x )=(1+ax )e ax -e x =e ax +ln(1+ax )-e x ,下证:对任意x >0,总有ln(1+x )<x 成立,证明:设S (x )=ln(1+x )-x ,故S ′(x )=11+x -1=-x 1+x<0, 故S (x )在(0,+∞)上单调递减,故S (x )<S (0)=0,即ln(1+x )<x 成立.由上述不等式有e ax +ln(1+ax )-e x <e ax +ax -e x =e 2ax -e x ≤0,故h ′(x )≤0总成立,即h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=0.当a ≤0时,有h ′(x )=e ax -e x +ax e ax <1-1+0=0,所以h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=0.综上,a ≤12.样题1 已知函数f (x )=ln x +a x (a ∈R ),若f (x )≤e x -1+1x -1恒成立,求实数a 的取值范围.解 因为f (x )≤e x -1+1x -1恒成立,即ln x+ax≤ex-1+1x-1对x∈(0,+∞)恒成立,即a≤x e x-1-x-ln x+1对x∈(0,+∞)恒成立,令u(x)=x e x-1-x-ln x+1,则u′(x)=e x-1+x e x-1-1-1x =(x+1)⎝⎛⎭⎪⎫e x-1-1x,当x∈(0,1)时,u′(x)<0,u(x)在(0,1)上单调递减,当x∈(1,+∞)时,u′(x)>0,u(x)在(1,+∞)上单调递增,故当x=1时,u(x)取最小值u(1)=1,所以a≤1,所以实数a的取值范围是(-∞,1].样题2 (2022·福州模拟改编)已知函数f(x)=x2-(2a+1)x+a ln x(a∈R),函数g(x)=(1-a)x,若∃x0∈[1,e]使得f(x0)≥g(x0)成立,求实数a的取值范围.解由题意知,不等式f(x)≥g(x)在区间[1,e]上有解,即x2-2x+a(ln x-x)≥0在区间[1,e]上有解.令φ(x)=x-ln x,x∈[1,e],则φ′(x)=1-1x =x-1x≥0,∴φ(x)=x-ln x在[1,e]上单调递增,∴φ(x)≥φ(1)=1,∴x-ln x>0,∴a≤x2-2xx-ln x在区间[1,e]上有解.令h(x)=x2-2x x-ln x,则h′(x)=(x-1)(x+2-2ln x)(x-ln x)2,∵x ∈[1,e],∴x +2>2≥2ln x ,∴h ′(x )≥0,h (x )单调递增,∴x ∈[1,e]时,h (x )max =h (e)=e (e -2)e -1, ∴a ≤e (e -2)e -1,所以实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤-∞,e (e -2)e -1. 样题3 (2022·延边模拟改编)已知函数f (x )=e x +ax (a ∈R ),若f (x )≥1-ln(x +1)对任意的x ∈[0,+∞)恒成立,求实数a 的取值范围.解 若x ≥0时,f (x )≥1-ln(x +1),即e x +ax +ln(x +1)-1≥0.(*)令g (x )=e x +ax +ln(x +1)-1,则g ′(x )=e x +1x +1+a ,令φ(x )=e x +1x +1+a ,则φ′(x )=e x -1(x +1)2=(x +1)2e x -1(x +1)2≥0, ∴函数φ(x )在区间[0,+∞)上单调递增,φ(0)=2+a ,①若a ≥-2,φ(0)=2+a ≥0,∴φ(x )=e x +1x +1+a ≥0,∴g ′(x )≥0, 函数g (x )在区间[0,+∞)上单调递增.∴g (x )≥g (0)=0,∴(*)式成立.②若a <-2,由于φ(0)=2+a <0,φ(-a )=e -a +11-a +a ≥1-a +11-a +a =1+11-a>0(x ≥0时,e x ≥1+x ,故e -a≥1-a),故∃x0∈(0,-a),使得φ(x0)=0,则当0<x<x0时,φ(x)<φ(x0)=0,即g′(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[-2,+∞).规律方法 1.由不等式恒成立求参数的取值范围问题的策略(1)求最值法:将恒成立问题转化为利用导数求函数的最值问题.(2)分离参数法:将参数分离出来,进而转化为a>f(x)max或a<f(x)min的形式,通过导数的应用求出f(x)的最值,即得参数的范围.2.不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.训练1 (2022·蚌埠三模改编)已知不等式e(x2-ln x)+e x-ax≥0恒成立,求实数a 的取值范围.解易知x>0,则原不等式可化为a≤e x2-eln x+e xx,设F(x)=e x2-eln x+e xx(x>0),则F′(x)=e(x2-1)+(x-1)e x+eln xx2,当x∈(0,1)时,F′(x)<0,当x∈(1,+∞)时,F′(x)>0,所以F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,F(x)min=F(1)=2e,则实数a的取值范围为(-∞,2e].训练2 已知函数f (x )=a ln x -2x +x +1,若不等式f (x )≥1在区间[1,2]上有解,求实数a 的取值范围.解 f ′(x )=a x +2x 2+1=x 2+ax +2x 2=⎝ ⎛⎭⎪⎫x +a 22+2-a 24x 2. ①当2-a 24≥0,即-22≤a ≤22时,f ′(x )≥0,所以f (x )在[1,2]上单调递增,所以f (x )max =f (2).②当2-a 24<0,即a >22时,设x 2+ax +2=0(Δ=a 2-8>0)的两根分别为x 1,x 2,则x 1+x 2=-a ,x 1x 2=2,所以x 1<0,x 2<0,所以在区间[1,2]上,f ′(x )=x 2+ax +2x 2>0, 所以f (x )在[1,2]上单调递增,所以f (x )max =f (2).综上,当a ≥-22时,f (x )在区间[1,2]上的最大值为f (2)=a ln 2+2≥1,所以a ≥-1ln 2,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-1ln 2,+∞.一、基本技能练1.已知函数f (x )=(x -2)e x -12ax 2+ax (a ∈R ),当x ≥2时,f (x )≥0恒成立,求a 的取值范围.解 法一 f ′(x )=(x -1)(e x -a ),①当a ≤0时,因为x ≥2,所以x -1>0,e x -a >0,所以f ′(x )>0,则f (x )在[2,+∞)上单调递增,f (x )≥f (2)=0成立.②当0<a ≤e 2时,f ′(x )≥0,所以f (x )在[2,+∞)上单调递增,所以f (x )≥f (2)=0成立.③当a >e 2时,在区间(2,ln a )上,f ′(x )<0;在区间(ln a ,+∞)上,f ′(x )>0,所以f (x )在(2,ln a )上单调递减,在(ln a ,+∞)上单调递增,f (x )≥0不恒成立,不符合题意.综上所述,a 的取值范围是(-∞,e 2].法二 当x ≥2时,f (x )≥0恒成立,等价于当x ≥2时,(x -2)e x -12ax 2+ax ≥0恒成立,即⎝ ⎛⎭⎪⎫12x 2-x a ≤(x -2)e x 在[2,+∞)上恒成立. 当x =2时,0·a ≤0,所以a ∈R .当x >2时,12x 2-x >0,所以a ≤(x -2)e x 12x 2-x=2e x x 恒成立. 设g (x )=2e x x ,则g ′(x )=2(x -1)e xx 2, 因为x >2,所以g ′(x )>0,所以g (x )在区间(2,+∞)上单调递增,所以g(x)>g(2)=e2,所以a≤e2.综上所述,a的取值范围是(-∞,e2].2.若e x+cos x-ax-2≥0在[0,+∞)上恒成立,求a的取值范围.解令h(x)=e x+cos x-ax-2,则h′(x)=e x-sin x-a,令t(x)=e x-sin x-a,则t′(x)=e x-cos x,∵e x≥1,-1≤cos x≤1,故t′(x)≥0,∴h′(x)在[0,+∞)上单调递增,∴h′(x)≥h′(0)=1-a.①当1-a≥0,即a≤1时,h′(x)≥0,故h(x)在[0,+∞)上单调递增,故h(x)≥h(0)=0,满足题意;②当1-a<0,即a>1时,h′(0)<0,又x→+∞时,h′(x)→+∞,∴∃x0∈(0,+∞),使得h′(x0)=0,∴当x∈(0,x0)时,h′(x)<0,∴h(x)在(0,x0)上单调递减,此时h(x)<h(0)=0,不符合题意.综上,a的取值范围为(-∞,1].3.已知函数f(x)=ax2-(6+a)x+3ln x,当a≤-92时,关于x的不等式f(x)+ax-b≥0有解,求b的最大值.解设g(x)=f(x)+ax-b=ax2-6x+3ln x-b,x>0,则g ′(x )=2ax -6+3x =2ax 2-6x +3x. 当a <0时,2ax 2-6x +3=0有两个根x 1,x 2,不妨令x 1<x 2.又x 1x 2=32a <0,x 1<0,x 2>0.由题意舍去x 1,当x ∈(0,x 2)时,g ′(x )>0;当x ∈(x 2,+∞)时,g ′(x )<0,∴g (x )在(0,x 2)上单调递增,在(x 2,+∞)上单调递减. 若存在x 0使f (x )+ax -b ≥0成立,则g (x )max =g (x 2)=ax 22-6x 2+3ln x 2-b ≥0,即ax 22-6x 2+3ln x 2≥b .又2ax 22-6x 2+3=0,∴a =6x 2-32x 22. ∵a ≤-92,∴6x 2-32x 22≤-92, ∴0<x 2≤13,∴b ≤ax 22-6x 2+3ln x 2=6x 2-32x 22·x 22-6x 2+3ln x 2=-3x 2+3ln x 2-32.令h (x )=-3x +3ln x -32⎝ ⎛⎭⎪⎫0<x ≤13, 则h ′(x )=3-3x x >0,∴函数h (x )在⎝ ⎛⎦⎥⎤0,13上单调递增, h (x )max =h ⎝ ⎛⎭⎪⎫13=-3ln 3-52, 即b 的最大值为-3ln 3-52.二、创新拓展练4.(2022·济南模拟改编)已知函数f(x)=x e x-ax+a,a≥0,若关于x的不等式f(x)≥a ln x恒成立,求实数a的取值范围.解f(x)≥a ln x恒成立等价于x e x-ax+a-a ln x≥0(x>0)恒成立,令h(x)=x e x-ax+a-a ln x(x>0),则h(x)min≥0.①当a=0时,h(x)=x e x>0在区间(0,+∞)上恒成立,符合题意;②当a>0时,h′(x)=(x+1)e x-a-ax=(x+1)⎝⎛⎭⎪⎫e x-ax=x+1x(x ex-a),令g(x)=x e x-a,g′(x)=(x+1)e x,即g(x)在(0,+∞)上单调递增,g(0)=-a<0,g(a)=a e a-a=a(e a-1)>0,则存在x0∈(0,a),使得g(x0)=0⇒x0e x0-a=0,此时x0e x0=a,即x0+ln x0=ln a,则当x∈(0,x0)时,h′(x)<0,h(x)单调递减;当x∈(x0,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)min=h(x0)=x0e x0-a(x0+ln x0)+a=2a-a ln a.令h(x)min≥0,得2a-a ln a≥0.因为a>0,所以0<a≤e2.综上,实数a的取值范围为[0,e2].。

恒成立与有解问题(解析版)

恒成立与有解问题(解析版)

恒成立与有解问题练习参考答案1.若不等式2kx 2+kx −38<0对一切实数x 都成立,则实数k 的取值范围为A .(−3,0)B .(−3,0]C .(−∞,0]D .(−∞,−3)∪[0,+∞)【答案】B【解析】【分析】分k =0,k ≠0两种情况,当k =0,−38<0对x ∈R 恒成立,当k ≠0时,需开口向下,判别式小于0,不等式恒成立.【详解】当k =0时,原不等式可化为−38<0,对x ∈R 恒成立;当k ≠0时,原不等式恒成立,需{2k <0Δ=k 2−4×2k ×(−38)<0 ,解得k ∈(−3,0),综上k ∈(−3,0].故选B.【点睛】本题主要考查了分类讨论思想,二次不等式恒成立的条件,属于中档题.2.若关于x 的不等式221)(1)201k x k x x x -+-+>++(的解集为R ,则k 的范围为____________. 【答案】19k ≤<【解析】 【分析】先判断分母22131024⎛⎫++=++> ⎪⎝⎭x x x 则问题转化为21)(1)20(-+-+>k x k x 恒成立,再分1k =时,和1k ≠时两种情况分类讨论. 【详解】因为22131024⎛⎫++=++> ⎪⎝⎭x x x ,所以221)(1)201k x k x x x -+-+>++(等价于21)(1)20(-+-+>k x k x 恒成立,当1k =时,20>成立,当1k ≠时,则()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩,解得19k << , 综上:19k ≤<.故答案为:19k ≤<.【点睛】本题主要考查了不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于中档题.3.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0) 【答案】D【解析】∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立, 则必有200k <⎧⎨∆<⎩,解得-3<k <0. 4.若函数22log (28)y kx kx =-+的定义域为一切实数,则实数k 的取值范围为____________.【答案】[0,8)【解析】【分析】首先根据题意转化为228kx kx -+>0,对任意的实数x 恒成立,再分别讨论0k =和0k ≠的情况即可.【详解】因为函数22log (28)y kx kx =-+的定义域为一切R ,等价于228kx kx -+>0,对任意的实数x 恒成立.当0k =时,80>,符合条件.当0k ≠时,20084320k k k k >⎧⇒<<⎨∆=-<⎩.综上08k ≤<. 【点睛】本题主要考查对数函数定义域的,同时考查了二次不等式的恒成立问题,属于中档题.5.设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.【分析】本题可转化为二次函数在闭区间上的最值,也可以通过分类参数求解.要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. (1)当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)⇒7m -6<0,所以m <67,所以0<m <67; (2)当m =0时,-6<0恒成立;(3)当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述,m 的取值范围是{m |m <67}. 6.已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,使不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.【解析】不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意; 当m ≠0时,f (x )=mx 2-2x -m +1为二次函数,需满足开口向下且方程mx 2-2x -m +1=0无解, 即00m <⎧⎨∆<⎩,不等式组的解集为空集,即m 无解. 综上可知,不存在这样的m .7.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________. 【答案】3(3,)2-【解析】因为二次函数()f x 在区间[1,1]-内至少存在一个实数x ,使()0f x >的否定是:“函数()f x 在区间[1,1]-内任意实数x ,使()0f x ≤”,所以(1)0(1)0≤-⎨≤⎧⎩f f ,即2242(2)21042(2)210----+≤+---+≤⎧⎨⎩p p p p p p ,整理得222390210+-≥-⎧⎩-⎨≥p p p p ,解得32p ≥或3p ≤-,所以二次函数在区间[1,1]-内至少存在一个实数x ,使()0f x >的实数p 的取值范围是3(3,)2-.【点晴】本题主要考查了一元二次方程的根的分布与系数的关系,其中解答中涉及到一元二次函数的图象与性质、不等式组的求解、命题的转化等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,其中根据二次函数的图象是开口方向朝上的抛物线,得到对于区间[1,1]-内的任意一个x 都有()0f x >时,得到不等式组是解答的关键,属于中档试题.8.已知函数若对于任意,都有成立,则实数的取值范围是 .【答案】(2- 【解析】由题意可得()0f x <对于[,1]x m m ∈+上恒成立,即22()210(1)230f m m f m m m ⎧=-<⎨+=+<⎩,解得0m <<. ,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.【答案】(-∞,1)∪(3,+∞)【解析】由f(x)=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4,则原问题转化为关于m 的一次函数问题.由题意知在[-1,1]上,g(m)的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x<1或x>3. 故当x 的取值范围是(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f(x)的值恒大于零.9.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为_________.【答案】[]1,4-【解析】【分析】根据二次不等式的恒成立问题,先求解不等式左边的最小值,再求解二次不等式即可.【详解】因为()2225144x x x -+=-+≥,故243a a ≥-恒成立.即()()2340140a a a a --≤⇒+-≤,解得14a -≤≤.实数a 的取值范围为[]1,4-.故答案为:[]1,4-【点睛】本题主要考查了二次不等式恒成立的问题,需要求解二次函数的最值进行分析,属于基础题.10.己知f(x)=x 2+2x +1+a ,∀x ∈R ,f(f(x))≥0恒成立,则实数a 的取值范围为( )A .[√5−12,+∞]B .[√5−32,+∞]C .[−1,+∞)D .[0,+∞)【答案】B【解析】设t =f(x)=(x +1)2+a ≥a ,∴f(t)≥0对任意t ≥a 恒成立,即(t +1)2+a ≥0对任意t ∈[a,+∞)都成立,当a ≤−1时f(t)min =f(−1)=a ,则a +a ≥0即a ≥0与讨论a ≤−1矛盾,当a >−1时,f(t)min =f(a)=a 2+3a +1,则a 2+3a +1≥0,解得a ≥√5−32,故选B .11.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .-1<b <0B .b >2C .b <-1或b >2D .不能确定【答案】C【解析】由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a 2=1,故a =2.,由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.12.在R 上定义运算⊗:x ⊗y =x(1−y),若不等式(x −a)⊗(x +a)<1对任意实数x 恒成立,则实数a 的取值范围为 ( )A .−1<a <1B .−12<a <32C .−32<a <12D .0<a <2【答案】B【解析】根据题设新定义的运算,可得(x −a)⊗(x +a)=(x −a )(1−x −a ),所以(x −a)⊗(x +a)<1可转化为(x −a )(1−x −a )<1,即x 2−x +(1−a 2+a )>0恒成立,根据二次函数的性质可知Δ=1−4(1−a 2+a )<0,解得−12<a <32,故选B. 13.若对于任意的x >0,不等式mx ≤x 2+2x+4恒成立,则实数m 的取值范围为( )A .(﹣∞,4]B .(﹣∞,6]C .[﹣2,6]D .[6,+∞)【答案】B【解析】当x >0时,mx ≤x 2+2x +4⇔m ≤x +4x +2对任意实数x >0恒成立,令f (x )=x +4x +2, 则m ≤f (x )min ,∵f (x )=x +4x +2≥2√x ⋅4x +2=6,∴m ≤6.故选B .14.已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是A .[1,+∞)B .[−1,4)C .[−1,+∞)D .[−1,6]【答案】C【解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x −2(y x)2,对于x ∈[1,2],y ∈[2,3]恒成立,令t =y x ,则1≤t ≤3,∴a ≥t −2t 2在[1,3]上恒成立,∵y =−2t 2+t =−2(t −14)2+18,∴t =1时,y max =−1,∴a ≥−1,a 的取值范围是[−1,+∞),故选C.15.若关于x 的二次不等式01)1(2<-+-+a x a ax 恒成立,则实数a 的取值范围是________.【分析】利用a 的符号及判别式求解.【解析】由题意知,01)1(2<-+-+a x a ax 恒成立, 所以⇔⎩⎨⎧<∆<00a ⎩⎨⎧<---<0)1(4)1(02a a a a ⇔⎩⎨⎧>--<012302a a a ⇔⎪⎩⎪⎨⎧-<><3110a a a 或⇔31-<a . ∴a 的取值范围是⎪⎭⎫ ⎝⎛-∞-31,【评注】本题若无“二.次.不等式”的条件,还应考虑0=a 的情况,但对本题讲0=a 时式子不恒成立.只有定义在R 上的恒二次不等式才能实施判别式法;否则,易造成失解.16.若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立,则实数k 的取值范围为______.【答案】k >2【解析】若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立,则直线y =k (x +3)在y =|x 2−4x −5|, x ∈[−1,5]图象的上方,如图:联立:{y =k (x +3)y =5+4x −x2 ,可得x 2+(k −4)x +3k −5=0 令∆=(k −4)2−4(3k −5)=0,k =2或18(舍去)∴k >2,故答案为:k >217.设函数2()2f x mx mx =-- (1)若对于一切实数()0f x <恒成立,求m 的取值范围;(2)若对于[1,3],()2(1)x f x m x ∈>-+-恒成立,求m 的取值范围.【答案】(1)(8,0]-(2)2m >【解析】【分析】(1)由不等式220mx mx --<恒成立,结合二次函数的性质,分类讨论,即可求解; (2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,整理得只需221x m x x >-+恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式220mx mx --<恒成立,①当0m =时,显然20-<成立,所以0m =时,不等式220mx mx --<恒成立;②当0m ≠时,只需2080m m m <⎧⎨∆=+<⎩,解得80m -<<,综上所述,实数m 的取值范围为(8,0]-.(2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,只需22mx mx m x -+>恒成立,只需()212m x x x -+>,又因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,只需221x m x x >-+, 令222211111x y x x x x x x===-+-++-,则只需max m y >即可,因为12x x +>=,当且仅当1x x =,即1x =时等式成立; 因为[1,3]x ∈,所以max 2y =,所以2m >.【点睛】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及转化思想的应用,属于基础题. 18.已知a ∈R ,函数f (x )=x 2﹣2ax +5.(1)若a >1,且函数f (x )的定义域和值域均为[1,a ],求实数a 的值;(2)若不等式x |f (x )﹣x 2|≤1对x ∈[13,12]恒成立,求实数a 的取值范围. 【答案】(1)2;(2)2578a ≤≤. 【解析】【分析】(1)根据f (x )的图象开口向上,对称轴为x =a >1,知f (x )在[1,a ]上单调递减,所以f (1)=a 求解即可.(2)将不等式x |f (x )﹣x 2|≤1对x ∈[13,12]恒成立,去绝对值转化为a 2512x x -≥且a 2512x x+≤在 x ∈[13,12]恒成立,分别令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∈[13,12],用二次函数求其最大值,令h (x )2251115252228+⎛⎫==+- ⎪⎝⎭x x x ,x ∈[13,12],求其最小值即可. 【详解】(1)∵f (x )的图象开口向上,对称轴为x =a >1,∴f (x )在[1,a ]上单调递减,∴f (1)=a ,即6﹣2a =a ,解得a =2.. (2)不等式x |f (x )﹣x 2|≤1对x ∈[13,12]恒成立, 即x |2ax ﹣5|≤1对x ∈[13,12]恒成立, 故a 2512x x -≥且a 2512x x +≤在x ∈[13,12]恒成立, 令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∈[13,12],所以g (x )max =g (25)258=,所以258a≥.令h(x)2251115252228+⎛⎫==+-⎪⎝⎭xx x,x∈[13,12],所以h(x)min=h(12)=7,所以7a≤.综上:2578a≤≤.【点睛】本题主要考查了二闪函数的图象和性质,还考查了转化化归和运算求解的能力,属于中档题.。

恒成立问题与有解问题的区别(1)

恒成立问题与有解问题的区别(1)
+x2-2x+1,则f(p)在[-2,2]上恒大于0,故有:
f(p)min >0(x∈[-2,2])
\

ìïïíïïî xxfx(-p1)<11m0i或n =xf(2)>10或或xxìïïíïïî
x-1>0 f(p)min =f(-2)>0

ìïïíïïî
x-1=0 f(p)=0>0
a 的取值范围
解:当 a 0 时,不等式 2x 2 0 解集不为 R ,故 a 0 不满足
题意;
当 a 0 时,要使原不等式解集为 R ,只需 a 0
解得 a 1
22 4 2a 0
2
综上,所求实数 a 的取值范围为 (1 , )
2
五、二次形(相对于变量为二次的)
值范围为 (2,+∞) 。
(5) 存在x [2,+∞)使不等式x<a成立,则实数a的取
值范围为 (2,+∞) 。
(6)存在x (2 ,+∞]不等式x<a成立,则实数a的取值
范围为 (2,+∞)。
三、含参数的不等式的恒成立与有解的区别,但可以互相转化 恒成立和有解是有明显区别的,但可以互相转化。 以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团。
(4)不等式 f(x)>k 在 xI 时有解? f(x)max k•,•xI. 或 f(x)的上界大于 k;
例5、已知|p|≤2,(1)对所有实数p,求使不等式x2+ px+1>p+2x都成立的x的取值范围. (2)存在实数p,求 使不等式x2+px+1>p+2x成立的x的取值范围。

不等式专题:一元二次不等式恒成立和有解问题-【题型分类归纳】(解析版)

不等式专题:一元二次不等式恒成立和有解问题-【题型分类归纳】(解析版)

一元二次不等式恒成立和有解问题一、一元二次不等式在实数集上的恒成立1、不等式20ax bx c >++对任意实数x 恒成立⇔00==⎧⎨>⎩a b c 或0Δ<0>⎧⎨⎩a2、不等式20ax bx c <++对任意实数x 恒成立⇔00==⎧⎨<⎩a b c 或0Δ<0<⎧⎨⎩a【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方; 恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若()0>f x 在集合A 中恒成立,即集合A 是不等式()0>f x 的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数()f x 的值域为[,]m n ,则()≥f x a 恒成立⇒min ()≥f x a ,即≥m a ;()≤f x a 恒成立⇒max ()≤f x a ,即≤n a .三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. 即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。

四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下: 1、对任意的[,]∈x m n ,()>a f x 恒成立⇒max ()>a f x ; 若存在[,]∈x m n ,()>a f x 有解⇒min ()>a f x ;若对任意[,]∈x m n ,()>a f x 无解⇒min ()≤a f x .2、对任意的[,]∈x m n ,()<a f x 恒成立⇒min ()<a f x ; 若存在[,]∈x m n ,()<a f x 有解⇒max ()<a f x ; 若对任意[,]∈x m n ,()<a f x 无解⇒max ()≥a f x .题型一 一元二次不等式在实数集上的恒成立问题【例1】若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0- D .()(),20,-∞-⋃+∞ 【答案】B【解析】当0=a 时,不等式成立;当0≠a 时,不等式2220--<ax ax 恒成立,等价于()()20,2420,<⎧⎪⎨∆=--⨯-<⎪⎩a a a 20∴-<<a . 综上,实数a 的取值范围为(]2,0-.故选:B .【变式1-1】“不等式20-+>x x m 在R 上恒成立”的充要条件是( ) A .14>m B .14<m C .1<mD .1>m 【答案】A【解析】∵不等式20-+>x x m 在R 上恒成立,∴2(1)40∆--<=m ,解得14>m , 又∵14>m ,∴140∆=-<m ,则不等式20-+>x x m 在R 上恒成立, ∴“14>m ”是“不等式20-+>x x m 在R 上恒成立”的充要条件,故选:A.【变式1-2】已知关于x 的不等式2680-++>kx kx k 对任意∈x R 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k ≤< C .0k <或1k > D .0k ≤或1k > 【答案】B【解析】当0=k 时,80>恒成立,符合题意;当0≠k 时,由题意有()()2Δ6480>⎧⎪⎨=--+<⎪⎩k k k k ,解得01<<k , 综上,01≤<k .故选:B.【变式1-3】已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围( )A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2⎛⎫-∞ ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110ax a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B【变式1-4】关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是( )A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞ 【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x ≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤; 综上所述:实数a 的取值范围为(],3-∞.故选:B.题型二 一元二次不等式在某区间上的恒成立问题【例2】若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.【答案】(,4]-∞.【解析】对于任意的14x <≤,不等式()22241(1)25x a x a x a x x -++≥--⇔-≤-+,即2254(1)11x x a x x x -+≤=-+--, 因此,对于任意的14x <≤,2254(1)11x x a x x x -+≤=-+--恒成立, 当14x <≤时,013x <-≤,44(1)(1)411x x x x -+≥-⋅=--, 当且仅当411x x -=-,即3x =时取“=”,即当3x =时,4(1)1x x -+-取得最小值4,则4a ≤, 所以实数a 的取值范围是(,4]-∞.【变式2-1】已知2(2)420+-+-x a x a对[)2,∀∈+∞x 恒成立,则实数a 的取值范围________. 【答案】(],3-∞【解析】因为2(2)420x a x a +-+-对[)2,x ∀∈+∞恒成立,即4222x a x ++-≥+在[)2,x ∀∈+∞时恒成立,令2,4x t t +=≥, 则4222x x ++-+代换为42t t +-,令4()2g t t t=+-, 由对勾函数可知,()g t 在[)4,t ∈+∞上单增,所以min ()(4)3g t g ==, 所以(],3a ∈-∞.故答案为:(],3-∞【变式2-2】已知二次函数222y x ax =++.若15x ≤≤时,不等式3y ax >恒成立,求实数a 的取值范围. 【答案】22<a .【解析】不等式()3f x ax >即为:220x ax -+>,当[]1,5x ∈时,可变形为:222x a x x x+<=+,即min 2()a x x <+. 又2222x x x x+≥+= 当且仅当2x x=,即[]21,5x =时,等号成立,min 2()22x x∴+=22a <故实数a 的取值范围是:22a <【变式2-3】若不等式2(1)10x a x +-+≥对一切(1,2]x ∈都成立,则a 的最小值为( )A .0B .2-C .222-D .5- 【答案】D【解析】记22()(1)11f x x a x x ax a =+-+=++-,要使不等式()2110x a x +-+≥对一切(1,2]x ∈都成立,则:12(1)20a f ⎧-≤⎪⎨⎪=≥⎩或2122()1024a a a f a ⎧<-<⎪⎪⎨⎪-=--+≥⎪⎩或22(2)50a f a ⎧-≥⎪⎨⎪=+≥⎩ 解得2a ≥-或42a -<<-或54a -≤≤-,即5a ≥-.故选:D【变式2-4】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x ,或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或7x >172≤<x 7x =综上,实数x 的取值范围是4x ≤-,或12x ≥,故选:A.题型三 给定参数范围的一元二次不等式恒成立问题【例3】当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求的取值范围.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设2()(1)(1)f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需(2)0(3)0f f ≤⎧⎨≤⎩,即22210320x x x x ⎧--≤⎨--≤⎩,解2210x x --≤,即()()2110x x +-≤得112x -≤≤,解2320x x --≤,即()()3210x x +-≤得213x -≤≤,所以原不等式的解集为1,12⎡⎤-⎢⎥⎣⎦,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【变式3-1】若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为( )A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C【变式3-2】已知[]1,1∈-a ,不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .()()3,,2∞-∞+ B .()()2,,1∞-∞+ C .()()3,,1∞-∞+D .()1,3 【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.∴x 的取值范围为()(),13,-∞⋃+∞.故选:C .【变式3-3】已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是( )A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞ 【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立, 令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠, 当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.【变式3-3】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x ,解得4x ≤-或7x >172≤<x 7x = 综上,实数x 的取值范围是4x ≤-,或12x ≥.故选:A.题型四 一元二次不等式在实数集上的有解问题【例4】已知不等式20kx x k -+<有解,则实数k 的取值范围为__________. 【答案】1,2⎛⎫-∞ ⎪⎝⎭【解析】当0k =时,0x -<,符合题意当0k >时,令2y kx x k =-+,由不等式20kx x k -+<有解,即2140k ∆=->,得102k <<当0k <时, 2y kx x k =-+开口向下,满足20kx x k -+<有解,符合题意综上,实数k 的取值范围为1,2k ⎛⎫∈-∞ ⎪⎝⎭【变式4-1】若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下, 所以不等式2210ax x ++<有实数解,符合题意; 当0a >时,要使不等式2210ax x ++<有实数解, 则需满足440∆=->a ,可得1a <,所以01a <<, 综上所述:a 的取值范围是(),1-∞.【变式4-2】x R ∃∈,使得不等式231x x m -+<成立,则m 的取值范围是___________.【答案】11,12⎛⎫+∞ ⎪⎝⎭【解析】令()22111313612f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,则()min 1112f x =,因为x R ∃∈,使得不等式231x x m -+<成立, 所以1112m >, 则m 的取值范围是11,12⎛⎫+∞ ⎪⎝⎭,【变式4-3】若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____________. 【答案】(,1)(4,)-∞+∞【解析】当0a =时,不等式为9204x -+<有解,故0a =,满足题意;当0a >时,若不等式29(2)04ax a x -++<有解, 则满足29(2)404a a ∆=+-⋅>,解得1a <或4a >;当0a <时,此时对应的函数的图象开口向下,此时不等式29(2)04ax a x -++<总是有解,所以0a <,综上可得,实数a 的取值范围是(,1)(4,)-∞+∞.题型五 一元二次不等式在某区间上的恒成立问题【例5】已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是( )A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭, C .()3+∞, D .127⎛⎫+∞ ⎪⎝⎭, 【答案】A【解析】由题意得,2630mx x m -+<,(]02x ∈,,即263xm x <+ , 故问题转化为263xm x <+在(]02,上有解, 设26()3x g x x =+,则266()33x g x x x x==++,(]02x ∈,, 对于323x x+≥,当且仅当3(0,2]x =时取等号, 则max ()323g x ==3m <,故选:A【变式5-1】已知命题p :“15∃≤≤x ,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A 【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集 若15x ∀≤≤,250x ax --≤恒成立为真命题, 需满足25550a --≤且150a --≤,解得4a ≥. 因此p 命题成立时a 的范围时4a <,故选:A .【变式5-2】若关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,则m 的取值范围为( )A .(,1][0,)-∞-+∞B .(,1)(0,)-∞-+∞ C .[0,1] D .(0,1) 【答案】B【解析】令22()(1)f x x m x m =-+-,其对称轴为202m x =≥, 关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解, 当(1,1)x ∈-时,有()(1)f x f <-,(1)0f ∴->,即20m m +>,可得0m >或1m <-.故选:B .【变式5-3】已知当12x ≤≤时,存在x 使不等式()()14m x m x -++<成立,则实数m 的取值范围为( )A .{}22m m -<<B .{}12m m -<<C .{}32m m -<<D .{}12m m <<【答案】C【解析】由()()14m x m x -++<可得224m m x x +<-+,由题意可得()22max 4m m x x +<-+,且12x ≤≤,令()24f x x x =-+对称轴为12x =,开口向上,所以()24f x x x =-+在[]1,2上单调递增, 所以2x =时,()()2max 22246f x f ==-+=,所以26m m +<,解得:32m -<<, 所以实数m 的取值范围为{}32m m -<<,故选:C.【变式5-4】关于x 的不等式2244x x a a -+≥在[]1,6内有解,则a 的取值范围为________.【答案】[]2,6-【解析】2244x x a a -+≥在[]1,6内有解,()22max 44a a x x ∴-≤-,其中[]1,6x ∈;设()2416y x x x =-≤≤, 则当6x =时,max 362412y =-=, 2412a a ∴-≤,解得:26a -≤≤,a ∴的取值范围为[]2,6-.。

不等式恒成立与存在解的异同

不等式恒成立与存在解的异同

不等式恒成立与存在解的异同通过多年的高中数学教学,笔者发现高中数学中的不等式恒成立与存在解问题是高考的热点,本文主要介绍高中数学中的常见的不等式恒成立与存在解问题习题类型及其解题策略,希望对学生的学习起到一些帮助。

标签:不等式;恒成立;存在解;解题策略;参数在近年高考中,不等式恒成立与存在解问题题型多样,形式灵活,解决的关键是要联系函数的性质和图像,灵活应用数学思想方法去分析和转化问题。

这类问题往往会涉及到参数,其破解方法主要有:分离参数法、主参换位法、数形结合法、构造函数法等。

本文通过实例,从不同角度用常规方法归纳,供大家参考。

1恒成立问题的解题策略1.1分离参数法分离参数法是根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,只要研究变量表达式的性质就可以解决问题。

点评:将此类问题转化成新函数的最值问题:若对于取值范围内的任一个数都有f(x)g(a)恒成立,则g(a)f(x);若对于取值范围内的任一个数都有f(x)g(a)恒成立,则g(a)f(x)mx。

1.2主参换位法对于含参不等式的恒成立问题,如果参数是一次的不等式在参数某一范围内恒成立,求参数的取值范围,可将变元与参数换个位置,再利用其他知识,往往能取得意想不到的效果.点评:在不等式中出现了两个字母:x及p,关键在于该把哪个字母看成是一个变量,另一个则作为参数。

显然可将p视作自变量,则上述问题可转化为在[-2,2]内关于p的一次函数大于0恒成立的问题。

1.3数形结合法如果不等式中涉及的函数、代数式对应的图像、图形较易画出时,可通过图像、图形的位置关系建立不等式求得参数范围.例3 关于x的不等式4x-x2ax的解集为[0,4],求实数的取值范围,解析:令f(x)=4x-x2,g(x)=ax,根据题意可知,当且仅当x在区间[0,4]上取值时,f(x)的图像恒在g(x)图像的上方(或重合),如图3所示:因为函数飞f(x)的图像是以点(2,0)为圆心,2为半径的位于x铀上方的半圆(含与铀的交点),易知f(x)的定义域恰好为[0,4],而函数g(x)则是经过坐标原点,斜率为a的一条动直线,由图3可知,欲使得题意成立,则动直线的斜率应该小于或等于0,即实数a的取值范围是[-∞,0]。

不等式恒成立和有解方程有解

不等式恒成立和有解方程有解

不等式恒成立和有解,方程有解问题不等式恒成立和有解的区别(1分离常数2函数最值问题)(1)不等式f(x)<k 在x ∈I 时恒成立•k•x f ,)(max <⇔x ∈I. 或f(x)的上界小于或等于k ;(2)不等式f(x)<k 在x ∈I 时有解•k•x f ,)(min <⇔x ∈I. 或f(x)的下界小于k ;(3)不等式f(x)>k 在x ∈I 时恒成立•k•x f ,)(min >⇔x ∈I. 或f(x)的下界大于或等于k ;(4)不等式f(x)>k 在x ∈I 时有解•k•x f ,)(max >⇔x ∈I. 或f(x)的上界大于k ;1.若关于x 的不等式02>--a ax x 的解集为),(+∞-∞,则实数a 的取值范围是 ;2.若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是 .3.已知(),22xa x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 4.已知不等式aa x x 1cos sin 3-<+有解,则a 的取值范围是______________。

5.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。

6.对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围。

7.设x x x f 4)(2--= , a x x g -+=134)(,若恒有)()(x g x f ≤成立,求实数a 的取值范围. 方程有解问题(1分离常数2函数值域问题)8. 已知关于x 的方程2x 2+a ·2x +a+1=0有实根。

求实数a 的取值范围。

9. 求使方程)2(log 11log 22m x xx +=-+有实数解的实数m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式恒成立与有解
不等式恒成立与有解问题涉及函数、不等式、方程、导数、数列等内容,是各交汇处的一个较为活跃的知识点,渗透着函数与方程、等价转换、分类讨论、数形结合、换元等思想方法,是中学数学的重要内容,也是高考的热门考点之一,由于此类问题综合性强,题中所涉及的未知数、参数数目多,处理时常常会陷入困境,令不少同学望而却步.倘若我们能掌握解决此类问题的一般策略和思想方法,那么对此类问题必会迎刃而解.
不等式恒成立与有解是有明显区别的,切不可混为一团.例如,若sinxsinx)max=l;若sinx(sinx)min=-1.不等式恒成立问题的描述中常出现“所有的”“一切”“都有”“恒成立”等全称量词,而不等式有解问题的描述中常出现“至少存在一个”“有些”等存在量词.解题时应细心思考,甄别差异,找准所要转化的等价问题,
重点:掌握不等式恒成立和有解问题的常见方法(如参数分离、数形结合、变换主元、构造函数等).
难点:不等式恒成立与有解问题的区别及等价转化,准确使用其成立的充要条件.
解决不等式恒成立与有解问题的基本策略是构作辅助
函数,利用函数的单调性、最值(或上、下界)、图象求解,其中涉及分类讨论、数形结合、参数分离、变换主元等数学思想方法.。

相关文档
最新文档