《空间直角坐标系》典型例题解析

合集下载

高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)

高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)

一、选择题1.在空间直角坐标系中,M(–2,1,0)关于原点的对称点M′的坐标是A.(2,–1,0)B.(–2,–1,0)C.(2,1,0)D.(0,–2,1)【答案】A【解析】∵点M′与点M(–2,1,0)关于原点对称,∴M′(2,–1,0).故选A.2.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于A.13B.14C.23D.13【答案】A3.点B30,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为A.2B.2C.3D.5【答案】A【解析】点B30,0)是点A(m,2,5)在x轴上的射影,可得m3A到原点的距离222++2.故选A.(3)254.在空间直角坐标系中,点A(5,4,3),则A关于平面yOz的对称点坐标为A.(5,4,–3)B.(5,–4,–3)C.(–5,–4,–3)D.(–5,4,3)【答案】D【解析】根据关于坐标平面yOz 的对称点的坐标的特点,可得点A (5,4,3),关于坐标平面yOz 的对称点的坐标为(–5,4,3).故选D .5.空间中两点A (1,–1,2)、B (–1,1,22+2)之间的距离是A .3B .4C .5D .6【答案】B【解析】∵A (1,–1,2)、B (–1,1,22+2),∴A 、B 两点之间的距离d =222(11)(11)(2222)++--+--=4,故选B .6.在空间直角坐标系中,P (2,3,4)、Q (–2,–3,–4)两点的位置关系是A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对【答案】C7.点P (1,1,1)关于xOy 平面的对称点为P 1,则点P 1关于z 轴的对称点P 2的坐标是A .(1,1,–1)B .(–1,–1,–1)C .(–1,–1,1)D .(1,–1,1)【答案】B【解析】∵点P (1,1,1)关于xOy 平面的对称点为P 1,∴P 1(1,1,–1),∴点P 1关于z 轴的对称点P 2的坐标是(–1,–1,–1).故选B .8.已知点A (2,–1,–3),点A 关于x 轴的对称点为B ,则|AB |的值为A .4B .6C 14D .10【答案】D【解析】点A (2,–1,–3)关于平面x 轴的对称点的坐标(2,1,3),由空间两点的距离公式可知:AB ()()()222221133-++++10,故选D .9.在空间直角坐标系Oxyz 中,点M (1,2,3)关于x 轴对称的点N 的坐标是A.N(–1,2,3)B.N(1,–2,3)C.N(1,2,–3)D.N(1,–2,–3)【答案】D【解析】∵点M(1,2,3),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点M(1,2,3)关于x轴对称的点的坐标为(1,–2,–3),故选D.10.空间点M(1,2,3)关于点N(4,6,7)的对称点P是A.(7,10,11)B.(–2,–1,0)C.579222⎛⎫⎪⎝⎭,,D.(7,8,9)【答案】A11.在空间直角坐标系中,已知点A(1,0,2),B(1,–4,0),点M是A,B的中点,则点M的坐标是A.(1,–1,0)B.(1,–2,1)C.(2,–4,2)D.(1,–4,1)【答案】B【解析】∵点M是A,B的中点,∴M110420222+-+⎛⎫⎪⎝⎭,,,即M(1,–2,1).故选B.二、填空题12.空间中,点(2,0,1)位于___________平面上(填“xOy”“yOz”或“xOz”)【答案】xOz【解析】空间中,点(2,0,1)位于xOz平面上.故答案为:xOz.13.在正方体ABCD–A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为___________.29【解析】∵在正方体ABCD –A 1B 1C 1D 1中,D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),∴C 1(0,2,3),∴对角线AC 1的长为|AC 1|=222(04)2329-++=.故答案为:29.14.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作平面xOy 的垂线PQ ,则垂足Q 的坐标为___________. 【答案】(1,2,0)【解析】空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则点Q 的坐标为(1,2,0),如图所示.故答案为:(1,2,0).15.若A (1,3,–2)、B (–2,3,2),则A 、B 两点间的距离为___________.【答案】5【解析】由题意,A 、B 两点间的距离为222(12)(33)(22)++-+--=5.故答案为:5. 16.已知A (1,a ,–5),B (2a ,–7,–2)(a ∈R ),则|AB |的最小值为___________.【答案】3617.点A (–1,3,5)关于点B (2,–3,1)的对称点的坐标为___________.【答案】(5,–9,–3)【解析】设点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(a,b,c),则12 2332512abc-+⎧=⎪⎪+⎪=-⎨⎪+⎪=⎪⎩,解得a=5,b=–9,c=–3,∴点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(5,–9,–3).故答案为:(5,–9,–3).三、解答题18.若点P(–4,–2,3)关于坐标平面xOy及y轴的对称点的坐标分别是A和B.求线段AB的长.19.在Z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.【解析】设M(0,0,z),∵Z轴上一点M到点A(1,0,2)与B(1,–3,1)的距离相等,∴()222221021(03)(1)z z++-=+++-,解得z=–3,∴M的坐标为(0,0,–3).20.如图建立空间直角坐标系,已知正方体的棱长为2,(1)求正方体各顶点的坐标;(2)求A1C的长度.【解析】(1)∵正方体的棱长为2,∴A (0,0,2),B (0,2,2),C (2,2,2),D (2,0,2), A 1(0,0,0),B 1(0,2,0),C 1(2,2,0),D 1(2,0,0). (2)由(1)可知,A 1(0,0,0),C (2,2,2),A 1C 的长度|A 1C |=222222++=23.21.求证:以A (4,1,9),B (10,–1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.。

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析1.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.2.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.【答案】见解析【解析】先利用空间两点的距离公式分别求出AB,AC,BC的长,然后利用勾股定理进行判定是否为直角三角形,以及长度是否有相等,从而判定是否是等腰直角三角形.证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.点评:本题主要考查了两点的距离公式和勾股定理的应用,考查空间想象能力、运算能力和推理论证能力,属于基础题.3.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.4.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A.B.C.D.【答案】D【解析】过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,写出要求点的坐标.解:空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,∴Q(1,,0)故选D.点评:不同考查空间中点的坐标,是一个基础题,这种题目一般不会单独出现,它只是立体几何与空间向量中所出现的题目的一个小部分.5.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.6.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.7.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.8.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.9.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.10.求到两定点A(2,3,0),B(5,1,0)距离相等的点的坐标(x,y,z)满足的条件.【答案】6x﹣4y﹣13=0即为所求点所满足的条件.【解析】直接利用空间坐标系中两点间的距离公式得关于x,y的方程式,化简即可得所求的点的坐标(x,y,z)满足的条件.解:设P(x,y,z)为满足条件的任一点,则由题意,得,.∵|PA|=|PB|,平方后化简得:6x﹣4y﹣13=0.∴6x﹣4y﹣13=0即为所求点所满足的条件.点评:本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题.11.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.12.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.13.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.14.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.15.设点B是点A(2,﹣3,5)关于xOy面的对称点,则A、B两点距离为()A.10B.C.D.38【答案】A【解析】点B是A(2,﹣3,5)关于xoy平面对称的点,B点的横标和纵标与A点相同,竖标相反,写出点B的坐标,根据这条线段与z轴平行,得到A、B两点距离.解:点B是A(2,﹣3,5)关于xoy平面对称的点,∴B点的横标和纵标与A点相同,竖标相反,∴B(2,﹣3,﹣5)∴AB的长度是5﹣(﹣5)=10,故选A.点评:本题看出空间中点的坐标和两点之间的距离,本题解题的关键是根据关于坐标平面对称的点的特点,写出坐标,本题是一个基础题.16.点P(x,y,z)满足=2,则点P在()A.以点(1,1,﹣1)为圆心,以2为半径的圆上B.以点(1,1,﹣1)为中心,以2为棱长的正方体上C.以点(1,1,﹣1)为球心,以2为半径的球面上D.无法确定【答案】C【解析】通过表达式的几何意义,判断点P的集合特征即可得到选项.解:式子=2的几何意义是动点P(x,y,z)到定点(1,1,﹣1)的距离为2的点的集合.故选C.点评:本题考查空间两点间距离公式的应用,空间轨迹方程的求法.17.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= .【答案】2【解析】由题意求出P关于坐标平面xOz的对称点为P2的坐标,即可求出|P1P2|.解:∵点P(1,2,3)关于y轴的对称点为P1,所以P1(﹣1,2,﹣3),P关于坐标平面xOz的对称点为P2,所以P2(1,﹣2,3),∴|P1P2 |==2.故答案为:2点评:本题是基础题,考查空间点关于点、平面的对称点的求法,两点的距离的求法,考查计算能力.18.已知x,y,z满足(x﹣3)2+(y﹣4)2+z2=2,那么x2+y2+z2的最小值是.【答案】27﹣10.【解析】利用球心与坐标原点的距离减去半径即可求出表达式的最小值.解:由题意可得P(x,y,z),在以M(3,4,0)为球心,为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|﹣=﹣=5,所以|OP|2=27﹣10.故答案为:27﹣10.点评:本题考查空间中两点间的距离公式的应用,考查计算能力.19.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.【答案】A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),E(,﹣,1),F().【解析】由题意直接写出B的坐标,利用对称性以及中点坐标公式分别求出A、B、C、D、E、F 的坐标.解:如图所示,B点的坐标为(1,1,0),因为A点关于x轴对称,得A(1,﹣1,0),C点与B点关于y轴对称,得C(﹣1,1,0),D与C关于x轴对称,的D(﹣1,﹣1,0),又P(0,0,2),E为AP的中点,F为PB的中点,由中点坐标公式可得E(,﹣,1),F().点评:本题考查空间点的坐标的求法,中点坐标公式的应用,对称知识的应用,考查计算能力.20.已知空间直角坐标系O﹣xyz中的点A(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点.(1)求点P的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.【答案】(1)x+y+z=3.(2)【解析】(1)通过平面α过点A且与直线OA垂直,利用勾股定理即可求点P的坐标满足的条件;(2)求出平面α与坐标轴的交点坐标,即可利用棱锥的体积公式求出所求几何体体积.解:(1)因为OA⊥α,所以OA⊥AP,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x﹣1)2+(y﹣1)2+(z﹣1)2=x2+y2+z2,化简得:x+y+z=3.(2)设平面α与x轴、y轴、z轴的点分别为M、N、H,则M(3,0,0)、N(0,3,0)、H(0,0,3).所以|MN|=|NH|=|MH|=3,所以等边三角形MNH的面积为:=.又|OA|=,故三棱锥0﹣MNH的体积为:=.点评:本题考查空间想象能力,计算能力,转化思想,空间两点距离公式的应用.。

空间向量复习精选例题(含答案解析)

空间向量复习精选例题(含答案解析)

∴二面角 B1-BE-F 的大小为 arccos(
2 )。 3
(4)∵ GD1 =(-1,0,2),而 GD1 n1 =-2+0+2=0,
z D1 A1 F E B1 C1
∴直线 GD1∥平面 BEFD。 (5) DD1 =(0,0,2), | n1 | 4 4 1 3 , ∴ n1 的单位向量为(
空间向量
2 2 2 0, 0 0 0, 0 设 AB a ,则 A 2 a, ,B 0,2 a, ,C 2 a, . 设 OP h ,则 P(0, 0,h) . 2 1 a , 0 , h . ∵ D 为 PC 的中点,∴ OD 4 2 2 1 PA 0, h 2 a, ,∴ OD 2 PA .
∵ PA n1 2 2 0, PA n1,又PA 平面BDE, PA // 平面BDE. (2)由(Ⅰ)知 n1 (1, 1,1) 是平面 BDE 的一个法向量, 又 n 2 DA (2,0,0) 是平面 DEC 的一个法向量. 设二面角 B—DE—C 的平面角为 ,由图可知 n1 , n 2
(2) DA =(2,0,0) ,设 DA 与面 EFG 所成的角为θ, 则 sin
∴直线 C1D 与平面 A1C1B 的所成角为 arcsin
| DA n | 4 21 4 21 = ,∴ arcsin 21 21 | DA || n |
(2)平面 A1C1B 的法向量 n =(2,1,2),平面 AA1C1C 的法向量 n ' =(2,1,0), 设二者夹角为θ ,∴ cos
∴ cos PA ,n PA ·n PA n 210 . 30

空间直角坐标系例题

空间直角坐标系例题

空间直角坐标系例题于是,小明拿出他的笔记本,画了个大大的坐标系,X轴、Y轴、Z轴都清晰可见。

看着这些线条,朋友们个个眉头紧皱,心里想着:“这是什么鬼?难道我们要在这儿打坐?”小明哈哈大笑:“别担心,咱们就把这当成一个大地图,找到每一个宝藏点就行了!”听了这话,大家的紧张情绪稍微缓解了些,心想,这地图总比坐着干等要好得多。

于是,他们决定从坐标(1, 2, 3)开始。

小明指着地图,兴奋地说:“我们先往右走一格,然后向上走两格,最后再往前走三格。

”小伙伴们点点头,心里琢磨着,跟着小明的指引走,感觉就像在玩寻宝游戏一样,心里那个期待啊,简直要飞起来了。

一路上,他们嬉闹着,偶尔还会有小鸟飞过,仿佛在为他们的探险加油。

可是,事情并没有那么简单。

小明带着大家走到(1, 2, 3)时,发现眼前是一片空荡荡的地方。

哦,真是个意外,大家都愣住了。

小明耸耸肩:“没关系,这只是第一步。

我们去(4, 5, 6)看看。

”话音刚落,大家又开始朝新的坐标点进发。

这时候,小王调皮地说:“要是每个坐标都有宝藏,那我就发达了!”这话让大家都笑了,气氛一下子轻松了许多。

他们按照小明的计划继续前进。

走到(4, 5, 6)时,竟然看到了一棵巨大的老树,树下还有个破旧的箱子。

大家的心都提到了嗓子眼,难道这就是传说中的宝藏?小明激动地跑过去,打开箱子,发现里面竟然是一堆旧玩具和几本发黄的书。

虽然不是金银财宝,但大家还是围着箱子,乐呵呵地翻看起来。

小李拿起一个破损的玩具车,感慨道:“这让我想起小时候的快乐啊!”过了一会儿,大家决定继续探险,目标是(7, 8, 9)。

在路上,小王突然冒出一句:“这就像是在解密,每一个坐标点都是一个谜。

”大家纷纷点头,确实是这样。

他们就这样快乐地在坐标系中穿梭,偶尔碰到小动物,偶尔发出欢笑,仿佛整个世界都在和他们一起玩耍。

终于,他们到达了最后一个坐标点,(7, 8, 9)。

在这里,竟然发现了一片美丽的花丛,五颜六色的花朵让人目不暇接。

3.1.1点在空间直角坐标系中的...

3.1.1点在空间直角坐标系中的...

3.1.1点在空间直角坐标系中的...1.1 点在空间直角坐标系中的坐标 1.2 空间两点间的距离公式1.在空间直角坐标系中,点P(1,-2,5)到坐标平面xOz的距离为()A.2B.1C.5D.32.在空间直角坐标系O-xyz中,点A(2,-1,3)关于yOz平面对称的点的坐标是()A.(2,1,3)B.(-2,-1,3)C.(2,1,-3)D.(2,-1,-3)3.在空间直角坐标系O-xyz中,对于点(0,m2+2,m),下列结论正确的是()A.此点在xOy坐标平面上B.此点在xOz坐标平面上C.此点在yOz坐标平面上D.以上都不对4.与A(3,4,5),B(-2,3,0)两点距离相等的点M(x,y,z)满足的条件是()A.10x+2y+10z-37=0B.5x-y+5z-37=0C.10x-y+10z+37=0D.10x-2y+10z+37=05.点P(3,-2,2)在xOz平面内的投影为B(x,y,z),则x+y+z=.6.点M(-1,2,3)是空间直角坐标系O-xyz中的一点,点M1与点M关于x轴对称,点M2与点M关于xOy平面对称,则|M1M2|=.7.在空间直角坐标系O-xyz中,已知点A(1,2,2),则|OA|=;点A到坐标平面yOz的距离是.8.(1)写出点P(1,3,-5)关于原点对称的点的坐标;(2)写出点P(1,3,-5)关于x轴对称点的坐标.9.如图,在正方体ABCD-A1B1C1D1中,E,F分别是BB1,D1B1的中点,棱长为1.试建立适当的空间直角坐标系,写出点E,F的坐标.能力达标10.在空间直角坐标系O-xyz中,点A在z轴上,它到点(22,5,1)的距离是13,则点A的坐标是()A.(0,0,-1)B.(0,1,1)C.(0,0,1)D.(0,0,13)11.在空间直角坐标系O-xyz中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对12.点P(a,b,c)到坐标平面xOy的距离是()A.a2+b2B.cC.|c|D.a+b13.已知点A(1,a,-5),B(2a,-7,-2),则|AB|的最小值为()A.33B.36C.23D.2614.(多选题)已知点A(-2,3,4),在z轴上求一点B,使|AB|=7,则点B 的坐标为()A.(0,0,10)B.(0,10,0)C.(0,0,-2)D.(0,0,2)15.已知A(4,3,1),B(7,1,2),C(5,2,3),则△ABC是三角形.(填三角形的形状)16.设y为任意实数,相应的所有点P(1,y,3)的集合图形为.17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,|AP|=|AB|=2,|BC|=22,E,F分别是AD,PC的中点.求证:PC⊥BF,PC⊥EF.18.已知在直三棱柱ABC-A1B1C1(侧棱与底面垂直)中,AC=2,CB=CC1=4,AC⊥BC,E,F,M,N分别是A1B1,AB,C1B1,CB的中点,连接EF,MN.如图所示,建立空间直角坐标系.(1)在平面ABB1A1内找一点P,使△ABP为等边三角形;(2)能否在线段MN上求得一点Q,使△AQB为以AB为斜边的直角三角形?若能,请求出点Q的坐标;若不能,请予以证明.1.在空间直角坐标系中,点P(1,-2,5)到坐标平面xOz的距离为()A.2B.1C.5D.3答案A解析在空间直角坐标系中,点P(1,-2,5)到坐标平面xOz的距离为d=(1-1)2+(-2-0)2+(5-5)2=2.故选A.2.在空间直角坐标系O-xyz中,点A(2,-1,3)关于yOz平面对称的点的坐标是()A.(2,1,3)B.(-2,-1,3)C.(2,1,-3)D.(2,-1,-3)答案B3.在空间直角坐标系O-xyz中,对于点(0,m2+2,m),下列结论正确的是()A.此点在xOy坐标平面上B.此点在xOz坐标平面上C.此点在yOz坐标平面上D.以上都不对答案C解析若m=0,点(0,2,0)在y轴上;若m≠0,点的横坐标为0,纵坐标大于0,竖坐标不为0,点(0,m2+2,m)在yOz坐标平面上.综上所述,点(0,m2+2,m)一定在yOz平面上.故选C.4.与A(3,4,5),B(-2,3,0)两点距离相等的点M(x,y,z)满足的条件是()A.10x+2y+10z-37=0B.5x-y+5z-37=0C.10x-y+10z+37=0D.10x-2y+10z+37=0答案A解析由|MA|=|MB|,得(x-3)2+(y-4)2+(z-5)2=(x+2)2+(y-3)2+z2,化简得10x+2y+10z-37=0,故选A.5.点P(3,-2,2)在xOz平面内的投影为B(x,y,z),则x+y+z=.答案5解析因为点P(3,-2,2)在xOz平面内的射影为B(3,0,2),所以x=3,y=0,z=2,所以x+y+z=3+0+2=5.6.点M(-1,2,3)是空间直角坐标系O-xyz中的一点,点M1与点M关于x轴对称,点M2与点M关于xOy平面对称,则|M1M2|=.答案4解析∵点M1与点M关于x轴对称,点M2与点M关于xOy平面对称,∴M1(-1,-2,-3),M2(-1,2,-3),∴|M1M2|=(-1+1)2+(-2-2)2+(-3+3)2=4.7.在空间直角坐标系O-xyz中,已知点A(1,2,2),则|OA|=;点A 到坐标平面yOz的距离是.答案3 1解析根据空间两点间的距离公式,得|OA|=(1-0)2+(2-0)2+(2-0)2=3.∵点A(1,2,2),∴点A到平面yOz 的距离为1.8.(1)写出点P(1,3,-5)关于原点对称的点的坐标;(2)写出点P(1,3,-5)关于x轴对称点的坐标.解(1)点P(1,3,-5)关于原点对称的点的坐标为(-1,-3,5);(2)点P(1,3,-5)关于x轴对称点的坐标为(1,-3,5).9.如图,在正方体ABCD-A1B1C1D1中,E,F分别是BB1,D1B1的中点,棱长为1.试建立适当的空间直角坐标系,写出点E,F的坐标.解建立如图所示空间直角坐标系.点E在xDy平面上的投影为点B,点B坐标为(1,1,0),点E的竖坐标为12,所以E1,1,12.点F在xDy平面上的投影为BD的中点G,点G的坐标为12,12,0,点F的竖坐标为1,所以F12,12,1.能力达标10.在空间直角坐标系O-xyz中,点A在z轴上,它到点(22,5,1)的距离是13,则点A的坐标是()A.(0,0,-1)B.(0,1,1)C.(0,0,1)D.(0,0,13)答案C解析选项A的距离为8+5+4=17,选项C的距离为8+5+0=13,选项D的距离为8+5+144≠13,故选C.11.在空间直角坐标系O-xyz中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对答案A12.点P(a,b,c)到坐标平面xOy的距离是()A.a2+b2B.cC.|c|D.a+b答案C解析点P在xOy平面的投影点的坐标是P'(a,b,0),∴|PP'|2=(a-a)2+(b-b)2+(c-0)2=c2,∴点P(a,b,c)到坐标平面xOy的距离是|c|.故选C.13.已知点A(1,a,-5),B(2a,-7,-2),则|AB|的最小值为()A.33B.36C.23D.26答案B解析|AB|=(2a-1)2+(-7-a)2+(-2+5)2=5a2+10a+59=5(a+1)2+54,当a=-1时,|AB|min=54=36.14.(多选题)已知点A(-2,3,4),在z轴上求一点B,使|AB|=7,则点B的坐标为()A.(0,0,10)B.(0,10,0)C.(0,0,-2)D.(0,0,2)答案AC解析设点B的坐标为(0,0,c),由空间两点间距离公式可得|AB|=(-2)2+32+(4-c)2=7,解得c=-2或10,所以B点的坐标为(0,0,10)或(0,0,-2).15.已知A(4,3,1),B(7,1,2),C(5,2,3),则△ABC是三角形.(填三角形的形状)答案等腰解析由空间两点间距离公式可求得三角形三边长分别为|AB|=14,|AC|=6,|BC|=6.所以△ABC为等腰三角形.16.设y为任意实数,相应的所有点P(1,y,3)的集合图形为.答案过点(1,0,3)且平行于y轴的一条直线解析由空间中点的坐标特点可知,由于x轴上坐标与z轴上坐标已确定,所以点P的集合为过(1,0,3)且平行于y轴的一条直线.17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,|AP|=|AB|=2,|BC|=22,E,F分别是AD,PC的中点.求证:PC⊥BF,PC⊥EF.证明如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.∵|AP|=|AB|=2,|BC|=22,四边形ABCD是矩形,∴A(0,0,0),B(2,0,0),C(2,22,0),D(0,22,0),P(0,0,2),∴|PB|=(0-2)2+(0-0)2+(2-0)2=22,∴|PB|=|BC|,又F为PC的中点,∴PC⊥BF.∵E(0,2,0),∴|PE|=(0-0)2+(2-0)2+(0-2)2=6,|CE|=(0-2)2+(2-22)2+(0-0)2=6,∴|PE|=|CE|,又F为PC的中点,∴PC⊥EF.18.已知在直三棱柱ABC-A1B1C1(侧棱与底面垂直)中,AC=2,CB=CC1=4,AC⊥BC,E,F,M,N分别是A1B1,AB,C1B1,CB的中点,连接EF,MN.如图所示,建立空间直角坐标系.(1)在平面ABB1A1内找一点P,使△ABP为等边三角形;(2)能否在线段MN上求得一点Q,使△AQB为以AB为斜边的直角三角形?若能,请求出点Q的坐标;若不能,请予以证明.解(1)因为直线EF 是AB的垂直平分线,所以在平面ABB1A1内只有线段EF上的点到A,B 两点的距离相等,又A(2,0,0),B(0,4,0),设点P坐标为(1,2,m),由|PA|=|AB|得(1-2)2+(2-0)2+(m-0)2=20.所以m2=15.因为m∈[0,4],所以m=15.故平面ABB1A1内的点P(1,2,15),使得△ABP为等边三角形.(2)设MN 上的点Q(0,2,n)满足题意,由AB为Rt△AQB斜边,且F为AB中点,所以|QF|=12|AB|,又F(1,2,0),则(0-1)2+(2-2)2+(n-0)2=12(0-2)2+(4-0)2+(0-0)2,整理得n2+1=5.所以n2=4.因为n∈[0,4],所以n=2.故MN上存在点Q(0,2,2)使得△AQB为以AB为斜边的直角三角形.。

空间直角坐标系

空间直角坐标系


华翰教辅
教辅旗舰
题型三中点坐标公式 例 3 如图所示,在正方体 ABCD-A1B1C1D1 中,E、F 分别是 BB1、D1B1 的中点,棱长为 1.求 E、F 点的坐标.

华翰教辅
解析 1 标为 . 2
教辅旗舰
解法一:E 点在 xOy 面上的射影为 B,则 B(1,1,0),竖坐
华翰教辅
教辅旗舰
2.确定点 M 的坐标和由点 M 坐标确定 M 位置的步骤 (1)确定空间定点 M 的坐标的步骤:①过点 M 分别作垂直于 x 轴、y 轴和 z 轴的平面,依次交 x 轴、y 轴和 z 轴于 P、Q 和 R.②确 定 P、Q 和 R 在 x 轴、y 轴和 z 轴上的坐标 x、y 和 z 轴.③得出点 M 的坐标为(x,y,z). (2)已知点 M 坐标为(x,y,z),确定点 M 位置的步骤:①在 x 轴、y 轴和 z 轴上依次取坐标为 x、y 和 z 的点 P、Q、R.②过 P、Q、 R 分别作垂直于 x 轴、y 轴和 z 轴的平面,那么三个平面交于一点, 这点就是坐标(x,y,z)对应的点 M.

华翰教辅
教辅旗舰
典 例 对 对 碰 反思例题有法宝 变式迁移有技巧

华翰教辅
教辅旗舰
题型一坐标轴及坐标平面内点的特征 例 1 有下列叙述: ①在空间直角坐标系中,在 Ox 轴上的点的坐标一定可记为(0,b,0); ②在空间直角坐标系中,在 yOz 平面上的点的坐标一定可记为(0,b, c); ③在空间直角坐标系中,在 Oz 轴上的点的坐标一定可记为(0,0,c); ④在空间直角坐标系中, xOz 平面上的点的坐标一定可记为(a,0, 在 c). 其中正确叙述的个数是( ) A.1 B.2 C.3 D.4

空间直角坐标系与空间向量典型的的例题

空间直角坐标系与空间向量典型的的例题

空间直角坐标系与空间向量一、建立空间直角坐标系的几种方法 构建原如此:遵循对称性,尽可能多的让点落在坐标轴上。

作法:充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下:〔一〕用共顶点的互相垂直的三条棱构建直角坐标系例1 直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,如此C 1〔0,1,2〕、B 〔2,4,0〕, ∴1(232)BC =--,,,(010)CD =-,,.设1BC 与CD 所成的角为θ, 如此11317cos 17BC CD BC CDθ==. 〔二〕利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π,∴在三棱柱ABC -A 1B 1C 1中,有B 〔0,0,0〕、A 〔0,0,2〕、B 1〔0,2,0〕、31022c ⎛⎫- ⎪ ⎪⎝⎭,,、133022C ⎛⎫⎪ ⎪⎝⎭,,.设302E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<,由EA ⊥EB 1,得10EAEB =,即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,即12a =或32a =〔舍去〕.故31022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(002)B A BA ==,,,31222EA ⎛⎫=-- ⎪ ⎪⎝⎭,,故11112cos 3EA B A EA B A θ==,即2tan 2θ=〔三〕利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . 〔1〕证明AB ⊥平面VAD ;〔2〕求面VAD 与面VDB 所成的二面角的余弦值.解析:〔1〕取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设AD =2,如此A 〔1,0,0〕、D 〔-1,0,0〕、B 〔1,2,0〕、V 〔0,0,3〕,∴AB =〔0,2,0〕,VA =〔1,0,-3〕.由(020)(103)0AB VA =-=,,,,,得AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直, ∴AB ⊥平面VAD ;〔2〕设E 为DV 的中点,如此13022E ⎛⎫- ⎪ ⎪⎝⎭,,∴33022EA ⎛⎫=- ⎪ ⎪⎝⎭,,,33222EB ⎛⎫=- ⎪ ⎪⎝⎭,,,(103)DV =,,. ∴332(103)022EB DV ⎛⎫=-= ⎪ ⎪⎝⎭,,,,, ∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角. ∴21cos7EA EB EA EB EA EB==,. 故所求二面角的余弦值为217. 〔四〕利用正棱锥的中心与高所在直线构建直角坐标系例4 正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h . 〔1〕求∠DEB 的余弦值;〔2〕假如BE ⊥VC ,求∠DEB 的余弦值.解析:〔1〕如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,如此由AB =2a ,OV =h ,有B 〔a ,a ,0〕、C 〔-a ,a ,0〕、D 〔-a ,-a ,0〕、V 〔0,0,h 〕、222a a h E ⎛⎫- ⎪⎝⎭,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭,,,3222a h DE a ⎛⎫= ⎪⎝⎭,,.∴22226cos 10BE DEa h BE DE a hBE DE -+==+,, 即22226cos 10a h DEB a h-+=+∠; 〔2〕因为E 是VC 的中点,又BE ⊥VC , 所以0BEVC =,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭,,,,,∴22230222a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+,,即1cos 3DEB =-∠.引入空间向量坐标运算,使解立体几何问题防止了传统方法进展繁琐的空间分析,只需建立空间直角坐标系进展向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.下面以高考考题为例,剖析建立空间直角坐标系的三条途径.〔五〕利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系〔如正三棱柱、正四棱柱等〕,利用自身对称性可建立空间直角坐标系.例5两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. 〔1〕证明:PQ ⊥平面ABCD ; 〔2〕求异面直线AQ 与PB 所成的角; 〔3〕求点P 到面QAD 的距离. 简解:〔1〕略;〔2〕由题设知,ABCD 是正方形,且AC ⊥BD .由〔1〕,PQ ⊥平面ABCD ,故可分别以直线CADB QP ,,为x ,y ,z 轴建立空间直角坐标系〔如图1〕,易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PBAQ PB AQ PB <>==,.所求异面直线所成的角是1arccos3. 〔3〕由〔2〕知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,设n =〔x ,y ,z 〕是平面QAD 的一个法向量,如此00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==n n.点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第〔3〕问也可用“等体积法〞求距离. 二、向量法解立体几何(一)知识点向量的数量积和坐标运算b a,是两个非零向量,它们的夹角为θ,如此数θcos ||||⋅⋅b a 叫做a 与b 的数量积〔或内积〕,记作b a ⋅,即.cos ||||θ⋅⋅=⋅b a b a 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是:假如),,(),,,(222111z y x b z y x a ==,如此①212121z z y y x x b a ++=⋅;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<(二)例题讲解 题型:求角度相关1. 异面直线n m ,所成的角分别在直线n m ,上取定向量,,b a如此异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角〔如图1所示〕,如此.||||||cos b a b a⋅⋅=θ 2. 直线L 与平面α所成的角在L 上取定AB ,求平面α的法向量n 〔如图2所示〕,再求||||cos n AB n AB ⋅=θ如此θπβ-=2为所求的角.3. 二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、〔都取向上的方向,如图3所示〕,如此图1图①假如二面角βα--l 是“钝角型〞的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n n n ⋅=θ② 假如二面角βα--l 是“锐角型〞的如图3乙所示,那么其大小等于两法向量21n n 、的夹角,即||||cos 2121n n n n ⋅=θ.方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、〔如图4所示〕,如此二面角βα--l 的大小等于向量21n n 、的夹角,即 ||||cos 2121n n n n ⋅=θ题型:求距离相关1. 异面直线n m 、的距离分别在直线n m 、上取定向量,,b a求与向量b a 、都垂直的向量n ,分别在n m 、上各取一个定点B A 、,如此异面直线n m 、的距离d 等于AB 在n 上的射影长,即||n n AB d=证明:设CD 为公垂线段,取b DB a CA==,||||)(n AB n CD n BD AB CA n CD BD AB CA CD ⋅=⋅∴⋅++=⋅∴++= ||||n n AB CD d ==∴设直线n m ,所成的角为θ,显然.||||||cos b a b a⋅⋅=θ 2. 平面外一点p 到平面α的距离n 图图4图1求平面α的法向量n ,在面内任取一定点A ,点p 到平面α的距离d 等于AP 在n 上的射影长,即||||n n AP d ⋅=.三、法向量 例题解析题型:求空间角1、运用法向量求直线和平面所成角设平面α的法向量为n =〔x, y, 1),如此直线AB 和平面α所成的角θ的正弦值为 sin θ= cos(2π-θ) = |cos<AB , n >| =AB AB n n••2、运用法向量求二面角设二面角的两个面的法向量为12,n n ,如此<12,n n >或π-<12,n n >是所求角。

空间直角坐标系练习题含详细答案

空间直角坐标系练习题含详细答案

空间直角坐标系(11月21日)一、选择题1、有下列叙述:①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c);②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c);③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c);④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。

其中正确的个数是( C )A、1B、2C、3D、42、已知点A(-3,1,4),则点A关于原点的对称点的坐标为( C )A、(1,-3,-4)B、(-4,1,-3)C、(3,-1,4)D、(4,-1,3)3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为( A )A、(-3,-1,4)B、(-3,-1,-4)C、(3,1,4)D、(3,-1,-4)4、点(1,1,1)关于z轴的对称点为( A )A、(-1,-1,1)B、(1,-1,-1)C、(-1,1,-1)D、(-1,-1,-1)5、点(2,3,4)关于xoz平面的对称点为( C )A、(2,3,-4)B、(-2,3,4)C、(2,-3,4)D、(-2,-3,4)6、点P(2,0,3)在空间直角坐标系中的位置是在( C )A.y轴上 B.xOy平面上 C.xOz平面上D.x轴上7、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( C )A、(12,1,1) B、(1,12,1) C、(1,1,12) D、(12,12,1)8、点P(22,33,-66)到原点的距离是( B )A.306B.1 C.336D.3569、点M(4,-3,5)到x轴的距离为( B )A.4 B.34 C.5 2 D.41 10、在空间直角坐标系中,点P(1,2,3),过点P作平面xOy的垂线PQ,垂足为Q,则Q 的坐标为( D )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)11、点M(-2,1,2)在x轴上的射影的坐标为( B )A.(-2,0,2) B.(-2,0,0)C.(0,1,2) D.(-2,1,0)12、在长方体ABCD-A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为( B )A.9 B.29C.5 D.2 6二、填空题1、在空间直角坐标系中, 点P的坐标为(1, 32,),过点P作yOz平面的垂线PQ, 则垂足Q 的坐标是________________.2、已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________.3、已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________.4、已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.小组: 组号: 姓名:__________一、选择题(本题共12小题,每题5分,共60分)题号 12345678910 11 12答案二、填空题(共4小题,每题5分,共20分)请把正确答案填写在相应的位置上.1、______________2、____________3、________________4、______________ 三、解答题1、 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.2、求证:以(419)A ---,,,(1016)B --,,,(243)C ---,,为顶点的三角形是等腰直角三角形.【选做题】1、已知点A (2,3,5),B (-2,1,a ),则|AB |的最小值为( )A. 6 B .2 5 C. 2 D .2 22、如图所示,BC =4,原点O 是BC 的中点,点A 的坐标为(32,12,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°,求AD 的长度.答案:二、填空: 1. (0, ); 2. ; 3. 3 , 2; 4 (0,三、解答题:1、解:点C 在y 轴上,x 坐标,z 坐标均为0,且|OC |=3,故点C 的坐标为(0,3,0). 因为B ′B 垂直于xOy 平面,垂足为B ,所以点B ′与B 的x 坐标和y 坐标都相同,又|BB ′|=|OD ′|=2,且点B ′在xOy 平面的上方,所以点B ′的坐标为(1,3,2).点E 在x 轴负半轴上,且|OE |=12,所以点E 的坐标为(-12,0,0).2、选做题:1、解析:选B.|AB |=2+22+3-12+5-a2=20+a -52,当且仅当a =5时,|AB |min =20=2 5.2、解 由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),则在Rt △BDC 中,∠DCB =30°, ∴BD =2,CD =23,z =3,y =-1.∴D (0,-1,3).又∵A (32,12,0), ∴|AD |=322+12+12+32=6.Welcome !!! 欢迎您的下载,资料仅供参考!。

2.3 空间直角坐标系典型习题

2.3 空间直角坐标系典型习题

§2.3 空间直角坐标系典型习题 一、选择题 1.以棱长为1的正方体ABCD-A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴,建立空间直角坐标系,则平面AA 1B 1B 对角线交点的坐标为( )A .(0,0.5,0.5)B .(0.5,0,0.5)C .(0.5,0.5,0)D .(0.5,0.5,0.5)2.设点B 是点A (2,-3,5)关于xOy 面的对称点,则A 、B 两点距离为( )A .10B .10C .38D .383.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,A′C 的中点E 与AB 的中点F 的距离为( )A .a 2B .a 22C .aD .a214.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .575.点P (x ,y ,z )满足222)1()1()1(++-+-z y x =2,则点P 在( )A .以点(1,1,-1)为圆心,以2为半径的圆上B .以点(1,1,-1)为中心,以2为棱长的正方体上C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定6.若A 、B 两点的坐标是A (3cosα,3sinα),B (2cosθ,2sinθ),则|AB|的取值范围是( )A .[0,5]B .[1,5] C.(1,5) D .[1,25]7.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是( ) ①点P 关于x 轴对称点的坐标是P 1(x ,﹣y ,z );②点P 关于yOz 平面对称点的坐标是P 2(x ,﹣y ,﹣z );③点P关于y轴对称点的坐标是P3(x,﹣y,z);④点P关于原点对称的点的坐标是P4(﹣x,﹣y,﹣z).A.3B.2C.1D.08.设A(3,3,1)、B(1,0,5)、C(0,1,0),则AB中点M到C点的距离为()A.B.C.D.9.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()B A.B.C.D.10.已知ABCD为平行四边形,且A(4,1,3),B(2,﹣5,1),C(3,7,﹣5),则点D 的坐标为()A.(3.5,4,﹣1)B.(2,3,1)C.(﹣3,1,5)D.(5,13,﹣3)11.已知点A(1,﹣2,11),B(4,2,3),C(x,y,15)三点共线,那么x,y的值分别是()A.0.5,4 B.1,8 C.-0.5,﹣4 D.﹣1,﹣812.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是()A.B.C.D.二、填空题(每小题5分,共20分)13.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= ____14.已知三角形的三个顶点为A(2,-1,4),B(3,2,-6),C(5,0,2),则BC边上的中线长为_____________15.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是____________ 16. 已知点A(﹣3,1,4),则点A关于原点的对称点B的坐标为;AB的长为.三、解答题(共70分)17.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.21.在空间直角坐标系中,已知A(3,0,1)和B(1,0,﹣3),试问(1)在y轴上是否存在点M,满足|MA|=|MB|?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.参考答案:一、选择题1.以棱长为1的正方体ABCD-A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴,建立空间直角坐标系,则平面AA1B1B对角线交点的坐标为()A.(0,0.5,0.5)B.(0.5,0,0.5)C.(0.5,0.5,0)D.(0.5,0.5,0.5)【解答】解:由题意如图,平面AA 1B 1B 对角线交点是横坐标为AB 的中点值,竖坐标为AA 1的中点值,纵坐标为0,所以平面AA 1B 1B 对角线交点的坐标为(0.5,0,0.5).故选B .2.设点B 是点A (2,-3,5)关于xOy 面的对称点,则A 、B 两点距离为( )A .10B .10C .38D .38【解答】解:点B 是A (2,-3,5)关于xoy 平面对称的点,∴B 点的横标和纵标与A 点相同,竖标相反,∴B (2,-3,-5)∴AB 的长度是5-(-5)=10,故选A .3.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,A′C 的中点E 与AB 的中点F 的距离为( )A .a 2B .a 22C .aD .a21【解答】解:如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′, ∵A (a ,0,0),B (a ,a ,0),C (0,a ,0),A′(a ,0,a ),A′C 的中点E 与AB 的中点F ,∴F (a ,2a ,0),E (2a ,2a ,2a ), |EF|=222)0()2()(aa a a a a a -+-+-=22a . 4.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .57【解答】解:点P (1,1,1)平面xoy 的对称点的M 坐标(1,1,-1),一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是:222)16()13()13(++-+-=57.故选D .5.点P (x ,y ,z )满足222)1()1()1(++-+-z y x =2,则点P 在( ) A .以点(1,1,-1)为圆心,以2为半径的圆上B .以点(1,1,-1)为中心,以2为棱长的正方体上C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定【解答】解:式子222)1()1()1(++-+-z y x =2的几何意义是动点P (x ,y ,z )到定点(1,1,-1)的距离为2的点的集合.故选C .6.若A 、B 两点的坐标是A (3cosα,3sinα),B (2cosθ,2sinθ),则|AB|的取值范围是( )A .[0,5]B .[1,5] C.(1,5) D .[1,25]【解答】解:由题意可得|AB|=22)sin 2sin 3()cos 2cos 3(βαβα-+- =βαβαsin sin cos cos 1249+-+ =)cos(1213βα--.∵-1≤cos (α-β)≤1,∴1≤13-12cos (α-β)≤25,∴1≤)cos(1213βα--≤5,故选B . 7.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是( )C ①点P 关于x 轴对称点的坐标是P 1(x ,﹣y ,z );②点P 关于yOz 平面对称点的坐标是P 2(x ,﹣y ,﹣z );③点P 关于y 轴对称点的坐标是P 3(x ,﹣y ,z );④点P 关于原点对称的点的坐标是P 4(﹣x ,﹣y ,﹣z ).A . 3B . 2C . 1D . 08.设A (3,3,1)、B (1,0,5)、C (0,1,0),则AB 中点M 到C 点的距离为( )CA .B .C .D .9.点B 是点A (1,2,3)在坐标平面yOz 内的正投影,则|OB|等于( )BA .B .C .D .10.已知ABCD 为平行四边形,且A (4,1,3),B (2,﹣5,1),C (3,7,﹣5),则点D 的坐标为( )DA . (3.5,4,﹣1)B . (2,3,1)C . (﹣3,1,5)D . (5,13,﹣3)11.已知点A (1,﹣2,11),B (4,2,3),C (x ,y ,15)三点共线,那么x ,y 的值分别是( )CA . 0.5,4B . 1,8C . -0.5,﹣4D . ﹣1,﹣812.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( A )A .B .C .D .二、填空题(每小题5分,共20分)13.点P (1,2,3)关于y 轴的对称点为P 1,P 关于坐标平面xOz 的对称点为P 2,则|P 1P 2|= ____214【解答】解:∵点P (1,2,3)关于y 轴的对称点为P 1,所以P 1(-1,2,-3),P 关于坐标平面xOz 的对称点为P 2,所以P 2(1,-2,3),∴|P 1P 2|=222)33()22()11(--+++--=214.故答案为:21414.已知三角形的三个顶点为A (2,-1,4),B (3,2,-6),C (5,0,2),则BC 边上的中线长为 _____________211【解答】解:∵B (3,2,-6),C (5,0,2),∴BC 边上的中点坐标是D (4,1,-2) ∴BC 边上的中线长为222)42()11()24(--+++-=22,故答案为:21115.已知x ,y ,z 满足(x-3)2+(y-4)2+z 2=2,那么x 2+y 2+z 2的最小值是 ____________27-102.【解答】解:由题意可得P (x ,y ,z ),在以M (3,4,0)为球心,2为半径的球面上, x 2+y 2+z 2表示原点与点P 的距离的平方,显然当O ,P ,M 共线且P 在O ,M 之间时,|OP|最小,此时|OP|=|OM|-2=432+-2=52,所以|OP|2=27-102.故答案为:27-102.16. 已知点A (﹣3,1,4),则点A 关于原点的对称点B 的坐标为 ;AB 的长为 .(3,-1,-4)2三、解答题(共70分)17.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP=2,连接AP 、BP 、CP 、DP ,M 、N 分别是AB 、BC 的中点,以O 为原点,射线OM 、ON 、OP 分别为Ox 轴、Oy 轴、Oz 轴的正方向建立空间直角坐标系.若E 、F 分别为PA 、PB 的中点,求A 、B 、C 、D 、E 、F 的坐标.解:【解答】解:如图所示,B 点的坐标为(1,1,0),因为A 点关于x 轴对称,得A (1,-1,0),C 点与B 点关于y 轴对称,得C (-1,1,0), D 与C 关于x 轴对称,的D (-1,-1,0),又P (0,0,2),E 为AP 的中点,F 为PB 的中点,由中点坐标公式可得E (0.5,-0.5,1),F (0.5,0.5,1).18.在空间直角坐标系中,解答下列各题:(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x+y=1上确定一点M ,使它到点N (6,5,1)的距离最小.解:【解答】解:(1)设点P 的坐标是(x ,0,0),由题意|P0P|=30,即22221)4(++-x =30,∴(x-4)2=25.解得x=9或x=-1.∴点P 坐标为(9,0,0)或(-1,0,0).先设点M (x ,1-x ,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.(2)设点M (x ,1-x ,0)则|MN|=51)1(22+-x ∴当x=1时,|MN|min=51.∴点M 的坐标为(1,0,0)时到点N (6,5,1)的距离最小.19.已知空间直角坐标系O-xyz 中点A (1,1,1),平面α过点A 且与直线OA 垂直,动点P (x ,y ,z )是平面α内的任一点.(1)求点P 的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.解:【解答】解:(1)因为OA ⊥α,所以OA ⊥AP ,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x-1)2+(y-1)2+(z-1)2=x 2+y 2+z 2,化简得:x+y+z=3.(2)设平面α与x 轴、y 轴、z 轴的点分别为M 、N 、H ,则M (3,0,0)、N (0,3,0)、H (0,0,3).所以|MN|=|NH|=|MH|=32, 所以等边三角形MNH 的面积为:3/4×(32)2=93/2.又|OA|=3,故三棱锥0-MNH 的体积为:31×93/2×3=4.5.20.如图,已知正方体ABCD ﹣A′B′C′D′的棱长为a ,M 为BD′的中点,点N 在A′C′上,且 |A′N|=3|NC′|,试求MN 的长.【解答】解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),C'(0,a ,a ),D'(0,0,a ).由于M 为BD'的中点,取A'C'中点O',所以M (2a ,2a ,2a ),O'(2a ,2a ,a ).因为|A'N|=3|NC'|,所以N 为A'C'的四等分,从而N 为O'C'的中点,故N (4a ,43a ,a ).根据空间两点距离公式,可得|MN |=222)2()432()42(a a a a a a -+-+-=46a21.在空间直角坐标系中,已知A (3,0,1)和B (1,0,﹣3),试问(1)在y 轴上是否存在点M ,满足|MA|=|MB|?(2)在y 轴上是否存在点M ,使△MAB 为等边三角形?若存在,试求出点M 坐标.【解答】解:(1)假设在y 轴上存在点M ,满足|MA|=|MB|.因M 在y 轴上,可设M (0,y ,0),由|MA|=|MB|,可得2222223113++=++y y 显然,此式对任意y ∈R 恒成立.这就是说y 轴上所有点都满足关系|MA|=|MB|.(2)假设在y 轴上存在点M ,使△MAB 为等边三角形.由(1)可知,y 轴上任一点都有|MA|=|MB|,所以只|MA|=|AB|就可以使得△MAB 是等边三角形.因为|MA|=222)01()0()03(-+-+-y =210y +|AB |=222)13()00()31(-+-+-=20于是210y +=20,解得y =±10 故y 轴上存在点M 使△MAB 等边,M 坐标为(0,10,0),或(0,−10,0).空间直角坐标系 优化训练1.已知点A (-1,2,7),则点A 关于x 轴对称点的坐标为( )A .(-1,-2,-7)B .(-1,-2,7)C .(1,-2,-7)D .(1,2,-7)2.点P (-2,0,3)位于( )A .y 轴上B .z 轴上C .xOz 平面内D .yOz 平面内3.如图所示空间直角坐标系的直观图中,正确的个数为( )A .1B .2C .3D .44.点P (-3,2,1)关于Q (1,2,-3)的对称点M 的坐标是________.5.在空间直角坐标系Oxyz 中,点P (2,3,4)在x 轴上的射影的坐标为______,在平面xOy 上的射影的坐标为______,在yOz 平面上的射影的坐标为______.1.如图,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A .(13,13,13)B .(23,23,23) C .(13,23,13) D .(23,23,13) 2.在空间直角坐标系中,P (2,3,4),Q (-2,3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .关于y 轴对称3.已知空间直角坐标系中有一点M (x ,y ,z )满足x >y >z ,且x +y +z =0,则M 点的位置是( )A .一定在第Ⅴ或第Ⅷ卦限B .一定在第Ⅷ卦限C .可能在第Ⅰ卦限D .可能在xOz 平面上 4. 在空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则Q 的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)5.已知△ABC 的三个顶点坐标分别为A (2,3,1)、B (4,1,-2)、C (6,3,7),则△ABC 的重心坐标为( )A.⎝ ⎛⎭⎪⎫6,72,3B.⎝ ⎛⎭⎪⎫4,73,2 C.⎝ ⎛⎭⎪⎫8,143,4 D.⎝ ⎛⎭⎪⎫2,76,1 6.设z 是任意实数,相应的点P (2,2,z )运动的轨迹是( )A .一个平面B .一条直线C .一个圆D .一个球7.在xOy 平面内有两点A (-2,4,0),B (3,2,0),则AB 的中点坐标是________.8.已知▱ABCD 的两个顶点A (2,-3,-5),B (-1,3,2)以及它的对角线交点E (4,-1,7),则顶点C 的坐标为________,D 的坐标为________.9.点P (a ,b ,c )关于原点的对称点P ′在x 轴上的投影A 的坐标为________.10.在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,且SA =AB =AC =a ,D 为BC 的中点,E 为SD 的中点,建立适当的坐标系,求点S 、A 、B 、C 、D 、E 的坐标.11. 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.12. 如图,有一个棱长为1的正方体ABCD —A 1B 1C 1D 1,以点D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长度为单位长,建立三条数轴:x 轴,y 轴,z 轴,从而建立起一个空间直角坐标系Oxyz .一只小蚂蚁从点A 出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.空间直角坐标系 优化训练1.已知点A (-1,2,7),则点A 关于x 轴对称点的坐标为( )A .(-1,-2,-7)B .(-1,-2,7)C .(1,-2,-7)D .(1,2,-7)答案:A2.点P (-2,0,3)位于( )A .y 轴上B .z 轴上C .xOz 平面内D .yOz 平面内解析:选C.由点P 纵坐标为零知P (-2,0,3),在xOz 平面内.3.如图所示空间直角坐标系的直观图中,正确的个数为( )A .1B .2C .3D .4答案:C4.点P (-3,2,1)关于Q (1,2,-3)的对称点M 的坐标是________.解析:设M 坐标为(x ,y ,z ),则有1=x -32,2=2+y 2,-3=1+z 2,解得x =5,y =2,z =-7∴M (5,2,-7).答案:(5,2,-7)5.在空间直角坐标系Oxyz 中,点P (2,3,4)在x 轴上的射影的坐标为______,在平面xOy 上的射影的坐标为______,在yOz 平面上的射影的坐标为______.答案:(2,0,0) (2,3,0) (0,3,4)1.如图,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A .(13,13,13)B .(23,23,23) C .(13,23,13) D .(23,23,13) 解析:选D.连接BD ,点P 在xDy 平面的射影落在BD 上,∵|BP |=13|BD ′|,∴Px =Py =23,Pz =13,故P (23,23,13). 2.在空间直角坐标系中,P (2,3,4),Q (-2,3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .关于y 轴对称 解析:选D.由P 、Q 两点的纵坐标相同,横坐标、竖坐标分别互为相反数知P 、Q 关于y 轴对称.3.已知空间直角坐标系中有一点M (x ,y ,z )满足x >y >z ,且x +y +z =0,则M 点的位置是( )A .一定在第Ⅴ或第Ⅷ卦限B .一定在第Ⅷ卦限C .可能在第Ⅰ卦限D .可能在xOz 平面上解析:选D.由x >y >z 且x +y +z =0知,x >0,z <0,y ∈R ,故点M 可能在第Ⅴ、第Ⅷ卦限或在xOz 平面上.故选D.4. 在空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则Q 的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)解析:选D.由P 、Q 两点的横坐标、纵坐标相等知.5.已知△ABC 的三个顶点坐标分别为A (2,3,1)、B (4,1,-2)、C (6,3,7),则△ABC 的重心坐标为( )A.⎝ ⎛⎭⎪⎫6,72,3B.⎝ ⎛⎭⎪⎫4,73,2 C.⎝ ⎛⎭⎪⎫8,143,4 D.⎝ ⎛⎭⎪⎫2,76,1 答案:B6.设z 是任意实数,相应的点P (2,2,z )运动的轨迹是( )A .一个平面B .一条直线C .一个圆D .一个球解析:选B.由P 的x 、y 坐标是定值,则过(2,2,0)作与xOy 平面垂直的直线,直线上任意一点都满足x =2,y =2,故P 的轨迹是一条直线.7.在xOy 平面内有两点A (-2,4,0),B (3,2,0),则AB 的中点坐标是________. 解析:设AB 中点坐标为(x ,y ,z ),则x =3-22=12, y =4+22=3,z =0 ∴中点坐标为(12,3,0). 答案:(12,3,0) 8.已知▱ABCD 的两个顶点A (2,-3,-5),B (-1,3,2)以及它的对角线交点E (4,-1,7),则顶点C 的坐标为________,D 的坐标为________.解析:E 为AC 、BD 的中点.答案:(6,1,19) (9,-5,12)9.点P (a ,b ,c )关于原点的对称点P ′在x 轴上的投影A 的坐标为________. 解析:由题意得P ′(-a ,-b ,-c ),∴P ′(-a ,-b ,-c )在x 轴上的投影A 坐标为(-a,0,0).答案:(-a,0,0)10.在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,且SA =AB =AC =a ,D 为BC 的中点,E 为SD 的中点,建立适当的坐标系,求点S 、A 、B 、C 、D 、E 的坐标.解:∵在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,∴以点A 为坐标原点,AB 、AC 、AS 所在直线分别为x 轴,y 轴和z 轴建立如图所示空间直角坐标系,∵SA =AB =AC =a ,D 为BC 的中点,∴A (0,0,0),B (a,0,0),C (0,a,0),S (0,0,a ),D (a 2,a 2,0),连接AD , ∵SA ⊥AB ,SA ⊥AC ,AB ∩AC =A ,∴SA ⊥平面ABC ,过点E 作EF ⊥AD ,垂足为F ,则EF ⊥平面ABC .∵E 为SD 的中点,∴F 为AD 的中点,∴|EF |=12|AS |,∴E (a 4,a 4,a 2), 即点S (0,0,a ),A (0,0,0),B (a,0,0),C (0,a,0),D (a 2,a 2,0),E (a 4,a 4,a2). 11. 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.解:点C 在y 轴上,x 坐标,z 坐标均为0,且|OC |=3,故点C 的坐标为(0,3,0). 因为B ′B 垂直于xOy 平面,垂足为B ,所以点B ′与B 的x 坐标和y 坐标都相同,又|BB ′|=|OD ′|=2,且点B ′在xOy 平面的上方,所以点B ′的坐标为(1,3,2).点E 在x 轴负半轴上,且|OE |=12, 所以点E 的坐标为(-12,0,0). 12. 如图,有一个棱长为1的正方体ABCD —A 1B 1C 1D 1,以点D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长度为单位长,建立三条数轴:x 轴,y 轴,z 轴,从而建立起一个空间直角坐标系Oxyz .一只小蚂蚁从点A 出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.解:小蚂蚁沿着A -B -C 或A -B -B 1或A -D -C 或A -D -D 1或A -A 1-B 1或A -A 1-D 1任一条路线爬行,其终点为点C 或B 1或D 1.点C 在y 轴上,且DC =1,则其y 坐标为1,x 坐标与z 坐标均为0,所以点C 的坐标是(0,1,0);同理可知D 1的坐标是(0,0,1);点B 1在xOy 平面上的射影是B ,点B 在xOy 平面上的坐标是(1,1),且|B 1B |=1,则其z 坐标为1,所以点B 1的坐标是(1,1,1).。

《空间直角坐标系》典型例题解析

《空间直角坐标系》典型例题解析

空间直角坐标系》典型例题解析例1:在空间直角坐标系中,作出点M(6,-2,4)。

点拨点M的位置可按如下步骤作出:先在x 轴上作出横坐标是6 的点M 1,再将M 1沿与y 轴平行的方向向左移动2 个单位得到点M 2,然后将M2沿与z 轴平行的方向向上移动4个单位即得点M。

解答M点的位置如图所示总结对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力。

变式题演练在空间直角坐标系中,作出下列各点:A(-2,3 ,3);B(3,-4,2);C(4,0 ,-3)。

答案:略例2:已知正四棱锥P-ABCD的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。

点拨先由条件求出正四棱锥的高,再根据正四棱锥的对称性,建立适当的空间直角坐标系。

解答正四棱锥P-ABCD的底面边长为4,侧棱长为10,∴正四棱锥的高为 2 23 。

以正四棱锥的底面中心为原点,平行于AB、BC所在的直线分别为x 轴、y 轴,建立如图所示的空间直A(2,-2,0)、B(2,2 ,角坐标系,则正四棱锥各顶点的坐标分别为C(-2,2 ,0)、D(-2,-2,0)、P(0,0 ,2 23 )。

总结在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标变式题演练在长方体ABCD A1B1C1D1中,AB=12,AD=8,AA1=5,试建立适当的空间直角坐标系,写出各顶点的坐标。

答案:以A为原点,射线AB、AD、AA1分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A(0,0 ,0)、B(12,0 ,0)、C(12,8 ,0)、D(0,8 ,0)、A1(0,0 ,5)、B1(12,0 ,5)、C1(12,8 ,5)、D1(0,8 ,5)。

例3:在空间直角坐标系中,求出经过A(2,3 ,1)且平行于坐标平面yOz的平面的方程。

空间直角坐标系试题(含答案)

空间直角坐标系试题(含答案)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在空间直角坐标系中,已知点P (x ,y ,z ),给出下列4条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .02.若已知A (1,1,1),B (-3,-3,-3),则线段AB 的长为 ( )A .B .C .D .3.已知A (1,2,3),B (3,3,m ),C (0,-1,0),D (2,―1,―1),则 ( )A .||AB >||CD B .||AB <||CDC .||AB ≤||CDD .||AB ≥||CD4.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则||CM ( )A .4B .532C .2D .25.如图,三棱锥A -BCD 中,AB ⊥底面BCD ,BC ⊥CD ,且AB =BC =1,CD =2,点E 为CD 的中点,则AE 的长为( )ABC .2D 6.点B 是点A (1,2,3)在坐标平面yOz 内的射影,则OB 等于 ( )A .14B .13C .32D .117.已知ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为( )A .(27,4,-1)B .(2,3,1)C .(-3,1,5) D .(5,13,-3)8.点),,(c b a P 到坐标平面xOy 的距离是( )A .22b a +B .cC .cD .b a +9.已知点)11,2,1(-A ,)3,2,4(B , )15,,(y x C 三点共线,那么y x ,的值分别是 ( )A .21,4B .1,8C .21-,-4 D .-1,-810.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( ) A .26B .3C .23D .36第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.如右图,棱长为3a 正方体OABC -''''D A B C , 点M 在|''|B C 上,且|'|C M =2|'|MB ,以O 为坐标原点,建立如图空间直有坐标系,则点M 的坐标为 .12.如右图,为一个正方体截下的一角P -ABC , ||PA a =,||PB b =,||PC c =,建立如图坐标系,求△ABC 的重心G 的坐标 _ _.13.若O (0,0,0),P (x ,y ,z ),且||1OP =,则2221x y z ++=表示的图形是 _ _.14.已知点A (-3,1,4),则点A 关于原点的对称点 B 的坐标为 ;AB 的长为 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,长方体''''ABCD A B C D -中,||3AD =,||5AB =,|'|3AA =,设E 为'DB 的中点,F 为'BC 的中点,在给定的空间直角坐标系D -xyz 下,试写出A ,B ,C ,D ,'A ,'B ,'C ,'D ,E ,F 各点的坐标.16.(12分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.17.(12分)如图,已知矩形ABCD中,||3AD=,||4AB=.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y 轴的正方向,建立如图空间直角坐标系,此时点A 恰好在xDy 坐标平面内.试求A ,C 两点的坐标.18.(12分)已知)11,2,1(-A ,)3,2,4(B ,)4,1,6(-C ,求证其为直角三角形.19.(14分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC 上,且|'|3|'|A N NC =,试求MN 的长.20.(14分)在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问(1)在y轴上是否存在点M,满足||||?MA MB(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.参考答案一、CADCB BDCCA二、11.(2a ,3a ,3a ); 12.G (3,3,3b c a ) ; 13.以原点O 为球心,以1为半径的球面;14.(3,-1,-4); 三、15.解:设原点为O ,因为A ,B ,C ,D 这4个点都在坐标平面 xOy 内,它们的竖坐标都是0,而它们的横坐标和纵坐标可利用||3AD =,||5AB =写出,所以 A (3,0,0),B (3,5,0),C (0,5,0),D (0,0,0);因为平面''''A B C D 与坐标平面xOy 平行,且|'|3AA =,所以A ',B ','C ,D '的竖坐标都是3,而它们的横坐标和纵坐标分别与A ,B ,C ,D 的相同,所以'A (3,0,3),'B (3,5,3),'C (0,5,3),'D (0,0,3);由于E 分别是'DB 中点,所以它在坐标平面xOy 上的射影为DB的中点,从而E 的横坐标和纵坐标分别是'B 的12,同理E 的竖坐标也是'B 的竖坐标的12,所以E (353,,222);由F 为'BC 中点可知,F 在坐标平面xOy 的射影为BC 中点,横坐标和纵坐标分别为32和5,同理点F 在z 轴上的投影是AA '中点,故其竖坐标为32,所以F (32,5,32).16.解: 由图形知,DA ⊥DC ,DC ⊥DP ,DP ⊥DA ,故以D 为原点,建立如图空间坐标系D -xyz .因为E ,F ,G ,H 分别为侧棱中点,由立体几何知识可知,平面EFGH 与底面ABCD 平行,从而这4个点的竖坐标都为P 的竖坐标的一半,也就是b , 由H 为DP 中点,得H (0,0,b )E 在底面面上的投影为AD 中点,所以E 的横坐标和纵坐标分别为a 和0,所以E (a ,0,b ), 同理G (0,a ,b );F 在坐标平面xOz 和yOz 上的投影分别为点E 和G ,故F 与E横坐标相同都是a ,与G 的纵坐标也同为a ,又F 竖坐标为b ,故F (a ,a ,b ).17.解: 由于面BCD ⊥面ABD ,从面BCD 引棱DB 的垂线CF 即为面ABD 的垂线,同理可得AE 即为面BCD 的垂线,故只需求得DF DE CF AE ,,,的长度即可。

空间坐标系与空间坐标系在立体几何中的应用有答案 (1)

空间坐标系与空间坐标系在立体几何中的应用有答案 (1)

一.空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y轴、z轴,这时我们说建立了一个空间直角坐标系,其中点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向.二.空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标[例1]在空间直角坐标系中,作出点M(6,-2,4).[例2]长方体ABCD-A1B1C1D1中,|AB|=a,|BC|=b,|CC1|=c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标.变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。

2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。

3.在棱长均为2a的正四棱锥P-ABCD中,建立恰当的空间直角坐标系,(1)写出正四棱锥P-ABCD各顶点坐标;(2)写出棱PB的中点M的坐标.解:连接AC,BD交于点O,连接PO,∵P-ABCD为正四棱锥,且棱长均为2a.∴四边形ABCD为正方形,且PO⊥平面ABCD.∴OA=2=P A2-OA2=?2a?2-?2a?2=2a.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系.(1)正四棱锥P-ABCD中各顶点坐标分别为A(2a,0,0),B(0,2a,0),C(-2 a,0,0),D(0,-2a,0),P(0,0,2a).(2)∵M为棱PB的中点,∴由中点坐标公式,得M(0+02,2a+02,0+2a2),即M(0,22a,22a).[例3]在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[解](1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).变式:1.写出点P(6,-2,-7)在xOy面,yOz面,xOz面上的投影的坐标以及点P 关于各坐标平面对称的点的坐标.解:设点P在xOy平面、yOz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A′,B′,C′,由P A⊥平面xOy,PB⊥平面yOz,PC⊥平面xOz及坐标平面的特征知,点A(6,-2,0),点B(0,-2,-7),点C(6,0,-7);根据点P关于各坐标平面对称点的特征知,点A′(6,-2,7),B′(-6,-2,-7),C′(6,2,-7).2.在棱长都为2的正三棱柱ABC -A 1B 1C 1中,建立恰当的直角坐标系,并写出正三棱柱ABC -A 1B 1C 1各顶点的坐标.[正解] 取BC ,B 1C 1的中点分别为O ,O 1,连线OA ,OO 1,根据正三棱柱的几何性质,OA ,OB ,OO 1两两互相垂直,且|OA |=32×2=3, 以OA ,OB ,OO 1所在的直线分别为x 轴、y 轴、z 轴建立直角坐标系,如图5所示,则正三棱柱ABC —A 1B 1C 1各顶点的坐标分别为A (3,0,0),B (0,1,0),C (0,-1,0),A 1(3,0,2),B 1(0,1,2),C 1(0,-1,2).三.空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.(2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2⇔e 2=λe 1⇔a 2=λa 1,b 2=λb 1,c 2=λc 1.(2) 如果l 1⊥l 2,那么e 1⊥e 2⇔e 1·e 2=0⇔a 1a 2+b 1b 2+c 1c 2=0.(3) 若l 1∥α,则e 1⊥n 1⇔e 1·n 1=0⇔a 1x 1+b 1y 1+c 1z 1=0.(4) 若l 1⊥α,则e 1∥n 1⇔e 1=k n 1⇔a 1=kx 1,b 1=ky 1,c 1=kz 1.(5) 若α∥β,则n 1∥n 2⇔n 1=k n 2⇔x 1=kx 2,y 1=ky 2,z 1=kz 2.(6) 若α⊥β,则n 1⊥n 2⇔n 1·n 2=0⇔x 1x 2+y 1y 2+z 1z 2=0.3. 利用空间向量求空间角(1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎥⎤0,π2. ②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|.(2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎢⎡⎥⎤0,π2. ②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|(3) 二面角①二面角的取值范围是[0,π].②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角α-l-β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角α-l-β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).题型1 空间向量的基本运算[例1]已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB→,b =AC→. (1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4),a =AB→,b =AC →, ∴a =(1,1,0),b =(-1,0,2). (1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝ ⎛⎭⎪⎫-1010. (2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,解得k =-52或2. 题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM ∥平面BDE ;(2) AM ⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC ∩BD =N ,连结NE.则N ⎝ ⎛⎭⎪⎫22,22,0,E(0,0,1), A(2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1.∴ NE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=⎝ ⎛⎭⎪⎫-22,-22,1. ∴ NE →=AM →且NE 与AM 不共线.∴ NE ∥AM.∵ NE 平面BDE ,AM平面BDE ,∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF→=(0,2,1), ∴ AM→·DF →=0,∴ AM ⊥DF.同理AM ⊥BF. 又DF ∩BF =F ,∴ AM ⊥平面BDF.题型3 空间的角的计算例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF ⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值;(2) 求二面角F-OD-E 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF →=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴F(3,1,0),EF →=(3,0,-2),BD→=(0,-2,2). 设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎪⎨⎪⎧z 1=0,3x 1+y 1=0. 令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎪⎫1,0,32. 设二面角F-OD-E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427. (翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A =45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC ⊥平面ABC ; (2) 求BF 与平面ABC 所成角的正弦值;(3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD ⊥平面BDC ,又∵ AB ⊥BD ,∴ AB ⊥平面BDC ,故AB ⊥DC ,又∵ ∠C =90°,∴ DC ⊥BC ,BC ABC 平面ABC ,DC 平面ABC ,故DC ⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝ ⎛⎭⎪⎫32a ,32a ,0,F(a ,0,a),∴ CD →=⎝ ⎛⎭⎪⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ,由(1)知DC ⊥平面ABC ,∴ cos ⎝ ⎛⎭⎪⎫π2-θ=CD →·BF →|CD →|·|BF→|=12a 2a ·2a =24,∴ sin θ=24. (3) 由(2)知 FE ⊥平面ABC, 又∵ BE 平面ABC ,AE 平面ABC ,∴ FE ⊥BE ,FE ⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a , ∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE=-17,即所求二面角B -EF -A 的余弦为-17. 课后巩固练习:1.(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010. (2) 设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 2. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB. (1) 证明:BC 1∥平面A 1CD ;(2) 求二面角DA 1CE 的正弦值.(1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF.因为DF 平面A1CD ,BC 1平面A 1CD ,所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC ⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2). 从而cos 〈n ,m 〉=n·m |n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63. 3. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB. (1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值.解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD.以O 为坐标原点,OB→、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD =CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA ⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝⎛⎭⎪⎫0,-1,z 2,又AF →=⎝ ⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA→|=2 3. (2) 由(1)知AD→=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18. 故二面角B-AF-D 的正弦值为378. 4. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SD DB为何值时,CD ⊥AB ; (2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO =45°,SO =(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD→=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD→=(3(1-λ),-3,3λ). 因为AB→=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23. 故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB →=0,n 2·SC →=0,则⎩⎪⎨⎪⎧3x -3z =0,3y -3z =0,解得⎩⎪⎨⎪⎧x =z ,y =3z ,取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55. 又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55. 5. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小;(2) 求证:直线BF ∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED 1→=(0,0,2)-(1,1,1)=(-1,-1,1), AE→=(1,1,1)-(1,0,0)=(0,1,1), AC→=(0,1,0)-(1,0,0)=(-1,1,0). 设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1). 由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0⎩⎨⎧-a -b +1=0,b +1=0⎩⎨⎧a =2,b =-1,由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0⎩⎨⎧-c +d =0,d +1=0⎩⎨⎧c =-1,d =-1,∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n |m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB 1、AD 的中点,∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG .又D1E 、D 1A 平面AD 1E ,BG 、GF 平面AD 1E ,∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB 平面BGF ,∴平面BGF ∥平面AD 1E.∵BF 平面AD 1E ,∴直线BF ∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF ∥平面AD 1E ,亦可)6. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值;(2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴ x =3z ,y =0.令z =1,得x ==(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535.(2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c).A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0,∴ a =0,2b =3c.令c =2,得b ==(0,3,2).设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565. ∴ 二面角B 1A 1DC 1的正弦值为345565. 7. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255. 解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos 〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3. (2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP →=(2λ,4-2λ,2), 则⎩⎪⎨⎪⎧n 1·AP →=0,n 1·AB →=0.⎩⎨⎧λx +2y -λy +z =0,2y =0.⎩⎨⎧z =-λx ,y =0. 故n 1=(1,0,-λ),而平面ABA 1的法向量是n 2=(1,0,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=11+λ2=255,解得λ=12,即P 为棱B 1C 1中点,其坐标为P(1,3,2). 近六年高考题1. 【2010高考北京理第16题】(14分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC ,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE ;(3)求二面角A-BE-D 的大小.【答案】设AC 与BD 交与点G 。

高考数学第一章空间向量与立体几何3-1空间直角坐标系练习含解析新人教A版选择性必修第一册

高考数学第一章空间向量与立体几何3-1空间直角坐标系练习含解析新人教A版选择性必修第一册

空间直角坐标系学习目标 1.了解空间直角坐标系.2.能在空间直角坐标系中写出所给定点、向量的坐标.知识点一 空间直角坐标系 1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{}i ,j ,k ,以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分. 2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 思考 空间直角坐标系有什么作用?答案 可以通过空间直角坐标系将空间点、直线、平面数量化,将空间位置关系解析化. 知识点二 空间一点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=x i +y j +z k .在单位正交基底 {i ,j ,k }下与向量 OA →对应的有序实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.思考 空间直角坐标系中,坐标轴上的点的坐标有何特征? 答案 x 轴上的点的纵坐标、竖坐标都为0,即(x ,0,0).y 轴上的点的横坐标、竖坐标都为0,即(0,y ,0). z 轴上的点的横坐标、纵坐标都为0,即(0,0,z ).知识点三 空间向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a .由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记作a =(x ,y ,z ). 思考 空间向量的坐标和点的坐标有什么关系?答案 点A 在空间直角坐标系中的坐标为(x ,y ,z ),那么向量 OA →的坐标也为(x ,y ,z ).1.空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式.( × ) 2.空间直角坐标系中,在xOz 平面内的点的坐标一定是(a ,0,c )的形式.( √ ) 3.关于坐标平面yOz 对称的点其纵坐标、竖坐标保持不变,横坐标相反.( √ )一、求空间点的坐标例1 (1)画一个正方体ABCD -A 1B 1C 1D 1,若以A 为坐标原点,以棱AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴,取正方体的棱长为单位长度,建立空间直角坐标系,则 ①顶点A ,C 的坐标分别为________________; ②棱C 1C 中点的坐标为________;③正方形AA 1B 1B 对角线的交点的坐标为________. 答案 ①(0,0,0),(1,1,0) ②⎝ ⎛⎭⎪⎫1,1,12 ③⎝ ⎛⎭⎪⎫12,0,12(2)已知正四棱锥P -ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.解 ∵正四棱锥P -ABCD 的底面边长为4,侧棱长为10, ∴正四棱锥的高为223.以正四棱锥的底面中心为原点,平行于BC ,AB 所在的直线分别为x 轴、y 轴,垂直于平面ABCD 的直线为z 轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A (2,-2,0),B (2,2,0),C (-2,2,0),D (-2,-2,0),P (0,0,223).答案不唯一.反思感悟 (1)建立空间直角坐标系的原则 ①让尽可能多的点落在坐标轴上或坐标平面. ②充分利用几何图形的对称性. (2)求某点M 的坐标的方法作MM ′垂直平面xOy ,垂足M ′,求M ′的横坐标x ,纵坐标y ,即点M 的横坐标x ,纵坐标y ,再求M 点在z 轴上射影的竖坐标z ,即为M 点的竖坐标z ,于是得到M 点的坐标(x ,y ,z ). 跟踪训练1 在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标.解 建立如图所示的空间直角坐标系.点E 在z 轴上,它的横坐标、纵坐标均为0, 而E 为DD 1的中点, 故其坐标为⎝⎛⎭⎪⎫0,0,12. 由F 作FM ⊥AD ,FN ⊥CD ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =12,故F 点坐标为⎝ ⎛⎭⎪⎫12,12,0.因为CG =14CD ,G ,C 均在y 轴上,故G 点坐标为⎝ ⎛⎭⎪⎫0,34,0. 由H 作HK ⊥CG ,可得DK =78,HK =12,故H 点坐标为⎝ ⎛⎭⎪⎫0,78,12.(答案不唯一) 二、空间点的对称问题例2 在空间直角坐标系中,已知点P (-2,1,4). (1)求点P 关于x 轴对称的点的坐标; (2)求点P 关于xOy 平面对称的点的坐标;(3)求点P 关于点M (2,-1,-4)对称的点的坐标.解 (1)由于点P 关于x 轴对称后,它在x 轴的分量不变,在y 轴,z 轴的分量变为原来的相反数,所以对称点坐标为P 1(-2,-1,-4).(2)由点P 关于xOy 平面对称后,它在x 轴,y 轴的分量不变,在z 轴的分量变为原来的相反数,所以对称点坐标为P 2(-2,1,-4).(3)设对称点为P 3(x ,y ,z ),则点M 为线段PP 3的中点, 由中点坐标公式,可得x =2×2-(-2)=6,y =2×(-1)-1=-3,z =2×(-4)-4=-12,所以P 3的坐标为(6,-3,-12). 反思感悟 空间点对称问题的解题策略(1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论. 跟踪训练2 已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________. 答案 (2,-3,1)解析 点P (2,3,-1)关于坐标平面xOy 的对称点P 1的坐标为(2,3,1),点P 1关于坐标平面yOz 的对称点P 2的坐标为(-2,3,1),点P 2关于z 轴的对称点P 3的坐标是(2,-3,1).三、空间向量的坐标例3 已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=4,M 为BC 1的中点,N 为A 1B 1的中点,建立适当的空间直角坐标系,求向量AB →,AC 1—→,BC 1—→的坐标.解 建立如图所示的空间直角坐标系,设14AB →=i ,14AC →=j ,14AA 1→=k ,AB →=4i +0j +0k =(4,0,0),AC 1—→=AA 1—→+AC →=0i +4j +4k =(0,4,4), ∴BC 1—→=BC →+CC 1—→ =BA →+AC →+CC 1—→ =-4i +4j +4k =(-4,4,4).反思感悟 向量坐标的求法(1)点A 的坐标和向量 OA →的坐标形式完全相同; (2)起点不是原点的向量的坐标可以通过向量的运算求得.跟踪训练3 已知A (3,5,-7),B (-2,4,3),设点A ,B 在yOz 平面上的射影分别为A 1,B 1 ,则向量A 1B 1—→的坐标为__________. 答案 (0,-1,10)解析 点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为 A 1 (0,5,-7), B 1 (0,4,3), ∴向量A 1B 1—→的坐标为(0,-1,10).1.点P (2,0,3)在空间直角坐标系中的位置是在( ) A .y 轴上 B .xOy 面上 C .xOz 面上 D .yOz 面上答案 C2.在空间直角坐标系中,点P (1,3,-5)关于平面xOy 对称的点的坐标是( ) A .(-1,3,-5) B .(1,3,5) C .(1,-3,5) D .(-1,-3,5) 答案 B3.在空间直角坐标系中,点P (-1,-2,-3)到平面yOz 的距离是( ) A .1 B .2 C .3 D.14 答案 A4.点P (1,1,1)关于xOy 平面的对称点P 1的坐标为______;点P 关于z 轴的对称点P 2的坐标为________.答案 (1,1,-1) (-1,-1,1)解析 点P (1,1,1)关于xOy 平面的对称点P 1的坐标为(1,1,-1),点P 关于z 轴的对称点P 2的坐标为(-1,-1,1).5.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则向量AC 1—→的坐标为________. 答案 (-4,2,3)解析 AC 1—→=AD →+DC 1—→=AD →+DC →+CC 1—→=-4i +2j +3k =(-4,2,3).1.知识清单:(1)空间直角坐标系的概念. (2)点的坐标. (3)向量的坐标.2.方法归纳:数形结合、类比联想.3.常见误区:混淆空间点的坐标和向量坐标的概念,只有起点在原点的向量的坐标才和终点的坐标相同.1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则点B1的坐标是( )A.(1,0,0)B.(1,0,1)C.(1,1,1)D.(1,1,0)答案 C解析点B1到三个坐标平面的距离都为1,易知其坐标为(1,1,1),故选C.2.点A(0,-2,3)在空间直角坐标系中的位置是( )A.在x轴上B.在xOy平面内C.在yOz平面内D.在xOz平面内答案 C解析∵点A的横坐标为0,∴点A(0,-2,3)在yOz平面内.3.在空间直角坐标系中,P(2,3,4),Q(-2,-3,-4)两点的位置关系是( )A.关于x轴对称B.关于yOz平面对称C.关于坐标原点对称D.以上都不对答案 C解析当三个坐标均相反时,两点关于原点对称.4.在空间直角坐标系中,已知点P(1,2,3),过点P作平面yOz的垂线PQ,则垂足Q 的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)答案 B解析 由于垂足在平面yOz 上,所以纵坐标,竖坐标不变,横坐标为0.5.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A.⎝ ⎛⎭⎪⎫0,14,-1 B.⎝ ⎛⎭⎪⎫-14,0,1C.⎝ ⎛⎭⎪⎫0,-14,1D.⎝ ⎛⎭⎪⎫14,0,-1 答案 C解析 BE →=BB 1—→+B 1E —→=k -14j =⎝⎛⎭⎪⎫0,-14,1.6.点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________. 答案 0解析 点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1),∴x =1,y =0,z =-1, ∴x +y +z =1+0-1=0.7.已知A (3,2,-4),B (5,-2,2),则线段AB 中点的坐标为________. 答案 (4,0,-1)解析 设中点坐标为(x 0,y 0,z 0),则x 0=3+52=4,y 0=2-22=0,z 0=-4+22=-1,∴中点坐标为(4,0,-1).8.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为________.答案 (5,4,1)解析 设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z=1,故B 点的坐标为(5,4,1).9.建立空间直角坐标系如图所示,正方体DABC -D ′A ′B ′C ′的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,写出正六边形EFGHIJ 各顶点的坐标.解 正方体DABC -D ′A ′B ′C ′的棱长为a ,且E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,∴正六边形EFGHIJ 各顶点的坐标为E ⎝⎛⎭⎪⎫0,a 2,a ,F ⎝ ⎛⎭⎪⎫a 2,0,a ,G ⎝ ⎛⎭⎪⎫a ,0,a 2,H ⎝⎛⎭⎪⎫a ,a 2,0,I ⎝ ⎛⎭⎪⎫a 2,a ,0,J ⎝ ⎛⎭⎪⎫0,a ,a 2.10.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP =2,连接AP ,BP ,CP ,DP ,M ,N 分别是AB ,BC 的中点,以O 为原点,⎩⎨⎧⎭⎬⎫OM →,ON →,12OP →为单位正交基底建立空间直角坐标系.若E ,F 分别为PA ,PB 的中点,求点A ,B ,C ,D ,E ,F 的坐标.解 由题意知,点B 的坐标为(1,1,0). 由点A 与点B 关于x 轴对称,得A (1,-1,0), 由点C 与点B 关于y 轴对称,得C (-1,1,0), 由点D 与点C 关于x 轴对称,得D (-1,-1,0). 又P (0,0,2),E 为AP 的中点,F 为PB 的中点, 所以由中点坐标公式可得E ⎝ ⎛⎭⎪⎫12,-12,1,F ⎝ ⎛⎭⎪⎫12,12,1.11.已知空间中点A (1,3,5),点A 与点B 关于x 轴对称,则向量点B 的坐标为________. 答案 (1,-3,-5)12.在空间直角坐标系中,点M (-2,4,-3)在xOz 平面上的射影为点M 1,则点M 1关于原点对称的点的坐标是________. 答案 (2,0,3)解析 由题意,知点M 1的坐标为(-2,0, -3), 所以点M 1关于原点对称的点的坐标是(2,0,3).13.如图,正方体ABCD -A ′B ′C ′D ′的棱长为2,则图中的点M 关于y 轴的对称点的坐标为________.答案 (-1,-2,-1)解析 因为D (2,-2,0),C ′(0,-2,2),所以线段DC ′的中点M 的坐标为(1,-2,1), 所以点M 关于y 轴的对称点的坐标为(-1,-2,-1).14.如图是一个正方体截下的一角P -ABC ,其中PA =a ,PB =b ,PC =c .建立如图所示的空间直角坐标系,则△ABC 的重心G 的坐标是________.答案 ⎝ ⎛⎭⎪⎫a 3,b 3,c3 解析 由题意知A (a ,0,0),B (0,b ,0),C (0,0,c ).由重心坐标公式得点G 的坐标为⎝ ⎛⎭⎪⎫a 3,b 3,c3.15.已知向量p 在基底{a ,b ,c }下的坐标为(2,1,-1),则p 在基底{2a ,b ,-c }下的坐标为________;在基底{a +b ,a -b ,c }下的坐标为________.答案 (1,1,1) ⎝ ⎛⎭⎪⎫32,12,-1 解析 由题意知p =2a +b -c ,则向量p 在基底{2a ,b ,-c }下的坐标为(1,1,1). 设向量p 在基底{a +b ,a -b ,c }下的坐标为(x ,y ,z ),则p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c ,又∵p =2a +b -c ,∴⎩⎪⎨⎪⎧x +y =2,x -y =1,z =-1,解得x =32,y =12,z =-1,∴p 在基底{a +b ,a -b ,c }下的坐标为⎝ ⎛⎭⎪⎫32,12,-1. 16.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解 过点D 作DE ⊥BC ,垂足为E .在Rt△BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD →|=1,|CD →|=3, ∴|DE →|=|CD →|sin 30°=32,|OE →|=|OB →|-|BE →|=|OB →|-|BD →|cos 60°=1-12=12,∴点D 的坐标为⎝⎛⎭⎪⎫0,-12,32.。

精讲优练课型:4.3.1 空间直角坐标系

精讲优练课型:4.3.1 空间直角坐标系

【变式训练】(2014·湖北高考)在如图所示的空间 直角坐标系O-xyz中,一个四面体的顶点坐标分别是 (0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①, ②,③,④的四个图,则该四面体的正视图和俯视图分别为 ( )
A.①和②
B.③和①
C.④和③
D.④和②
【解题指南】由已知条件,在空间坐标系中作出几何体的大致形状,进 一步得到正视图与俯视图. 【解析】选D.在坐标系中标出已知的四个点,根据三视图的画图规则 判断三棱锥的正视图为④,俯视图为②,故选D.
(3)右手直角坐标系要求. 右手拇指指向_x_轴的正方向,食指指向_y_轴的正方向,中指指向_z_轴的 正方向.
2.空间一点的坐标 其中x→_横__坐__标__,y→_纵__坐__标__,z→_竖__坐__标__.
【即时小测】 1.思考下列问题: (1)空间中一点的坐标其表示唯一吗? 提示:空间中一点的坐标因建系不同而不同,其表示不唯一,但其形式 一定是(x,y,z)的形式,即由三个实数唯一确定.
点为P1,点P1关于坐标平面yOz的对称点为P2,点P2关于z轴的对称点为
P3,则点P3的坐标为
.
【解题探究】1.典例1中关于坐标平面xOy及x轴的对称点的坐标有何 特点? 提示:关于坐标平面xOy对称的点的横坐标,纵坐标不变,竖坐标变为原 来的相反数.关于x轴的对称点的横坐标不变,纵坐标和竖坐标变为原 来的相反数. 2.典例2中求点关于坐标平面或坐标轴对称的点的坐标应遵循怎样的 规律? 提示:关于谁对称,谁保持不变,其余坐标相反.
4.3 空间直角坐标系 4.3.1 空间直角坐标系
【知识提炼】 1.空间直角坐标系 (1)空间直角坐标系的特征. ①三条轴两两相交且互相_垂__直__;②有_相__同__的单位长度. (2)相关概念. ①坐标原点:_O_;②坐标轴:_x_轴、_y_轴、_z_轴; ③坐标平面:_x_O_y_平面、_y_O_z_平面、_x_O_z_平面.

2019高中数学4.3空间直角坐标系讲义含解析新人教A版必修2

2019高中数学4.3空间直角坐标系讲义含解析新人教A版必修2

4.3 空间直角坐标系[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P134~P137,回答下列问题.(1)平面直角坐标系由两条互相垂直的数轴组成,设想空间直角坐标系由几条数轴组成?其相对位置关系如何?提示:三条交于一点且两两互相垂直的数轴.(2)建立了空间直角坐标系以后,空间中任意一点M对应的三个有序实数如何找到呢?提示:如图所示,设点M是空间的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴,y轴和z轴于点P、Q和R.设点P、Q和R在x轴、y轴和z轴上的坐标分别是x,y和z,那么点M就对应唯一确定的有序实数组(x,y,z).(3)设点P1(x1,y1,z1),P2(x2,y2,z2)在xOy平面上的射影分别为M、N.①M、N的坐标是什么?点M、N之间的距离如何?②若直线P1P2是xOy平面的一条斜线,点P1,P2间的距离如何?提示:①M(x1,y1,0),N(x2,y2,0);|MN|=x1-x22+y1-y22.②如图,在Rt△P1HP2中,|P1H|=|MN|=x1-x22+y1-y22,根据勾股定理,得|P1P2|=|P1H|2+|HP2|2=x1-x22+y1-y22+z1-z22.2.归纳总结,核心必记(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系Oxyz.②相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.(3)空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫点M的横坐标,y叫点M的纵坐标,z叫点M的竖坐标.(4)空间两点间的距离公式①点P(x,y,z)到坐标原点O(0,0,0)的距离,|OP|=x2+y2+z2.②任意两点P1(x1,y1,z1),P2(x2,y2,z2)间的距离,|P1P2|=x1-x22+y1-y22+z1-z22.[问题思考](1)给定的空间直角坐标系下,空间任意一点是否与有序实数组(x,y,z)之间存在唯一的对应关系?提示:是.给定空间直角坐标系下,空间给定一点其坐标是唯一的有序实数组(x,y,z);反之,给定一个有序实数组(x,y,z),空间也有唯一的点与之对应.(2)空间两点间的距离公式对在坐标平面内的点适用吗?提示:适用.空间两点间的距离公式适用于空间任意两点,对同在某一坐标平面内的两点也适用.[课前反思]通过以上预习,必须掌握的几个知识点.(1)怎样建立空间直角坐标系?如何确定空间一点的坐标?;(2)空间两点间的距离公式是什么?怎样用?.(1)如图数轴上A点、B点.(2)如图在平面直角坐标系中,P、Q点的位置.(3)下图是一个房间的示意图,我们如何表示板凳和气球的位置?[思考1] 上述(1)中如何确定A、B两点的位置?提示:利用A、B两点的坐标2和-2.[思考2] 上述(2)中如何确定P、Q两点的位置?提示:利用P、Q两点的坐标(a,b)和(m,n).[思考3] 对于上述(3)中,空间中如何表示板凳和气球的位置?提示:可借助于平面坐标系的思想建立空间直角坐标系,如图示.讲一讲1.建立适当的坐标系,写出底边长为2,高为3的正三棱柱的各顶点的坐标.(链接教材P135—例1)[尝试解答] 以BC的中点为原点,BC所在的直线为y轴,以射线OA所在的直线为x 轴,建立空间直角坐标系,如图.由题意知,AO=32×2=3,从而可知各顶点的坐标分别为A(3,0,0),B(0,1,0),C(0,-1,0),A1(3,0,3),B1(0,1,3),C1(0,-1,3).空间中点P坐标的确定方法(1)由P点分别作垂直于x轴、y轴、z轴的平面,依次交x轴、y轴、z轴于点P x、P y、P z,这三个点在x轴、y轴、z轴上的坐标分别为x、y、z,那么点P的坐标就是(x,y,z).(2)若题所给图形中存在垂直于坐标轴的平面,或点P在坐标轴或坐标平面上,则要充分利用这一性质解题.练一练1.如图所示,V­ABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.解:∵底面是边长为2的正方形,∴|CE|=|CF|=1.∵O点是坐标原点,∴C(1,1,0),同样的方法可以确定B(1,-1,0),A(-1,-1,0),D(-1,1,0).∵V在z轴上,∴V(0,0,3).讲一讲2.在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[尝试解答] (1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).(1)求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.(2)空间直角坐标系中,任一点P(x,y,z)的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P1(-x,-y,-z);②关于x轴(横轴)对称的点的坐标是P2(x,-y,-z);③关于y轴(纵轴)对称的点的坐标是P3(-x,y,-z);④关于z轴(竖轴)对称的点的坐标是P4(-x,-y,z);⑤关于xOy坐标平面对称的点的坐标是P5(x,y,-z);⑥关于yOz坐标平面对称的点的坐标是P6(-x,y,z);⑦关于xOz坐标平面对称的点的坐标是P7(x,-y,z).练一练2.保持本解中的点P不变,(1)求点P关于y轴的对称点的坐标;(2)求点P关于yOz平面的对称点的坐标;(3)求点P关于点N(-5,4,3)的对称点的坐标.解:(1)由于点P关于y轴对称后,它在y轴的分量不变,在x轴、z轴的分量变为原来的相反数,故对称点的坐标为P1(2,1,-4).(2)由于点P关于yOz平面对称后,它在y轴、z轴的分量不变,在x轴的分量变为原来的相反数,故对称点的坐标为P2(2,1,4).(3)设所求对称点为P3(x,y,z),则点N为线段PP3的中点,由中点坐标公式,可得-5=-2+x2,4=1+y2,3=4+z2,即x=2×(-5)-(-2)=-8,y=2×4-1=7,z=2×3-4=2,故P3(-8,7,2).(1)已知数轴上A点的坐标2,B点的坐标-2.(2)已知平面直角坐标系中P(a,b),Q(m,n).[思考1] 如何求数轴上两点间的距离?提示:|AB|=|x1-x2|=|x2-x1|.[思考2] 如何求平面直角坐标系中P、Q两点间距离?提示:d=|PQ|=a-m2+b-n2.[思考3] 若在空间中已知P1(x1,y1,z1),P2(x2,y2,z2),如何求|P1P2|?提示:与平面直角坐标系中两点的距离求法类似.讲一讲3.已知点A(-4,-1,-9),B(-10,1,-6),C(-2,-4,-3),试判断△ABC的形状.[尝试解答]|AB|=-4+2+-1-2+-9+2=49=7,|BC|=-10+2++2+-6+2=98=72,|AC|=-4+2+-1+2+-9+2=49=7,则|AB|=|AC|,且|AB|2+|AC|2=|BC|2,所以△ABC为等腰直角三角形.求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.练一练3.已知两点P(1,0,1)与Q(4,3,-1).(1)求P、Q之间的距离;(2)求z轴上的一点M,使|MP|=|MQ|.解:(1)|PQ|=-2+-2++2=22.(2)设M(0,0,z),由|MP|=|MQ|,得12+02+(z-1)2=42+32+(z+1)2,∴z=-6.∴M(0,0,-6).——————————[课堂归纳·感悟提升]—————————————1.本节课的重点是了解右手直角坐标系及有关概念,掌握空间直角坐标系中任意一点的坐标的含义,会建立空间直角坐标系,并能求出点的坐标,理解空间两点间距离公式的推导过程和方法,掌握空间两点间的距离公式及其简单应用.难点是空间直角坐标系的建立及求相关点的坐标、空间两点间距离公式及其简单运用.2.本节课要重点掌握的规律方法(1)空间直角坐标系中点的坐标的确定方法,见讲1.(2)求空间中对称点坐标的规律,见讲2.(3)空间两点间距离公式的应用,见讲3.3.本节课的易错点是空间中点的坐标的确定,如讲1.课下能力提升(二十六) [学业水平达标练]题组1 空间直角坐标系的建立及坐标表示 1.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .xOz 平面上 D .第一象限内解析:选C 点(2,0,3)的纵坐标为0,所以该点在xOz 平面上.2.在空间直角坐标系中,点P (4,3,-1)关于xOz 平面的对称点的坐标是( ) A .(4,-3,-1) B .(4,3,-1) C .(3,-4,1) D .(-4,-3,1)解析:选A 过点P 向xOz 平面作垂线,垂足为N ,则N 就是点P 与它关于xOz 平面的对称点P ′连线的中点,又N (4,0,-1),所以对称点为P ′(4,-3,-1).3.已知A (3,2,-4),B (5,-2,2),则线段AB 中点的坐标为________. 解析:设中点坐标为(x 0,y 0,z 0),则x 0=3+52=4,y 0=2-22=0,z 0=-4+22=-1,∴中点坐标为(4,0,-1). 答案:(4,0,-1)4.点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________. 解析:点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1),∴x =1,y =0,z =-1,∴x +y +z =1+0-1=0.答案:05.如图,在长方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.解:以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.分别设|AB |=1,|AD |=2,|AA 1|=4,则|CF |=|AB |=1,|CE |=12|AB |=12,所以|BE |=|BC |-|CE |=2-12=32.所以点E 的坐标为⎝ ⎛⎭⎪⎫1,32,0,点F 的坐标为(1,2,1).6.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解:过点D 作DE ⊥BC ,垂足为E .在Rt △BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD |=1,|CD |=3,∴|DE |=|CD |sin 30°=32,|OE |=|OB |-|BE |=|OB |-|BD |cos 60°=1-12=12, ∴点D 的坐标为⎝ ⎛⎭⎪⎫0,-12,32.题组2 空间两点间的距离7.(2016·长春高一检测)已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )A .-3或4B .6或2C .3或-4D .6或-2 解析:选D 由题意得x -2+-2+-2=26,解得x =-2或x =6.8.在空间直角坐标系中,正方体ABCD ­A 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长为________.解析:由A (3,-1,2),中心M (0,1,2), 所以C 1(-3,3,2).正方体体对角线长为|AC 1|=[3--2+-1-2+-2=213,所以正方体的棱长为2133=2393.答案:2393[能力提升综合练]1.在长方体ABCD ­A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5 D .2 6解析:选B 由已知求得C 1(0,2,3),∴|AC 1|=29.2.点A (1,2,-1),点C 与点A 关于面xOy 对称,点B 与点A 关于x 轴对称,则|BC |的值为( )A .2 5B .4C .2 2D .27解析:选B 点A 关于面xOy 对称的点C 的坐标是(1,2,1),点A 关于x 轴对称的点B 的坐标是(1,-2,1),故|BC |=-2++2+-2=4.3.△ABC 在空间直角坐标系中的位置及坐标如图所示,则BC 边上的中线的长是( )A. 2 B .2 C. 3 D .3解析:选C BC 的中点坐标为M (1,1,0),又A (0,0,1), ∴|AM |=12+12+-2= 3.4.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A.62B. 3C.32 D.63解析:选A 设P (x ,y ,z ),由题意可知⎩⎪⎨⎪⎧x 2+y 2=1,y 2+z 2=1,x 2+z 2=1,∴x 2+y 2+z 2=32,∴x 2+y 2+z 2=62.5.在空间直角坐标系中,点(-1,b,2)关于y 轴的对称点是(a ,-1,c -2),则点P (a ,b ,c )到坐标原点O 的距离|PO |=________.解析:点(-1,b,2)关于y 轴的对称点是(1,b ,-2),所以点(a ,-1,c -2)与点(1,b ,-2)重合,所以a =1,b =-1,c =0,所以|PO |=12+-2+02= 2.答案: 26.在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且|CG |=14|CD |,E 为C 1G 的中点,则EF 的长为________.解析:建立如图所示的空间直角坐标系,D 为坐标原点,由题意,得F ⎝ ⎛⎭⎪⎫12,12,0,C 1(0,1,1),C (0,1,0),G ⎝⎛⎭⎪⎫0,34,0,则E ⎝ ⎛⎭⎪⎫0,78,12.所以|EF |=⎝ ⎛⎭⎪⎫0-122+⎝ ⎛⎭⎪⎫78-122+⎝ ⎛⎭⎪⎫12-02=418. 答案:4187.如图所示,在长方体ABCD ­A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 中点,求M 、N 两点间的距离.解:如图所示,分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.由题意可知C (3,3,0),D (0,3,0), ∵|DD 1|=|CC 1|=|AA 1|=2,∴C 1(3,3,2),D 1(0,3,2),A 1(0,0,2). ∵N 为CD 1的中点,∴N ⎝ ⎛⎭⎪⎫32,3,1. M 是A 1C 1的三分之一分点且靠近A 1点,∴M (1,1,2). 由两点间距离公式, 得|MN |=⎝ ⎛⎭⎪⎫32-12+-2+-2=212. 8.如图所示,直三棱柱ABC ­A 1B 1C 1中,|C 1C |=|CB |=|CA |=2,AC ⊥CB ,D ,E 分别是棱AB ,B 1C 1的中点,F 是AC 的中点,求DE ,EF 的长度.解:以点C 为坐标原点,CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系. ∵|C 1C |=|CB |=|CA |=2,∴C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,2),B 1(0,2,2), 由中点坐标公式可得,D (1,1,0),E (0,1,2),F (1,0,0), ∴|DE |=-2+-2+-2=5,|EF |=-2+-2+-2= 6.11。

空间直角坐标系 习题(含答案)

空间直角坐标系 习题(含答案)
②若 最小,求 的方程.
22.在平面直角坐标系 中,已知 的顶点 .
(1)若 为 的直角顶点,且顶点 在 轴上,求 边所在直线方程;
(2)若等腰 的底边为 ,且 为直线 上一点,求点 的坐标.
23.求函数 的最小值.
24.如图所示的多面体是由底面为 的长方体被截面 所截面而得到的,其中
(1)求 的长;
【详解】
设z轴上任意一点Q的坐标为 ,
由空间中两点间的距离公式可得: ,
当 时取得最小值.
故选C.
【点睛】
本题考查空间中两点间的距离,掌握空间内两点间的距离公式,会根据解析式求最值,注意计算的准确性.
3.C
【解析】
【分析】
先根据线面平行的性质和中位线定理说明M为EF的中点,再根据中点坐标公式求M的坐标。
设F(0,0,z).
∵AEC1F为平行四边形, ∴由AEC1F为平行四边形,
∴由 = 得,(-2,0,z)=(-2,0,2),
∴z=2.∴F(0,0,2).∴ =(-2,-4,2,于是| |=2 ,即BF的长为2 ;
(2)设 为平面AEC1F的法向量,显然 不垂直于平面ADF,故可设 =(x,y,1).
故答案为
12.168
【解析】
【分析】
由题意,设 ,得 ,根据坐标对应相等,列出方程组,求得 的值,得到向量 的坐标,再利用向量的夹角公式,即可求解.
【详解】
由题意, ,设 ,
又 , ,
所以
即 ,
解得 ,
则 .
故 .
【点睛】
本题主要考查了空间向量的坐标运算,以及向量的夹角公式的应用,其中熟记向量的坐标表示与向量共线的运算,以及向量的夹角公式,合理、准确运算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.

空间直角坐标系 知识点总结及典例

空间直角坐标系  知识点总结及典例

4.3 空间直角坐标系基础知识梳理空间直角坐标系中常见点的对称问题:点),,(c b a P 关于x 轴的对称点),,(1c b a P --,关于y 轴的对称点),,(2c b a P --,关于z 轴的对称点),,(3c b a P --,关于原点的对称点),,(4c b a P ---.习题巩固一、选择题1.在空间直角坐标系中,点A (1,2,-3)关于x 轴的对称点为( )A .(1,-2,-3)B .(1,-2,3)C .(1,2,3)D .(-1,2,-3)2.设y ∈R ,则点P (1,y,2)的集合为( )A .垂直于xOz 平面的一条直线B .平行于xOz 平面的一条直线C .垂直于y 轴的一个平面D .平行于y 轴的一个平面3.在空间直角坐标系中,点P (3,4,5)关于yOz 平面的对称点的坐标为( )A .(-3,4,5)B .(-3,-4,5)C .(3,-4,-5)D .(-3,4,-5)4.在空间直角坐标系中,P (2,3,4)、Q (-2,-3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对5.点P (a ,b ,c )到坐标平面xOy 的距离是( )A .a 2+b 2B .|a |C .|b |D .|c |6.若A (1,3,-2)、B (-2,3,2),则A 、B 两点间的距离为( )A .61B .25C .5D .577.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9B .29C .5D .268.到点A (-1,-1,-1),B (1,1,1)的距离相等的点C (x ,y ,z )的坐标满足( )A .x +y +z =-1B .x +y +z =0C .x +y +z =1D .x +y +z =49.已知A (2,1,1),B (1,1,2),C (2,0,1),则下列说法中正确的是( )A .A 、B 、C 三点可以构成直角三角形B .A 、B 、C 三点可以构成锐角三角形C .A 、B 、C 三点可以构成钝角三角形D .A 、B 、C 三点不能构成任何三角形10.已知A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB |取最小值时,x 的值为( )A .19B .-87C .87D .191411.点P (x ,y ,z )满足(x -1)2+(y -1)2+(z +1)2=2,则点P 在( )A .以点(1,1,-1)为球心,以2为半径的球面上B .以点(1,1,-1)为中心,以2为棱长的正方体内C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定二、填空题12.在空间直角坐标系中,下列说法中:①在x 轴上的点的坐标一定是(0,b ,c );②在yOz 平面上的点的坐标一定可写成(0,b ,c );③在z 轴上的点的坐标可记作(0,0,c );④在xOz 平面上的点的坐标是(a,0,c ).其中正确说法的序号是________.13.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作yOz 平面的垂线PQ ,则垂足Q 的坐标是______.14.连接平面上两点P 1(x 1,y 1)、P 2(x 2,y 2)的线段P 1P 2的中点M 的坐标为)2,2(2121y y x x ++,那么,已知空间中两点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2),线段P 1P 2的中点M 的坐标为___________________.15.在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的顶点A (3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长为________.16.已知),25,23(z P P 到直线AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________. 17.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________.三、解答题18.已知正方体ABCD -A 1B 1C 1D 1,E 、F 、G 是DD 1、BD 、BB 1的中点,且正方体棱长为1.请建立适当坐标系,写出正方体各顶点及E 、F 、G 的坐标.19.如图所示,已知长方体ABCD -A 1B 1C 1D 1的对称中心在坐标原点O ,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.20.在长方体ABCD —A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 中点,求M 、N 两点间的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《空间直角坐标系》典型例题解析
例1:在空间直角坐标系中,作出点M(6,
-2, 4)。

点拨点M 的位置可按如下步骤作出:先在x
轴上作出横坐标是6的点1M ,再将1M 沿与y
轴平行的方向向左移动2个单位得到点2M ,然
后将2M 沿与z 轴平行的方向向上移动4个单位
即得点M 。

解答M 点的位置如图所示。

总结对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力。

变式题演练
在空间直角坐标系中,作出下列各点:A(-2,3,3);B(3,-4,2);C(4,0,-3)。

答案:略
例2:已知正四棱锥P-ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。

点拨先由条件求出正四棱锥的高,再根据正
四棱锥的对称性,建立适当的空间直角坐标系。

解答 正四棱锥P-ABCD 的底面边长为4,侧
棱长为10,
∴正四棱锥的高为232。

以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为x 轴、y 轴,建立如图所示
的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,232)。

总结在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标。

1M 2M M (6,-2,4) O x y z 6 2 4 O A B C D P x y z
变式题演练
在长方体1111D C B A ABCD -中,AB=12,AD=8,1AA =5,试建立适当的空间直角坐标系,写出各顶点的坐标。

答案:以A 为原点,射线AB 、AD 、1AA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A(0,0,0)、B(12,0,0)、C(12,8,0)、D(0,8,0)、1A (0,0,
5)、1B (12,0,5)、1C (12,8,5)、1D (0,8,5)。

例3:在空间直角坐标系中,求出经过A(2,3,1)且平行于坐标平面yOz 的平面α的方程。

点拨求与坐标平面yOz 平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解。

解答 坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行,
∴平面α也与x 轴垂直,
∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等。

平面α过点A(2,3,1),∴平面α内的所有点的横坐标都是2,
∴平面α的方程为x=2。

总结对于空间直角坐标系中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题。

本题类似于平面直角坐标系中,求过某一定点且与x 轴(或y 轴)平行的直线的方程。

变式题演练
在空间直角坐标系中,求出经过B(2,3,0)且垂直于坐标平面xOy 的直线方程。

答案:所求直线的方程为x=2,y=3.。

相关文档
最新文档