[高一数学]不等式恒成立问题的处理
关于不等式恒成立问题的几种求解方法
![关于不等式恒成立问题的几种求解方法](https://img.taocdn.com/s3/m/82518bb37cd184254a353501.png)
关于不等式恒成立问题的几种求解方法不等式恒成立问题,在高中数学中较为常见。
这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。
下面我们一起来探讨其中一些典型的问题一、一次函数型——利用单调性求解例1、若不等式对满足的所有实数m都成立,求x的取值范围。
若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。
这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。
能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。
分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。
解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立,设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有:此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。
给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于ⅰ),或ⅱ)可合并成同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;若改为:,构造函数,画出图象,得a<3利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!
![高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!](https://img.taocdn.com/s3/m/ee110ee8f9c75fbfc77da26925c52cc58bd69045.png)
开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
高中数学恒成立问题
![高中数学恒成立问题](https://img.taocdn.com/s3/m/eaca5235763231126edb1144.png)
高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。
一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即解得故的取值范围是.注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。
二、分离参数法在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数.(Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围.解:由题意知,函数在区间上是减函数.在上恒成立注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.三、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例 3 已知函数若不等式恒成立,则实数的取值范围是 .解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.四、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4 已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围.解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.例5 对于任意实数x ,不等式│x+1│+│x-2│>a 恒成立,求实数a 的取值范围.分析①:把左边看作x 的函数关系,就可利用函数最值求解.解法1:设f (x )=│x+1│+│x-2│ =-2x+1,(x ≤1)3,(-1<x ≤2)2x-1,(x >2) ∴f (x )min =3. ∴a <3.分析②:利用绝对值不等式│a │-│b │<│a ±b │<│a │+│b │求解f (x )=│x+1│+│x-2│的最小值.解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.分析③:利用绝对值的几何意义求解.解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a 恒成立.∴实数a的取值范围为(-∞,3).小结求“恒成立问题”中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象.综上,恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.。
与二次函数有关的“恒成立”问题的求解策略
![与二次函数有关的“恒成立”问题的求解策略](https://img.taocdn.com/s3/m/f69b8dbaf605cc1755270722192e453610665bde.png)
ʏ张亮昌解决不等式恒成立问题常见的方法有:判别式法,分离参数法,主参换位法等㊂下面举例分析这类问题的求解策略㊂方法一:判别式法例1 已知不等式(m 2+4m -5)x 2+4(1-m )x +3>0对任意实数x 恒成立,则实数m 的取值范围是㊂①当m 2+4m -5=0时,可得m =-5或m =1㊂若m =-5,则不等式化为24x +3>0,这时对任意实数x 不可能恒大于0㊂若m =1,则3>0恒成立㊂②当m 2+4m -5ʂ0时,根据题意可得m 2+4m -5>0,Δ=16(1-m )2-12(m 2+4m -5)<0,解得m <-5或m >1,1<m <19,所以1<m <19㊂综上可知,所求实数m 的取值范围是{m |1ɤm <19}㊂评注:对于一元二次不等式a x 2+b x +c >0(a >0)在R 上恒成立,则Δ=b 2-4a c <0;一元二次不等式a x 2+b x +c <0(a <0)在R 上恒成立,则Δ=b 2-4a c <0㊂方法二:分离参数法例2 不等式x y ɤa x 2+2y 2对于1ɤx ɤ2,2ɤy ɤ3恒成立,则实数a 的取值范围是㊂不等式x y ɤa x 2+2y 2对于1ɤx ɤ2,2ɤy ɤ3恒成立,等价于a ȡyx -2yx2对于1ɤx ɤ2,2ɤy ɤ3恒成立㊂令t =y x ,则1ɤt ɤ3,所以a ȡt -2t 2在1ɤt ɤ3上恒成立㊂令函数y =-2t 2+t =-2t -142+18,当t =1时,y m a x =-1,则a ȡ-1㊂故实数a 的取值范围是{a |a ȡ-1}㊂评注:若a ȡf (x )恒成立,则a ȡf (x )m a x ;若a ɤf (x )恒成立,则a ɤf (x )m i n ㊂方法三:主参换位法例3 已知函数y =a x 2-2a x +8+3a ,若对于1ɤa ɤ3,y <0恒成立,则实数x 的取值范围为㊂已知函数可化为关于a 的函数y =a x 2-2a x +8+3a =(x 2-2x +3)a +8㊂由题意知,y <0对于1ɤa ɤ3恒成立㊂因为x 2-2x +3>0恒成立,且y 是关于a 的一次函数,在1ɤa ɤ3上随x 的增大而增大,所以y <0对1ɤa ɤ3恒成立等价于y 的最大值小于0,即3(x 2-2x +3)-8<0,也即3x 2-6x +1<0,解得3-63<x <3+63,所以实数x 的取值范围为x 3-63<x <3+63㊂评注:在一个函数式中,有两个自变量,其中给出一个自变量的范围,这时可把问题转化为关于已知范围的那个自变量的函数(本题是一次函数)㊂在R 上定义运算⊗:A ⊗B =A (1-B ),若不等式(x -a )⊗(x +a )<4对x ɪR 恒成立,则实数a 的取值范围为㊂提示:(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a <4对x ɪR 恒成立,即x 2-x -a 2+a +4>0对x ɪR 恒成立,所以Δ=4-4(-a 2+a +1)=4a 2-4a <0,所以0<a <1,即实数a ɪ(0,1)㊂作者单位:湖北省巴东县第三高级中学(责任编辑 郭正华)61 知识结构与拓展 高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
高一不等式恒成立问题3种基本方法
![高一不等式恒成立问题3种基本方法](https://img.taocdn.com/s3/m/1f144e596ad97f192279168884868762caaebb31.png)
高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。
学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。
本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。
1. 方法一:代数法我们来介绍代数法。
这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。
代数法通常包括加减变形、乘除变形以及平方去根等技巧。
以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。
代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。
2. 方法二:图像法我们介绍图像法。
图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。
对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。
图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。
3. 方法三:参数法我们介绍参数法。
参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。
参数法的典型应用包括辅助角法、二次函数法等。
以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。
参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。
总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。
代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。
个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。
高一数学培优-恒成立问题
![高一数学培优-恒成立问题](https://img.taocdn.com/s3/m/0a900c3290c69ec3d5bb7560.png)
奥美高中2018级高一数学培优讲义——不等式恒成立问题一.不等式恒成立问题的处理方法1.利用根的判别式 设()()02≠++=a c bx ax x f(1)()0>x f 在R x ∈上恒成立⇔0>a 且0<∆; (2)()0<x f 在R x ∈上恒成立⇔0<a 且0<∆.例 1.对于任意实数x ,不等式()()042222<----x a x a 恒成立,则实数a 的取值范围是________.2.转换求函数的最值(1)若不等式()A x f >在区间D 上恒成立⇔在区间D 上()min f x A >(注:若()f x 的最小值不存在,则()0f x >恒成立⇔()f x 的下界大于0) (2)若不等式()B x f <在区间D 上恒成立⇔在区间D 上()max f x B <(注:若()f x 的最大值不存在,则()0f x <恒成立⇔()f x 的上界小于0)例2.设()222+-=ax x x f ,当[)+∞-∈,1x 时,都有()a x f ≥恒成立,求实数a 的取值范围.例3.R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时, 有()()022sin 2cos 2>--++a f a f θθ恒成立,求实数a 的取值范围.3.分离参数法(1)将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2)求()f x 在x D ∈上的最大(或最小)值;(3)解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围.例4.当(1,2)x ∈时,不等式042<++ax x 恒成立,求实数a 的取值范围.例5.已知(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求实数a 的取值范围.4.主参换位法在不等式的恒成立问题中,有一类题型是题中的参数如a 、m 、k 等的范围是已知的,而题要求的反而是变量x 的范围.这类题型中,由于已知范围的变量是以前我们所接触的参数,因而题中的函数结构也就发生了改变,此时函数是以参数为自变量的函数.一般来说,我们在观察这类恒成立问题时,哪个变量的范围是已知的,哪个就是该函数的自变量. 例6.若不等式0224>+⋅-xx a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围.例7.对于满足2a ≤的所有实数a ,求使不等式212x ax a x ++>+恒成立的x 的取值范围.5.数形结合若所给不等式进行合理的变形化为()()x g x f ≥(或()()x g x f ≤)后,能非常容易地画出不等号两边函数的图象,则可以通过画图直接判断出结果.例8.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________.例9.当()2,1∈x 时,不等式()x x a log 12<-恒成立,则实数a 的取值范围是________.6.消元转化法对于含有两个以上变量的不等式恒成立问题,可以根据题意依次进行消元转化,从而转化为只含有两变量的不等式问题,使问题得到解决.例10.已知()x f 是定义在[]1,1-上的奇函数,且()11=f ,若[]1,1,-∈n m ,0≠+n m 时()()0>++nm n f m f ,若()122+-≤at t x f 对于所有的[]1,1-∈x ,[]1,1-∈a 恒成立,求实数t 的取值范围.二.不等式能成立问题的处理方法若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.例11.已知不等式a a x x 3132-≤-++在实数集R 上的解集不是空集,则实数a 的取值范围是________.例12.存在实数[]2,1∈x ,使得不等式022<-+a ax 有解,求实数a 的取值范围.三.不等式恰好成立问题的处理方法若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .例13.不等式012>++bx ax 的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭则a b ⋅=___________.例14.已知(),22xax x x f ++=当[)+∞∈,1x 时,()x f 的值域是[)+∞,0,试求实数a 的值.思考题 1.已知()x f ,()x g 分别是定义在R 上的奇函数和偶函数,且()()xx g x f ⎪⎭⎫⎝⎛=+21错误!未找到引用源。
[高一数学]不等式恒成立问题的处理(最新整理)
![[高一数学]不等式恒成立问题的处理(最新整理)](https://img.taocdn.com/s3/m/e6ed17c35f0e7cd1852536d5.png)
yo m nyo mnx⎩⎩ ⎩ ⎩ ⎩ 不等式恒成立问题的处理恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③ 其他类不等式恒成立一、一次函数型给定一次函数 y=f(x)=ax+b(a ≠0),若 y=f(x)在[m,n]内恒有 f(x)>0,则根据函数的图象⎧ f (m ) > 0 ⎧ f (m ) < 0(直线)可得上述结论等价于⎨ n ) > 0 同理,若在[m,n]内恒有 f(x)<0,则有⎨ f (n ) < 0⎩ ⎩x例 1.对任意 a ∈[-1,1] ,不等式 x 2 + (a - 4)分析:题中的不等式是关于 x 的一元二次不等式,但若把 a 看成主元,则问题可转化为 一次不等式(x - 2)a + x 2 - 4x + 4 > 0 在 a ∈[-1,1] 上恒成立的问题。
解:令 f (a ) = (x - 2)a + x 2 - 4x + 4 ,则原问题转化为 f (a ) > 0 恒成立( a ∈[-1,1] )。
当 x = 2 时,可得 f (a ) = 0 ,不合题意。
⎧ f (1) > 0当 x ≠ 2 时,应有⎨ f (-1) > 0 解之得 x < 1或x > 3。
故 x 的取值范围为(-∞,1) (3,+∞) 。
注:一般地,一次函数 f (x ) = kx + b (k ≠ 0) 在[,]上恒有 f (x ) > 0 的充要条件为⎧ f () > 0⎨ f () > 0 。
练习:对于满足|a| ≤ 2 的所有实数 a,求使不等式 x 2+ax+1>2a+x 恒成立的 x 的取值范围。
解:原不等式转化为(x-1)a+x 2-2x+1>0,设 f(a)= (x-1)a+x 2-2x+1,则 f(a)在[-2,2]上恒大于 0,故有:⎧ f (-2) > 0 ⎨ f (2) > ∴x<-1 或 x>3.⎧⎪x 2- 4x + 3 > 0即⎨⎪x 2 - 1 > 0⎧x > 3或x < 1 解得: ⎨x > 1或x < -1例 2. 已知P = (log 2 x - 1)(log a b) 2 - 6 log 2 x · log a b + log 2 x + 1(其中 a 为正常数),若当 x 在区间[1,2]内任意取值时,P 的值恒为正,求 b的取值范围。
不等式的恒成立问题基本解法9种解法
![不等式的恒成立问题基本解法9种解法](https://img.taocdn.com/s3/m/77f6cbb5f71fb7360b4c2e3f5727a5e9856a2723.png)
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
不等式恒成立问题3种基本方法
![不等式恒成立问题3种基本方法](https://img.taocdn.com/s3/m/e7c62d1a82c4bb4cf7ec4afe04a1b0717fd5b3c3.png)
不等式恒成立问题3种基本方法不等式恒成立问题是指在数学中有特定条件下,当不等式满足某些条件时,就能证明不等式恒成立。
一般来说,要证明不等式恒成立,都是采用一定的技巧和方法,其中,最常用的三种方法包括把不等式化简为等式、归纳法或组合法以及图解法。
1.不等式化简为等式最常用的一种方法是将不等式化简为等式,这种方法最为直观,也是最容易的方法,也就是利用数学语言,利用数学公式将不等式化为等式,然后利用数学推论让等式恒成立。
例1:y+2除以3大于9,则y大于17令y+2=3x得3x除以3大于9化简得 x大于9代入y+2=3x,y大于17所以y+2除以3大于9时,y大于17。
2.纳法或组合法归纳法或组合法是比较常用的一种方法,也称为反演法。
特别是在分析比较复杂的不等式时,往往可以借助这种方法。
归纳法或组合法的步骤是:1首先分析不等式的全部特性,然后根据不等式的特性进行分析,把这些特性分为若干步,每步解决一个特殊问题;2)然后利用反演法,逐步推出最后的结论。
例 2:y>8,则9-y<1第一步: y>8明 y>8成立的第二步:y>8带入y-8>0,即可推出y-8的值大于0第三步:y-8>0带入9-y<1,即可推出9-y的值小于1第四步:以上四步推出,若y>8,则9-y<13.解法图解法是把问题的定义,公式,结果等用图示表示出来,从而把问题用图形化的方式来分析。
例 3:|x-2|≤3,则-1≤x≤5由于|x-2|≤3,即x-2≤3 x-2≥-3,因此可以把上述问题用图形化的方式来分析,即x-2=3时表示x-2≤3,x-2=-3时表示x-2≥-3,两条线在x=5和x=-1的位置相交,由此可以推出-1≤x≤5。
通过以上三种方法可以解决许多不等式恒成立的问题,它们各有优缺点,需要在实际操作中根据不等式本身的特点来选择最合适的方法,以达到最好的解决效果。
但是,无论如何,从本质上来讲,学习和掌握数学,尤其是求解不等式恒成立问题,关键在于不断积累知识,勤加练习,加强技巧。
高中数学恒成立问题解题思路
![高中数学恒成立问题解题思路](https://img.taocdn.com/s3/m/efeaf0e5cc7931b764ce158d.png)
高中数学恒成立问题解题思路数学学习中经常碰到不等式恒成立问题,这类问题涉及函数的性质和图象,渗透着换元、化归、数形结合等思想方法,有利于考查学生的综合解题能力和培养学生思维的灵活性、创造性。
其方法大致有:判别式法,最值法,变换主元法,数形结合法。
一、判别式法:二次不等式在R上恒成立,只需研究开口方向和判别式Δ。
例1?摇关于x的不等式x2-ax+2a>0在R上恒成立,则a实数的取值范围是_______。
解:因为不等式恒成立,所以Δ二、最值法:不等式恒成立问题转化成求函数最值,分为两种:(1)直接构造函数;(2)分离参数后构造函数。
例2?摇(直接构造函数)已知函数f(x)=x2-2kx+2,当x≥-1时,f(x)≥k恒成立,求实数k的范围。
解:由题,x2-2kx+2-k≥0在x≥-1时恒成立。
令g(x)=x2-2kx+2-k(k≥-1),则[g(x)]min≥0.函数g(x)对称轴为x=k。
(1)k≤-1时,g(x)在[-1,+∞)上单调递增。
[g(x)]min=g(-1)=k+3≥0。
-3≤k≤-1。
(2))k>-1时,g(x)在[-1,k]上单调递减,(k,+∞)上单调递增。
[g(x)]min=g(k)=-k2-k+2≥0。
-1≤k≤1。
综上:k≤1。
例3?摇(分离参数后构造函数)已知函数f(x)=ax-■,当x∈(0,4]时,f(x)解:ax-■a令g(x)=■(0三、变换主元法:已知参数范围求x范围。
例4?摇对于满足|a|≤2的所有实数a,求使不等式x2+ax+1>2x+a恒成立的x的取值范围。
解:原不等式可转化为(x-1)a+x2-2x+1>0在|a|≤2时恒成立。
令f(a)=(x-1)a+x2-2x+1(-1≤a≤2),则f(a)>0恒成立。
f(-2)>0f(2)>0即:x2-4x+3>0x2-1>0 解得:x>3或x1或x x>-1或x四、数形结合法:可将不等式(或经过变形后的不等式)两端的式子分别看成两个函数,作出两函数的图象,通过观察两图象(特别是交点时)的位置关系,从而列出关于含参数的不等式。
高一数学不等式恒成立、能成立、恰成立问题
![高一数学不等式恒成立、能成立、恰成立问题](https://img.taocdn.com/s3/m/20862a303169a4517723a3f1.png)
高一数学不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例1、设22)(2+-=ax x x f ,当[]+∞-∈,1x 时,都有a x f ≥)(恒成立,求a 的取值范围。
例2、已知(),22xa x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围?2、主参换位法例3、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围?3、数形结合例4、当)2,1(∈x 时,不等式2(1)x -<log a x 恒成立,求a 的取值范围。
例5、若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围?二、不等式能成立问题的处理方法若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.例6、若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是 。
三、不等式恰好成立问题的处理方法例7、不等式2ax bx 10++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭则a b ⋅=___________。
例8、已知(),22xa x x x f ++=当[)()x f x ,,1+∞∈的值域是[)+∞,0,试求实数a 的值。
例4、函数12)(2+-=x mx x f 有且仅有一个正实数的零点,求实数m 的取值范围。
高一数学函数和不等式中恒成立问题的教案
![高一数学函数和不等式中恒成立问题的教案](https://img.taocdn.com/s3/m/2bf9245783d049649a6658be.png)
函数和不等式结的恒成立问题的解法“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用恒成立问题的基本类型:一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数,有),0()(2R x a c bx ax x f ∈≠++=1)对恒成立; 0)(>x f R x ∈⎩⎨⎧<∆>⇔00a 2)对恒成立 0)(<x f R x ∈.00⎩⎨⎧<∆<⇔a 例1:若不等式的解集是R ,求m 的范围。
02)1()1(2>+-+-x m x m 例2 设函数f(x)= mx 2-mx-1.(1)若对于一切实数x ,f(x)<0恒成立,求m 的取值范围;(2)对于x∈[1,3],f(x)<-m +5恒成立,求m 的取值范围二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立a x f >)(min)(x f a <⇔2)恒成立a x f <)(max)(x f a >⇔例1、若时,不等式恒成立,求的取值范围。
[]2,2x ∈-23x ax a ++≥a 例2.设,当时,恒成立,求实数的取22)(2+-=mx x x f ),1[+∞-∈x m x f ≥)(m 值范围。
巩固.已知函数,若对任意,恒),1[,2)(2+∞∈++=x xa x x x f ),1[+∞∈x 0)(>x f 成立,求实数的取值范围。
a 练习2 已知,若恒成立,求a 的取值范围.a ax x x f -++=3)(22)(],2,2[≥-∈x f x 22210[0,1]x mx m x x m -++>∈练习1:若不等式对满足的所有实数都成立,求的取值范围。
高中数学恒成立问题方法总结
![高中数学恒成立问题方法总结](https://img.taocdn.com/s3/m/79ed9f26b6360b4c2e3f5727a5e9856a56122600.png)
高中数学恒成立问题方法总结高中数学恒成立问题方法总结前言高中数学中常有恒成立问题,即判断某个等式或不等式是否在一定情况下恒成立。
这类问题需要掌握一定的数学知识和解题技巧,下面总结了一些常用的方法。
正文1. 代入法将恒成立问题中的未知数代入不同的值,观察等式或不等式是否始终成立。
通过选择不同的数值,可以对问题进行测试,以确定是否恒成立。
2. 辅助线法对于几何图形中的恒成立问题,可以利用辅助线的方法进行分析。
通过引入辅助线,可以将问题转化为更简单的形式,从而判断恒成立性。
3. 推理法利用已知条件和数学推理,进行逻辑推导和演绎,求解恒成立问题。
例如,通过运用数学公式、定理以及逻辑推理,可以得出结论。
4. 反证法假设恒成立的结论不成立,推导出矛盾,从而得出恒成立的结论。
这种方法常用于证明等式或不等式的恒成立性,尤其是在缺乏直接证明的情况下。
5. 数学归纳法对于涉及数列或递推关系的恒成立问题,可以使用数学归纳法进行解决。
首先证明基本情况下结论成立,然后假设某个情况成立,推导出下一个情况也成立,从而证明恒成立。
6. 全局分析法对于复杂的恒成立问题,可以采用全局分析的方法,通过综合考虑多个因素,观察整体趋势和规律,得出恒成立结论。
结尾高中数学恒成立问题需要深入理解数学知识,掌握解题技巧。
通过代入法、辅助线法、推理法、反证法、数学归纳法和全局分析法等方法,我们可以更好地解决这类问题,提升数学思维能力和解题能力。
希望以上总结对于解决高中数学恒成立问题有所帮助。
7. 对称性分析法在某些问题中,可以利用对称性进行分析。
通过观察等式或不等式在对称情况下的表现,可以推断出恒成立的结论。
例如,如果等式关于某个点对称,那么等式两边在该点处的取值应相等。
8. 变量替换法对于一些复杂的恒成立问题,可以通过变量替换的方法进行简化。
通过引入新的变量或表达式来代替原先的复杂表达式,可以化繁为简,从而更方便地判断恒成立性。
9. 利用特殊值分析法对于恒成立问题,有时可以通过特殊值进行分析。
破解恒成立问题 高考数学【解析版】
![破解恒成立问题 高考数学【解析版】](https://img.taocdn.com/s3/m/ddeafcf6b9f67c1cfad6195f312b3169a451ea71.png)
专题16 破解恒成立问题从高考命题看,方程有解问题、无解问题以及不等式的恒成立问题,也是高考命题的热点.而此类问题的处理方法较为灵活,用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.也可以结合题目的条件、结论,采用数形结合法等.【重点知识回眸】(一)参变参数法1.参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2.一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围.3.参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)(二)构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.1.构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参2.参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论 (三)数形结合法1.函数的不等关系与图象特征:(1)若,均有的图象始终在的下方 (2)若,均有的图象始终在的上方2.在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g x3.作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化).作图要突出“信息点”.4.利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征【典型考题解析】热点一 参变分离法解决不等式恒成立问题【典例1】(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( ) A .[]0,1 B .[]0,2 C .[]0,e D .[]1,e【答案】C【解析】先判断0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,转化为ln xa x≤在(1,)+∞上恒成立. 【详解】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a >时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故()()min g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C .【典例2】(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e xf x x x =+-,()e 21x f x x ='+-,由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x ----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x ⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1xh x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭. [方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e74244e-+++⇔≤xx x x ,令()223e 7424()(0)e-+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='xxx x h x ()()222213e 2e 9e⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤, 记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123x g x x ax x x ax -'=--+++--()()()2112342e 212e 22xx x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立,所以12a ≥时,满足题意. 综上,27e 4a-. 【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性; 方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性! 【总结提升】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤: (1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 热点二 构造函数分类讨论法解决不等式恒成立问题【典例3】(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析; (2)(],0a ∈-∞.【分析】(1)求导得到导函数后,设为()g x 进行再次求导,可判断出当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,从而得到()g x 单调性,由零点存在定理可判断出唯一零点所处的位置,证得结论;(2)构造函数()()h x f x ax =-,通过二次求导可判断出()()min 2h x h a π''==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭;分别在2a ≤-,20a -<≤,202a π-<<和22a π-≥的情况下根据导函数的符号判断()h x 单调性,从而确定()0h x ≥恒成立时a 的取值范围.【详解】(1)()2cos cos sin 1cos sin 1f x x x x x x x x '=-+-=+- 令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++= 当()0,x π∈时,令()0g x '=,解得:2x π=∴当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<()g x ∴在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减又()0110g =-=,1022g ππ⎛⎫=-> ⎪⎝⎭,()112g π=--=-即当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x >,此时()g x 无零点,即()f x '无零点()02g g ππ⎛⎫⋅< ⎪⎝⎭0,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x =又()g x 在,2ππ⎛⎫ ⎪⎝⎭上单调递减 0x x ∴=为()g x ,即()f x '在,2ππ⎛⎫⎪⎝⎭上的唯一零点综上所述:()f x '在区间()0,π存在唯一零点(2)若[]0,x π∈时,()f x ax ≥,即()0f x ax -≥恒成立 令()()()2sin cos 1h x f x ax x x x a x =-=--+ 则()cos sin 1h x x x x a '=+--,()()cos h x x x g x '''==由(1)可知,()h x '在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减且()0h a '=-,222h a ππ-⎛⎫'=- ⎪⎝⎭,()2h a π'=-- ()()min 2h x h a π''∴==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭①当2a ≤-时,()()min 20h x h a π''==--≥,即()0h x '≥在[]0,π上恒成立()h x ∴在[]0,π上单调递增()()00h x h ∴≥=,即()0f x ax -≥,此时()f x ax ≥恒成立 ②当20a -<≤时,()00h '≥,02h π⎛⎫'> ⎪⎝⎭,()0h π'<1,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()10h x '=()h x ∴在[)10,x 上单调递增,在(]1,x π上单调递减又()00h =,()()2sin cos 10h a a ππππππ=--+=-≥()0h x ∴≥在[]0,π上恒成立,即()f x ax ≥恒成立③当202a π-<<时,()00h '<,2022h a ππ-⎛⎫'=-> ⎪⎝⎭20,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()20h x '=()h x ∴在[)20,x 上单调递减,在2,2x π⎛⎫⎪⎝⎭上单调递增()20,x x ∴∈时,()()00h x h <=,可知()f x ax ≥不恒成立④当22a π-≥时,()max 2022h x h a ππ-⎛⎫''==-≤ ⎪⎝⎭()h x ∴在0,2π⎛⎫⎪⎝⎭上单调递减 00h xh可知()f x ax ≥不恒成立 综上所述:(],0a ∈-∞【点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.【典例4】(2022·重庆巴蜀中学高三阶段练习)已知函数()()ln 20f x a x x a =-≠. (1)讨论()f x 的单调性;(2)当0x >时,不等式()()22cos eax x f x f x ⎡⎤-≥⎣⎦恒成立,求a 的取值范围. 【答案】(1)答案见解析 (2)(]0,2e【分析】(1)求出函数()f x 的定义域,求得()2a xf x x-'=,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间;(2)令()t f x =,()e 2cos tg t t t =--,利用导数分析函数()g t 的单调性,对实数a 的取值进行分类讨论,求出()t f x =的取值范围,结合函数()g t 的图象可得出关于实数a 的不等式,即可求得实数a 的取值范围. (1)解:函数()()ln 20f x a x x a =-≠的定义域为()0,∞+,且()22a a x f x x x-'=-=.当0a <时,因为0x >,则()0f x '<,此时函数()f x 的单调递减区间为()0,∞+;当0a >时,由()0f x '<可得2ax >,由()0f x '>可得02ax <<.此时,函数()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为()0,∞+;当0a >时,函数()f x 的单调递增区间为0,2a ⎛⎫⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭. (2)解:()()()()()()()ln 222cos e 2cos 0e 2cos 0eaf x a x x x x f x f x f x f x f x f x -⎡⎤⎡⎤⎡⎤-≥⇔--≥⇔--≥⎣⎦⎣⎦⎣⎦,设()e 2cos tg t t t =--,其中()t f x =,则()e 2sin t g t t '=-+,设()e sin 2th t t =+-,则()e cos th t t '=+,当0t ≤时,e 1t ≤,sin 1t ≤,且等号不同时成立,则()0g t '<恒成立,当0t >时,e 1t >,cos 1t ≥-,则()0h t '>恒成立,则()g t '在()0,∞+上单调递增,又因为()01g '=-,()1e 2sin10g '=-+>,所以,存在()00,1t ∈使得()00g t '=,当00t t <<时,()0g t '<;当0t t >时,()0g t '>.所以,函数()g t 在()0,t -∞上单调递减,在()0,t +∞上单调递增,且()00g =,作出函数()g t 的图象如下图所示:由(1)中函数()f x 的单调性可知,①当0a <时,()f x 在()0,∞+上单调递增,当0x +→时,()f x →+∞,当x →+∞时,()f x →-∞,所以,()t f x =∈R ,此时()00g t <,不合乎题意;②当0a >时,()max ln 22a a f x f a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()f x →-∞,此时函数()f x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦,即,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦.(i )当ln 02a a a -≤时,即当02e a <≤时,()0g t ≥恒成立,合乎题意;(ii )当ln 02a a a ->时,即当2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,结合图象可知()10g t <,不合乎题意.综上所述,实数a 的取值范围是(]0,2e . 【规律方法】对于f (x )≥g (x )型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h (x )=f (x )-g (x )或h (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或h (x )max ≤0即可. 热点三 利用数形结合法解决不等式恒成立问题【典例5】(2013·全国·高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D【解析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解.【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为 22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D【典例6】(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a ,故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.【典例7】(2020·全国高二)若关于x 的不等式0x x e ax a ⋅-+<的解集为()m n ,(0n <),且()m n ,中只有一个整数,则实数a 的取值范围是( ). A .211[)e e, B .221[)32e e, C .212[)e e, D .221[)3e e, 【答案】B 【解析】不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解,设()xg x x e =⋅,y ax a =-,求出()g x 的单调区间,作出其大致图像,y ax a =-恒过定点()10,P ,数形结合可得答案.【详解】设()xg x x e =⋅,y ax a =-,()()1xg x x e '=+⋅,由()0g x '>,解得1x >-,由()0g x '<解得1x <-所以()xg x x e =⋅在(]1-∞-,上单调递减,在[)1-+∞,上单调递增. 又当x →-∞ ,()0g x <且()0g x →,又()00g =,则()xg x x e =⋅的大致图象如下由题意由不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解即()xg x x e =⋅在直线y ax a =-下方的部分,故min 1()(1)g x g e=-=-,y ax a =-恒过定点()10,P , 结合函数图像得PA PB k a k ≤<,即22132a e e≤<, 故选:B .【点睛】本题考查根不等式的解集中整数的个数求参数范围的问题,解答本题的关键的根据题意转化为不等式()1x x e a x ⋅<-有唯一整数解,即()x g x x e =⋅在直线y ax a =-下方的部分中唯一整数x ,讨论出()xg x x e =⋅的单调区间,得出其大致图象,属于中档题.【精选精练】一、单选题1.(2022·湖北·黄冈中学模拟预测)对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .[)9,+∞ D .()9,+∞【答案】C【分析】将不等式等价变形,构造函数()ln 3af x x x =-,再借助函数单调性、最值求解作答.【详解】依题意,11211222ln 0ln (ln )0333x a a ax x x x x x x -->⇔--->,令()ln 3a f x x x =-,(1,3]x ∈, 则对任意的12,(1,3]x x ∈,当12x x <时,12()()f x f x >,即有函数()f x 在(1,3]上单调递减, 因此,(1,3]x ∀∈,()1033af x a x x'=-≤⇔≥,而max (3)9x =,则9a ≥, 所以实数a 的取值范围是[9,)+∞. 故选:C2.(2021·青海·西宁市海湖中学高三开学考试(文))若函数()2ln f x x x=-,满足() f x a x ≥-恒成立,则a 的最大值为( ) A .3 B .4 C .3ln 2- D .3ln 2+【答案】C【分析】由题意,分离参数可得min 2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x=+-,然后利用导数求出()g x 的最小值即可求解.【详解】解:因为()2ln f x x x=-,满足() f x a x ≥-恒成立, 所以min2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x =+-,则()()()222221212()10x x x x g x x x x x x -+--'=--==>,令()0g x '>,得2x >,令()0g x '<,得02x <<, 所以()g x 在()0,2上单调递减,在()2,+∞上单调递增, 所以min ()(2)3ln 2g x g ==-, 所以3ln 2a ≤-,所以a 的最大值为3ln 2-, 故选:C.3.(2023·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是( )A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦【答案】A【详解】因为函数21y x =+与函数21y x =--的图象关于x 轴对称,根据已知得函数12ln ,(e)e y a x x =-≤≤的图象与函数21y x =--的图象有交点,即方程22ln 1a x x -=--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解,即22ln 1a x x =--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解.令()22ln 1g x x x =--,1,e e x ⎡⎤∈⎢⎥⎣⎦,则()()22212222xx g x x x x x--'=-==,可知()g x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减,故当1x =时,()()max 12g x g ==-,由于21e e 13g ⎛⎫=-- ⎪⎝⎭,()2e e 1g =-,且2211e 3e -->-,所以212e a -≤≤-. 故选:A .4.(2021·青海·大通回族土族自治县教学研究室高三开学考试(文))已知函数1()e 2xf x =,直线y kx =与函数()f x 的图象有两个交点,则实数k 的取值范围为( )A .1e 2⎛ ⎝B .(e,)+∞C .(e,)+∞D .1e,2⎛⎫+∞ ⎪⎝⎭【答案】D【分析】首先考查临界情况,利用导数求得切线的斜率,据此可求得实数k 的取值范围【详解】当过原点的直线y kx =与函数()f x 的图象相切时,设切点为1,e 2m P m ⎛⎫⎪⎝⎭,由()1e 2x f x '=,可得过点P 的切线方程为()11e e 22m my x m -=-,代入点()0,0可得11e e 22m mm -=-,解得1m =,此时切线的斜率为1e 2,由函数()f x 的图象可知,若直线y kx =与函数()f x 的图象有两个交点,直线的斜率k 的取值范围为1e,2⎛⎫+∞ ⎪⎝⎭. 故答案选:D5.(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x x f x x g x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为( ) A .0 B .1eC .1D .e【答案】C【分析】由题意易知()0f x ≥恒成立,则可等价为对[)20,x ∀∈+∞,()20g x ≥恒成立,利用参变分离,可变形为e 1,(0)x a x x -≤>恒成立,易证e 11,(0)x x x->>,则可得1a ≤,即可选出答案.【详解】对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立, 等价于()()12min min f x g x ≤,当1x <时,10,e e<0x x -<-,所以()0f x >, 当1≥x 时,10,e e 0x x -≥-≥,所以()0f x ≥, 所以()0f x ≥恒成立,当且仅当1x =时,min ()0f x =, 所以对[)20,x ∀∈+∞,()20g x ≥恒成立,即e 10x ax --≥, 当0x =,e 100x ax --=≥成立,当0x >时,e 1e 10x xax a x---≥⇒≤恒成立.记()e 1,0x h x x x =-->, 因为()e 10x h x '=->恒成立,所以()h x 在(0,)+∞上单调递增,且(0)0h =,所以()e 10xh x x =-->恒成立,即e 1e 11,(0)x xx x x-->⇒>>所以1a ≤.所以a 的最大值为1. 故选:C.【点睛】本题考查导数在不等式的恒成立与有解问题的应用,属于难题, 此类问题可按如下规则转化:一般地,已知函数[](),,=∈y f x x a b ,[](),,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有12()()f x g x <成立,故max 12min ()()f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1max 2max ()()f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1min 2max ()()f x g x <; (4)若[]1,x a b ∃∈,[]2,x c d ∀∈,有12()()f x g x <成立,故1min 2min ()()f x g x <; (5)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x =,则()f x 的值域是()g x 值域的子集. 二、多选题6.(2022·重庆南开中学高三阶段练习)已知定义在R 上函数()g x 满足:()()2g x g x =+,且()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,设函数()()f x x g x =+,则下列正确的是( ) A .()f x 的单调递增区间为()()2,21,Z k k k +∈ B .()f x 在()2022,2024上的最大值为2025 C .()f x 有且只有2个零点 D .()f x x ≥恒成立. 【答案】ABD【分析】由题可知函数()g x 为周期函数,根据导数判断函数的单调性,进而可得函数的值域可判断D ,结合条件可得函数()[)[)232,2,2144,21,22x kk x k k f x x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩可判断AB ,利用数形结合可判断C.【详解】由题可得函数()g x 为周期函数,当[)0,1x ∈时,()3x g x x =-,则()3ln31ln310xg x '=-≥->,函数单调递增,()[)31,2xg x x =-∈,当[)1,2x ∈时,()(]240,2g x x =-+∈, 故可得函数()g x 的值域为(]0,2,因为()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,()()2g x g x =+,所以()()[)[)232,2,212244,21,22x kx k x k k g x g x k x k x k k -⎧-+∈+⎪=-=⎨-++∈++⎪⎩(Z k ∈), 故()()f x x g x =+[)[)232,2,2144,21,22x k k x k k x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩,所以函数()f x 的单调递增区间为()()2,21,Z k k k +∈,单调减区间为()()21,22,Z k k k ++∈,故A 正确; 所以函数()f x 在()2022,2023上单调递增,在()2023,2024上单调递减, 故()f x 在()2022,2024上的最大值为()()()202320232023202312025f g g =+=+=,故B 正确;由()()0f x x g x =+=可得()g x x =-,所以函数()y g x =与函数y x =-交点的个数即为函数()f x 的零点数, 作出函数()y g x =与函数y x =-的大致图象,由图可知函数()y g x =与函数y x =-有一个交点, 即函数()f x 有且只有1个零点,故C 错误;由()f x x ≥,即()0g x ≥,因为()g x ∈(]0,2,故()f x x ≥恒成立,故D 正确. 故选:ABD. 三、填空题7.(2022·湖北·黄冈中学模拟预测)函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为___________________.【答案】)8e ,1-⎡⎣【分析】将函数有两个不同零点转化为方程有两个不等实根;再将方程变形构造新函数,求导并研究新函数的单调性,求其最小值,得到22ln ba-≥e ,再由已知条件求得)8,1a -⎡∈⎣e 即可. 【详解】因为()f x 有两个不同零点()0f x ⇔=有两个不相等的实根 即220x a bx ++=e 有两个不相等的实根; 所以ln 220x a bx ++=e e ,令ln t x a = ,则220ln tbta++=e e ,t 显然不为零,所以22ln t b a t+-=e e ,因为()0,1a ∈ ,24e b > , 所以20ln ba-> ,所以0t > ; 令()()20t g t t t+=>e e ,则()()22t t t g t t-+'=e e e ;令()()()20t t h t t t =-+>e e e ,则()0t t t t h t t t '=+-=>e e e e ,所以()h t 在()0,∞+上单调递增,又()20h = ,所以当()0,2t ∈时,()0h t < ;当()2,t ∈+∞ 时,()0h t > ; 所以当()0,2t ∈时,()0g t '< ;当()2,t ∈+∞ 时,()0g t '> ; 故()g t 在()0,2上单调递减,在()2,+∞上单调递增;所以()()2min 2g t g ==e ,所以22ln ba-≥e ; 又24e b >,所以24b >e ,所以ln 42a -≤ 即ln 8a ≥- ,8a -≥e , 又()0,1a ∈ ,所以)8,1a -⎡∈⎣e ; 故答案为:)8,1-⎡⎣e .8.(2023·江苏·南京市中华中学高三阶段练习)若关于x 的不等式()()ee ln mxmx m x x mx x x +≤+-恒成立,则实数m 的最小值为________ 【答案】e e 1- 【分析】将不等式两边同时除以m x ,进而转化为()()ln e eln m x x xx m x x -+≤+-,令()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性转化为ln xm x x≥-恒成立,进而构造函数()()0ln xg x x x x=>-,求导分析最大值即可. 【详解】∵0x >,∴不等式两边同时除以mx ,得:()e e ln mxxm x m x x x+≤+-∴()1lne eln mmx xx x m x x ++≤+- ∴()ln e eln x mx m xx m x x -+≤+- ∴()()ln e eln m x x xx m x x -+≤+- ①令()e xf x x =+,可知()f x 单调递增.①式等价于()()()ln f x f m x x ≤-恒成立 ∴()ln x m x x ≤-恒成立.构造()()ln 0x x x x ϕ=->,则()1x x xϕ-'=,故当()0,1x ∈时()0x ϕ'<, 当()1,x ∈+∞时()0x ϕ'>,所以()()ln 0x x x x ϕ=->在1x =时取得最小值. 即()()ln 010x x x ϕϕ=-≥=>,∴ln 0x x -> ∴ln xm x x≥-恒成立 令()()0ln xg x x x x=>- ∴()g x '()()221ln 11ln ln ln x x x x x x x x x ⎛⎫--- ⎪-⎝⎭==-- ∴当()0e x ∈,时,()0g x '>,∴()g x 单调递增;当()e x +∞,时,()0g x '< ∴()g x 单调递减; ∴()g x 的最大值为()e e e 1g =- ∴ee 1m ≥-,故实数m 的最小值为e e 1-. 故答案为:e e 1- 【点睛】关键点点睛:本题关键是将已知不等式转化为()()ln e eln m x x xx m x x -+≤+-,构造()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性即可得到.9.(2022·全国·长垣市第一中学高三开学考试(理))已知不等式e ln x a a x x x +≥+对任意()1,x ∈+∞恒成立,则正实数a 的取值范围是___________. 【答案】(]0,e【分析】将题目所给不等式进行变形,然后利用构造函数法,结合导数来求得a 的取值范围. 【详解】不等式e ln x a a x x x +≥+可变形为ln e ln e ln x a a x x x a x a x --=-. 因为0a >且1x >,所以ln 0a x >.令()e (0)u f u u u =->,则()e 10uf u ='->.所以函数()f u 在()0,∞+上单调递增.不等式ln e e ln x a x x a x -≥-等价于()()ln f x f a x ≥,所以ln x a x ≥. 因为1x >,所以ln x a x≤. 设()(1)ln xg x x x=>,则()2ln 1(ln )x g x x -'=.当()1,e x ∈时,()0g x '<,函数()g x 在()1,e 上单调递减; 当()e,x ∈+∞时,()0g x '>,函数()g x 在()e,+∞上单调递增. 所以()min ()e e g x g ==,所以0e a <≤. 故正实数a 的取值范围是(]0,e .10.(2022·重庆南开中学高三阶段练习)已知函数124e ,1()(2)2,1x ax a x f x x a x a x -⎧+->=⎨+--≤⎩,若关于x 的不等式()0≤f x 的解集为[)2,-+∞,则实数a 的取值范围是___________. 【答案】[]1,2【分析】将不等式()0≤f x 的解集为[)2,-+∞转化为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-及当1x >时,14e 0x ax a -+-≤恒成立,从而可求得12a ≤≤.【详解】不等式()0≤f x 等价于21(2)20x x a x a ≤⎧⎨+--≤⎩或114e 0x x ax a ->⎧⎨+-≤⎩, 而()0≤f x 的解集为[)2,-+∞,故21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-且14e 0x ax a -+-≤对任意的1x >恒成立. 又21(2)20x x a x a ≤⎧⎨+--≤⎩即为()()120x x x a ≤⎧⎪⎨+-≤⎪⎩,若2a <-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x a x ≤⎧⎨≤≤-⎩,这与解为[]2,1-矛盾;若2a =-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x ≤⎧⎨=-⎩,这与解为[]2,1-矛盾;若2a >-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x a ≤⎧⎨-≤≤⎩,因为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-,故1a ≥.当1x >时,14e0x ax a -+-≤恒成立即为14e 1x a x -≤+恒成立, 令()14e ,11x s x x x -=>+,则()()()()111224e 14e 4e 011x x x x x s x x x ---+-'==>++, 故()s x 在()1,+∞为增函数,故()()02s x s >=, 故2a ≤. 综上,12a ≤≤ 故答案为:[]1,2.【点睛】思路点睛:与分段函数有关的不等式解的问题,应该就不同解析式对应的范围分类讨论,讨论时注意结合解析式的形式确定分类讨论还是参变分离.四、解答题11.(2022·全国·高一课时练习)已知函数,()()e 1e x xf x a -=++.(1)若0是函数()2=-y f x 的零点,求a 的值;(2)若对任意,()0x ∈+∞,不等式()1f x a ≥+恒成立,求a 的取值范围. 【答案】(1)0 (2)(,3]-∞【分析】(1)0是函数()2=-y f x 的零点代入可得a ;(2)由题意知e (1)e 1-++≥+xxa a 在(0,)+∞上恒成立,转化为2e e 1e 1x xxa -+≤-在(0,)+∞上恒成立,化简可得11≤++a t t,利用均值不等式求最值可得答案.(1)因为0是函数()2=-y f x 的零点,所以00e (1)e 20a -++-=,解得a =0; (2)由题意知e (1)e 1-++≥+x x a a 在(0,)+∞上恒成立,则()2e 1e e 1x x xa -≤-+,又因为,()0x ∈+∞,所以e 1x>,则2e e 1e 1x x xa -+≤-, 令e 1(0)-=>x t t ,则e 1x t =+,可得22(1)(1)1111+-++++≤==++t t t t a t t t t, 又因为111123t t t t ++≥+⋅=,当且仅当1t t =即1t =时,等号成立,所以3a ≤,即a 的取值范围是(],3-∞.12.(2021·河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;(2)若函数()3f x 在()1,+∞上恒成立,求证:2e a <.(注:3e 20≈)【答案】(1)当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减; (2)证明见解析.【分析】(1)对函数求导,讨论0a 和0a >两种情况,即可得出函数的单调性; (2)利用分类参数的方法,先得到23ln 1x a x +≤+,构造新的函数()()231ln 1x h x x x +=>+,用导数的方法求其最小值,即可证明结论成立.【详解】(1)由题知函数()f x 的定义域为()0,∞+,()22a a xf x x x-'=-= ①当0a ≤时,()0f x '<,此时函数()f x 在()0,∞+上单调递; ②当0a >时,令()0f x '>,得02ax <<;令()0f x '<,得2a x >, 所以函数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;(2)由题意,()()ln 123f x a x x =+-在()1,+∞上恒成立, 可化为23ln 1x a x +≤+在()1,x ∈+∞上恒成立, 设()()231ln 1x h x x x +=>+, 则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+⨯-'==++设()()32ln 1x x x x ϕ=->,则()2230x x xϕ'=+>, 所以()x ϕ在()1,+∞上单调递增,又()3ln16322ln 2022ϕ-=-=<,()3e 20eϕ=-> 所以方程()0h x '=有且只有一个实根0x ,且02e x <<,0032ln x x =, 所以在()01,x 上,()0h x '<,()h x 单调递减, 在()0,x +∞上,()0h x '>,()h x 单调递增, 所以函数()h x 的最小值为()000000232322e 3ln 112x x h x x x x ++===<++, 从而022e a x ≤<. 【点睛】思路点睛:求解不等式在给定区间内恒成立求参数的问题时,优先考虑分离参数的方法,分离出所求参数,构造新的函数,利用导数的方法求解函数的最值,进而即可求解.13.(2022·云南省下关第一中学高三开学考试)已知函数()ln (1)f x x x a x a =-++. (1)求函数()f x 的极值;(2)若不等式(1)()(2)e x f x x a a -≤--+对任意[1,)x ∈+∞恒成立,求实数a 的取值范围. 【答案】(1)极小值为e a a -;无极大值 (2)a 的取值范围为(,0]-∞【分析】(1)先判断函数定义域,再求导结合函数单调性求出极值即可;(2)对函数进行同构变形,令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,首先可以证明0ln 1x x ≤≤-对[1,)x ∈+∞恒成立,原题转化为求()g x 在[0,)+∞上单调递增时a 的取值范围即可. (1)由题意得:()ln (1)f x x x a x a =-++,,()0x ∈+∞, 所以()ln f x x a '=-,令()0f x '=,解得e (0,)a x =∈+∞,当0e a x <<时()0f x '<;当e a x >时,()0f x '>.所以()f x 在()0,e a 上单调递减,在()e ,a+∞上单调递增. 所以()f x 有极小值,为()e e a af a =-;无极大值.(2)由已知得,(1)ln (1)(2)e x x x a x x a --+≤--对任意[1,)x ∈+∞恒成立, 即ln (1)(ln 1)e [(1)1]e x x x a x a ---≤---对任意[1,)x ∈+∞恒成立, 令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立, 下证:0ln 1x x ≤≤-对任意[1,)x ∈+∞恒成立, 令()ln (1)h x x x =--,[1,)x ∈+∞. 则()10xh x x-'=≤在[1,)+∞上恒成立,且仅当1x =时取"=". 所以()h x 在[1,)+∞上单调递减,()(1)0h x h ≤=, 即0ln 1x x ≤≤-,[1,)x ∈+∞所以(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,只需()g x 在[0,)+∞上单调递增,即()()e 0xg x x a '=-≥在[0,)+∞上恒成立,即a x ≤在[0,)+∞上恒成立, 所以0,a ≤即a 的取值范围为(,0]-∞.【点睛】导数求参问题要善于运用转化的手法,本题先运用同构方法对原不等式变形,最终转化为函数单调性问题,结合函数的单调性与导数的关系,即可解答.14.(2022·甘肃定西·高二开学考试(理))已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围. 【答案】(1)2e y x =- (2)32eea【分析】(1)求出函数()f x 的导函数,确定切线的斜率,即可求()f x 在()()e,e f 处的切线方程;(2)先把不等式()()2f x g x ≥成立转化为32ln a x x x≤++成立,设32ln x x xx,[]1,e x ∈,利用导函数求出()x ϕ在[]1,e x ∈上的最大值,即可求实数a 的取值范围.(1)由()ln f x x x =,可得()ln 1f x x '=+, 所以切线的斜率()e 2k f '==,()e e f =.所以()f x 在()()e,e f 处的切线方程为()e 2e y x -=-,即2e y x =-; (2) 令20l 223n h x xf xg x x ax x ,则max 32ln a x x x ⎡⎤≤++⎢⎥⎣⎦,令32ln x x xx ,[]1,e x ∈, 在[]1,e x ∈上,2130x xxx ,()x ϕ∴在[]1,e 上单调递增,max3e 2e +ex , 32eea. 15.(2016·四川·高考真题(理))设函数f (x )=ax 2-a -ln x ,其中a ∈R. (I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数). 【答案】(I ) 见解析(II ) 1[,)2a ∈+∞.【详解】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对()f x 求导,再对a 进行讨论,从而判断函数()f x 的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论. 试题解析:(Ⅰ)2121()2(0).ax f x ax x x x --=>'=0a ≤当时,()'f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由()'f x =0,有12x a=. 此时,当x ∈10,)2a(时,()'f x <0,()f x 单调递减; 当x ∈1+)2a(,∞时,()'f x >0,()f x 单调递增. (Ⅱ)令()g x =111ex x --,()s x =1e x x --.则()s x '=1e 1x --. 而当1x >时,()s x '>0,所以()s x 在区间1+)∞(,内单调递增. 又由(1)s =0,有()s x >0, 从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当102a <<时,12a>1. 由(Ⅰ)有1()(1)02f f a <=,从而1()02g a>, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ≥时,令()()()(1)h x f x g x x =-≥, 当1x >时,3212222111112121()20xx x x x h x ax e x x x x x x x x --+-+=-+->-+-=>>', 因此,()h x 在区间(1,)+∞单调递增.又因为(1)=0h ,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立. 综上,1[,)2a ∈+∞.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.16.(2020·河南开封市·高三一模(理))已知函数()()ln 0af x ax x a =>.(1)当1a =时,求曲线()y f x =在x e =处的切线方程; (2)若()xf x xe ≤对于任意的1x >都成立,求a 的最大值.【答案】(1)2y x e =-;(2)最大值为e . 【解析】(1)先由1a =,得到()ln f x x x =,对其求导,根据导数的几何意义,即可求出切线方程;(2)先由不等式恒成立,得到ln ln a a x x x x e e ≤⋅,构造函数()ln g x x x =,利用导数的方法判定其单调性,得到a x x e ≤对于任意的1x >都成立,分离参数,得到ln xa x≤对于任意的1x >都成立,再由导数的方法求出ln xx的最小值,即可得出结果. 【详解】(1)当1a =时,()ln f x x x =,得()ln 1f x x '=+, 则()f e e =,()2f e '=,所以()y f x =在x e =处的切线方程为:2y x e =-. (2)当0a >且1x >时,由于()ln ln ln ln xaxaaxaaxxf x xe ax x xe x x xe x x e e ≤⇔≤⇔≤⇔≤⋅, 构造函数()lng x x x =,得()ln 10g x x '=+>在1x >上恒成立,所以()ln g x x x =在()1,+∞上单调递增,()()()ln ln x a a x x a x f x xe x x e e g x g e ≤⇔≤⋅⇔≤,由于()xf x xe ≤对任意的1x >都成立,又1a x >,e 1x >,再结合()g x 的单调性知道:。
不等式“恒成立”问题的解法
![不等式“恒成立”问题的解法](https://img.taocdn.com/s3/m/5ea1adfac0c708a1284ac850ad02de80d4d806a4.png)
不等式“恒成立”问题的解法在微积分学中,不等式“恒成立”问题是一个解决方法的重要组成部分。
这个问题的主要目的是研究在某一条件下,某个变量的取值范围如何受到不等式的限制。
解决“恒成立”问题,主要分为以下几步:1.首先,确定不等式恒成立的变量,并对变量进行分类。
2.其次,通过数学归纳法,确定不等式恒成立时变量的取值范围。
3.接着,把不等式恒成立的变量分别带入不同的条件,根据不同的条件,分别研究变量取值范围如何受到不等式的限制。
4.最后,总结所有的条件下变量的取值范围,得出不等式恒成立的结果。
上述就是不等式“恒成立”问题的常规解法,但也有一些特殊情况,则需要用到更多的数学工具,如变量变换、隐函数等,来解决不等式“恒成立”问题。
例如,假设有不等式$x^2+2x-3>0$,并且$x \in \mathbb{R}$,要求求解不等式恒成立的解。
这时,先将不等式左边进行变换,即$x^2+2x-3=(x+3)(x-1)>0$,然后分别把变量$x+3$、$x-1$的正负性考虑进去。
由此得出,不等式恒成立的解为 $x>1$ 或 $x<-3$ 。
以上就是不等式“恒成立”问题解决的具体步骤,由此可见,要解决不等式“恒成立”问题,需要通过多种数学工具来求解,能够用文字清晰表达出来,从而解决这类问题。
另外,在解决不等式“恒成立”问题时,还可以使用一些特殊的数学工具,从而达到更好的解决效果。
例如,在解决不等式 $x^2+2x-3>0$,并且$x \in\mathbb{R}$ 的问题时,可以使用隐函数的方法处理。
即,通过将该不等式变换为$y=x^2+2x-3$,将该不等式变换为一个隐函数,然后由该隐函数求解其在实数范围内的正负性变化,最后得到不等式恒成立的解。
同样,对于更加复杂的不等式,也可以采用类似的思路,将不等式变换为若干个隐函数,然后逐个求解,从而得到不等式恒成立的解。
总而言之,解决不等式“恒成立”问题,既可以采取常规解法,也可以使用特殊的数学工具,如变量变换、隐函数,从而精准求解出不等式恒成立的解,从而达到有效解决不等式“恒成立”问题的目的。
高一预习材料不等式恒成立、能成立问题(学生版)初升高数学暑假衔接(人教版)
![高一预习材料不等式恒成立、能成立问题(学生版)初升高数学暑假衔接(人教版)](https://img.taocdn.com/s3/m/c701f6e7fc0a79563c1ec5da50e2524de418d04f.png)
强化专题2不等式恒成立、能成立问题【方法技巧】在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理,数学运算等素养.一、“力”法解决恒成立问题⑴如图①一元二次不等式ax1+/?%+C>0(6Z7^0)在R上恒成立=一元二次不等式6ZX2+/?%+C>0(6Z7^0)的解集为RO二次函数*=。
菸+bx~\~C(Q尹0)的图象恒在X轴上方=J4nin>0O]』<0图①图②(2)如图②一元二次不等式ax2+/?%+c<0(a7^0)在R上恒成立=一元二次不等式ax2+/?%+c<0(a7^0)的解集为RO二次函数y=ax2+bx+c(a^0)的图象恒在%轴下方=3笊<00二、数形结合法解决恒成立问题结合函数的图象将问题转化为函数图象的对称轴,区间端点的函数值或函数图象的位置(相对于x轴)关系求解.可结合相应一元二次方程根的分布解决问题.三、分离参数法解决恒成立问题通过分离参数将不等式恒成立问题转化为求函数最值问题.四、主参换位法解决恒成立问题转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.五、利用图象解决能成立问题结合二次函数的图象,将问题转化为端点值的问题解决.六、转化为函数的最值解决能成立问题能成立问题可以转化为rn>y mm或的形式,从而求*的最大值与最小值,从而求得参数的取值范围.【题型目录】一、“妒法解决恒成立问题二、 数形结合法解决恒成立问题三、 分离参数法解决恒成立问题四、 主参换位法解决恒成立问题五、 利用图象解决能成立问题六、 转化为函数的最值解决能成立问题【例题详解】一、“力”法解决恒成立问题1.不等式(q -2K+4(q -2)x-12<0的解集为R,则实数。
的取值范围是( )A . {。
—1V Q < 2}B . {q —1 < q V 2}C. [a\-l<a<2^ D. [a\-\<a<2\32.若关于x 的一元二次不等式2x -A x + ->0对于一切实数x 都成立,则实数左满足()22. 已知不等式-2x 2+bx + c> 0的解集{x|-l<xv3},若对任意-iWxWO,不等式-2x 2 +bx +c + t <4恒成 立.贝U 的取值范围是.OB. V —V3C. ^|-V3<^<V3)D.3.(多选)不等式x 2+bx + c>2x + b 对任意的勇R 恒成立,则()A. /j 2-4c + 4<0B. b<0C. c>lD. Z? + c>04.若3x 0 g R , 2mx^ + 2V2mx 0 -3 > 0w 是假命题,则实数秫的取值范围是二、数形结合法解决恒成立问题1. (多选)若“Vx>0,都有2x -+1 >0是真命题,则实数人可能的值是()2A. 1 B. 2^2 C. 3 D.3^23.当1 WxW2时,不等式x +mx+4<0恒成立,求m 的取值范围.2四、主参换位法解决恒成立问题1.若命题€ [-1,3],。
高中数学--恒成立能成立问题总结(详细)
![高中数学--恒成立能成立问题总结(详细)](https://img.taocdn.com/s3/m/5a26db4ea45177232f60a230.png)
恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。
解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。
(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。
(答案:或)(二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。
高中数学恒成立问题的解答方法
![高中数学恒成立问题的解答方法](https://img.taocdn.com/s3/m/0682ae7b5627a5e9856a561252d380eb63942343.png)
高中数学恒成立问题的解答方法发布时间:2021-01-19T07:31:08.970Z 来源:《素质教育》2021年1月总第368期作者:罗浩[导读] 解决高考数学中的恒成立问题常用以下几种策略:1.函数性质法;2.主参换位法;3.分离参数法;4.数形结合法。
新课程下的高考越来越注重对学生综合素质的考察,而含参数不等式的恒成立问题是不等式中重要的题型,是各类考试的热点,也是一个考察学生综合素质很好的途径,这类问题既含参数又含变量,学生往往难以下手。
广东省兴宁市齐昌中学514500解决高考数学中的恒成立问题常用以下几种策略:1.函数性质法;2.主参换位法;3.分离参数法;4.数形结合法。
新课程下的高考越来越注重对学生综合素质的考察,而含参数不等式的恒成立问题是不等式中重要的题型,是各类考试的热点,也是一个考察学生综合素质很好的途径,这类问题既含参数又含变量,学生往往难以下手。
下面就以近几年高考试题为例加以说明。
一、函数性质法1.一次函数:若一次函数f(x)=ax+b(a≠0)>0(或<0)在x∈[p,q]时恒成立,则在p、q处的函数值满足:f(p)>0且f(q)>0[或f(p)<0且f(q)<0]。
2.二次函数:(1)若二次函数 f (x)=a2x+bx+c (a≠0)>0(或<0)在R上恒成立,则有 (或 );(2)若二次函数f (x)=ax2+bx+c (a≠0)>0(或<0)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。
例1.(2015年全国卷理12)已知函数 f (x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f (x)与g(x)的值至少有一个为正数,则实数m的取值范围是( )。
A、(0,2)B、(0,8)C、(2,8)D、(-∞,0)分析:f (x)与g(x)的函数类型,直接受参数m的影响,所以首先要对参数进行分类讨论,然后转换成不等式的恒成立的问题利用函数性质及图像解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式恒成立问题的处理恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③ 其他类不等式恒成立一、一次函数型给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于同理,若在[m,n]内恒有f(x)<0,则有⎨⎧>>0)0)(m f ⎩⎨⎧<<0)(0)(n f m f 例1.对任意,不等式恒成立,求的取值范围。
]1,1[-∈a )4(2-+x a x 分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化x a 为一次不等式在上恒成立的问题。
044)2(2>+-+-x x a x ]1,1[-∈a 解:令,则原问题转化为恒成立(44)2()(2+-+-=x x a x a f 0)(>a f )。
]1,1[-∈a 当时,可得,不合题意。
2=x 0)(=a f 当时,应有解之得。
2≠x ⎩⎨⎧>->0)1(0)1(f f 31><x x 或故的取值范围为。
x ),3()1,(+∞-∞ 注:一般地,一次函数在上恒有的充要条件)0()(≠+=k b kx x f ],[βα0)(>x f 为。
⎩⎨⎧>>0)(0)(βαf f 练习:对于满足|a|2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围。
≤解:原不等式转化为(x-1)a+x 2-2x+1>0,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:即解得:⎩⎨⎧>>-)2(0)2(f f ⎪⎩⎪⎨⎧>->+-0103422x x x ⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.例2. 已知(其中a 为正常数),若P x b x b x a a =--++(log )(log )log log log 2222161·当x 在区间[1,2]内任意取值时,P 的值恒为正,求b 的取值范围。
解:P 变形为[]P b b x b a a a =-+-+(log )log log (log )222611设∴[]t x t =∈log 201,则,[]P f t b b t b a a a ==-+-+()(log )log (log )22611因此,原题变为当t 在区间[0,1]内任意取值时,f (t )恒为正,求b 的取值范围。
由充要条件,当(1) 或 (2)(log )log (log )a a a b b b 2261010-+=-+>⎧⎨⎪⎩⎪f b f b a a ()(log )()log 01016202=-+>=-+>⎧⎨⎩解(1)得-<=-=+<1322132213log a b 解(2)得-<<113log a b 故,当时,当a >113ab a <<0113<<<<a ab a时,例3 设,若当时,P>0恒成立,求x 的变P x a x a =+--+(log )()log 22221[]a ∈-22,化范围。
解:设P f a x a x x ==-+-+()(log )log log 2221221当时的图像是一条线段,所以a 在上变动时,P 恒为正值的充要条件[]a ∈-22,[]-22,是即 解得f f ()()->>⎧⎨⎩2020log log log 2222243010x x x -+>->⎧⎨⎪⎩⎪log log 2231x x ><-或即x 的取值范围是()0128,,⎛⎝ ⎫⎭⎪+∞ 二、二次函数型(1)当二次函数的定义域为R 时: 若二次函数y=ax 2+bx+c (a ≠0)大于0恒成立,则有⎩⎨⎧<∆>00a 若二次函数y=ax 2+bx+c (a ≠0)小于0恒成立,则有⎩⎨⎧<∆<0a 例1.若函数在R 上恒成立,求m 的取值范围。
y =略解:要使在R 上恒成立,即在R 上恒y =2680mx mx m +++≥成立。
时, 成立10m =80≥0m ∴= 时,,20m ≠()()236483210m m m m m >⎧⎪⎨∆=-+=-≤⎪⎩01m ∴<≤由,可知,1 201m ≤≤例2.已知函数的定义域为R ,求实数的取值范围。
])1(lg[22a x a x y +-+=a 解:由题设可将问题转化为不等式对恒成立,即有0)1(22>+-+a x a x R x ∈解得。
04)1(22<--=∆a a 311>-<a a 或所以实数的取值范围为。
a ),31()1,(+∞--∞ 练习1:.已知函数,在R 上恒成立,求的取值范围。
2()3f x x ax a =++-()0f x ≥a (2)当二次函数的定义域不是R 时,即二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根与系数的分布知识求解;有时也可以转化为求最值。
例1:若时,恒成立,求的取值范围。
[]2,2x ∈-03)(2≥-++=a ax x x f a 解:,令在上的最小值为。
22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭()f x []2,2-()g a ⑴当,即时, 又 22a -<-4a >()(2)730g a f a =-=-≥73a ∴≤4a > 不存在。
a ∴⑵当,即时, 又222a-≤-≤44a -≤≤2()()3024a a g a f a ==--+≥62a ∴-≤≤ 44a -≤≤ 42a ∴-≤≤⑶当,即时,又22a->4a <-()(2)70g a f a ==+≥7a ∴≥-4a <- 74a ∴-≤<-总上所述,。
72a -≤≤变式2:若时,恒成立,求的取值范围。
[]2,2x ∈-()2f x ≥a 解法一:分析:题目中要证明在上恒成立,若把移到等号的左边,a x f ≥)([]2,2-a 则把原题转化成左边二次函数在区间时恒大于等于0的问题。
[]2,2-i a略解:,即在上成立。
2()320f x x ax a =++--≥2()10f x x ax a =++-≥[]2,2-⑴ ()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,。
2225-≤≤-a 解法二:(利用根的分布情况知识)⑴当,即时, 不存在。
22a -<-4a >()(2)732g a f a =-=-≥()54,3a ∴≤∉+∞a ∴⑵当,即时,,222a-≤-≤44a -≤≤2()()3224a a g a f a ==--+≥222222-≤≤-a -2224-≤≤-∴a ⑶当,即时,, 22a->4a <-()(2)72g a f a ==+≥5a ∴≥-54a ∴-≤<-综上所述。
2225-≤≤-a 例2.已知函数在其定义域内恒为非负,求方程f x x m x m ()()()=-+++2525的根的取值范围。
2121xm m +=-+||解:因为f (x )恒为非负,则解得,方程化为∆=+-+≤()()m m 58502-≤≤53m 2121x m m =+-+()(||)当时,则 所以-≤≤52m 2121x m m =+-+()()2231422x m m m =-++=--+()所以当时,则242x x ≤≤,23<≤m 211131822x m m m m =+-=-<-≤()(),所以所以方程的根的取值范围是log 233<≤x (]-∞,3例2.设,当时,恒成立,求实数的取值22)(2+-=mx x x f ),1[+∞-∈x m x f ≥)(m 范围。
解:设,则当时,恒成立m mx x x F -+-=22)(2),1[+∞-∈x 0)(≥x F 当时,显然成立;120)2)(1(4<<-<+-=∆m m m 即0)(>x F 当时,如图,恒成立的充要条件为:0≥∆0)(≥x F 解得。
⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 23-≤≤-m 综上可得实数的取值范围为。
m )1,3[-三、其他类不等式恒成立问题一般转化为求最值将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立a x f >)(min )(x f a <⇔2)恒成立a x f <)(max)(x f a >⇔例1.已知,当时,x x x x g a x x x f 4042)(,287)(232-+=--=]3,3[-∈x 恒成立,求实数的取值范围。
)()(x g x f ≤a 解:设,c x x x x g x f x F -++-=-=1232)()()(23则由题可知对任意恒成立0)(≤x F ]3,3[-∈x 令,得01266)(2'=++-=x x x F 21=-=x x 或而,20)2(,7)1(a F a F -=-=-,9)3(,45)3(a F a F -=-=-∴045)(max ≤-=a x F ∴即实数的取值范围为。
45≥a a ),45[+∞例2.函数,若对任意,恒成立,求),1[,2)(2+∞∈++=x xax x x f ),1[+∞∈x 0)(>x f 实数的取值范围。
a解:若对任意,恒成立,),1[+∞∈x 0)(>x f 即对,恒成立,),1[+∞∈x 02)(2>++=xax x x f 考虑到不等式的分母,只需在时恒成立而得),1[+∞∈x 022>++a x x ),1[+∞∈x 而抛物线在的最小值得a x x x g ++=2)(2),1[+∞∈x 03)1()(min >+==a g x g 3->a 注:本题还可将变形为,讨论其单调性从而求出最小值。
)(x f 2)(++=xax x f )(x f 分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。
这种方法本质也还是求最值,但它思路更清晰,操作性更强。
一般地有:1)恒成立为参数)a a g x f )(()(<max )()(x f a g >⇔2)恒成立为参数)a a g x f )(()(>max )()(x f a g <⇔实际上,上题就可利用此法解决。