二次根式的加减教案(教学设计)

合集下载

二次根式加减法教学设计(完整资料).doc

二次根式加减法教学设计(完整资料).doc

【最新整理,下载后即可编辑】二次根式加减法教学设计(第一课时)一、教材分析:二次根式加减法是新人教版第十六章——16.3小节。

主要内容是二次根式的加减运算和二次根式的加、减、乘、除混和运算。

本节的基础是学生已经掌握了把二次根式化简成最简二次根式的方法。

重点是二次根式的加减及混合运算。

本课地位,既是第五章相关内容的发展,又是后面将学习的解直角三角形、一元二次方程、二次函数等章节的重要基础,起承上启下的作用。

二、学情分析:不利因素:我校学生基础较差,两极分化较严重,部分学生对第五章平方根、立方根的知识掌握的不够扎实。

有利因素:小组合作学习在我校的全面开展为本节课教学任务的完成打下良好的基础。

三、教学目标:知识技能:会进行二次根式的加减法运算。

数学思考:学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

解决问题:通过加减法运算,培养学生的运算能力。

情感态度:通过加减法运算解决生活中实际问题,体会数学知识应用的价值,提高学生学习数学的兴趣。

四、教学重点、难点:教学重点:合并被开方数相同的二次根式。

教学难点:二次根式加减法的实际应用。

五、教学方法:合作、讨论、探究六、教学媒体:投影七、教学活动过程:【活动一】问题:1、现有一块长7.5dm、宽5dm的木板,能否采用如教科书图16.3-1所示的方式,在这块木板上截出两个面积分别是8dm2和18dm2的正方形木板?师生行为:(1)学生分组讨论,探求方案。

(2)教师倾听学生的交流,指导学生探究。

2、分析188 的计算过程教师关注:学生能否将8和18化成最简二次根式;能否将分配律运用到计算中。

小结:二次根式加减法时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

(设计意图:此题贴近学生生活,易激发学生的学习兴趣。

采用分组讨论,自主探究的方式解决问题,提高学生的自主学习能力。

)3、下列计算是否正确?为什么?(1)38-=38- (2)94+=94+ (3) 9×16=169⨯(4) 22223=-(设计意图:使学生掌握被开方数相同的二次根式合并的方法,注意二次根式加减运算与乘除运算的联系与区别,提高解题的准确程度。

人教版数学八年级下册16.3《二次根式的加减》教学设计

人教版数学八年级下册16.3《二次根式的加减》教学设计

人教版数学八年级下册16.3《二次根式的加减》教学设计一. 教材分析人教版数学八年级下册16.3《二次根式的加减》是本节课的主要内容。

在此之前,学生已经学习了二次根式的性质和乘除运算,本节课将进一步引导学生学习二次根式的加减运算。

教材通过实例引入二次根式的加减运算,让学生在实际问题中体会和理解二次根式的加减法则。

二. 学情分析学生在学习本节课之前,已经掌握了二次根式的性质和乘除运算,具备了一定的数学基础。

但学生在进行二次根式的加减运算时,容易出错,对运算法则理解不深。

因此,在教学过程中,需要帮助学生巩固已学的知识,并通过实例让学生深入理解二次根式的加减法则。

三. 教学目标1.理解二次根式的加减法则,并能正确进行二次根式的加减运算。

2.培养学生运用二次根式解决实际问题的能力。

3.提高学生的数学思维能力和运算能力。

四. 教学重难点1.重点:二次根式的加减法则,二次根式的加减运算。

2.难点:理解二次根式加减法则是如何得出的,如何运用二次根式加减法则解决实际问题。

五. 教学方法1.采用问题驱动法,通过实例引入二次根式的加减运算,激发学生的学习兴趣。

2.运用合作学习法,让学生在小组内讨论二次根式的加减法则,培养学生相互学习、共同进步的能力。

3.采用归纳总结法,引导学生总结二次根式的加减法则,加深学生对知识的理解。

4.运用练习法,让学生在实践中掌握二次根式的加减运算。

六. 教学准备1.准备相关的教学PPT,展示二次根式的加减运算实例。

2.准备一些练习题,用于巩固学生的学习成果。

3.准备黑板,用于板书重要的运算过程和结论。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何进行二次根式的加减运算。

例如,问学生:“已知√3 + √5 = a,求a的值。

”让学生尝试解答,从而引出本节课的主题。

2.呈现(10分钟)展示几个二次根式的加减运算实例,让学生观察和分析。

例如:2√5 + 3√5引导学生观察这些实例,发现二次根式加减运算的规律。

初中数学_二次根式的加减教学设计学情分析教材分析课后反思

初中数学_二次根式的加减教学设计学情分析教材分析课后反思

《二次根式的加减》教学设计(一)教学目标知识目标了解同类二次根式的概念,会辨别同类二次根式.(二)能力目标1. 培养学生观察、分析及解决问题的能力.2. 经历探究二次根式的加法和减法运算法则的过程,理解二次根式的加法和减法的算理,进一步发展学生的类比推理能力.(三)情感目标培养学生的探索精神和解决问题的能力.教学重点能熟练地进行简单二次根式的加减运算.教学难点识别同类二次根式,快速准确地进行二次根式加减法的运算.教学过程一、从探索中发现[师]著名的数学家笛卡尔说过:数学是知识的工具,亦是其他知识工具的源泉。

所有研究顺序和度量的科学均和数学有关。

下面让我们通过面积问题进一步研究一下二次根式.1.m,它们的长分别2是2 m和3 m,用不同方法求这两个长方形的面积的和.2.如果两个正方形的面积分别是18和8,那么大正方形的边长比小正方形的边长大多少?[师] 第一题中两个式子的关系是什么?[生] 相等.[师] 第二题可否直接运算?为什么?[生] 被开放数不同,因此不能直接计算.[师] 还能计算吗?如何运算呢?[生] 先化简.(边说边化简运算)[师] 像这样经过化简后能运算的就是我们今天要学习的同类二次根式.(ppt出示同类二次根式的定义)设计意图:通过一个关于面积的问题,引出同类二次根式的概念,并从直观上感受同类二次根式的形式。

二、从交流中体会[师]你能从定义当中提炼出关键信息吗?[生]化简成最简二次根式、被开方数相同[师]看来大家对定义已经基本了解,下面通过一组判断题快速的检测一下(出示PPT 中辨析题)下列各式中,它们是同类二次根式? (请学生回答) 追问:在第(1)小题和第(2)小题中,化简成最简二次根式后二次根式前面的系数和符号对同类二次根式有影响吗?(PPT 展示)[师]通过这组练习,大家对同类二次根式的定义已经基本掌握,如果两个同类二次根式相加减,。

(齐答)追问:这种运算和之前我们学的那种运算类似?[生] 合并同类项[师] 如果这样一组二次根式相加减,如何做呢?(PPT 出示例题,教师边引导学生齐答化简结果边板书)[师] 如果在后两项加括号,又如何做?(找学生回答)小组合作:探索二次根式加减的一般步骤。

《二次根式的加减》教学设计方案

《二次根式的加减》教学设计方案

《二次根式的加减》教学设计方案《《二次根式的加减》教学设计方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:二次根式的加减主题内容简介:在上一节学习的化简二次根式的基础上,进一步学习二次根式的加减,再化简二次根式的同时,引导学生概括出同类二次根式的概念,类比整式的加减运算中的合并同类项,给出二次根式的加减运算法则,从而进行二次根式的加减的混合运算。

学习目标分析知识与能力目标:1、了解同类二次根式的概念,掌握判断同类二次根式的方法;2、使学生能正确的合并同类二次根式,进行二次根式的加减运算。

过程与方法目标:正确掌握合并同类二次根式的方法。

情感态度与价值观目标:在探究合并同类二次根式的方法过程中,发展合作意识和合情推理能力。

学情分析前需知识掌握情况:由于初二学生的数学思维特征,由具体逻辑思维,逐步过渡到抽象逻辑思维,但仍有很大程度的经验性,而二次根式需要有一定的抽象思维能力,因此,本节课应用引导探究法,在老师引导下,学生进行自主探究的教学方法。

通过练习,检测学生对合并同类项及二次根式化简的掌握情况。

对微课的认识:我们是农村学校,学生从未经历过微课形式和使用微课学习的方式。

因为从未经历过这种方式的学习,所以我觉得学生们的接受程度可能只是一般。

学生特征分析学习态度:学生对将采用的自主学习和课堂学习模式感到新鲜,有浓厚的参与欲望。

学习风格:按照平常对学生的观察与接触,感觉他们会比较喜欢小组讨论、交流,比较多的参与到课堂,然后在较轻松的课堂氛围中进行学习,更能活跃学生的思维能力,提高学生的学习效率。

微课用于学生学习的教学策略分析微课用于学生学习的目的:使用微课用于学生学习,主要是复习二次根式的化简并由此引出同类二次根式的定义,注意引导学生对同类二次根式和同类项、二次根式的加减的合并同类项进行比较学习,在理解、掌握和应用二次根式的加减法则的学习过程中,逐步渗透类比、概括等数学思想,提高学生用数学方法解决实际问题的能力。

九年级数学上册《二次根式的加减法》教案、教学设计

九年级数学上册《二次根式的加减法》教案、教学设计
1.培养学生面对数学问题的积极态度,增强学生解决数学问题的信心,使学生感受到数学学习的乐趣。
2.通过二次根式的学习,让学生认识到数学知识在实际生活中的重要作用,提高学生对数学价值的认识。
3.培养学生严谨、求实的科学态度,使学生形成良好的学习习惯和道德品质。
在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣,引导学生主动探究,提高学生的数学素养。在此基础上,结合以下教学内容,进行教学设计。
2.思维能力:九年级学生的抽象思维能力逐渐增强,但仍有部分学生依赖具体形象思维。在教学过程中,教师应注重培养学生的抽象思维能力,引导学生运用分类讨论等方法解决问题。
3.学习方法:学生在学习过程中,可能仍依赖模仿和记忆,缺乏主动探究和合作学习的能力。教师应引导学生转变学习方式,培养学生的自主学习能力和合作意识。
二、教学内容
1.二次根式的概念及性质
2.二次根式的书写与化简
3.二次根式的加减法运算
4.二次根式的实际应用
三、教学过程
1.导入:通过实际问题,引出二次根式的概念,激发学生的学习兴趣。
2.基本概念:讲解二次根式的定义,让学生理解并掌握二次根式的性质。
3.书写与化简:教授二次根式的书写方法,引导学生进行二次根式的化简。
2.应用提高题:完成课本第46页第7-10题,这些题目将考察学生对二次根式加减法的掌握程度。学生需要运用所学的运算规则,解决实际问题,提高数学应用能力。
3.拓展思维题:选择课本第47页第11题作为拓展题目,鼓励学生通过小组讨论或独立思考,解决具有一定难度的二次根式问题。这类题目旨在培养学生的逻辑思维和创新能力,激发学生对数学学习的兴趣。
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。针对以下问题进行讨论:

16.3二次根式的加减二次根式的混合运算(教案)

16.3二次根式的加减二次根式的混合运算(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的加减法则和混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在实践活动方面,我发现同学们对于实验操作非常感兴趣,这也让他们对二次根式的理解更加深刻。但在操作过程中,有些同学可能因为手法不熟练而影响了实验结果。为了提高实践活动的效果,我考虑在下次课前进行一次简短的实验技巧培训,让同学们在操作时更加得心应手。
最后,从学生的反馈来看,他们对于二次根式的学习还是充满热情的。但在教学过程中,我也发现了自己需要改进的地方,如在讲解难点时更加耐心、细致,关注每一个学生的掌握情况。同时,我还要在课后及时了解学生的疑问和困惑,以便在下一节课中进行针对性的解答。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是形如\( \sqrt{a} \)的表达式,其中\( a \)是一个非负实数。它在数学中有着广泛的应用,特别是在几何、物理和工程领域。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算\( \sqrt{18} + \sqrt{12} \),通过这个案例,我们将学习如何将不同的二次根式转换为同类项,并进行加减运算。
-处理含有分数和变量的二次根式运算:难点在于如何正确处理分数和变量在二次根式运算中的规则。
-例如:解决\( \frac{1}{4}\sqrt{8x^2} \times \sqrt{2x} \)的问题,强调先简化根号内的表达式,然后进行乘法运算。

八年级数学上册《二次根式的加法和减法》教案、教学设计

八年级数学上册《二次根式的加法和减法》教案、教学设计
(三)学生小组讨论
1.教学内容:组织学生分组讨论,共同解决二次根式加减法的难题。
教学过程:
(1)教师给出讨论题目,如$\sqrt{45}+\sqrt{20}-\sqrt{24}$。
(2)学生分组讨论,共同探究解题方法。
(3)各小组汇报讨论成果,分享解题思路。
(4)教师点评,总结解题方法。
(四)课堂练习
(4)强调合并同类二次根式的方法,如$\sqrt{9}+\sqrt{16}-\sqrt{4}$的计算。
2.教学内容:通过示例和练习,巩固二次根式的加减法运算。
教学过程:
(1)教师展示例题,如$\sqrt{50}+\sqrt{18}-\sqrt{8}$,并引导学生运用运算法则进行计算。
(2)让学生独立完成类似的练习题,巩固所学知识。
(2)开展数学竞赛、趣味活动等,激发学生学习数学的兴趣,培养学生的数学素养。
四、教学内容与过程
(一)导入新课
1.教学内容:通过生活实例引出二次根式的概念,激发学生的学习兴趣。
教学过程:
(1)教师展示一个长方形的图形,提问:“如何计算这个长方形的对角线长度?”
(2)引导学生利用勾股定理,得到对角线长度为$\sqrt{a^2+b^2}$。
(2)选取几道具有代表性的题目,要求学生详细写出解题步骤,以便了解他们的思考过程。
3.应用问题解决:
(1)设计一些实际问题,让学生运用二次根式知识解决,例如计算不规则图形的面积、求解方程等。
(2)鼓励学生从生活中发现二次根式的应用,并进行分享和讨论。
4.拓展思维训练:
(1)布置一些拓展题,如二次根式的乘除运算、比较大小等,以激发学生的思维潜能。
(1)导入新课:通过生活实例,如计算面积、体积等,引出二次根式的概念。

八年级数学下册《二次根式的加减》教案、教学设计

八年级数学下册《二次根式的加减》教案、教学设计
5.小组合作任务:以小组为单位,共同完成一道复杂的二次根式加减法题目,并在课后进行组内讨论,分享解题思路和经验。
作业要求:
1.学生需独立完成作业,诚实面对自己的学习成果,不得抄袭他人答案。
2.注意作业书写的规范性和整洁性,养成良好的学习习惯。
3.家长需关注学生的学习进度,协助学生按时完成作业,并签字确认。
4.教师将针对作业完成情况进行检查,对学生的疑问给予解答,并对优秀作业进行表扬。
5.课堂小结:引导学生总结本节课所学内容,形成知识体系。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情;
2.培养学生勇于探究、积极思考的良好习惯,增强学生的自信心;
3.使学生认识到数学知识在实际生活中的应用价值,提高学生的数学素养;
4.培养学生团队合作意识,提高学生的人际沟通能力;
3.教师讲解:二次根式的加减法运算,首先需要合并同类项,然后根据加减法则进行计算。
4.教师示范:通过一个具体的例题,演示二次根式的加减法运算过程。
(三)学生小组讨论
1.教学内容:小组内讨论二次根式的加减法运算规则,以及解决实际问题的方法。
2.教学活动:教师将学生分成若干小组,每组选出一个组长,组织讨论。
5.教师总结:本节课我们学习了二次根式的相关知识,希望大家能够将所学运用到实际问题中,不断提高自己的数学素养。同时,教师强调课后复习的重要性,鼓励学生主动提问,巩固所学知识。
五、作业布置
为了巩固本节课所学知识,特布置以下作业:
1.基础题:完成课本第85页第1-4题,要求学生在理解二次根式概念的基础上,掌握合并同类项的方法,并熟练进行加减法运算。
3.讨论问题:如何合并同类项?在解决实际问题时,如何运用二次根式?

二次根式加减法教学设计.doc

二次根式加减法教学设计.doc

二次根式加减法教学设计.doc
二次根式加减法教学设计
一、课前准备
1、教学内容:讲解二次根式的加减法的计算方法。

2、教学目标:
(1)能熟练运用二次根式的加减法计算所给根式的值和理解其运算规律。

(2)能较好地掌握根式的特点。

3、教学重点:
(1)能掌握二次根式的加减法及相应的运算规律;
(2)能熟练运用相应的规律来实现给定的根式的计算;
(3)理解和掌握二次根式的特点。

二、课堂教学
1、复习:
先复习上节课学过的二次根式的特点,帮助学生清楚的认识到二次根式的概念。

2、介绍:
提出本节课想要讲授的加减法的概念,让学生了解到这是一种加减法,并且介绍一些简单的案例让学生更加清楚加减法的概念以及本节课想要传授的内容。

3、练习:
让学生分组排队,然后每组有三~四道题,让学生凭借自身的理解,利用加减法来求解所给的二次根式,课堂内进行答题,检查学生的学习成果以及熟悉的程度。

4、拓展:
将二次根式的加减法的求解过程进行讨论,检查是否完全掌握了算法,并用一个实际的案例来让学生进一步理解这种运算概念,以及能够熟练的加以应用。

三、课后反思
学习完加减法,要让学生总结出它的运算原理,及应用二次根式加减法求解根式的方法,以便更加清晰的理解并得到熟练的掌握,最终为进一步的深入学习打好基础。

二次根式的加减说课稿

二次根式的加减说课稿

二次根式的加减说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、规章制度、应急预案、条据书信、合同协议、评语大全、演讲致辞、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, rules and regulations, emergency plans, policy letters, contract agreements, comprehensive reviews, speeches, insights, teaching materials, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!二次根式的加减说课稿二次根式的加减说课稿(精选10篇)作为一名辛苦耕耘的教育工作者,时常需要用到说课稿,说课稿可以帮助我们提高教学效果。

二次根式的加减教案

二次根式的加减教案

二次根式的加减教案一、教学目标(一)知识与能力1.能正确理解二次根式的概念。

2.能灵活运用二次根式的加减运算法则。

(二)过程与方法通过小组合作学习、探究、归纳法等方法,培养学生的观察能力、实际运算能力和分析问题的能力。

(三)情感态度与价值观培养学生能独立思考和解决问题的能力,培养合作意识,培养对知识的积极态度和负责任的态度。

二、教学过程(一)预习导入教师提问:假如有√2个数相加得到√18,这两个数是多少?让学生想一想是什么原因保证了这两个数相加的结果是等于√18的。

通过学生的解答,引出今天的主题:二次根式的加减。

(二)自主探究学生分小组自主探究二次根式的加减法则,并总结出规律。

探究思路:设a、b为正实数,那么有以下结论:1. 两个二次根式相等的条件是当且仅当它们的和的平方等于它们的积。

即,当a+b=√2时,(a+b)²=(√2)²=2。

故有a²+2ab+b²=2。

即,a²+b²+2ab=2。

故有a²+b²=2-2ab。

因此,得出结论:当a+b=√2时,a²+b²=2-2ab。

2. 两个二次根式的和是二次根式的条件是当且仅当它们的被开方数相同。

即,当a+b=√2时,且a≠b。

那么,可得出结论:a²+b²=2-2ab,即(a+b)²=a²+b²+2ab=2。

即a²+b²=2-2ab-2ab=2-(a²+b²)。

(1)左边的-2ab是指√2与√2的积的2倍;右边的2是指√2与√2的和的2倍。

即-2ab=2,ab=-1。

因为a、b是正实数,所以ab=1.我们知道1的两个约数是1和-1.由于ab=1,所以a、b可以是互为相反数的两个数,即a=-b。

由此,得出结论:当a+b=√2时,a、b是互为相反数的两个数,即a=-b。

二次根式的加减法教案

二次根式的加减法教案

二次根式的加减法优秀教案第一章:二次根式的概念回顾1.1 教学目标:让学生理解二次根式的概念。

让学生掌握二次根式的基本性质。

1.2 教学内容:二次根式的定义:形如√a的式子,其中a是一个非负实数。

二次根式的基本性质:√a ×√a = a,√a ÷√a = 1,√a ×√b = √(ab),其中a、b是非负实数。

1.3 教学活动:通过具体的例子,让学生理解二次根式的概念。

通过练习题,让学生掌握二次根式的基本性质。

第二章:二次根式的加法2.1 教学目标:让学生掌握二次根式的加法运算规则。

2.2 教学内容:二次根式的加法运算规则:√a + √b = √(a + b),其中a、b是非负实数。

2.3 教学活动:通过具体的例子,让学生理解二次根式的加法运算规则。

通过练习题,让学生熟练掌握二次根式的加法运算。

第三章:二次根式的减法3.1 教学目标:让学生掌握二次根式的减法运算规则。

3.2 教学内容:二次根式的减法运算规则:√a √b = √(a b),其中a、b是非负实数,且a ≥b。

3.3 教学活动:通过具体的例子,让学生理解二次根式的减法运算规则。

通过练习题,让学生熟练掌握二次根式的减法运算。

第四章:二次根式的混合运算4.1 教学目标:让学生掌握二次根式的混合运算规则。

4.2 教学内容:二次根式的混合运算规则:先进行二次根式的乘除运算,再进行加减运算。

4.3 教学活动:通过具体的例子,让学生理解二次根式的混合运算规则。

通过练习题,让学生熟练掌握二次根式的混合运算。

第五章:综合练习5.1 教学目标:让学生综合运用二次根式的加减法知识,解决实际问题。

5.2 教学内容:综合练习题,包括不同难度的题目。

5.3 教学活动:提供综合练习题给学生,让学生独立完成。

解答学生的疑问,并进行讲解和指导。

第六章:二次根式的加减法在实际问题中的应用6.1 教学目标:让学生能够将二次根式的加减法应用到实际问题中。

数学教案-二次根式的加减法

数学教案-二次根式的加减法

数学教案-二次根式的加减法一、教学目标1.了解二次根式的定义和性质;2.掌握二次根式的加减法规则;3.能够灵活运用二次根式的加减法解决实际问题。

二、教学重点1.二次根式的加法运算规则;2.二次根式的减法运算规则。

三、教学内容1. 二次根式的定义和性质回顾二次根式是指形如√a的数,其中a为非负实数。

二次根式具有以下性质:•二次根式与非二次根式无法直接进行计算;•二次根式之间可以进行加减法运算;•二次根式可以化简为最简形式。

2. 二次根式的加法运算规则对于两个二次根式√a和√b,其加法运算规则如下:•当a和b相等时,二次根式相加后可化简为2√a;•当a和b不相等时,二次根式之间无法化简,保持原样。

示例1:计算√5 + √3。

解:根据加法运算规则,√5 + √3无法化简,保持原样。

3. 二次根式的减法运算规则对于两个二次根式√a和√b,其减法运算规则如下:•当a和b相等时,二次根式相减后可化简为0;•当a和b不相等时,二次根式之间无法化简,保持原样。

示例2:计算√7 - √7。

解:根据减法运算规则,√7 - √7可化简为0。

示例3:计算√15 - √10。

解:根据减法运算规则,√15 - √10无法化简,保持原样。

四、教学步骤1.复习二次根式的定义和性质,确保学生对二次根式有基本的了解;2.引出二次根式的加减法运算规则,让学生掌握运算规则的基本思想;3.在黑板上给出一些示例,让学生进行个别思考和讨论,并指导学生使用运算规则进行计算;4.让学生在课堂上完成一些练习题,加深对二次根式加减法运算规则的理解和掌握程度;5.结合实际问题,设计一些应用题,让学生灵活运用二次根式的加减法解决实际问题;6.总结本节课的内容,强化学生对二次根式加减法运算规则的理解。

五、教学提示1.学生在进行二次根式的加减法时,要注意运算规则的应用,不要将二次根式与非二次根式进行混合计算;2.在实际问题的应用中,学生需要将问题转化为数学表达式,再运用二次根式的加减法原则进行计算。

数学教案二次根式的加减法

数学教案二次根式的加减法

数学教案二次根式的加减法教学目标:1.了解二次根式的概念和性质。

2.掌握二次根式的加减法。

3.能够解决实际问题中的相关二次根式运算。

重点难点:1.加减二次根式的处理方式。

2.应用题目的解决方法。

教学方法:引导式教学法、探究式教学法、示范讲解法。

教学过程:一、导入 1分钟老师:同学们,上一节课我们学习了二次根式的开方方法,今天我们要继续学习,将会学习二次根式的加减法,为此,请同学们回忆一下如何求二次根式的值呢?二、自主探究 15分钟老师:同学们,现在请你们举一些二次根式的例子,研究它们的性质。

学生:√2,√5,√7等都是二次根式,它们有公因子时,可以提出相同的因数;如果没有公因子,就没有简化的空间。

老师:很好,同学们,我们接下来要学习二次根式的加减法,你们可以根据自己的理解和方法来完成加减的练习,然后我们归纳总结一下。

学生自主探究10分钟,老师巡视指导。

三、集体总结 25分钟老师:同学们,现在我请几位同学上来,给大家演示一下二次根式的加减法。

【样例一】学生:请看这道题目:(√6+√2)-(√6-√2)=?老师:我们一步一步来,首先看括号里的式子,括号是成对出现的,我们可以先进行括号内部的运算,所以这个式子可以化为:(√6+√2)-(√6-√2)= √6+√2-√6+√2接下来就是要合并同类项了,可计算的根式之间,要保留其根式前面的系数,所以这个式子可以进一步简化为:(√6+√2)-(√6-√2)= 2√2【样例二】学生:老师,请看这道题目:(2√15-√20)+(√80-√75)=?老师:同样地,我们先分别处理加号两侧的式子,然后合并同类项:(2√15-√20)+(√80-√75)= 2√15-√20+4√5-3√5 (稍作化简)=2√15-√20+√5【样例三】学生:老师,下面这个例子行不行?(√2+√3)+(2+√2)=?老师:这个式子不太好直接处理,因为左右两边的根式不同,但是我们可以先让同类项先配对再进行简化,那么这个式子就可以化为:(√2+√3)+(2+√2)= 2+√2+√3【样例四】学生:老师,我自己还想了一个例子,(3-2√10)-(√10-6)=?老师:这个例子也可以,同样也要按照先对括号内部的计算进行简化,然后再合并同类项,所以这个式子可以变形为:(3-2√10)-(√10-6)= 9-3√10老师:同学们,从上面的例子可以看出,二次根式的加减法关键是把根式先化为同类项,然后再合并同类项成一个简单的根式。

《二次根式的加减》教案设计

《二次根式的加减》教案设计

《二次根式的加减》教案设计第一篇:《二次根式的加减》教案设计一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算(1)(+6)(3-)(2)(+)(-)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3(2)(+)(-)=()2-()2=10-7=3三、巩固练习课本P20练习1、2.四、应用拓展例3.已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?第二篇:二次根式教案设计二次根式教案设计一:教学内容分析本节课是人教版九年级上册第21章二次根式第一节二次根式第一课时的内容,它是前面学习的数的开方的后继学习,也是学习二次根式的运算的基础,他在整个初中阶段起着重要的作用,贯穿始终,为后继学习打下夯实的基础。

二:学生情况分析本节课是在数的开方的有关知识的基础上展开的,有了一定知识基础,并且在勾股定理中有所运用,他们并不陌生,所以只要我们连接好新旧知识,学生很容易接受,加强新旧知识的联系,化为知为已知。

人教版八年级数学下册《二次根式的加减》教学设计

人教版八年级数学下册《二次根式的加减》教学设计

人教版八年级数学下册《二次根式的加减》教学设计《人教版八年级数学下册《二次根式的加减》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习目标1.经历探索二次根式的加减运算法则的过程,让学生理解二次根式的加减法则;2.掌握二次根式的加减运算.(重点、难点)教学过程一、情境导入计算:(1)2x-5x; (2)3a2-a2+2a2.上述运算实际上就是合并同类项,如果把题中的x换成,a2换成,这时上述两小题就成为如下题目:计算:(1)2-5; (2)3-+2.这时怎样计算呢?二、合作探究探究点一:同类二次根式下列二次根式中与是同类二次根式的是( )A.B.C.D.解析:选项A中,=2与被开方数不同,故与不是同类二次根式;选项B中,=与被开方数不同,故与不是同类二次根式;选项C中,=与被开方数不同,故与不是同类二次根式;选项D中,=3与被开方数相同,故与是同类二次根式.故选D.方法总结:要判断两个二次根式是否是同类二次根式,根据二次根式的性质,把每个二次根式化为最简二次根式,如果被开方数相同,这样的二次根式就是同类二次根式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:二次根式的加减【类型一】二次根式的加法或减法(1)+; (2)+;(3)4-3; (4)18-.解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并.解:(1)原式=2+4=(2+4)=6;(2)原式=+=(+)=;(3)原式=16-15=(16-15)=;(4)原式=3-6=(3-6)=-3.方法总结:二次根式加减的实质就是合并同类二次根式,合并同类二次根式可以类比合并同类项进行,不是同类二次根式的不能合并.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】二次根式的加减混合运算计算:(1)--;(2)-3+3x;(3)3-+2-;(4)-2-(-).解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并.解:(1)原式=2--=0;(2)原式=3-+3=5;(3)原式=-3+4-=(4)原式=--+5=+.方法总结:二次根式的加减混合运算步骤:把每个二次根式化为最简二次根式;运用加法交换律和结合律把同类二次根式移到一起;把同类二次根式的系数相加减,被开方数不变.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】二次根式加减法的应用一个三角形的周长是(2+3)cm,其中两边长分别是(+)cm,(3-2)cm,求第三边长.解析:第三边长等于(2+3)-(+)-(3-2),再去括号,合并同类二次根式.解:第三边长是(2+3)-(+)-(3-2)=2+3---3+2=4-2(cm).方法总结:由三角形周长的意义可知,三角形的周长减去已知两边的长,可得第三边的长.解决问题的关键在于把实际问题转化为二次根式的加减混合运算.本节课的重点是同类二次根式与合并同类二次根式。

《二次根式的加减》教学设计

《二次根式的加减》教学设计

《二次根式的加减》教学设计 教学目标目标 (一)知识教学点 1.使学生了解最简二次根式的概念和同类二次根式的概念. 2.能判断二次根式中的同类二次根式. 3.会用同类二次根式进行二次根式的加减. (二)能力训练点 通过本节的学习,培养学生的思维能力并提高学生的运算能力. (三)德育渗透点 从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想. (四)美育渗透点 通过二次根式的加减,渗透二次根式化简合并后的形式简单美. 二、学法引导 1.教师教法 引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法. 2.学生学法 通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则. 三、重点·难点·疑点及解决办法 1.教学重点 二次根式的加减法运算. 2.教学难点 二次根式的化简. 3.疑点及解决办法 二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.教学过程:一、复习:化简二次根式1、 二次根式的计算、化简的结果需要符合什么条件?完成化简而出根式_____;12=_____48=______;50______;8==_______;18_____;21==_____;45=________34=学生积极回答,教师引导学生回答。

二次根式的计算、化简的结果要符合两个条件:(1) 被开方数因数是整数,因式是整式;(2) 被开方数中不含有能开得尽方的因数或因式。

二次根式的加减教案(教学设计)

二次根式的加减教案(教学设计)
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例: 。
解析: 。
根据例题的解题方法,让学生自己动手练习。
练习:
计算:
(1) ;
(2) 。
解:(1) 。
(2) 。
三、课堂总结
1.这节课我们主要讲了
一般地,二次根式加减时,可以将二次根式化成最简二次根式,再将被开方数相同的二次根式合并。
四、习题检测
二次根式的加减
【教学目标】
1.掌握二次根式的加减。
2.熟练运用二次根式的简化运算解决具体问题。
3.亲历二次根式的加减的探索过程,体验分析归纳得出二次根式的加减的方法,进一步发展学生的探究、交流能力。
【教学重难点】
重点:掌握二次根式的加减运算。
难点:合并最简二次根式并正确进行二次根式的混合运算。
【教学过程】
一、直接引入
师:今天这节课我们主要学习二次根式的加减运算,这节课的主要内容有二次根式的加减,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课
(1பைடு நூலகம்教师引导学生在预习的基础上了解二次根式的加减内容,形成初步感知。
(2)首先,我们先来学习二次根式的加减法,它的具体内容是:
一般地,二次根式加减时,可以将二次根式化成最简二次根式,再将被开方数相同的二次根式合并。
1.若 ,则 的值等于_____。
2.已知 ,则 _____。
3. _____。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2-/2
24
2 2
2 3
6 2
2
2
3 2
3。
三、课堂总结
1.这节课我们主要讲了
一般地,二次根式加减时,可以将二次根式化成最简二次根式,再将被开方数相同的二次
根式合并。
四、习题检测
1.若
18x 2
x 2
x
2 x
10
,则
x
的值等于_____。
2.已知 x 3 ,则 x2 x 1 _____。
3
3. 3 2 2000 3 2 2001 _____。
二次根式的加减
【教学目标】
1.掌握二次根式的加减。 2.熟练运用二次根式的简化运算解决具体问题。 3.亲历二次根式的加减的探索过程,体验分析归纳得出二次根式的加减的方法,进一步 发展学生的探究、交流能力。
【教学重难点】
重点:掌握二次根式的加减运算。 难点:合并最简二次根式并正确进行二次根式的混合运算。
【教学过程】
一、直接引入 师:今天这节课我们主要学习二次根式的加减运算,这节课的主要内容有二次根式的加减,
并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课
(1)教师引导学生在预习的基础上了解二次根式的加减内容,形成初步感知。 (2)首先,我们先来学习二次根式的加减法,它的具体内容是: 一般地,二次根式加减时,可以将二次根式化成最简二次根式,再将被开方数相同的二次 根式合并。 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例: 9a 25a 。
解析: 9a 25a 3 a 5 a 8 a 。
根据例题的解题方法,让学生自己动手练习。 练习: 计算:
(1) 8 3 6 ; (2) 4 1) 8 3 6 8 6 3 6 4 3 3 2 。
(2) 4
2 3
6
2
相关文档
最新文档