《空间直角坐标系》典型例题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《空间直角坐标系》典型例题解析
例1:在空间直角坐标系中,作出点M(6,
-2, 4)。 点拨点M 的位置可按如下步骤作出:先在x
轴上作出横坐标是6的点1M ,再将1M 沿与y
轴平行的方向向左移动2个单位得到点2M ,然
后将2M 沿与z 轴平行的方向向上移动4个单位
即得点M 。
解答M 点的位置如图所示。
总结对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力。
变式题演练
在空间直角坐标系中,作出下列各点:A(-2,3,3);B(3,-4,2);C(4,0,-3)。
答案:略
例2:已知正四棱锥P-ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。
点拨先由条件求出正四棱锥的高,再根据正
四棱锥的对称性,建立适当的空间直角坐标系。 解答 正四棱锥P-ABCD 的底面边长为4,侧
棱长为10,
∴正四棱锥的高为232。 以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为x 轴、y 轴,建立如图所示
的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,232)。
总结在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标。
1M 2M M (6,-2,4) O x y z 6 2 4 O A B C D P x y z
变式题演练
在长方体1111D C B A ABCD -中,AB=12,AD=8,1AA =5,试建立适当的空间直角坐标系,写出各顶点的坐标。
答案:以A 为原点,射线AB 、AD 、1AA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A(0,0,0)、B(12,0,0)、C(12,8,0)、D(0,8,0)、1A (0,0,
5)、1B (12,0,5)、1C (12,8,5)、1D (0,8,5)。
例3:在空间直角坐标系中,求出经过A(2,3,1)且平行于坐标平面yOz 的平面α的方程。 点拨求与坐标平面yOz 平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解。 解答 坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行,
∴平面α也与x 轴垂直,
∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等。
平面α过点A(2,3,1),∴平面α内的所有点的横坐标都是2,
∴平面α的方程为x=2。
总结对于空间直角坐标系中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题。本题类似于平面直角坐标系中,求过某一定点且与x 轴(或y 轴)平行的直线的方程。
变式题演练
在空间直角坐标系中,求出经过B(2,3,0)且垂直于坐标平面xOy 的直线方程。
答案:所求直线的方程为x=2,y=3.