《圆的一般方程》教学设计(优质课)
《圆的一般方程》教学设计和教案
《圆的一般方程》教学设计和教案教学设计教学目标:1.知识目标:掌握圆的一般方程的概念和求解方法;2.能力目标:能够正确理解和应用圆的一般方程解决相关问题;3.情感目标:培养学生对几何图形的兴趣,激发学生学习数学的积极性。
教学内容:1.圆的一般方程的定义和性质;2.使用圆的一般方程解决相关问题;教学步骤:Step 1 引入新知1.引导学生回顾圆的定义和性质,并回忆圆的直角坐标的一般方程;2.提出一个问题:“如何表示任意圆的方程?”引导学生思考。
Step 2 探究圆的一般方程1.结对讨论,指导学生以模仿法找出圆心在原点的圆的一般方程,并让学生将结论进行总结;2.通过实例引导学生进一步推广到圆心不在原点的情况,让学生发现圆的一般方程的一般表达形式。
Step 3 练习巩固1.给学生提供一些圆心在不同位置的圆的方程,让学生推算出对应的方程;2.带领学生分析和讨论解题过程,并纠正学生可能出现的错误。
Step 4 拓展应用1.引导学生思考如何利用圆的一般方程求圆的切线和法线;2.分组合作,让学生收集相关问题并解答;3.学生展示解题过程和结果,并带领全班讨论。
Step 5 总结归纳1.小组成员合作撰写一篇关于圆的一般方程的总结性文章;2.整理学生的思路,总结圆的一般方程的概念和方法,以及应用。
Step 6 练习检测1.布置一些练习题,让学生独立完成;2.教师检查学生的答题情况,并与学生一起讨论解题过程中的疑问。
Step 7 总结反思1.学生回顾所学内容,自评自己的学习效果,并写下自己的学习感想;2.教师对本节课进行总结和反思,并对学生的学习进行评价。
教案教案一:圆的一般方程的引入教学目标:明确圆的一般方程的定义和性质。
教学步骤:Step 1 引入新知1.引导学生回归几何的基本概念,复习圆的基本定义和性质;2.引出一个问题:“如何用方程表示圆?”Step 2 引入问题1. 使用ppt展示一个以原点为圆心的圆,采用不同的半径和圆心坐标方程;2.让学生思考圆的方程与圆的性质之间的关系。
高中数学教师资格面试《圆的一般方程》教案(5篇)
高中数学教师资格面试《圆的一般方程》教案(5篇)第一篇:高中数学教师资格面试《圆的一般方程》教案2015山西教师招聘考试高中数学教师资格面试《圆的一般方程》教案一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件。
【过程与方法】通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程(一)复习旧知,引出课题1.复习圆的标准方程,圆心、半径。
2.提问1:已知圆心为(1,-2)、半径为2的圆的方程是什么?(二)交流讨论,探究新知1.提问2:方程x2 +y2-2x+4y+1=0是什么图形?方程x2 +y2-2x-4y+6=0表示什么图形?任何圆的方程都是这样的二元二次方程吗?(通过此例分析引导学生使用配方法)2.方程x2 +y2 +Dx+Ey+F=0什么条件下表示圆?(配方和展开由学生相互讨论交流完成,教师最后展示结果)将x2 +y2 +Dx+Ey+F=0配方得:山西教师资格面试考试山西特岗教师考试2015山西教师招聘考试3.学生在教师的引导下对方程分类讨论,最后师生共同总结出3种情况,即圆的一般方程表示圆的条件。
从而得出圆的一般方程是:x2 +y2 +Dx+Ey+F=0(D2+E2-4F>0)4.由学生归纳圆的一般方程的特点,师生共同总结。
(三)例题讲解,深化新知例1.判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。
例2.求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
(完整版)圆的一般方程教案(正式)
人教A版高中数学实验教科书选修2 —1 《圆的一般方程》教案4.2.1圆的一般方程•教学目的与要求一、知识目标:(1)理解记忆圆的一般方程的代数特征。
(2)掌握方程x2 y2 Dx Ey F 0表示圆的条件。
二、能力目标:(1)能应用配方法将圆的一般方程化为圆的标准方程。
(2)能应用待定系数法求圆的一般方程。
(3)能应用代入法求一般曲线的方程。
(4)培养探索发现及分析解决问题的能力。
三、情感目标:(1)培养学生勇于探索的精神。
(2)渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质。
•教学重点圆的一般方程的代数特征、一般方程与标准方程的互化、待定系数法求圆的一般方程的步骤•教学难点圆的一般方程和代入法的掌握、应用•教学方法师生合作式探究诱导启发式教学•教学辅助多媒体教学平台CAI课件•教学过程与时间分配一、复习提问,引入课题二、探索研究,讲授新课三、例题讲解,对应练习四、课堂小结,反馈回授五、分层作业,巩固提高(3分钟)(22分钟)(16分人教A 版高中数学实验教科书选修 2 — 1 《圆的一般方程》教案教学基本内容设计意图 -2 -一、 复习提问,引入课题问题:求过三点(0,0), (1.1),(4,2)的圆的方程?【师生互动】学生在教师指导下展开小组讨论,回顾旧知识, 最后得出运用圆的知识很难解决问题。
因为圆的标准方程很 麻烦,用直线的知识解决又有其简单的局限性。
于是老师提 问,有没有其他的解决方法呢?带着这个问题我们共同研究 圆的一般方程。
【辅助手段】:多媒体课件幻灯片展示问题。
二、 探索研究,讲授新课 请同学们写出圆的标准方程: 2 2 2、 ,(x a) (y b) r 、圆心(a , b)、半径 r这个方程就是圆的方程•反过来给出一个形如x 1 2 y 2 Dx Ey F 0的方程,它表 示的曲线一定是圆吗?把x 2 y 2 Dx Ey F 0配方得: 2 2 2Do. E 2 D E 4F (x —) (y )-------------------4【师生互动】配方和展开由学生完成,教师最后展示结果。
高中数学教师资格面试《圆的一般方程》教案
高中数学教师资格面试《圆的一般方程》教案一、教学目标1. 知识目标:掌握圆的一般方程的概念、性质及其应用。
2. 技能目标:能够利用圆的一般方程解决实际问题。
3. 情感目标:通过本课的学习,学会感受数学美,提高数学学科素养。
二、教学内容1. 圆的一般方程的定义。
2. 圆的一般方程的性质(方程的标准形式、圆心及半径的求解)。
3. 利用圆的一般方程解决实际问题。
三、教学重点和难点1. 圆的一般方程的标准形式的求解和圆心半径的求解。
2. 圆的一般方程的应用。
四、教学过程1. 导入新课(5分钟)通过导入相关的数学问题,激发学生学习本课的兴趣,引导学生对本课内容感兴趣。
2. 课堂讲解主体(35分钟)(1)讲解圆的一般方程的定义及标准形式。
(2)讲解圆的一般方程的性质(圆心及半径的求解)。
(3)讲解圆的一般方程的应用。
3. 讲解结束,小结复习(10分钟)回归本课的内容要点,向学生总结本节课的知识点。
同时,老师可以针对学生提出的问题进行一些讲解,并引导学生完成相关的习题。
4. 课后作业(10分钟)要求学生结合本节课讲解的内容完成课后作业,并留下需要在下节课讨论的问题。
五、教学方法1. 演示法2. 讨论法3. 课堂互动法六、教学资源1. 教材及教辅材料2. 多媒体设备3. 白板、彩笔七、教学评价1. 考勤记录2. 课堂表现评价3. 课后作业完成评价4. 错误习题纠正评价八、教学安排本课程安排两个课时,第一课时为理论讲解和部分实例演示,第二课时为实例讲解和习题课。
圆的一般方程(教学设计)
《圆的一般方程》教案设计一、学情分析:圆的一般方程是学生在掌握了求曲线方程一般方法的基础上,在学习过圆的标准方程之后进行研究的,是研究二次曲线的开始。
这里主要是用解析法研究它的方程及与其它图形的位置和应用。
但由于学生学习解析几何的时间还不长,学习程度较浅,对坐标法的运用还不够熟练,学生在探究问题的能力方面比较薄弱。
因此,根据上述教材结构与内容分析,考虑到学生已有的认识结构,我特制定如下教学目标。
二、教学目标: 1、知识与技能目标:(1)将圆的标准方程(x –a)2+(y –b)2=r 2,展开得x 2+y 2–2ax –2by+a 2+b 2–r 2=0——①令D=–2a ,E=–2b ,F=a 2+b 2–r 2,则①式可写成x 2+y 2+Dx+Ey+F=0,从而得到圆的一般方程及其方程特点,同时也让学生掌握了这一知识点。
(2)通过设问:是不是任何一个形如x 2+y 2+Dx+Ey+F=0的方程表示的曲线都是圆?将方程配方得(x+D 2)2+(y+E 2)2=D 2+E 2–4F 4,对比圆的标准方程:(x –a)2+(y –b)2=r 2,让学生学会能将圆的一般方程化为圆的标准方程,从而求出其圆心(–D 2,–E2),r=D 2+E 2–4F 2。
(3)通过例2,培养学生能用待定系数法来求圆的方程。
(4)通过例3,提高学生用坐标法求动点轨迹方程的通知。
2、过程与方法目标:通过展开圆的标准方程(x –a)2+(y –b)2=r 2导出圆的一般方程x 2+y 2+Dx+Ey+F=0这一过程加深了学生在研究问题中由简单到复杂,由特殊到一般的化归思想,培养了学生严密的逻辑思维和严谨的科学态度,通过例1、例3补充题的练习,培养学生数形结合思想、方程思想,提高学生分析问题和解决问题的能力,同时学生用代数方法研究几何问题的能力也得到了一定的提高。
3、情感、态度与价值目标:由学生动手,展开圆的标准方程:(x–a)2+(y–b)2=r2得x2+y2–2ax–2by+a2+b2–r2=0中令D=–2a,E=–2b,F=a2+b2–r2得x2+y2+Dx+Ey+F=0——①,由学生分组讨论得出方程①表示圆的条件,圆的一般方程形式以及圆的一般方程与标准方程的转化和关系,培养了学生勇于思考问题,主动探究知识和合作交流的价值,同时在探讨中也激发了学生的学习兴趣,因此这一过程体现了情感、态度和价值目标。
《圆的一般方程》优质课比赛教案
《圆的一般方程》教案 一.教学目标1.使学生掌握圆的一般方程和圆的一般方程的特点2.能熟练掌握圆的一般方程与圆的标准方程的互化3.灵活应用待定系数法求圆的方程 二.教学重点1.圆的一般方程的特征及其应用2.由圆的一般方程求出圆心坐标和半径;3.能用待定系数法,由已知条件求出圆的方程. 三.教学难点圆的一般方程的特征及应用 四.教学过程 1、新课引入:上一节学习了圆的标准方程: (x -a)2+(y -b)2=r 2, 圆心(a ,b),半径r .提问:已知圆心为(1,-2)、半径为2的圆的方程是什么? (生答)(x -1)2+(y+2)2=4将它展开得014222=++-+y x y x ,这是一个二元二次方程。
任何圆的方程都是这样的二元二次方程吗? 把圆的标准方程展开,并整理:x 2+y 2-2ax -2by +a 2+b 2-r 2=0. 可见任何一个圆的方程都可以写成下面的形式022=++++F Ey Dx y x ① 这说明圆的方程就是一个二元二次方程。
反过来,形如022=++++F Ey Dx y x 的方程一定表示圆吗?这就是今天所要探讨的内容:圆的一般方程.(书写课题) 2、讲授新课:我们先来判断两个具体的方程是否表示圆?(师生互动)642)2(0142)1(2222=+--+=++-+y x y x y x y x结论:不一定表示圆(通过此例分析引导学生使用配方法)追问:022=++++F Ey Dx y x 满足什么条件时表示圆? (让学生相互讨论后,由学生总结)将 022=++++F Ey Dx y x 配方得44)2()2(2222FE D E y D x -+=+++(1)当0422>-+F E D 时,此方程表示以(-2D,-2E )为圆心,FE D 42122-+为半径的圆;(2)当0422=-+F E D 时,此方程只有实数解2D x -=,2Ey -=,即只表示一个点(-2D ,-2E );(3)当0422<-+F E D 时,此方程没有实数解,因而它不表示任何图形综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆,只有当0422>-+F E D 时,它表示的曲线才是圆,我们把方程022=++++F Ey Dx y x (0422>-+F E D )称为圆的一般方程与一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 比较 我们来看圆的一般方程的特点:(启发学生归纳)①x 2和y 2的系数相同,不等于0.(举例:091244422=++-+y x y x ) ②没有xy 这样的二次项 请学生思考并回答:二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是040022>-+=≠=AF E D B C A 且且问题:圆的标准方程与圆的一般方程各有什么特点?3、例题讲练例1:求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
圆的一般方程(优质课)
解:[方法二]
P O
设 P( x1 , y1 ) , Q( x2 , y2 )
x2 + y 2 - m = 0 x + y -1 = 0
Q
2x - 2x + (1 - m) = 0
2
同理y1 y2 = 1- m 2
1- m x1 x2 = 2
OP OQ
x1 x2 + y1 y2 = 0 (2)
将
2 + Dx + Ey + F = 0 x2 + y
左边配方,得
D 2 E 2 D 2 + E 2 - 4F (x+ ) + (y+ ) = 4 2 2
(1)当 D2+E2-4F>0 时,
2 2
它表示以
D E , 2 2
为圆心,
D + E 4 F 以 r= 2
为半径的圆;
2
(-1,0) O
.
.
A(3,0)
x
62 - 4 (-9) 0 该曲线为圆.
直译法
举例 例3:
已知线段AB的端点B的坐标是 2 2 (4,3), 端点A在圆 ( x + 1) + y = 4 上运动,求线段AB的中点M的轨迹 方程。
练习
x + y - 8x - 6 y + 21 = 0
圆的一般方程与标准方程的关系:
(1)a=-D/2,b=-E/2,r=
1 D 2 + E 2 - 4F 2
(2)标准方程易于看出圆心与半径 一般方程突出形式上的特点: ①x2与y2系数相同并且不等于0;
②没有xy这样的二次项
《圆的一般方程》教学设计与反思
《圆的一般方程》教学设计与反思一、教材分析:《圆的一般方程》是解析几何的内容,是在学习了直线方程后,继圆的标准方程之后学习的,圆是一种特殊的曲线。
在现行职业学校的教材中,圆是唯一一种必修的曲线,也是职业学校学生认识曲线和方程的途径,在解析几何中占有重要的地位。
二、学情分析:对于职业学校的学生来说,数学属于“难攻”的科目,基础差,学习兴趣不高,缺乏主动性。
因此在教学设计上要多考虑学生的实际因素,由易到难,层层递进,激发并引导学生自主学习是教师教学的主要目的之一。
三、教学目标:(一)知识与技能:1.理解并掌握圆的一般方程的形式,会将圆的标准方程化为一般方程;2.明确圆的标准方程和一般方程的常数之间的关系,会用这种关系求圆的圆心坐标和半径;3.逐步学会用配方法将圆的一般方程表示为标准方程.(二)过程与方法:1.从不同的角度得出圆的方程表示形式,培养学生从多角度认识事物、研究问题的习惯和能力;2.随着探索研究的不断推进,逐步让学生发现圆的一般方程的特点,培养学生观察、归纳能力;3.通过一题多解,培养学生发散思维;4.在合作交流中采用问题呈现的方式,引导学生积极探索,主动学习,培养合作精神.(三)情感态度与价值观:借助于多媒体课件,让学生感受数与式之间的内部的和谐美,提高学习数学的兴趣.四、教学重点:1.圆的一般方程的形式;2.在圆的一般方程中,求圆心坐标和半径.五、教学难点:用配方法求圆心坐标和半径.六、 教学过程:教学环节教师活动预设学生活动 设计意图 一、复习回顾: 1.圆的标准方程 2.写出圆心为(2,-1),半径为3的圆的标准方程 二.探索研究: 1.问题引入: 方程(x-2)2+(y+1)2=9为几元几次方程? (展开整理) 2.将圆的标准方程展开整理: (x-a)2+(y-b)2=r 2⇒x 2+y 2-2ax-2by+(a 2+b 2-r 2)=0 令D=-2a ,E=-2b ,F= a 2+b 2-r 2,则 x 2+y 2+Dx+Ey+F=0 注意: ①圆的方程是二元二次方程; ②x 2、y 2的系数相等;③不含xy 项。
圆的一般方程教案
圆的一般方程教案一、教学目标1.知识与技能目标:学生能够掌握圆的一般方程的基本概念和推导过程;能够根据已知条件,确定圆的一般方程。
2.过程与方法目标:通过引入问题,激发学生的探究兴趣,培养学生的思维能力和解决问题的能力。
3.情感态度价值观目标:培养学生对数学的兴趣,培养学生的观察力和分析问题的能力,培养学生认真负责的学习态度。
二、教学重难点1.教学重点:圆的一般方程的基本概念,圆的一般方程的推导过程。
2.教学难点:通过引导学生分析,理解圆的一般方程的推导过程。
三、教学过程1.导入(5分钟)老师在黑板上画一个圆,问学生:你们对圆的一般方程有了解吗?有什么想法?2.引入问题(5分钟)老师出示一张图片,画有一个坐标系和一个圆,问学生:如何确定这个圆的方程?请你们思考一下。
3.讲解圆的一般方程的基本概念(10分钟)a.老师引导学生思考:圆的一般方程是什么意思?它包括哪些内容?b.学生回答:圆的一般方程是指坐标系中,所有满足其方程的点的集合。
它包括圆心、半径的信息。
c.老师给出圆的一般方程的定义:圆的一般方程是指平面直角坐标系中,满足方程的所有点的集合。
4.推导圆的一般方程(20分钟)a.老师先引导学生思考:圆的特点是什么?如何用代数表示?b.学生回答:圆的特点是所有到圆心距离等于半径的点。
可以用勾股定理表示。
c.老师给出推导圆的一般方程的步骤:-假设圆心坐标为(x0,y0),半径为r。
-任取圆上一点P(x,y),根据勾股定理,有(x-x0)²+(y-y0)²=r²。
-展开可得到一般方程:x²+y²+Ax+By+C=0。
其中A=-2x0,B=-2y0,C=x0²+y0²-r²。
d.老师给出实例,通过具体计算,将圆的一般方程推导出来。
5.圆的一般方程的应用(15分钟)a.老师出示一道问题:圆心在原点,且与x轴和y轴的交点分别为(5,0)和(0,3)的圆的方程是什么?b.学生通过对问题分析,发现可以利用已知条件得到方程的三个参数:圆心坐标和半径。
圆的一般方程 说课稿 教案 教学设计
圆的一般方程●三维目标1.知识与技能(1)掌握圆的一般方程及一般方程的特点.(2)能将圆的一般方程化成圆的标准方程,进而求圆心和半径.(3)能用待定系数法由已知条件求出圆的方程.(4)能用坐标法求动点的轨迹方程.2.过程与方法(1)进一步培养学生用代数方法研究几何问题的能力.(2)加深对数形结合思想的理解和加强待定系数法的运用.3.情感、态度与价值观(1)培养学生主动探究知识、合作交流的意识.(2)培养学生勇于思考、探究问题的精神.●重点难点重点:圆的一般方程及待定系数法求圆的方程.难点:用坐标法求动点的轨迹方程.重点突破:以教材的思考为切入点,采取由特殊到一般、由具体到抽象的方法,结合圆的标准方程,突破“二元二次方程同圆的关系”这一重难点,通过学生探究合作与交流,结合题组训练,引导学生进一步掌握用“待定系数法”求解圆的一般方程;借助多媒体演示及学生的直观感知突破“求动点的轨迹方程”这一难点.【课前自主导学】课标解读1.了解圆的一般方程的特点,会由一般方程求圆心和半径.(易错点)2.会根据给定的条件求圆的一般方程,并能用圆的一般方程解决简单问题.(重点)3.初步掌握求动点的轨迹方程的方法.(难点)圆的一般方程【问题导思】1.圆的标准方程(x-a)2+(y-b)2=r2展开可得到一个什么式子?【提示】x2+y2-2ax-2by+a2+b2-r2=0.2.观察以下三个方程:(1)x2+y2+2x+2y+8=0;(2)x 2+y 2+2x +2y +2=0; (3)x 2+y 2+2x +2y =0.先将它们分别配方,分析它们分别表示什么图形?【提示】 (1)配方得(x +1)2+(y +1)2=-6,不表示任何图形. (2)配方得(x +1)2+(y +1)2=0,表示点(-1,-1). (3)配方得(x +1)2+(y +1)2=2,表示圆.3.当m 为何值时方程x 2+y 2+mxy -2x =0表示圆?【提示】 由圆的一般方程可知,若方程表示圆,则满足m =0,且(-2)2+0-0>0,即m =0. 方程x 2+y 2+Dx +Ey +F =0(*)表示的图形(1)变形:⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F4.(2)图形:①当D 2+E 2-4F >0时,方程表示的曲线为圆,且圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为12D 2+E 2-4F ,方程(*)称为圆的一般方程;②当D 2+E 2-4F =0时,方程(*)表示一个点-D 2,-E2; ③当D 2+E 2-4F <0时,方程(*)不表示任何图形. 【课堂互动探究】圆的一般方程的概念下列方程能否表示圆?若能,求出圆心和半径.(1)2x 2+y 2-7y +5=0; (2)x 2-xy +y 2+6x +7y =0; (3)x 2+y 2-2x -4y +10=0; (4)2x 2+2y 2-5x =0.【思路探究】 分析每个方程是否具有圆的一般方程的特征,也可以把方程配方观察求解. 【自主解答】 (1)∵方程2x 2+y 2-7y +5=0中x 2与y 2的系数不相同,∴它不能表示圆. (2)∵方程x 2-xy +y 2+6x +7y =0中含有xy 这样的项,∴它不能表示圆. (3)方程x 2+y 2-2x -4y +10=0化为(x -1)2+(y -2)2=-5,∴它不能表示圆.(4)方程2x 2+2y 2-5x =0化为⎝ ⎛⎭⎪⎫x -542+y 2=⎝ ⎛⎭⎪⎫542,∴它表示以⎝ ⎛⎭⎪⎫54,0为圆心,54为半径长的圆.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆,应满足的条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0.如果x 2+y 2-2x +y +k =0是圆的方程,则实数k 的范围是________. 【解析】 由题意可知(-2)2+12-4k >0,即k <54. 【答案】 ⎝ ⎛⎭⎪⎫-∞,54 求圆的一般方程求过三点O (0,0),M (1,1),N (4,2)的圆的方程,并求这个圆的半径长和圆心坐标.【思路探究】 设圆的一般式方程―――――――→过点O 、M 、N 求圆的一般式方程――――→公式法求圆心坐标、半径【自主解答】 设圆的一般式方程为x 2+y 2+Dx +Ey +F =0,由题意可知点O (0,0),M (1,1),N (4,2)满足圆的方程,即⎩⎨⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得⎩⎨⎧D =-8,E =6,F =0.所以,所求圆的一般方程是x 2+y 2-8x +6y =0化为标准方程为(x -4)2+(y +3)2=25.∴圆的圆心坐标是(4,-3),半径r =5.1.本题是待定系数法求圆的方程,由于已知条件是圆上三点,不易求出圆心、半径,故选用一般方程,先设出圆的一般方程,再把三点坐标代入得到关于D 、E 、F 的一个三元一次方程组,解得结果.2.用待定系数法求圆的方程时一般方程和标准方程的选择(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件和圆心或半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出参数D ,E ,F .(2014·吉林高一检测)已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径为2,求圆的一般方程.【解】 圆心C ⎝ ⎛⎭⎪⎫-D2,-E 2,因为圆心在直线x +y -1=0上,所以-D 2-E2-1=0,即D +E =-2,① 又r =D 2+E 2-122=2,所以D 2+E 2=20,②由①②可得⎩⎨⎧ D =2,E =-4或⎩⎨⎧D =-4,E =2.又圆心在第二象限,所以-D2<0即D >0,所以⎩⎨⎧D =2,E =-4,所以圆的一般方程为x 2+y 2+2x -4y +3=0.与圆有关的轨迹问题已知点A (4,0),P 是圆x 2+y 2=1上的动点,求线段AP 的中点M 的轨迹方程.【思路探究】 本题考查动点轨迹方程的求法,关键是寻找动点M 的横、纵坐标之间的关系. 【自主解答】 设M (x ,y ),由于M 是AP 的中点,∴P 点的坐标是(2x -4,2y ). ∵P 是圆x 2+y 2=1上的点,∴(2x -4)2+(2y )2=1.即动点M 的轨迹方程为(x -2)2+y 2=14.1.本题是运用代入法求轨迹方程.用动点坐标表示相关坐标,再根据相关点所满足的方程即可求动点的轨迹方程,这种求轨迹方程的方法叫作相关点法或代入法.2.求轨迹方程的一般步骤(1)建立适当坐标系,设出动点M 的坐标(x ,y ). (2)列出点M 满足条件的集合.(3)用坐标表示上述条件,列出方程f (x ,y )=0. (4)将上述方程化简.(5)证明化简后的以方程的解为坐标的点都是轨迹上的点.已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半. (1)求动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹. 【解】 (1)设动点M 的坐标为(x ,y ),∵A (2,0),B (8,0),|MA |=12|MB |,∴(x -2)2+y 2=14[(x -8)2+y 2].化简得x 2+y 2=16,即动点M 的轨迹方程为x 2+y 2=16. (2)设点N 的坐标为(x ,y ),∵A (2,0),N 为线段AM 的中点,∴点M 的坐标为(2x -2,2y ). 又点M 在圆x 2+y 2=16上,∴(2x -2)2+4y 2=16,即(x -1)2+y 2=4. ∴点N 的轨迹是以(1,0)为圆心,2为半径的圆. 【易错易误辨析】忽略圆的一般方程中D 2+E 2-4F >0致误已知定点A (a,2)在圆x 2+y 2-2ax -3y +a 2+a =0的外部,求a 的取值范围.【错解】 因为点A (a,2)在圆的外部,所以a 2+4-2a 2-3×2+a 2+a >0, 解得a >2.故所求a 的范围为(2,+∞).【错因分析】 上述解法的错误在于“忘记判断二元二次方程表示圆的条件”.【防范措施】 对于二元二次方程x 2+y 2+Dx +Ey +F =0只有在D 2+E 2-4F >0的前提下,它才表示圆,故求解本题在判定出点与圆的位置关系后,要验证所求参数的范围是否满足D 2+E 2-4F >0.【正解】 因为点A 在圆的外部,所以有 ⎩⎨⎧a 2+4-2a 2-3×2+a 2+a >0,-2a 2+-32-4a 2+a >0,解得⎩⎪⎨⎪⎧a >2,a <94,即2<a <94.所以a 的取值范围为⎝ ⎛⎭⎪⎫2,94. 【课堂小结】1.圆的一般方程x 2+y 2+Dx +Ey +F =0是圆的另一种表示形式,其隐含着D 2+E 2-4F >0,同圆的标准方程类似,求圆的一般式方程也需要三个独立的条件.2.求轨迹的方法很多,注意合理选取,在求与圆有关的轨迹时,注意充分利用圆的性质.。
圆的一般方程》教案
圆的一般方程》教案教案教学目标:1.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心和半径;2.熟练地用待定系数法由已知条件导出圆的方程;3.培养学生用配方法和待定系数法解决实际问题的能力;4.为进一步研究数学和其他相关学科的基础知识和基本方法打下牢固的基础。
教学重难点:重点:能用配方法,由圆的一般方程求出圆心坐标和半径;能用待定系数法,由已知条件导出圆的方程。
难点:圆的一般方程的特点。
教学过程:一、情景导入问题:我们已经讨论了圆的标准方程(x-a)²+(y-b)²=r²,现在将展开可得x²+y²-2ax-2by+a²+b²-r²=0.可以看出,任何一个圆的方程都可以写成x²+y²+Dx+Ey+F=0的形式。
请思考一下:形如x²+y²+Dx+Ey+F=0的方程的曲线是不是圆?二、交流展示1.圆的方程有几种形式?2.怎样用待定系数法求出圆的一般方程?三、合作探究探究一:圆的一般方程的定义教师:请同学们写出圆的标准方程并把圆的标准方程展开整理:学生:(x-a)²+(y-b)²=r²,圆心(a,b),半径r展开得:x²+y²-2ax-2by+a²+b²-r²=0.教师:取D=-2a,E=-2b,F=a²+b²-r²,得到x²+y²+Dx+Ey+F=0.这个方程是圆的方程。
反过来给出一个形如x²+y²+Dx+Ey+F=0的方程,它表示的曲线一定是圆吗?把x²+y²+Dx+Ey+F=0配方得到(x+D/2)²+(y+E/2)²=(D²+E²-4F)/4.当D²+E²-4F>0时,方程表示以(-D/2,-E/2)为圆心,半径为√(D²+E²-4F)/2的圆;当D²+E²-4F=0时,方程只有一个实数解x=-D/2,y=-E/2,表示一个点;当D²+E²-4F<0时,方程没有实数解,因而它不表示任何图形。
圆方程教学设计(精选4篇)_圆的方程教学设计
圆方程教学设计(精选4篇)_圆的方程教学设计圆方程教学设计(精选4篇)由作者整理,希望给你工作、学习、生活带来方便。
第1篇:圆的一般方程教学设计一、学习目标知识与技能:在熟练记忆圆的标准方程的基础上,能通过配方法将方程配方,从而得出此方程表示圆的条件,记住此条件,并会求圆心和半径;熟练进行标准方程和一般方程之间的互化;通过比较得出求圆方程的两种方法(待定系数法和几何性质法)。
过程与方法:通过对方程表示圆的条件的探究,培圆的一般方程教学设计养学生探索发现和解决问题的能力,通过比较例题,感悟归纳和总结的学习方法。
情感态度与价值观:通过对数学思想和方法的渗透,让学生感受解决问题的不同思考角度和过程,激励学生积极思考,勇于探索的精神。
二、重点难点:探究方程的两种方法(待定系数法和几何性质法)。
三、学法提示:探究式;比较归纳式四、学习过程:包括相关预习、学习探究、反馈和展示、启发点拨、归纳小结、释疑答难、训练巩固、点拨校正、作业等。
1、自主预习(用10分钟时间阅读教材内容,勾勒自己的疑惑,查阅相关的资料辅助解决疑惑,记录自己一些独特的见解,完成学业质量模块测评的环节1,包括基础知识的记忆、思维提升的判断及A、B、C不同层级的练习)2、思考探究(引入):问题1:圆的标准方程是什么?你能正确展开吗?此时重点观察和发现后进生的练习过程,及时地予以真诚的语言鼓励或者一个肯定的眼神、一个手势,让这些学生从一开始投入到我能学会的自信心当中来。
问题2:方程方程表示圆的条件;求圆方程在解决这两个问题之前老师紧接着问:由问题1你能想到解决这两个问题的办法吗?或者由这两个方程的形式特点你想到了什么方法来处理这两个方程?这样培养学生善于发现问题之间的内在联系的意识,也培养学生观察分析问题的能力。
这样学生自然采用配方法处理,第一个表示一个圆,第二个不表示任何图形。
问题3:将问题2一般化,方程都表示圆吗?在什么条件下表示圆?3、小组展示先给学生5分钟自主探究(因为涉及到分情况讨论,可能有一半学生会出错),而后各个小组在小组长的展示下相互完善,达成共识。
圆的一般方程教案
圆的一般方程教材分析:1.地位与重要性本节课是高中数学必修2第四章平面解析几何初步中《圆的方程》一节重要内容。
其主要内容是通过圆的标准方程推出圆的一般方程。
使学生加深对圆的一般方程的认识与记忆,认识到标准方程与一般方程的联系与区别。
并对数学中分类思想,对比记忆等思想有更深的了解和掌握。
2.教学目标知识目标:1).掌握圆的一般方程及一般方程的特点2).能将圆的一般方程化成圆的标准方程,进而求出圆心和半径3).能用待定系数法由已知条件求出圆的方程能力目标:1).认识研究问题中由简单到复杂,由特殊到一般的化归思想。
2).通过分析,充分了解分类思想在数学中的重要地位,强化学生的观察,思考能力。
情感目标:培养学生勇于思考问题,勇于探究问题的精神。
3.教学重难点教学重点:1.圆的一般方程220x y Dx Ey F ++++=的形式特征。
2.待定系数法求圆的方程。
3.求轨迹方程教学难点:方程220x y Dx Ey F ++++=对224D E F +-分类讨论如下:当 224D E F +-=0 时,方程表示一个点(,)22D E -- 当2240D E F +-<时,方程不表示任何图形。
当2240D E F +->时,方程表示一个圆。
以(,)22D E --为圆心,以R =为半径的圆。
难点突破:通过对224D E F +-的分类讨论,使问题化难为易,难点个个攻破,使课堂教学显得轻松易学。
二.教法分析根据以上教材分析,贯彻以启发性教学原则,教师引导,学生学习为主体的教学思想。
具体的教法为1)启发式教学:通过学生对圆的标准方程的观察,提出问题,让学生讨论,交流,总结并发表意见,说出圆的一般方程的形式。
2)分析与讨论结合:教师对问题的适时启发,引导,与学生的讨论相结合,将问题的三种情况分析清楚。
3)多媒体辅助教学:借助多媒体教学,提高课堂教学的效率,加大课堂的信息量,使教学目标更好的实现。
三.学法分析数学教学不但要传授学生课本知识,更要培养学生的数学学习能力。
《圆的一般方程》教学设计和教案
《圆的一般方程》教学设计和教案教学设计:圆的一般方程一、教学目标1.理解圆的定义以及圆的性质。
2.掌握圆的一般方程的表示方法以及解题方法。
3.能够运用圆的一般方程解决问题。
二、教学内容1.圆的定义和性质概述。
2.圆的一般方程的推导。
3.圆的一般方程的示例题和解题方法。
三、教学过程教学环节教学步骤教学方法时间安排引入1.引入圆的定义和性质。
教师讲解,提问10分钟2.提问:如何用方程表示一个圆?讲解1.提供一个圆的示例图,解释圆的一般教师讲解,举例20分钟方程的表示方法。
2.分析圆的一般方程的推导过程。
实例1.给出一些圆的一般方程的示例题,学生个人思考,讨论,教师点评30分钟解题让学生自己试着解答。
2.展示解题过程,并扩展其他解题方法。
练习1.分组小组合作,让学生互相出题、解题。
学生合作,教师辅导20分钟2.教师进行现场点评和总结。
四、教学重点和难点1.掌握圆的一般方程的表示方法和解题方法。
2.能够应用圆的一般方程解决相关问题。
五、教学资源和学具1.教科书或教学课件。
2.圆的示例图。
3.计算器、白板、黑板、粉笔。
六、教学评价和反思1.观察学生对圆的一般方程的理解程度,解题情况和解题方法的运用能力。
2.查看学生的笔记及练习题,分析学生的掌握程度,针对性地进行补充和巩固。
3.对教学设计的有效性进行评估,总结可借鉴部分,并进行个人教学反思,寻找改进点。
教案:圆的一般方程一、教学目标1.理解圆的定义以及圆的性质。
2.掌握圆的一般方程的表示方法以及解题方法。
3.能够运用圆的一般方程解决问题。
二、教学内容1.圆的定义和性质概述。
2.圆的一般方程的推导。
3.圆的一般方程的示例题和解题方法。
三、教学步骤步骤一:引入(10分钟)1.教师引入圆的定义和性质,可示意图和实例说明。
2.提问:如何用方程表示一个圆?步骤二:讲解(20分钟)1.教师提供一个圆的示例图,解释圆的一般方程的表示方法。
2.分析圆的一般方程的推导过程,引导学生根据半径和圆心坐标的关系推导出圆的一般方程。
《圆的方程》的课堂教案设计(通用10篇)
《圆的方程》的课堂教案设计《圆的方程》的课堂教案设计(通用10篇)作为一位不辞辛劳的人民教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
教案要怎么写呢?下面是小编精心整理的《圆的方程》的课堂教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆的方程》的课堂教案设计篇11、教学目标(1)知识目标:a、在平面直角坐标系中,探索并掌握圆的标准方程;b、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;c、利用圆的方程解决与圆有关的实际问题。
(2)能力目标:a、进一步培养学生用解析法研究几何问题的能力;b、使学生加深对数形结合思想和待定系数法的理解;c、增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。
2、教学重点、难点(1)教学重点:圆的标准方程的求法及其应用。
(2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程②选择恰当的坐标系解决与圆有关的实际问题。
3、教学过程(一)创设情境(启迪思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?[引导]:画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)将x=2.7代入,得即在离隧道中心线2。
7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心在,半径为时又如何呢?[学生活动]:探究圆的方程。
[教师预设]:方法一:坐标法如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M适合的条件可表示为①把①式两边平方,得(x―a)2+(y―b)2=r2方法二:图形变换法方法三:向量平移法(三)应用举例(巩固提高)I直接应用(内化新知)问题三:1、写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为(3)经过点,圆心在点2、根据圆的方程写出圆心和半径II灵活应用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。
人教高一数学教学设计之《4.1.2圆的一般方程》
人教高一数学教学设计之《4.1.2圆的一般方程》一. 教材分析《4.1.2圆的一般方程》这一节主要让学生了解圆的一般方程形式,并学会如何将圆的参数方程转化为一般方程。
教材通过实例引导学生理解圆的方程,培养学生解决实际问题的能力。
二. 学情分析高一学生已经学习了函数、方程等基础知识,具备一定的数学思维能力。
但学生对圆的一般方程可能初次接触,理解上存在一定难度。
因此,在教学过程中,教师需要通过具体实例、引导学生自主探究,以加深学生对圆的一般方程的理解。
三. 教学目标1.了解圆的一般方程的形式及意义;2.学会将圆的参数方程转化为一般方程;3.能够运用圆的一般方程解决实际问题。
四. 教学重难点1.圆的一般方程的形式及意义;2.如何将圆的参数方程转化为一般方程。
五. 教学方法1.实例教学:通过具体实例让学生了解圆的一般方程;2.自主探究:引导学生自主探究圆的一般方程的特点及转化方法;3.小组讨论:分组讨论,分享学习心得,互相解答疑问。
六. 教学准备1.准备相关实例,如圆的参数方程和一般方程的例子;2.准备投影仪,用于展示实例和讲解;3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用投影仪展示圆的参数方程和一般方程的例子,引导学生思考:如何用一个方程来表示一个圆?2.呈现(10分钟)介绍圆的一般方程的形式及意义,解释圆的一般方程与圆的参数方程之间的关系。
3.操练(10分钟)让学生分组讨论,尝试将给出的圆的参数方程转化为一般方程。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)挑选几组学生的答案,进行讲解和评价。
让学生明确圆的一般方程的特点及转化方法。
5.拓展(10分钟)让学生运用圆的一般方程解决实际问题,如:已知圆的方程,求圆的半径和圆心坐标。
6.小结(5分钟)对本节课的内容进行总结,强调圆的一般方程的重要性和应用价值。
7.家庭作业(5分钟)布置一些有关圆的一般方程的练习题,让学生课后巩固所学知识。
圆的一般方程》教案(公开课)
圆的一般方程》教案(公开课)
x2+y2+Dx+Ey+F=0和圆的一般方程x2+y2+Dx+Ey+F=0的异同点是什么?
答案:相同点是都是二元二次方程,不同点是圆的一般方程有限制条件D2+E2-4F>0,且表示的轨迹为圆形,而二元二次方程的轨迹可以是圆、椭圆、双曲线或者无图形.因此,圆的一般方程的特点是必须满足限制条件D2+E2-4F>0,且表示的轨迹为圆形.
四)求圆的一般方程的标准方程
1.通过配方求圆心和半径
将圆的一般方程x2+y2+Dx+Ey+F=0化为标准方程(x-
a)2+(y-b)2=r2,可以得到圆心坐标为(a,b),半径为
r=√(a2+b2-F).
2.用待定系数法,由已知条件导出圆的方程
以求圆心坐标为例,假设圆心坐标为(a,b),则圆的一般方程为(x-a)2+(y-b)2=r2,展开可得x2+y2-2ax-2by+(a2+b2-
r2)=0.由此,可以列出方程组:
x2+y2-2ax-2by+(a2+b2-r2)=0
x1^2+y1^2-2ax1-2by1+(a2+b2-r2)=0
x2^2+y2^2-2ax2-2by2+(a2+b2-r2)=0
解方程组得到a=(x1+x2)/2,b=(y1+y2)/2,r=√[(x1-
x2)2+(y1-y2)2]/2.
五)实际问题的应用
通过配方和待定系数法,可以解决一些实际问题,如求解两个圆的位置关系、求解圆与直线的交点等等.
五、教学反思
本节课主要讲解了圆的一般方程,重点在于让学生掌握通过配方和待定系数法求解圆的一般方程的方法,以及圆的一般方程的特点和应用.在教学过程中,要引导学生深入思考,分析问题,培养解决实际问题的能力.同时,要注意让学生掌握基本概念和公式,避免死记硬背.。
1.4.1圆的一般方程教案
4.1.2《圆的一般方程》教案【教学目标】1.讨论并掌握圆的一般方程的特点,并能将圆的一般方程化为圆的标准方程,从而求出圆心的坐标和半径.2.通过对圆的一般方程的特点的讨论,培养学生严密的逻辑思维和严谨的科学态度;通过例题的分析讲解,培养学生分析问题的能力.【教学重点与难点】圆的一般方程的探求过程及其特点是教学重点;根据具体条件选用圆的方程为教学难点【教学过程】问题的导入:问题1: 圆的标准方程是 ,圆心坐标是 ,半径是 ,问题2:把圆的标准方程展开,得 , 令-2a=D,-2b=E,a 2+b 2-r 2=F ,结论:任何一个圆可以写成下面的形式x 2+y 2+Dx+Ey+F=0问题3:是不是任何一个形如x 2+y 2+Dx+Ey+F=0的方程表示的曲线都是圆呢?把方程: x 2+y 2+Dx+Ey+F=0配方可得: (1)当D 2+E 2-4F>0时,表示以( , )为圆心,以( )为半径的圆(2)当D 2+E 2-4F=0时,方程只有一组解x = -D/2, y = -E/2,表示一个点( , ).(3)当D 2+E 2-4F<0时,方程无实数解,所以不表示任何图形.新课讲解:1:圆的一般方程的定义: 22224()()224D E D E F x y +-+++=2:圆的一般方程的特点:x 2与y2系数相同并且不等于0,没有xy这样的二次项,D2+E2-4F>03:练习判断下列方程能否表示圆的方程,若能写出圆心与半径(1) x2+2y2-6x+4y-1=0 (2) x2+y2-3xy+5x+2y=0(3) x2+y2-2x+4y-4=0 (4) x 2+y2-12x+6y+50=0(5) 2x2+2y2-12x+4y=04:例题讲解例1求过点O(0,0) ,M(1,1),N(4,2) 的圆的方程,并求出这个圆的半径和圆心坐标.小结:变式训练1 求经过三点(0,0),(2,-2),(4,0)的圆的方程例2已知:线段AB的端点B的坐标是(4,3),端点A在(x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的一般方程(一)教学目标1.知识与技能(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x2 + y2 + Dx + Ey + F = 0表示圆的条件.(2)能通过配方等手段,把圆的一般方程化为圆的标准方程,能用待定系数法求圆的方程.(3)培养学生探索发现及分析解决问题的实际能力.2.过程与方法通过对方程x2 + y2 + Dx + Ey + F = 0表示圆的条件的探究,培养学生探索发现及分析解决问题的实际能力.3.情感态度与价值观渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索.(二)教学重点、难点教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F .教学难点:对圆的一般方程的认识、掌握和运用.(三)教学过程教学环节教学内容师生互动设计意图课题引入问题:求过三点A(0,0),B (1,1),C(4,2)的圆的方程.让学生带着问题进行思考设疑激趣导入课题.利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程.概念形成与深化请同学们写出圆的标准方程:(x–a)2+(y –b)2 = r2,圆心(a,b),半径r.把圆的标准方程展开,并整理:x2 + y2 –2ax – 2by + a2 + b2 –r2=0.取D = –2a,E = –2b,F = a2 + b2–r2得x2 + y2 + Dx + Ey+F = 0①这个方程是圆的方程.反过来给出一个形如x2 + y2 + Dx + Ey +F= 0的方程,它表示的曲线一定是圆吗?把x2 + y2 + Dx + Ey + F = 0配方得22224()()224D E D E Fx y+-+++=②(配方过程由学生去完成)这个方程是不是表示圆?(1)当D2 + E2– 4F>0时,方程②表示以(,)22D E--为圆心,整个探索过程由学生完成,教师只做引导,得出圆的一般方程后再启发学生归纳.圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.通过学生对圆的一般方程的探究,使学生亲身体会圆的一般方程的特点,及二元二次方程表示圆所满足的条件.22142D E F +-为半径的圆;(2)当D 2 + E 2 – 4F = 0时,方程只有实数解,22D Ex y =-=-,即只表示一个点(,)22D E--; (3)当D 2 + E 2 – 4F <0时,方程没有实数解,因而它不表示任何图形.综上所述,方程x 2 + y 2 + Dx + Ey + F = 0表示的曲线不一定是圆.只有当D 2 + E 2 – 4F >0时,它表示的曲线才是圆,我们把形如x 2 + y 2 + Dx + Ey + F = 0的表示圆的方程称为圆的一般方程.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显. 应用举例例1 判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x 2 + 4y 2 – 4x + 12y + 9 = 0 (2)4x 2 + 4y 2 – 4x + 12y + 11 = 0解析:(1)将原方程变为x 2 + y 2 – x + 3y +94= 0 D = –1,E =3,F =94. ∵D 2 + E 2 – 4F = 1>0学生自己分析探求解决途径:①用配方法将其变形化成圆的标准形式.②运用圆的一般方程的判断方法求解.但是,要注意对于(1)4x 2 + 4y 2 – 4x + 12y + 9 = 0来说,这里的D = –1,E = 3,94F =通过例题讲解使学生理解圆的一般方程的代数特征及与标准方程的相互转化更进一步培养学生探索发现及分析解决∴此方程表示圆,圆心(12,32-),半径r =12.(2)将原方程化为x2 + y2 –x + 3y +114= 0D = –1,E =3,F =114. D2 + E2– 4F = –1<0∴此方程不表示圆. 而不是D= –4,E=12,F = 9.问题的能力.例2 求过三点A (0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程.解:设所求的圆的方程为:x2 + y2+ Dx + Ey + F = 0∵A (0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于D、E、F的三元一次方程组:即2042200FD E FD E F=⎧⎪+++=⎨⎪+++=⎩例2 讲完后学生讨论交流,归纳得出使用待定系数法的一般步骤:1.根据题设,选择标准方程或一般方程.2.根据条件列出关于a、b、r或D、E、F的方程组;3.解出a、b、r或D、E、F,代入标准方程或一般方程.解此方程组,可得:D = –8,E =6,F = 0 ∴所求圆的方程为:x 2 + y 2 – 8x + 6y = 0221452r D E F =+-=; 4,322D F-=-=-. 得圆心坐标为(4,–3).或将x 2 + y 2 – 8x + 6y = 0左边配方化为圆的标准方程,(x – 4)2 + (y + 3)2 = 25,从而求出圆的半径r = 5,圆心坐标为(4,–3).例3 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上(x + 1)2 + y 2 = 4运动,求线段AB 的中点M 的轨迹方程.解:设点M 的坐标是(x ,y ),点A 的坐标是(x 0,y 0)由于点B 的坐标是(4,3)且M 是线段AB 中重点,所以0043,22x y x y ++==,① 于是有x 0 = 2x – 4,y 0 = 2y – 3因为点A 在圆(x + 1)2 + y 2 = 4上运动,所以点A 的坐标满足方程(x + 1)2 + y 2 = 4,即 (x 0 + 1)2 + y 02 = 4 ② 把①代入②,得(2x – 4 + 1)2 + (2y – 3)2 = 4,教师和学生一起分析解题思路,再由教师板书.分析:如图点A 运动引起点M 运动,而点A 在已知圆上运动,点A 的坐标满足方程(x + 1)2 + y 2 = 4.建立点M 与点A 坐标之间的关系,就可以建立点M 的坐标满足的条件,求出点M 的轨迹方程.备选例题例1 下列各方程表示什么图形?若表示圆,求出圆心和半径.(1)x2 + y2 + x + 1 = 0;(2)x2 + y2 + 2ac + a2 = 0 (a≠0);(3)2x2 + 2y2 + 2ax– 2ay = 0 (a≠0).【解析】(1)因为D= 1,E= 0,F= 1,所以D2 + E2– 4F<0 方程(1)不表示任何图形;(2)因为D= 2a,E= 0,F=a2,所以D2 + E2– 4F= 4a2– 4a2 = 0,所以方程(2)表示点(–a,0);(3)两边同时除以2,得x 2 + y 2+ ax – ay = 0,所以D = a ,E = – a ,F = 0. 所以D 2 + E 2 – 4F >0, 所以方程(3)表示圆,圆心为(,)22a a-,半径|r a =. 点评:也可以先将方程配方再判断.例2 已知一圆过P (4,–2)、Q (–1,3)两点,且在y轴上截得的线段长为的方程.【分析】涉及与圆的弦长有关的问题时,为简化运算,则利用垂径直径定理和由半弦长、弦心距、半径所构成的三角形解之.【解析】法一:设圆的方程为:x 2 + y 2 + Dx + Ey + F = 0 ① 将P 、Q 的坐标分别代入①得4220310D E F D E F -+=-⎧⎨--=⎩令x = 0,由①,得y 2 + Ey + F = 0 ④由已知|y 1 – y 2| = y 1,y 2是方程④的两根. ∴(y 1 – y 2)2 = (y 1 + y 2) – 4y 1y 2 = E 2 – 4F = 48 ⑤ 解②③⑤联立成的方程组,得2012D E F =-⎧⎧⎪⎪=⎨⎨⎪⎪=-⎩⎩D=-10或E=-8F=4 故所求方程为:x 2 + y 2 – 2x – 12 = 0或x 2 + y 2 – 10x – 8y + 4 = 0. 法二:求得PQ 的中垂线方程为x – y – 1 = 0 ① ∵所求圆的圆心C 在直线①上,故设其坐标为(a ,a – 1), 又圆C的半径||r CP == ②由已知圆C 截y轴所得的线段长为C 到y 轴的距离为|a |.② ③222r a =+ 代入②并将两端平方,得a 2 – 5a + 5 = 0, 解得a 1 = 1,a 2 = 5.∴12r r ==故所求的圆的方程为:(x – 1)2 + y 2 = 13或(x – 5)2 + (y – 4)2 = 37.【评析】(1)在解本题时,为简化运算,要避开直接去求圆和y 轴的两个交点坐标,否则计算要复杂得多.(2)涉及与圆的弦长有关问题,常用垂径定理和由半弦长、弦心距及半径所构成的直角三角形解之,以简化运算.例3 已知方程x 2 + y 2 – 2(t + 3)x + 2(1 – t 2)y + 16t 4 + 9 = 0表示一个圆,求 (1)t 的取值范围; (2)该圆半径r 的取值范围. 【解析】原方程表示一个圆的条件是D 2 +E 2 – 4F = 4(t + 3)2 + 4(1 – t 2)2 – 4(16t 4 + 9)>0 即7t 2 – 6t – 1<0,∴117t -<<(2)2222224224(3)(1)(169)76143167()77D E F r t t t t t t +-==++--+=-++=--+∴2160,07r r <≤<<。