化工管道伴热设计规定
化工装置工艺管道加伴热标准
化工装置工艺管道加伴热标准《化工装置工艺管道加伴热标准》1. 引言在化工行业中,工艺管道加伴热是一项非常重要的工作。
它不仅可以确保管道内介质的流动性和稳定性,还可以提高生产效率,降低能源消耗。
而为了确保工艺管道加伴热的标准化、规范化进行,制定了一系列的标准,本文将对化工装置工艺管道加伴热标准进行深入探讨。
2. 化工装置工艺管道加伴热标准的重要性工艺管道加伴热是化工装置中非常重要的一环,它直接关系到工艺管道内介质的温度控制、流动性和稳定性。
一旦加热不足或过度加热都会对生产造成不利影响。
制定化工装置工艺管道加伴热标准,对于确保生产的安全、稳定具有重要的意义。
3. 化工装置工艺管道加伴热标准的主要内容化工装置工艺管道加伴热标准主要包括管道加热设计、加热温度控制、材料选用、安全防护等内容。
其中,管道加热设计是非常关键的一环,它需要考虑到介质的特性、管道的材质和环境温度等因素,并且要符合相关的安全标准。
加热温度的控制也是非常重要的,过高或者过低的温度都会对生产造成影响。
标准还规定了对加热温度的监测和控制要求。
4. 化工装置工艺管道加伴热标准的执行情况及存在的问题在实际生产中,一些化工企业在执行工艺管道加伴热标准方面还存在一些问题。
首先是对标准的认识不足,一些操作人员对于标准的要求并不清楚,导致在实际操作中出现偏差。
其次是在设备选型和安装上存在一定的问题,一些企业在设备选型上存在盲目跟风的情况,而在安装上存在一定的瑕疵。
最后是对于加热温度的控制不够精准,一些企业在加热温度的控制上还存在一定的欠缺。
5. 个人观点和理解在我看来,化工装置工艺管道加伴热标准的制定和执行是非常重要的。
只有通过严格的标准要求来确保工艺管道加热的质量和安全,才能够更好地保障生产的正常进行。
我们也应该关注标准执行中存在的问题,并采取相应的措施来加以改进,以期达到更好的生产效果。
6. 结论化工装置工艺管道加伴热标准对于化工行业的生产具有非常重要的意义。
化工管道伴热设计规定
化工管道伴热设计规定为了确保化工管道在低温环境中能够正常运行,需要通过伴热技术来防止管道内的介质结冰或凝固。
伴热设计规定是指根据管道的特点和工况要求,确定合适的伴热材料、安装方式和控制系统等,以保证管道的安全和稳定运行。
首先,在进行伴热设计前,需要对管道系统进行综合分析,包括管道的材质、直径、长度、环境温度、介质温度、流量和压力等参数,以了解管道系统的工作条件。
同时,还需要了解管道周围环境的特点,例如室外气温变化、风速和湿度等因素。
其次,在选择伴热材料时,需要考虑介质的特性和工作温度范围。
常用的伴热材料有电热带、矿物棉、硅胶管和玻纤带等。
电热带是一种通过电阻发热的材料,可以根据管道的长度和温度要求进行剪裁和连接。
矿物棉和硅胶管是一种具有良好保温性能的材料,可以直接套在管道上进行保温。
玻纤带则是一种耐高温、抗腐蚀的材料,适用于高温环境下的伴热保温。
然后,在进行伴热安装时,需要考虑管道的布局和细节处理。
伴热电缆应均匀地布置在管道上,并保证与管道的贴合度。
接头处需要采用合适的接头盒和连接器,以确保电缆的安全质量。
伴热保温材料要覆盖整个管道,并保证无缝隙和破损。
在伴热系统中,还需要安装温度传感器和控制器,以监控和控制伴热系统的温度和功率。
最后,在伴热设计中,还需要考虑管道系统的保温和通风问题。
保温层的厚度和材质应根据工作温度和保温要求进行选择,以减少热量的散失。
通风系统可以通过通风孔和通风管道等方式来实现,以防止管道系统内的湿气和有害气体的积聚。
总之,化工管道的伴热设计是确保管道安全运行的重要环节。
通过合适的伴热材料、安装方式和控制系统的选择,可以有效地预防管道结冰或凝固等问题,并保证管道的安全和稳定运行。
在伴热设计过程中,需要全面考虑管道的工况要求和环境条件,以确保伴热系统的可靠性和经济性。
化工管道伴热方案规定[]
化工管道伴热设计规定第一章伴热方式及其选用石油化工企业中的管道,常用伴热的方法以维持生产操作及停输期间管内介质的温度。
它的特点是伴热介质取用方便,除某些特殊的热载体外,都是由企业的公用项目系统供给。
伴热方式多种多样,适用于输送各种介质及操作条件下的工艺管道。
通过几十年的实际运行,证实安全可靠。
因为工艺管道内介质的生产条件复杂,因此选用伴热介质,确定伴热方式都应取决于工艺条件,现分析如下。
一、伴热介质1.热水热水是一种不常用的伴热介质,适用于在操作温度不高或不能采用高温伴热的介质的条件下,作为伴热的热源。
当企业有这一部分余热可以利用,而伴热点布置比较集中是时,可优先使用。
有些厂用于原油罐或添加剂罐的加热,前者是为了节省蒸汽利用余热,后者是控制热源介质的温度,防止添加剂分解变质。
2.蒸汽蒸汽是国内外石油化工企业中广泛采用的一种伴热介质,取用方便,冷凝潜热大,温度易于调节,使用范围广。
石油化工企业中蒸汽可分高压、中压及低压三个系统,而用于伴热的是中、低压两个系统,基本上能满足石化企业中工艺管道的使用要求。
3.热载体当蒸汽<指中、低压蒸汽)温度不能满足工艺要求时,才采用热载体作为热源。
这些热载体在炼油厂中常用的有重柴油或馏程大于300℃馏分油;在石油化工企业中有联苯-联苯醚或加氢联三苯等。
热载体作伴热介质,一般用于管内介质的操作温度大于150℃的夹套伴热系统。
4.电热电热是一种利用电能为热源的伴热技术。
电伴热安全可靠,施工简便,能有效地进行温度控制,防止管道介质温度过热。
二、伴热方式1.内伴热管伴热伴热管安装在工艺管道<以下也称主管)内部,伴热介质释放出来的热量。
全部用于补充主管内介质的热损失。
这种结构的特点:<1)热效率高,用蒸汽作为热源时,与外伴热管比较,可以节省15~25%的蒸汽耗量;<2)内伴热管的外侧传热系数h i,与主管内介质的流速、粘度有关;<3)因为它安装在工艺管道内部,所以伴热管的管壁加厚。
(能源化工行业)化工管道伴热设计规定
(能源化工行业)化工管道伴热设计规定化工管道伴热设计规定伴热方式及其选用石油化工企业中的管道,常用伴热的方法以维持生产操作及停输期间管内介质的温度。
它的特点是伴热介质取用方便,除某些特殊的热载体外,都是由企业的公用工程系统供给。
伴热方式多种多样,适用于输送各种介质及操作条件下的工艺管道。
通过几十年的实际运行,证实安全可靠。
由于工艺管道内介质的生产条件复杂,因此选用伴热介质,确定伴热方式都应取决于工艺条件,现分析如下。
壹、伴热介质1.热水热水是壹种不常用的伴热介质,适用于在操作温度不高或不能采用高温伴热的介质的条件下,作为伴热的热源。
当企业有这壹部分余热能够利用,而伴热点布置比较集中是时,可优先使用。
有些厂用于原油罐或添加剂罐的加热,前者是为了节省蒸汽利用余热,后者是控制热源介质的温度,防止添加剂分解变质。
2.蒸汽蒸汽是国内外石油化工企业中广泛采用的壹种伴热介质,取用方便,冷凝潜热大,温度易于调节,使用范围广。
石油化工企业中蒸汽可分高压、中压及低压三个系统,而用于伴热的是中、低压俩个系统,基本上能满足石化企业中工艺管道的使用要求。
3.热载体当蒸汽(指中、低压蒸汽)温度不能满足工艺要求时,才采用热载体作为热源。
这些热载体在炼油厂中常用的有重柴油或馏程大于300℃馏分油;在石油化工企业中有联苯-联苯醚或加氢联三苯等。
热载体作伴热介质,壹般用于管内介质的操作温度大于150℃的夹套伴热系统。
4.电热电热是壹种利用电能为热源的伴热技术。
电伴热安全可靠,施工简便,能有效地进行温度控制,防止管道介质温度过热。
二、伴热方式内伴热管伴热伴热管安装在工艺管道(以下也称主管)内部,伴热介质释放出来的热量。
全部用于补充主管内介质的热损失。
这种结构的特点:(1)热效率高,用蒸汽作为热源时,和外伴热管比较,能够节省15~25%的蒸汽耗量;(2)内伴热管的外侧传热系数hi,和主管内介质的流速、粘度有关;(3)由于它安装在工艺管道内部,所以伴热管的管壁加厚。
化工工艺管道的伴热
化工工艺管道的伴热摘要化工生产中,设备和管道的散热是供热系统中热量损失的重要组成部分。
绝热一词,就是对保温跟保冷两个词的一个统称,然而在实际的生产过程当中,人们为了防止相关的设备以及工艺管道可能会向周围的环境当中中释放或者吸收热量,于此同时,在冬季较寒冷的地区,为了防止管道和设备内的介质由于外界的低温环境而造成物理变化,因此绝热工程已经成为当前现代化工装置中不可缺少的一部分。
关键词:化工,管道,设备,伴热第1章工艺管道的伴热系统1.1工艺管道伴热的主要方式(1)内伴热管道伴热:载体伴热管道是被安装在工艺管道内部的,因此其热量可以全部释放于主管道内部。
(2)外伴热管道伴热:载体伴热管道是被安装在工艺管道外部的,因此其热量一部分可以释放到主管道内部,其余部分可以通过保温层释放到了周围的环境中。
如果伴热系统需要的传热量比较大,或者是工艺主管道对温度要求要有一定的温升值时,则需要多条管道共同来伴热,或者是采用传热系数更大的传热胶泥,填充在外伴热管与主管之间。
(3)夹套管道伴热:载体夹套伴热管,就是在工艺管道的外面再安装一套管道,就相当于内管和外管,内外管之间就形成一个换热空间,最终达到工艺要求的伴热效果。
(4)电伴热:电伴热带被缠绕在需要加热的工艺管道外部,其利用电阻体的发热用来补充工艺管道的热量损失。
1.2自调控伴热系统1.2.1 自调控伴热技术自调控伴热技术是新型的一种伴热方式,早在上世纪六十年代,日本就通过直接通电法来加热沥青管道,以达到提高它的流动性的目的。
这种新型的技术,操作起来不仅方便简单,而且运行维护的费用也相对比较低,不仅如此,它的操控性能也比较好,能在短时间内就将要求的伴热温度调整到温度参数范围内。
1.2.2自调控伴热原理自调控伴热的主要原理,是将电缆线和所需要伴热的管道捆绑在一起来达到伴热的目的,通常情况下自调控伴热电缆线是由两根平行的镀锌或者镀银的铜制电缆线构成,其外部是一层高分子半导体材料,最外层是由一种具有阻燃绝燃的护套构成的。
石化工艺管道的伴热设计
石化工艺管道的伴热设计石油化工作为支持社会现代化发展的关键基础在此情况下要引起足够的重视,特别是对于工艺管道部分建设情况。
工艺设备及所用管道中所产生的部分伴热问题在石油化工中一直受到较多关注,同时伴热技术也在不断的发展,在解决保温、防冻等相关需求的同时也满足了热的供应。
就管线的设计来说,管线的伴热式设计是管线的一种特有的设计方法,它的应用离不开绝缘体的应用。
通过对管线的伴热系统的研究,可以使管线的伴热系统达到自动化,从而使管线的伴热系统达到技术要求。
伴随供热系统是石化管线的一种间接供热方法,与其他供热方法有明显的不同。
多因素管线的伴热设计大多是为了充分地将热能作为伴热源来使用,并能够更好地确保管线的安全性。
目前的管内伴热式按照伴热媒质的差异,应该分为两种形式的伴热式:电力伴热式和水蒸气伴热式。
以往管道伴热多用蒸汽作外供热源通过伴热管补偿其散热损失。
这种传统的伴热方式伴热所需维持的温度无法控制;耗热量大安装和维修的工作量大生产管理不方便。
采用电伴热可以有效利用能量有效控制温度。
电伴热方式有感应加热法、直接通电法、电阻加热法等。
化工工艺管道电伴热设计时,一般都是以通电,电阻和感应加热为伴热保温设计。
本实用新型通过电伴热的方式进行设计,结构的设计简单方便,安全系数较高,对日常的维修也没有过多的要求。
此外,近年来随着人们对于电伴热的不断研究,电伴热技术不断发展起来,在能耗逐渐下降的情况下,能源利用率得到有效提升。
是否能有效节省能源一般需要注意电伴热伴热容量的提升,其原则是:因伴热容量较大,设备运行成本随之升高,所以相关工作人员在设计时要借助计算机来计算热容量启动工况,并加以分析与设计,从而实现整体运行能量节省;因伴热容量低会使管道利用率降低,所以在设计中应重视伴热容量过低造成热能浪费。
石油化工装置中工艺管道的伴热设计分析
石油化工装置中工艺管道的伴热设计分析摘要:部分工艺对温度有相关方面的需求,因此便需要用到伴热保温来输送介质,伴热方法通常采用电伴随加热法以及蒸汽管伴随加热法,而管道集肤效应伴热技术是我们在本文中介绍的重点,它属于电伴随加热法,本文着重对化工工艺管道的伴热设计进行详细研究。
关键词:工艺管道;化工;伴热;设计前言根据输送载体的特征,管道分为绝热、非绝热以及保温伴热型管道。
绝热管道通常输送如液氯、蒸汽、热水等具有一定温度要求的物质;保温伴热管道通常输送绝热不能满足工艺物料的绝热保温要求的物质,比如原油;而非保温管道通常输送对温度要求不高的物质,比如汽油。
尽量减少物质温度变化并有效的节约能源,同时还要保障人员的人身安全是绝热的主要功能。
保证温度与工艺加工条件相符,对加工力应维持并尽量发挥能起到积极的作用。
1常见的伴热方式的选用蒸汽伴热的情况(1)装置及管道介质粘度高、凝固点大,工艺介质温度在100℃以上、150℃以下;设备及管道区域防爆性能好;介质耐腐蚀、热敏感能力强。
(2)电伴热选择:在保温过程中介质温度保持在30~120℃之间,防火防爆要求较低,远离蒸汽源设备、机泵、管道。
(3)热水伴热条件:要求保温介质温度小于90℃,介质应受热均匀,不宜在电伴热等加热条件下使用;(4)导热油伴热条件:介质温度为140~355℃的濒燃状态,其他伴热介质无法达到伴热要求。
2化工工艺管道的伴热设计要求2.1蒸汽伴管的设计要求伴热管道的半径介于8到40毫米之间,但是需要注意的是在现实条件下,为降低管壁损失,有效节约原材料,常选用半径10~15 mm的管道。
一般采用0.5~1.2 MPa的蒸汽作为加热介质。
随着热管压力的变化,应根据输送凝固点的变化逐步完善相应措施。
2.2伴管热补偿的设计要求(1)螺旋缠绕型、Ω型或u型补偿器每20~30米均匀铺设在伴管直管段;(2)当伴管转弯为伴管进行自然补偿时,为了保证伴管的保温结构良好,应特别注意伴管固定点的位置;(3)使用不锈钢伴管时,将50毫米宽、1毫米厚的隔离垫放置在伴管和用扎带捆扎固定的伴管之间。
化工管道伴热设计规定
化工管道伴热设计规定首先,伴热设计规定要考虑管道的工作温度和周围环境温度。
工作温度是指管道内流体的温度,而周围环境温度是指管道所处环境的温度。
在伴热设计中,要保证管道内流体在工作温度下保持稳定,不出现结冰或结晶现象,同时还要考虑到周围环境温度对管道的影响,避免管道受到冷凝、冻结等不良影响。
其次,伴热设计规定还要考虑管道的保温材料选择和保温层厚度。
保温材料通常采用耐高温、导热系数低的材料,如玻璃棉、矿物棉等。
保温层的厚度要根据管道的工作温度和环境温度来确定,以确保管道在运行中不会出现温度过高或过低的情况,同时还要考虑到保温层的成本和施工难度。
此外,伴热设计规定还要考虑管道的伴热设备配置和布置。
伴热设备通常包括伴热电缆、加热带等,这些设备的配置要根据管道的长度、直径、工作温度等因素来确定,以确保管道的伴热效果良好。
在设备的布置上,要保证伴热设备均匀地分布在管道上,并且要注意避免管道与其他设备、管线等产生干扰。
最后,伴热设计规定还要考虑管道的监测和维护。
对于伴热管道,应该安装相应的监测设备,如温度传感器、防冻传感器等,以实时监测管道的温度和热损失情况。
同时,还要定期对管道进行维护,包括清洁保养、绝缘层修复等,以确保管道的正常运行和使用寿命。
综上所述,化工管道伴热设计规定是保证管道正常运行和延长使用寿命的重要保证。
伴热设计规定需要考虑工作温度、环境温度、保温材料选择和厚度、伴热设备配置和布置等因素,同时还要注意管道的监测和维护。
只有严格按照伴热设计规定进行设计和施工,才能确保化工管道的正常运行和安全使用。
化工工艺管道蒸汽伴热系统设计
化工工艺管道蒸汽伴热系统设计摘要:蒸汽伴热是化工工艺管道保温、防冻普遍采用的一种有效方案,被广泛的应用在化工生产装置中。
在管道输送过程中,有些介质会出现结晶、冷凝、冻结现象,同时出现伴随温度改变介质粘度随之改变,为了防止上述情况的出现,必须采取经济有效的保温、防冻措施。
文章详细介绍了工艺管道蒸汽伴管的设计和优化。
关键词:蒸汽伴热;化工工艺管道;蒸汽伴管设计;高黏易凝物料是化工生产中常见的介质之一,随着管道的延长,介质的温度逐渐下降。
温度降低意味着粘度增加,输送困难,从而导致凝管、堵管现象发生。
因此,此类管道需要采取适当的保温及防冻措施,以确保介质在工艺管道中的稳定输送。
管道伴热已成为化工生产中最常用的保温方法。
它用于直接或间接的热交换补偿被伴热管道的热损失,达到保温或防冻的作用。
目前,管道伴热介质通常使用热水、蒸汽、导热油或电热。
由于蒸汽伴热应用范围广、冷凝潜热大、取用方便等特点,蒸汽伴热始终是最重要的伴热方式。
本文重点介绍化工工艺管道蒸汽系统伴热设计。
1.蒸汽伴热管道系统设计的依据化工生产装置中管道蒸汽伴热按照《石油化工管道伴管和夹套管设计规范》SH/T 3040—2012规范及专利商要求进行设计。
1.蒸汽伴热设计原则和内容1.设计原则。
设计蒸汽伴热管道必须满足操作温度要求,同时确保整个系统的安全运行。
此外,对设备和经济性的投资是设计的重要考虑方面。
(1)蒸汽伴热热源采用饱和蒸汽,同时增加蒸汽饱和度。
伴热蒸汽温度通常要求高于工艺介质的温度,其中工艺介质的特性(例如结焦、凝固点等)需要考虑。
各种工艺介质选择的蒸汽温度不同。
(2)分配站可设计为卧式、立式两种,根据现场情况,选择合适的分配站形式。
同时满足优化管道安装、缩短管道长度和设计经济性的要求。
(3)蒸汽伴管最大允许有效伴热长度原则。
a.伴管沿被伴热管的有效长度(包括垂直管道)可按表1选用。
表1 蒸汽伴管最大允许有效伴热长度b.当伴热蒸汽的凝结水不回收时,表1中的最大允许有效伴热长度可延长20%;c.采用导热胶泥时,表1 中的最大允许有效伴热长度宜缩短20%;d.当伴管在最大允许有效伴热长度内出现U形弯时,累计上升高度不宜大于表2中规定的数值。
化工伴热管道要求
化工伴热管道要求1. 引言化工伴热管道是化工行业中常见的一种管道系统,用于在低温环境下保持管道内介质的温度稳定。
伴热管道的设计和安装要求非常严格,以确保管道系统能够有效地提供热量传递和保温功能,同时保证操作安全和节能。
本文将介绍化工伴热管道的设计要求、材料选择、安装方法以及日常维护管理等方面的内容。
2. 设计要求化工伴热管道的设计应满足以下要求:2.1 温度控制根据介质特性和使用要求确定管道内介质的最佳工作温度范围,并确保伴热系统能够稳定地将温度控制在此范围内。
为了实现精确的温度控制,可以采用温度传感器和自动控制系统。
2.2 管道绝缘为了减少能量损失和防止冷凝水形成,化工伴热管道应进行良好的绝缘处理。
常见的绝缘材料包括聚氨酯泡沫、玻璃棉、岩棉等,选择合适的绝缘材料应根据管道温度和介质特性进行。
2.3 安全防护化工伴热管道应设置必要的安全防护措施,以防止人员误触或意外碰撞。
常见的安全防护措施包括设置隔热罩、安装警示标识等。
2.4 管道材料选择根据介质特性和工作条件,选择适用的管道材料。
常见的管道材料有不锈钢、碳钢、塑料等。
在选择管道材料时,还需考虑其耐腐蚀性能和耐高温性能。
2.5 管道布局化工伴热管道的布局应合理,避免出现死角和过长的管段。
管道连接处应采用可靠的连接方式,如焊接、法兰连接等。
还需考虑管段的支撑和固定方式,以确保系统稳定运行。
3. 安装方法化工伴热管道的安装应按照以下步骤进行:3.1 管线布置根据设计要求,确定管道的布置方案。
在布置过程中,应避免管道与其他设备或结构物发生碰撞,并确保管道的支撑和固定。
3.2 管道焊接根据管道材料和连接方式的要求,进行相应的焊接工艺。
焊接过程中需注意操作规范,确保焊缝质量和连接强度。
3.3 绝缘处理在管道安装完成后,对伴热管道进行绝缘处理。
绝缘材料的选择和施工应符合设计要求,并采取防水措施,以防止绝缘层受潮。
3.4 试运行与调试安装完成后,进行试运行与调试。
浅谈化工工艺管道的蒸汽伴热设计分析
浅谈化工工艺管道的蒸汽伴热设计分析化工工艺管道的蒸汽伴热是指在工业生产中使用蒸汽对管道进行加热,以保持管道内介质的温度和流动状态。
蒸汽伴热设计是化工工艺管道设计中的重要环节,直接关系到生产设施的安全和生产效率。
本文将就蒸汽伴热设计进行分析和探讨,以期对相关领域的从业者有所帮助。
一、蒸汽伴热的基本原理蒸汽伴热是通过在管道周围布设加热设备,利用蒸汽的高温来传热,将管道内介质加热到所需温度或保持所需温度不变,以保证介质的正常流动和运输。
在工业生产过程中,一些粘稠、易凝固或易结晶的介质,需要在管道内加热保温,以免造成管道堵塞或介质凝固,从而影响生产。
蒸汽伴热便是为了解决这一问题而设计的一种加热方式。
二、蒸汽伴热设计的关键要点1. 温度和介质要求:首先需要明确管道内介质的工作温度要求和加热保温要求,这是蒸汽伴热设计的基本依据。
不同的介质对温度的要求不同,因此在设计过程中需要根据介质的性质和工艺要求确定加热温度。
2. 管道材质和绝热材料:在蒸汽伴热设计中,管道的材质和绝热材料的选择至关重要。
合理选择耐高温、耐腐蚀的管道材质,并在管道外部布设隔热层,以减少热量的损失和节约能源。
3. 蒸汽伴热系统的布置:蒸汽伴热系统的布置应考虑管道的长度、弯头、接头等因素,确保蒸汽能够充分覆盖管道的每个部位,以实现均匀加热。
4. 控制系统的设计:蒸汽伴热系统的控制系统需要设计合理,包括温度控制、压力控制、自动开关机等功能,以保证管道的安全运行和良好的加热保温效果。
三、蒸汽伴热设计的优化1. 系统热损失的优化:在蒸汽伴热系统的设计中,需要尽可能减少系统的热损失,采用合适的绝热材料和隔热层,减少热量的散失,提高能源利用率。
2. 控制系统的智能化:蒸汽伴热系统的控制系统应考虑智能化设计,采用先进的传感器和自动控制技术,实现对管道加热的精准控制,提高系统的稳定性和可靠性。
3. 能源的节约利用:在蒸汽伴热设计中,需要充分考虑能源的节约利用,采用节能设备和技术,减少蒸汽的消耗,降低生产成本,实现经济效益和环保效益的双赢。
化工工艺管道蒸汽伴热系统设计分析
化工工艺管道蒸汽伴热系统设计分析一、引言化工工艺管道中的蒸汽伴热系统是工业生产过程中常见的一种热力系统。
它通过在管道周围加设伴热电缆或伴热蒸汽管道,来保持管道内介质的温度,防止其在输送过程中变冷凝固或结焦,从而保证生产的正常进行。
化工工艺管道蒸汽伴热系统的设计与分析对于提高生产效率、节约能源、保障生产安全具有重要意义。
本文将对化工工艺管道蒸汽伴热系统的设计与分析进行探讨,力求从理论和实际应用两个方面进行全面的介绍和分析。
二、蒸汽伴热系统的设计1.伴热系统的选择化工工艺管道蒸汽伴热系统的设计首先需要选择适合的伴热系统。
一般来说,常见的伴热系统包括电热伴热系统和蒸汽伴热系统。
电热伴热系统通过在管道周围安装伴热电缆来进行加热,其简单、安全、易于控制,但能耗较大。
而蒸汽伴热系统则通过在管道周围安装蒸汽伴热管道来进行加热,其具有热效率高、能耗低的特点,但需要考虑蒸汽的产生与输送。
在实际应用中,需要综合考虑工艺要求、经济成本、安全性等因素,选择合适的伴热系统进行设计。
通常情况下,对于长输距、大直径管道或对温度精度要求较高的情况,选择蒸汽伴热系统更为合适。
2.管道伴热系统的布置在蒸汽伴热系统的设计中,管道的伴热布置是一个重要的环节。
伴热管道的布置需要考虑管道的材质、直径、介质、工艺要求等因素。
通常情况下,伴热管道沿着主管道的外表面进行环绕布置,同时需要考虑伴热管道与主管道的固定支撑及保温措施。
在布置过程中,需要注意伴热管道的长度和密度,以保证管道周围的温度均匀,避免出现温差过大或温度不均匀的情况。
还需要注意伴热管道与主管道的固定方式,避免出现管道松动或变形的情况,从而影响伴热效果。
3.伴热系统的控制与监测蒸汽伴热系统的设计中,控制与监测是至关重要的一环。
在伴热系统的设计中,需要考虑对伴热温度、管道温度、蒸汽压力等参数进行实时监测,以保证伴热系统的正常运行。
在蒸汽伴热系统的设计中,需要考虑使用合适的控制装置来调节蒸汽的供给,保证管道周围的温度能够在设定范围内稳定运行。
石油化工仪表及管道伴热和绝热设计规范-SH_T3126-2013
石油化工仪表及管道伴热和绝热设计规范-SH/T3126-20131范围本规范规定了石油化工自动控制工程仪表及测量管道的伴热和绝热设计的要求。
适用于石油炼制、石油化工及以煤为原料制取燃料和化工产品工厂的新建、扩建和改建工厂的自动控制仪表及测量管道的伴热和绝热设计。
2仪表伴热类型及方式4.1伴热原则:在环境温度下有冻结、冷凝、结晶、析出等现象产生的物料的测量管道、取样管道应伴热;不能满足最低环境温度要求的检测仪表应伴热。
4.2伴热类型:热水伴热、蒸汽伴热、电伴热、自伴热。
热水伴热:当被测介质为水、水蒸气、轻质油品等凝结点较低的介质时以及高寒地区。
蒸汽伴热:当被测介质为原油、渣油、蜡油、沥青、燃料油和急冷油等时;在非高寒地区。
电伴热:当需要对被伴热对象实现精确温度控制和遥控的场合;没有蒸汽源和热水源的地方。
自伴热:仪表测量管道随工艺管道或工艺设备一起保温,不需另外采用热源就能满足测量要求时。
4.3伴热方式:热水伴热和蒸汽伴热宜分为重伴热和轻伴热。
在被测介质易冻结、冷凝、结晶的场合,仪表测量管道应采用重伴热;当重伴热可能引起被测介质汽化、自聚或分解时,应采用轻伴热或绝热。
5仪表伴热系统设计5.1热水伴热系统设计热水伴热宜设置独立的供水系统,宜采用集中供水和集中回水的方式。
每个需伴热的仪表为一个伴热回路,每个伴热回路应为独立系统。
每个伴热回路热水入口、回水入口应分别设置切断阀,切断阀应采用截止阀。
热水压力应满足热水能返回到回水总管。
常用热水伴热管的材质和管径热水伴热管材质 热水伴热管外径*壁厚mm不锈钢管 10*1.5,12*1.5不锈钢管、碳钢管 14*2不锈钢管、碳钢管 18*3不锈钢管、碳钢管 22*3热水支管和热水分配器管径选择S值 集中供水回水支管 分配器4-8 DN40 DN509-12 DN50 DN89S值计算方法:S=A+2B+3CS=热水伴热管的总根数 A=DN15及以下伴热管的总根数B=DN20伴热管的根数 C=DN25伴热管的根数热水伴热管的最大允许有效长度选择伴热管管径 伴热热水压力P最大对应长度0.3≤P≤0.5 0.5≤P≤0.7 0.7≤P≤1.010,12 40 50 6022*2.5 60 70 80热水伴热系统管道的敷设应符合以下规定伴热管应焊接,必要时设置活接头。
石油化工技术《化工管道伴热设计规定》
石油化工技术《化工管道伴热设计规定》《化工管道伴热设计规定》是指针对化工管道伴热工程进行设计的技术规定。
石油化工行业是伴热工程应用比较广泛的领域之一,合理的伴热设计对于管道运行的安全和经济起着重要的作用。
本文将从伴热工程的设计原则、设计方法和设计要求等方面来阐述《化工管道伴热设计规定》。
首先,伴热设计应遵循的原则是保证管道温度在规定范围内,避免温度过低或过高对管道和介质的影响。
在选择伴热设备和设计伴热系统时,应考虑介质的特性、环境要求和运行工况等因素,合理选择伴热设备和控制装置。
其次,伴热设计应根据管道的特性和介质的特性,采用合适的伴热方式。
常用的伴热方式有电伴热、水蒸汽伴热、热载体油伴热、直接燃烧伴热等。
不同的伴热方式适用于不同的工况和管道特性,应根据实际情况进行选择。
伴热设计还应根据管道的材质合理选择保温材料。
保温材料的选择主要考虑材料的导热系数、耐温性能和耐腐蚀性能。
在保温设计中,还应考虑到管道的热损失情况,采取合适的保温措施,减少热损失。
伴热设计中还需要考虑管道的安全性和可靠性。
考虑到伴热设备的运行安全,应按照相关规定对设备进行安全疏散、防火和爆炸防护等设计。
同时应根据不同的工况和管道特性,合理设置伴热系统的控制装置,确保伴热系统的稳定运行。
另外,伴热设计还应考虑环境保护和节能。
在设计伴热系统时,应尽量增加设备的能效,采用节能型设备。
减少能源的消耗,同时要合理设置温度控制装置,防止能耗过高。
总而言之,石油化工技术《化工管道伴热设计规定》是化工行业中对伴热工程设计的技术规定。
伴热设计应遵循保证管道温度在规定范围内的原则,根据管道特性和介质特性选择合适的伴热方式和保温材料。
考虑管道的安全性、可靠性、环境保护和节能性等因素,进行合理的伴热设计。
这些规定的实施能够确保石油化工管道的安全运行,提高工艺的稳定性和经济性。
管道伴热规定
管道伴热规定1 总则1.1 目的为统一中国海洋总公司惠州炼油项目管道伴热设计,特编制本规定。
1.2 范围1.2.1 本规定规定了石油化工工艺管道蒸汽外伴热管设计及安装要求。
1.2.2 本规定适用于中国海洋总公司惠州炼油项目中工艺管道蒸汽外伴热管、夹套管、电伴热的设计。
设备和仪表的伴管设计、其他伴热介质的伴管设计也可参照执行。
1.3 规范性文件本规定适用于工艺装置配管专业的设计,包括装置(单元)布置、管道布置、管道材料和管道应力等方面内容,不适用于给排水专业埋地管道的设计。
本规定适用于中国海洋总公司惠州炼油项目中各阶段的配管设计。
10000-SP-STPE-0101 工艺系统一般规定GB50235-1997 工业金属管道工程施工及验收规范SH/T3040-2002 石油化工管道伴管和夹套管设计规范SH/T3041-2002 石油化工管道柔性设计规范SH3501-2002(2004)石油化工有毒、可燃介质管道工程施工及验收规范(附加一号补充)2 设计2.1 技术要求2.1.1 本规定应作为伴热系统绘制图纸和确定形式的基准。
2.1.2 伴热设计的基本原则应符合10000-SP-STPE-0101的相关规定。
2.1.3 需要考虑伴热的管道参见10000-SP-SIPE-0101的相关规定。
2.1.4 工艺及公用工程管道等需要伴热的管道应在P&ID及管道说明表上标明。
2.1.5 伴热分配站及回收站的压力等级应在引入管和返回管所连接的主管压力等级一致。
2.2 伴热介质伴热介质可以是蒸汽或热水、和电伴热,伴热介质的选择应符合10000-SP-STPE-0101的相关规定。
2.3 伴热方式伴热方式可以是蒸汽外伴热管、夹套管、电伴热,伴热方式的选择应符合10000-SP-STPE-0101的相关规定。
3 外伴热管3.1 用于蒸汽伴热的蒸汽应根据厂内条件而定。
蒸汽温度应为蒸汽的饱和温度。
3.2 伴热管的直径取决于被伴热管道的热损失和伴热管道的蒸汽压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工管道伴热设计规定
化工管道是工业领域中极为重要的一种运输系统,其涉及到了各种化工原料及其危险性质。
因此,化工管道的伴热设计规定是相当重要的一个环节。
一旦设计规定出现错误,就有可能会对环境和人身安全带来严重危害。
本文将从以下几个方面来探究化工管道伴热设计规定的相关内容。
一、什么是化工管道伴热
化工管道伴热是为了在管道使用过程中,保持管道中介质的温度以及避免结冰或结霜的情况,专门对管道进行加热的一种设计规定。
主要是为了应对工业生产中管道经常遇到的低温低能量状态,比如输送稠度高、密度大、易结晶的石化原材料,或是输送起始点与目的地距离较远,环境温度低等因素。
二、为什么要伴热
化工管道由于其性质,输送的物质经过一定距离的运输后,往往会变得更加粘稠、凝固、结晶,甚至产生积瘤等问题。
这些情况都很容易导致管道堵塞、爆破等严重事故的发生。
而加热管道就可以避免这些问题的产生。
同时,加热可以使得介质的温度得到恢复,使得化工生产过程更加稳定、可靠。
三、化工管道伴热设计的规定
化工管道伴热设计的规定主要包括以下几个方面:
1.管道的选型
管道的选用必须考虑到输送的流体性质、管道的工作状态及温度等因素。
对于耐高温、耐腐蚀性较好的材料,其管道的伴热机制也比较容易实现。
而一些易燃易爆、易挥发等物质,则需要更加严格的管道选择,以免对使用者造成不良影响。
2.伴热方式的选定
伴热方式的选用与温度调节有着直接关系。
化工管道的伴热方式包括电伴热、蒸汽伴热、热水伴热等多种方式。
选择不同的伴热方式取决于介质传热速率、管道结构和寿命、伴热控制的自动化程度等多种因素。
3.伴热管道的管径及密度
管道的管径与伴热密度直接影响着管道的工作效率和伴热控制的难易程度。
通过合理的管道设计以及合适的伴热密度控制,可以使伴热管路的效率更高,系统仍能够保持原有的工作水平。
4.热突寿命的预计
化工管道的伴热装置使用寿命与装置加热度(热功率),使用频率,管径和管路材质等因素都有关。
要计算伴热装备的热突寿命,需要全面了解这些变量。
四、伴热设计质量如何进行评估
伴热管道的质量评估主要通过以下几个方面进行:
1.伴热设备的功率是否过大或过小
过大的功率会导致管道温度剧烈波动,较短的设备使用寿命,过小则会无法满足管道所需温度,从而起不到预期设备的作用。
2.管道输送介质能否接受
伴热管道的质量也取决于输送管道中介质的损失。
如果管道强制加热过程中导致介质的损失过大,则加热成本会有所增加。
3.管道热能平衡分析的准确度
对于加热过程中的温度控制,需要对每种伴热方式进行严密的热能平衡分析,从而确保伴热质量的稳定性。
总结
化工管道伴热设计规定是非常重要的一方面,涉及到众多因素和细节。
合理的设计可使致热、保温等过程自动控制,达到更高程度的工作效率和化工生产的安全。
因此,对于化工行业而言,制定完整且准确的化工管道伴热设计规定也有着不可替代的地位和重要性。