【最新】北师大版数学七年级上册56《应用一元一次方程—追赶小明》精品课件.ppt
合集下载
新北师大版七年级数学上册课件第五章6 应用一元一次方程——追赶小明 (共32张PPT)
h,逆水航行需5 h,已知水流的速度是4 km/h,求 这两个码头之间的距离. 思路导图 找出本题的等量 关系:顺水航行 的路程=逆水航 行的路程 设出船在静 水中的速度, 由船在静水中 的速度,求出 两个码头之间 的距离
从而列出方
程
解:设船在静水中的速度为x km/h,则船顺水航 行的速度为(x+4) km/h,逆水航行的速度为(x-4) km/h. 由题意,得3(x+4)=5(x-4).
两车相向而行.若慢车先行驶28 min,则快车行驶多长
时间后两车相遇?
图5-6-1
解:如图5-6-1.设快车行驶x h后两车相遇.
28 +x+80x=448. 由题意,得60 x
解得x=3.
60
所以快车行驶3 h后两车相遇.
两列车从某一时刻开始同时相向而行到两列 车相遇所用的时间相同,两列车所行驶的路程之
知识 解读
行程问题中的基本关系式:路程=速度×时间
巧记乐背
相遇距离路程和,追及情况分别看,
不同时走路程同,不同地走时间等. 注意 列方程解行程问题要会用“线段图”来进行分析, 它比较直观地反映出方程中的等量关系,同时还要注 意单位的统一.
例1 甲,乙两地相距448 km,一列慢车从甲地出发每小 时行驶60 km,一列快车从乙地出发每小时行驶80 km,
向甲跑去;遇到甲后,就立即回头向乙跑去,……
直到甲、乙两人相遇小狗才停住.求小狗共跑了多 少千米.
解:设甲、乙两人x h后相遇. 根据题意,得6x+4x=20.
解得x=2.
因为小狗跑的时间与甲、乙相遇时所用的时间相等, 所以小狗跑的时间是2 h. 所以9×2=18(km). 因此,小狗共跑了18 km.
从而列出方
程
解:设船在静水中的速度为x km/h,则船顺水航 行的速度为(x+4) km/h,逆水航行的速度为(x-4) km/h. 由题意,得3(x+4)=5(x-4).
两车相向而行.若慢车先行驶28 min,则快车行驶多长
时间后两车相遇?
图5-6-1
解:如图5-6-1.设快车行驶x h后两车相遇.
28 +x+80x=448. 由题意,得60 x
解得x=3.
60
所以快车行驶3 h后两车相遇.
两列车从某一时刻开始同时相向而行到两列 车相遇所用的时间相同,两列车所行驶的路程之
知识 解读
行程问题中的基本关系式:路程=速度×时间
巧记乐背
相遇距离路程和,追及情况分别看,
不同时走路程同,不同地走时间等. 注意 列方程解行程问题要会用“线段图”来进行分析, 它比较直观地反映出方程中的等量关系,同时还要注 意单位的统一.
例1 甲,乙两地相距448 km,一列慢车从甲地出发每小 时行驶60 km,一列快车从乙地出发每小时行驶80 km,
向甲跑去;遇到甲后,就立即回头向乙跑去,……
直到甲、乙两人相遇小狗才停住.求小狗共跑了多 少千米.
解:设甲、乙两人x h后相遇. 根据题意,得6x+4x=20.
解得x=2.
因为小狗跑的时间与甲、乙相遇时所用的时间相等, 所以小狗跑的时间是2 h. 所以9×2=18(km). 因此,小狗共跑了18 km.
北师大版七年级数学上册应用一元一次方程-追赶小明课件
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
练习2:甲骑摩托车,乙骑自行车同时从相距150千米 的两地相向而行,经过5小时相遇,已知甲每小时行驶 的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度
解:设乙骑自行车的速度为x千米ቤተ መጻሕፍቲ ባይዱ时, 据题意得 5(3x-6)+5x =150. 解,得 x=9.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
例1:小明早晨要在
7:20以前赶到距家
1000米的学校上学,一
天,小明以80m/min的
速度出发,5min后,
小明的爸爸发现他忘了
带历史作业,于是,爸
爸立即以180m/min的
速度去追小明,并且在 (1)爸爸追上小明用了多长时间?
途中追上了他.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
教学目标
1.能借助“线段图”分析复杂问题中的数量关系,从而列出方 程,解决问题.熟悉行程问题中路程、速度、时间之间的关系, 从而实现从文字语言到符号语言的转换. 2.经历画“线段图”找等量关系,列出方程解决问题的过程, 进一步体验画“线段图”也是解决实际问题的有效途径.体会 “方程”是解决实际问题的有效模型,并进一步培养学生的文 字语言、符号语言、图形语言的转换能力.
北师大版七年级《数学》上册
强化练习
5.6应用一元一次方程—追赶小明
小华和小玲同时从相距700米的两地相对走来, 小华每分钟走60米,小玲每分钟走80米。几分钟后两人相遇? 分析:先画线段图:
小结:同向而行 ②甲、乙同时走;
等量关系:甲的时间=乙的时间; 乙的路程=甲的路程+起点距离.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
北师大版七年级上册数学5.6应用一元一次方程——追赶小明课件(共30张PPT)
问题4:当后队追上前队时,他们已经行进了多少路程?
方法一: 后队速度×后队的时间
解:由问题1得后队追上前队用了2小时。(或前队行了3小时) 因此他们行进路程为6×2 =12千米。(或4×3=12千米)
后队用的时间+1=前队用的时间
解:设当后队追上前队时,他们已经行进了X千米,
方法二:由题意得
解得
x 1 x
由题意列方程得 12x -4x = 4
解得
x = 0.5
答:联络员第一次追上前队时用了0.5小时。
议一议:育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速 度为4千米/时,2班的学生组成后队,速度为6千米/时,前队出发1小时后,后 队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他 骑车的速度为12千米/时。
5(x 1) 5 18 90
2:一个自行车队进行训练,训练时所有队员都以35千米/小时 的速度前进。突然,1号队员以45千米/小时的速度独自行进, 行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直 到与其他队员会合,1号队员从离队开始到与队员重新会合,经过 了多长时间?
解:设经过X小时,则
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远? 1000米
180x
家 80x5
追击
80x
?
校
(同向)
解:(1)设爸爸追上小明用了 x 分,则
180x–80 x = 80x5 (180–80)x = 80x5
x = 4 答:爸爸追上小明用4分钟。
(2)因为 180 x 4 = 720(米)
图示
相遇 甲
S人 甲乙二人分别后,沿着铁轨反向而行。此时,一列
方法一: 后队速度×后队的时间
解:由问题1得后队追上前队用了2小时。(或前队行了3小时) 因此他们行进路程为6×2 =12千米。(或4×3=12千米)
后队用的时间+1=前队用的时间
解:设当后队追上前队时,他们已经行进了X千米,
方法二:由题意得
解得
x 1 x
由题意列方程得 12x -4x = 4
解得
x = 0.5
答:联络员第一次追上前队时用了0.5小时。
议一议:育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速 度为4千米/时,2班的学生组成后队,速度为6千米/时,前队出发1小时后,后 队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他 骑车的速度为12千米/时。
5(x 1) 5 18 90
2:一个自行车队进行训练,训练时所有队员都以35千米/小时 的速度前进。突然,1号队员以45千米/小时的速度独自行进, 行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直 到与其他队员会合,1号队员从离队开始到与队员重新会合,经过 了多长时间?
解:设经过X小时,则
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远? 1000米
180x
家 80x5
追击
80x
?
校
(同向)
解:(1)设爸爸追上小明用了 x 分,则
180x–80 x = 80x5 (180–80)x = 80x5
x = 4 答:爸爸追上小明用4分钟。
(2)因为 180 x 4 = 720(米)
图示
相遇 甲
S人 甲乙二人分别后,沿着铁轨反向而行。此时,一列
北师大版数学七年级上册5.6应用一元一次方程——追赶小明 课件(共32张PPT)
问题2:后队追上前队时联络员行了多少路程? 【分析】相等关系:联络员行的时间=后队行的时间.
解:由问题1得后队追上前队用了2小时, 因此联络员共进行了:
12×2=24(km). 所以,后队追上前队时联络员行了24千米.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
议一议
育红学校七年级学生步行到郊外旅行:七(1)班的学生组成前队,步 行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后, 后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12 km/h.
驶55 km,慢车行驶1小时后,另有一列快车从B站开往A站,每小时
行驶85 km.设快车行驶了x小时后与慢车相遇,则可列方程为( D )
A.55x+85x=335
B.55( x-1 )+85x=335
C.55x+85( x-1 )=335
D.55( x+1 )+85x=335
慢车
快车
55×1
55x
85x
情况一
A
9x
5
80
6x B
【分析】等量关系: 甲ห้องสมุดไป่ตู้程+乙路程+5=80.
解:设经过x小时后两人相距5千米.
依题意,得 15x-5x=400,
解得
x=40.
所以,经过40秒两人第一次相遇.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
典型例题
例4 操场一周是400米,小明每秒跑5米,小华骑自行车每秒行 驶15米,两人绕跑道同时同地相背而行,则两个人何时相遇?
小华
小明
解:由问题1得后队追上前队用了2小时, 因此联络员共进行了:
12×2=24(km). 所以,后队追上前队时联络员行了24千米.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
议一议
育红学校七年级学生步行到郊外旅行:七(1)班的学生组成前队,步 行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后, 后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12 km/h.
驶55 km,慢车行驶1小时后,另有一列快车从B站开往A站,每小时
行驶85 km.设快车行驶了x小时后与慢车相遇,则可列方程为( D )
A.55x+85x=335
B.55( x-1 )+85x=335
C.55x+85( x-1 )=335
D.55( x+1 )+85x=335
慢车
快车
55×1
55x
85x
情况一
A
9x
5
80
6x B
【分析】等量关系: 甲ห้องสมุดไป่ตู้程+乙路程+5=80.
解:设经过x小时后两人相距5千米.
依题意,得 15x-5x=400,
解得
x=40.
所以,经过40秒两人第一次相遇.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
典型例题
例4 操场一周是400米,小明每秒跑5米,小华骑自行车每秒行 驶15米,两人绕跑道同时同地相背而行,则两个人何时相遇?
小华
小明
北师大版七年级数学上册 第五章一元一次方程 5.6 应用一元一次方程——追赶小明 课件 (共20张PPT)
板书设计
课题及重点知识 展示区
多媒体展示区
多媒体展示区
学生ቤተ መጻሕፍቲ ባይዱ书区
Company Logo
北师大版七年级数学(上)第五章第 6节
1
2 3
教材分析 教学方法设计 教学过程 小结 作业与板书
4
5
教材分析
认识一元一次方程
一元一次方程
求解一元一次方程
水箱变高了
打折销售
应用一元一次方程 “希望工程”义演
追赶小明
教学目标
知识目标
•准确找出相遇问题、
能力目标
•经历实际问题的分析、 解决过程,体验数形结 合的数学思想. •经历主动提出问题的 过程,培养提出问题,
设计理念
一:使学生准确回忆起小学的相遇问题中 的等量关系,为例题做铺垫。 二:新课标明确提出,数学应该面向全体 学生,这样的设计让学困生能入手,有收 获。这组变式由学生自己解答,同桌互查 答案。
活动二:等量——突破例题的关键
例:小明每天早上要在7:50之前赶到距家1000 米的学校上学。小明以80米/分的速度出发,5分后,
一句话直入主题,在情景氛围 中,感受到数学问题来源于生活实际, 为实现情感目标打下基础。
(二)探索新知
活动一:变式——通向例题的桥梁
• 小明的爸爸每天都要步行接小明放学回家,已知 小明学校离家1000米,小明的步行速度是80m / min ,爸爸的步行速度是120 m / min • 1.一天,爸爸去接小明回家,两人同时出发,几分 钟后两人相遇? • 2.某天爸爸晚出发2分钟,他们几分钟后相遇?
设计理念
例题的根本难点在于等量关系隐藏在 线段图之中,因此通过填表格、看动画、 画线段等大量的功夫来引导学生找出等量 关系,让学生亲身体会到画线段图是解决 追及问题行之有效的方法。这样的设计既 能有效地突破难点,又能实现数形结合这 一能力目标。
北师大版七年级上册应用一元一次方程--追赶小明课件
.前队出发1 h 后,后队才出发,同时后队派一名联络员骑自行车在
两队之间不间断地来回进行联络,他骑车的速度为 12 km/h.根据上面
的事实提出问题并尝试去解答.
问题1:多少小时后,联络员追上前队 ?
解:设:x小时后,联络员追上前队 。
根据题意,可列出方程:
4( x+1) = 12x
解得:
答:0.5小时后,联络员追上前队。
地点沿着同一方向同时出发,骑行结束后两人有如下对话:
(1)他们的对话内容,求小明和爸爸的骑行速度;
(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,
根据题意得:2(2x-x)=400,
解得:x=200,
∴2x=400.
答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.
程减少了30千米,而车速平均每小时增加了30千米,只需4小时即
可到达.求甲、乙两地之间高速公路的路程?
解:设长途汽车本来的速度是x千米/小时,
根据题意可得:7x=4×(x+30)+30,解得x=50,
故两地高速公路的路程是:50×7-30=320千米,
答: 两地高速公路的路程是320千米.
5.登山是一种简单易行的健身运动,山中森林覆盖率高,负氧离
地.设乙车出发x小时后追上甲车,根据题意可列方程为( A )
A.60(x+2)=100x
B.60x=100(x-2)
C.60x+100(x-2)=600
D.60(x+2)+100x=600
3.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出
发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80
在这两小时之间,联络员一直骑行,所以,联络
北师大版七年级上册数学《应用一元一次方程―追赶小明》一元一次方程PPT电子课件
华骑自行车每秒10米,两人绕跑道同时同地同
向而行,他俩能分相遇吗析?
能相遇
同时同地
小华
同向而行
小明
问题2:操场一周是400米,小明每秒跑5米,小
华骑自行车每秒10米,两人绕跑道同时同地同
向而行,经过几秒钟两人第解一:次设相经过遇x?秒两人第一
分析
次相遇,依题意,得
同时同地 同向而行
小华
10x-5x=400,
解得 x 1 6
答:通讯员需要 1 h可以追上学生. 6
课程讲授
2 追及问题
追及问题解题思路: 追及问题中的等量关系:速度差×追及时间=追及路程,其中追 及时间指快者和慢者共同行驶的时间,追及路程指慢者先行驶的 路程.
课程讲授
2 追及问题
练一练:甲、乙两站相距240千米,从甲站开出一列 慢车,速度为80千米/时,从乙站开出一列快车,速度 为120千米/时,如果两车同时开出,同向而行(慢车在 后),那么经过__1_._5__小时两车相距300千米.
获取新知
小明每天早上要在7: 50之前赶到距家1 000 m的学校上学.一天,小明以80 m/min 的速度出发,5 min后,小明的爸爸发现他忘了带语文书.于是, 爸爸立即以180 m/min的速度去追小明,并且在途中追上了他. (1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
逆风速度=无风速度-风速,由路程=速度×时间列出方程,求出 方程的解即可得到结果.
解:设无风时飞机的航速为x km/h, 根据题意,得2.9(x+20)=3.1(x-20). 解这个方程,得x=600. 则3.1(x-20)=1798. 因此,无风时飞机的航速为600 km/h,这两个城市之间的距离为 1798 km.
新北师大版数学七上课件:5.6用一元一次方程——追赶小明 (共20张PPT)
本节课主要学习列一元一次方程 解决行程类实际问题
习题5.6 1,2
分析:由于通讯员从学校出发按原路追上去,所以
与学生是同向而行,于是有这样一个相等关系:通讯员
行进路程=学生行进路程.
解:设通讯员追上学生队伍需要 x 小时.根据题意列 方程,得
14x=5×1680+5x.
解这个方程,得 x=16. 答:通讯员追上学生队伍需要用16小时(即 10 分钟).
练一练
2.甲、乙两人赛跑,甲每秒钟跑7米,乙每秒 钟跑6.5米,甲让乙先跑5米.设x秒钟后,甲 可追上乙,则下列方程中不正确的是( ) A.7x=6.5x+5 B.7x-5=6.5 C.(7-6.5)x=5 D.6.5x=7x-5
方法归纳
相遇问题的解决方法 相遇问题是比较重要的行程问题,其特点是 相向而行.如图(1)就是相遇问题.图(2)也可看 作相遇问题来解决.
相遇问题中的相等关系: ①甲、乙的速度和×相遇时间=总路程; ②甲行的路程+乙行的行程=总路程,即s甲 +s乙=s总.
方法归纳
追及问题的解决方法 追及问题的特点是同向而行.追及问 题有两类:
2.父亲从家跑步到公园需30分钟,儿子只
ቤተ መጻሕፍቲ ባይዱ
需20分钟.如果父亲比儿子早出发5分
钟,儿子追上父亲需( )
A.8分钟
B.9分钟
C.10分钟
D.11分钟
3.一条环形跑道长390米,甲跑步速度为6
米/秒,乙跑步速度为7米/秒.若两人同
时、同地、反方向跑,则经过________
秒首次相遇.
4.甲、乙两人同时从相距27千米的两地 相向而行,2小时后相遇.已知乙骑车 的速度比甲步行的速度快5.5千米/ 时.如果设乙的速度为x千米/时,那么 可列出方程为
应用一元一次方程—追赶小明北师大版七年级数学上册PPT教学课件
当堂训练(15分钟)
1、甲、乙两站相距1200km,一列慢车从甲站出发,每小
时行80km,一列快车从乙站出发,每小时行120km。两车
同时出发,出发后( C7
C.5或7
D.6
2、两列火车迎头驶过,A列车车速为20m/s,B列车车速 为24m/s。若A列车全长180m,B列车长160m,则两车错车 时间为__8_5___s。
画出线 段图
找出等 量关系
列方程 并求解
回答
同向追及问题
同地不同时: 甲路程=乙路程 同时不同地: 甲路程+路程差=乙路程;
相向相遇问题 甲的路程+乙的路程=总路程
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
4、甲、乙两人环湖竞走,一周400米,乙的速度是 80米/分钟,甲的速度是乙的速度的 1 1 倍,且甲在乙前 100米。两人同时出发,多少分钟后,4两人第一次相遇?
15分钟
5、一客轮航行于甲、乙两港,由甲港到乙港逆水而行需 12h到达,由乙港到甲港顺水而行需10.5h。如果水流速
度是1km/h ,求甲、乙两港间的距离。 168km
11 3、甲、乙两人从A地向B地行进,乙提前出发,当乙离 开200m时,甲开始出发。甲的速度为6m/s,乙的速度
为2m/s。当甲出发15s时,两人相距_1_4_0___m。
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
解:设通讯员用 x h 可以追上学生队伍,
由题意可列方程:14x=5×1680+5x,解得 x=16,
【最新】北师大版数学七年级上册5.《6应用一元一次方程——追赶小明》公开课课件.ppt
。2020年12月16日星期三2020/12/162020/12/162020/12/16
15、会当凌绝顶,一览众山小。2020年12月2020/12/162020/12/162020/12/1612/16/2020
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/162020/12/16December 16, 2020
5.6 应用一元 一次方程——追赶
小明
小明每天早上要在7:50之前赶到距家00米的学校上 学。小明以80米/分的速度出发,5分后,小明的爸爸发现 他忘了带语文书。于是,爸爸立即以180米/分的速度去追 小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
小结:
(1)学会借助线段图分析较复杂 的数量关系; (2)在探索解决实际问题时,应从 多角度思考问题.
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/162020/12/16Wednesday, December 16, 2020
小明每天早上要在7:50之前赶到距家1000米的学校上 学。小明以80米/分的速度出发,5分后,小明的爸爸发现 他忘了带语文书。于是,爸爸立即以180米/分的速度去追 小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
小明每天早上要在7:50之前赶到距家1000米的学校上 学。小明以80米/分的速度出发,5分后,小明的爸爸发现 他忘了带语文书。于是,爸爸立即以180米/分的速度去追 小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
5.6 应用一元一次方程-追赶小明 课件(共29张PPT)-七年级数学上册同步精品课堂(北师大版)
10m
4x
6x
等量关系:小彬跑的路程+10m=小强跑的路程. 解:设经过 x 秒后小强追上小彬。 4x+10 = 6x 解得:x = 5. 答:经过5秒后小强追上小彬.
例:若小明到校后发现忘带语文书,打电话通知爸爸来.爸 爸立即以180米/分的速度从家里出发,同时小明以120米/分 的速度从学校返回,两人几分钟相遇?
则x+1=6.5. 答:甲、乙两人的速度分别为6.5千米/时、5.5千米/时.
学习目标
1.能借助“线段图“分析复杂问题中的数量关系,从而列出方 程,解决问题,熟悉行程问题中路程、速度、时间之间的关 系,从而实现从文字语言到符号语言的转换. 2.经历画“线段图”找等量关系,列出方程解决问题的过程, 进一步体验画“线段图"也是解决实际问题的有效途径.
新课引入
1.若杰瑞的速度是2米/秒,则它5秒跑了___1_0____米. 路程=速度×时间
解:设甲经过x秒追上乙.由题意, 得8x-5x=20+10. 解这个方程,得x=10.
答:甲经过10乙两人分别从A,B两地同时出 发,相向而行.已知甲比乙每小时多走1千米,经过2.5小时两人 相遇,求甲、乙两人的速度.
解:设乙的速度为x千米/时,则甲的速度为(x+1)千米/时. 根据题意,得2.5x+2.5(x+1)=30. 解这个方程,得x=5.5.
答:小明走的路程和小明爸爸走的路程相同
你能通过一定的示意图把整个过程表示出来吗?
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
80×5
80x 180x
等量关系:爸爸走的路程=小明走的路程.
解: 设爸爸追上小明用了x分钟 180x=80x+5×80. 解得:x=4. 答:所以爸爸经过了4分钟追上了小明.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:追及问题:队尾追排头; 相遇问题:排头回队尾.
• 解:7.5分钟=0.125小时
• 设王明追上排头用了x小时,则返回用了 (0.125-x)小时,
• 据题意得 10 x-6 x =10(0.125-x)+ 6(0.125-x).
• 解,得 x=0.1.
• 此时,10×0.1-6×0.1 =0.4(千米 )=400(米).
分析:等量关系:甲所用时间=乙所用时间; 甲路程+乙路程=甲乙相距路程.
线段图:
• 解:设t秒后甲、乙相遇, • 据题意得 8t+6t =280. • 解,得 t=20. • 答:甲出发20秒与乙相遇.
小结:相向而行 等量关系:甲所用时间=乙所用时间;
甲的路程+乙的路程=总路程.
例4:七年级一班列队以每小时6千米的速度去甲地.王明从 队尾以每小时10千米的速度赶到队伍的排头后又以同 样的速度返回排尾,一共用了7.5分钟,求队伍的长.
• 答:队伍长为400米.
练习1:小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒, 小明几秒钟追上小兵?
分析:先画线段图:
写解题过程: 解:设小明t秒钟追上小兵, 据题意得 6(4+t) =7t. 解,得 t=24. 答:小明24秒钟追上小兵.
练习2:甲骑摩托车,乙骑自行车同时从相距150千米的两 地相向而行,经过5小时相遇,已知甲每小时行驶 的路程是乙每小时行驶的路程的3倍少6千米,求 乙骑自行车的速度.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
• 10、人的志向通常和他们的能力成正比例。2020/12/162020/12/162020/12/1612/16/2020 4:06:34 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/162020/12/162020/12/16Dec-2016-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/162020/12/162020/12/16Wednesday, December 16, 2020 • 13、志不立,天下无可成之事。2020/12/162020/12/162020/12/162020/12/1612/16/2020
。2020年12月16日星期三2020/12/162020/12/162020/12/16
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/162020/12/162020/12/1612/16/2020
甲路程=乙路程. 相向的相遇问题: 甲路程+乙路程=总路程; 甲时间=乙时间.
1:小华和小玲同时从相距700米的两地相对走来,
小华每分钟走60米,小玲每分钟走80米。几分钟后两人相遇?
分析:先画线段图:
假设x分钟后两人相遇,此时小华走了 米,小玲走了 米,
两人一共走了
米。找出等量关系,小华和小玲相
第五章 一元一次方程
6.应用一元一次方程 ——追赶小明
例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一 天,小明以80米/分的速度出发,5分钟后, 小明的爸爸发 现他忘了带历史作业,于是,爸爸立即以180米/分的速度 去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
解:设乙骑自行车的速度为x千米/时,
据题意得 5(3x-6)+5x =150.
解,得 x=9.
答:乙骑自行车的速度为9千米/时.
1.会借线段图分析行程问题. 2.各种行程问题中的规律及等量关系.
同向追及问题: ①同时不同地——甲路程+路程差=乙路程;
甲时间=乙时间. ②同地不同时——甲时间+时间差=乙时间;
遇时
+
=
.
写解题过程:
2:一个自行车队进行训练,训练时所有队员都以35千米/小时10千米后掉转车头,仍以45千米/小时的速度往回骑,直
到与其他队员会合,1号队员从离队开始到与队员重新会合,
经过了多长时间?
习题5.9 1,2,3题
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/162020/12/16Wednesday, December 16, 2020
小结:同向而行 ①甲先走,乙后走;
等量关系:甲的路程=乙的路程; 甲的时间=乙的时间+时间差.
例2:甲、乙两站间的路程为450千米,一列慢车从甲站 开出,每小时行驶65千米,一列快车从乙站开出, 每小时行驶85千米.设两车同时开出,同向而行, 则快车几小时后追上慢车?
分析:等量关系:快车所用时间=慢车所用时间; 快车行驶路程=慢车行驶路程+相距路程.
分析:等量关系:小明所用时间=5+爸爸所用时间; 小明走过的路程=爸爸走过的路程.
线段图:
• 解:(1)设爸爸追上小明用了x分钟, • 据题意得 80×5+80x=180x. • 解,得 x=4. • 答:爸爸追上小明用了4分钟. • (2)180×4=720(米),1000-
720=280(米). • 答:追上小明时,距离学校还有280米.
线段图:
解:设快车x小时追上慢车, 据题意得: 85x=450+65x.
解,得 x=22.5. 答:快车22.5小时追上慢车.
小结:同向而行 ②甲、乙同时走;
等量关系:甲的时间=乙的时间; 乙的路程=甲的路程+起点距离.
例3:甲、乙两人相距280米,相向而行,甲从A地每 秒走8米,乙从B地每秒走6米,那么甲出发几秒 与乙相遇?
• 解:7.5分钟=0.125小时
• 设王明追上排头用了x小时,则返回用了 (0.125-x)小时,
• 据题意得 10 x-6 x =10(0.125-x)+ 6(0.125-x).
• 解,得 x=0.1.
• 此时,10×0.1-6×0.1 =0.4(千米 )=400(米).
分析:等量关系:甲所用时间=乙所用时间; 甲路程+乙路程=甲乙相距路程.
线段图:
• 解:设t秒后甲、乙相遇, • 据题意得 8t+6t =280. • 解,得 t=20. • 答:甲出发20秒与乙相遇.
小结:相向而行 等量关系:甲所用时间=乙所用时间;
甲的路程+乙的路程=总路程.
例4:七年级一班列队以每小时6千米的速度去甲地.王明从 队尾以每小时10千米的速度赶到队伍的排头后又以同 样的速度返回排尾,一共用了7.5分钟,求队伍的长.
• 答:队伍长为400米.
练习1:小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒, 小明几秒钟追上小兵?
分析:先画线段图:
写解题过程: 解:设小明t秒钟追上小兵, 据题意得 6(4+t) =7t. 解,得 t=24. 答:小明24秒钟追上小兵.
练习2:甲骑摩托车,乙骑自行车同时从相距150千米的两 地相向而行,经过5小时相遇,已知甲每小时行驶 的路程是乙每小时行驶的路程的3倍少6千米,求 乙骑自行车的速度.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
• 10、人的志向通常和他们的能力成正比例。2020/12/162020/12/162020/12/1612/16/2020 4:06:34 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/162020/12/162020/12/16Dec-2016-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/162020/12/162020/12/16Wednesday, December 16, 2020 • 13、志不立,天下无可成之事。2020/12/162020/12/162020/12/162020/12/1612/16/2020
。2020年12月16日星期三2020/12/162020/12/162020/12/16
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/162020/12/162020/12/1612/16/2020
甲路程=乙路程. 相向的相遇问题: 甲路程+乙路程=总路程; 甲时间=乙时间.
1:小华和小玲同时从相距700米的两地相对走来,
小华每分钟走60米,小玲每分钟走80米。几分钟后两人相遇?
分析:先画线段图:
假设x分钟后两人相遇,此时小华走了 米,小玲走了 米,
两人一共走了
米。找出等量关系,小华和小玲相
第五章 一元一次方程
6.应用一元一次方程 ——追赶小明
例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一 天,小明以80米/分的速度出发,5分钟后, 小明的爸爸发 现他忘了带历史作业,于是,爸爸立即以180米/分的速度 去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
解:设乙骑自行车的速度为x千米/时,
据题意得 5(3x-6)+5x =150.
解,得 x=9.
答:乙骑自行车的速度为9千米/时.
1.会借线段图分析行程问题. 2.各种行程问题中的规律及等量关系.
同向追及问题: ①同时不同地——甲路程+路程差=乙路程;
甲时间=乙时间. ②同地不同时——甲时间+时间差=乙时间;
遇时
+
=
.
写解题过程:
2:一个自行车队进行训练,训练时所有队员都以35千米/小时10千米后掉转车头,仍以45千米/小时的速度往回骑,直
到与其他队员会合,1号队员从离队开始到与队员重新会合,
经过了多长时间?
习题5.9 1,2,3题
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/162020/12/16Wednesday, December 16, 2020
小结:同向而行 ①甲先走,乙后走;
等量关系:甲的路程=乙的路程; 甲的时间=乙的时间+时间差.
例2:甲、乙两站间的路程为450千米,一列慢车从甲站 开出,每小时行驶65千米,一列快车从乙站开出, 每小时行驶85千米.设两车同时开出,同向而行, 则快车几小时后追上慢车?
分析:等量关系:快车所用时间=慢车所用时间; 快车行驶路程=慢车行驶路程+相距路程.
分析:等量关系:小明所用时间=5+爸爸所用时间; 小明走过的路程=爸爸走过的路程.
线段图:
• 解:(1)设爸爸追上小明用了x分钟, • 据题意得 80×5+80x=180x. • 解,得 x=4. • 答:爸爸追上小明用了4分钟. • (2)180×4=720(米),1000-
720=280(米). • 答:追上小明时,距离学校还有280米.
线段图:
解:设快车x小时追上慢车, 据题意得: 85x=450+65x.
解,得 x=22.5. 答:快车22.5小时追上慢车.
小结:同向而行 ②甲、乙同时走;
等量关系:甲的时间=乙的时间; 乙的路程=甲的路程+起点距离.
例3:甲、乙两人相距280米,相向而行,甲从A地每 秒走8米,乙从B地每秒走6米,那么甲出发几秒 与乙相遇?