集合知识点基础习题有答案
完整版)人教版高一数学必修一集合知识点以及习题
![完整版)人教版高一数学必修一集合知识点以及习题](https://img.taocdn.com/s3/m/1be6d4f359f5f61fb7360b4c2e3f5727a5e92411.png)
完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。
其中的各事物叫作集合的元素或简称元。
集合的元素具有三个特性:确定性、互异性和无序性。
确定性指元素是明确的,如世界上最高的山。
互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。
无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。
集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。
集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。
集合的表示方法有列举法和描述法。
常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。
2.集合间的关系集合间有包含关系和相等关系。
包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。
如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A和B是同一集合,则称A是B的子集,记作A⊆B。
反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。
相等关系表示两个集合的元素完全相同,记作A=B。
真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。
如果XXX且B⊆C,则A⊆C。
如果XXX且B⊆A,则A=B。
空集是不含任何元素的集合,记为Φ。
规定空集是任何集合的子集,空集是任何非空集合的真子集。
3.集合的运算集合的运算包括交集、并集和补集。
交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。
补集是由S中所有不属于A的元素所组成的集合,记作A的补集。
如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。
集合知识点+练习题
![集合知识点+练习题](https://img.taocdn.com/s3/m/1c58b99fb7360b4c2f3f6428.png)
集合知识点+练习题第一章集合§1.1集合基础知识点:⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;5.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1, 2},而不是{1, 1, 2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷方程x2+1=0的解;⑸徐州艺校校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点6.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
(2)A={2,4,8,16},则4∈A,8∈A,32∉A.典型例题例1.用“∈”或“∉”符号填空:⑴8 N;⑵0 N;⑶-3Z;2Q;⑸设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。
集合(含答案)
![集合(含答案)](https://img.taocdn.com/s3/m/65c8a008b7360b4c2e3f6451.png)
1.集合的基本概念 (1)我们把研究对象统称为________,把一些元素组成的总体 叫做________. (2)集合中元素的三个特性:________,________, _____. (3)集合常用的表示方法:________和________. 2.常用数集的符号 数集 符号 3.元素与集合、集合与集合之间的关系 (1)元素与集合之间存在两种关系:如果 a 是集合 A 中的元素, 就说 a ________集合 A,记作________;如果 a 不是集合 A 中的元 素,就说 a________集合 A,记作________. (2)集合与集合之间的关系: 表示 关系 相等 子集 文字语言 集合 A 与集合 B 中的所有元素都相同 A 中任意一个元素均为 B 中的元素 符号语言 __________ ⇔A=B ________或 ________ 正整数集 自然数集 整数集 有理数集 实数集
真子集
A 中任意一个元素均为 B 中的元素,且 B 中至少有一个元素不是 A 中的元素
________或 ________ ⊆A, B (B≠ )
空集
空集是任何集合的子集,是任何______的 真子集
结论:集合{a1,a2,„,an}的子集有______个,非空子集有 ________个,非空真子集有________个.
类型二
集合间的关系
例 2. 已知集合 A={x|x2-3x-10≤0}. (1)若 B={x|m+1≤x≤2m-1},B⊆A,求实数 m 的取值范围; (2)若 B={x|m-6≤x≤2m-1},A=B,求实数 m 的取值范围; (3)若 B={x|m-6≤x≤2m-1},A⊆B,求实数 m 的取值范围. 解:由 A={x|x2-3x-10≤0},得 A={x|-2≤x≤5}, (1)若 B⊆A,则 ①当 B=∅,有 m+1>2m-1,即 m<2,此时满足 B⊆A; m+1≤2m-1, ②当 B≠∅,有m+1≥-2,
集合简单练习题及答案
![集合简单练习题及答案](https://img.taocdn.com/s3/m/44fc02940408763231126edb6f1aff00bed570f4.png)
集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。
下面是一些集合的简单练习题以及它们的答案。
练习题1:判断下列集合是否相等。
A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。
集合C和A不相等,因为集合中的元素不允许重复。
练习题2:求集合A和集合B的并集。
A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。
练习题3:求集合A和集合B的交集。
A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。
练习题4:求集合A和集合B的差集。
A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。
练习题5:判断下列集合是否为子集。
A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。
练习题6:求集合A和集合B的补集。
A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。
练习题7:判断下列集合是否为幂集。
A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。
集合B的幂集是{∅, {1}, {2}, {1, 2}}。
集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。
练习题8:求集合A和集合B的笛卡尔积。
A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。
练习题9:求集合A的对称差集与集合B。
专题02:集合知识点与典型例题(解析版)-2022年高考数学一轮复习
![专题02:集合知识点与典型例题(解析版)-2022年高考数学一轮复习](https://img.taocdn.com/s3/m/3133cce9964bcf84b8d57b6a.png)
故选:C
12.已知集合U 1, 2,3, 4,5, 6,A 1, 2,3 ,集合 A 与 B 的关系如图所示,则集合 B 可
能是( )
A.2, 4,5
B.1, 2,5
【答案】D 【分析】
由图可得 B A ,由选项即可判断.
【详解】
解:由图可知: B A ,
A 1, 2,3 ,
C. 1, 6
故选:D.
5.设 A={y|y=﹣1+x﹣2x2},若 m∈A,则必有( )
A.m∈{正有理数} 【答案】D 【分析】
B.m∈{负有理数}
C.m∈{正实数}
D.m∈{负实数}
求出函数 y 1 x 2x 2 的值域,就是集合 A,进而可判断结果
【详解】
解:因为 y 1 x 2x2 2(x 1 )2 7 7 , 488
∪A.
4、全集与补集
(1)全集:如果集合 S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一
个全集。通常用 U 来表示。
(2)补集:设 S 是一个集合,A 是 S 的一个子集(即 A S),由 S 中
S
所有不属于 A 的元素组成的集合,叫做 S 中子集 A 的补集(或余集)。
记作: CSA ,即 CSA ={x | xS 且 x A}
对于 B:{(x, y}) | x 2, y 3},表示的是点集,故不相等;
对于 C: x | x2 5x 6 0 ,表示方程 x2 5x 6 0 的解集,因为 x2 5x 6 0 的解 为 x 2 ,或 x 3 ,所以 x | x2 5x 6 0 2,3
对于 D: x N x2 9 0 3,2,1, 0,1, 2,3 ,故不相等
B. {1, 3}
集合知识点习题
![集合知识点习题](https://img.taocdn.com/s3/m/bb43073353ea551810a6f524ccbff121dd36c5cb.png)
1.1 集合基础篇考点一集合及其关系考向一集合元素个数问题1.(2023届福建漳州质检,1)已知集合A={4,5,6,7},B={6,7,8},全集U=A∪B,则集合∁U(A∩B)中的元素个数为( ) A.1 B.2 C.3 D.4答案C2.(2017课标Ⅲ,1,5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( ) A.3 B.2 C.1 D.0答案B3.(2020课标Ⅲ文,1,5分)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为( ) A.2 B.3 C.4 D.5答案B4.(2020课标Ⅲ理,1,5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B 中元素的个数为( ) A.2 B.3 C.4 D.6答案C5.(2022山东聊城二模,1)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为( ) A.2 B.3 C.4 D.5答案C6.(2022广东深圳光明二模,1)已知集合A={x∈N|1<x<log2k},若集合A中至少有2个元素,则( ) A.k≥16 B.k>16 C.k≥8 D.k>8答案D考向二集合子集个数问题1.(2023届沈阳四中月考,1)已知集合A={x∈N|-1<x<ln k}共有8个子集,则实数k的取值范围为( ) A.(0,3] B.(e,e3]C.(e2,e3]D.(e3,e4]答案C2.(2022江苏苏州期初调研,1)已知M、N为R的子集,若M∩∁R N=⌀,N={1,2},则满足题意的M的个数为( ) A.1 B.2 C.3 D.4答案D3.(2022重庆实验外国语学校入学考,1)已知集合A={x∈Z|x2-4x-5<0},集合B={x||x|<2},则A∩B的子集个数为( ) A.4 B.5 C.7 D.15答案A4.(2021江苏扬州二中检测,2)已知集合A={x|x2+x=0,x∈R},则满足A∪B={0,-1,1}的集合B的个数是( ) A.4 B.3 C.2 D.1答案A5.(2022石家庄二中模拟,1)已知集合A={(x,y)|y=x2},B={(x,y)|y=√x},则A∩B的真子集个数为( ) A.1 B.2 C.3 D.4答案C考向三集合间基本关系的判定1.(2022江苏南通模拟检测,2)设集合A={x|x2-3x+2<0},B={x|1<x<3},则( )A.A=BB.A⊇BC.A⊆BD.A∩B=⌀答案C2.(2022武汉模拟,2)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( ) A.1 B.2 C.3 D.4答案D3.(2022湖北华中师大一附中模拟,3)若集合A∪B=B∩C,则( )A.A⊆B⊆CB.B⊆C⊆AC.C⊆B⊆AD.B⊆A⊆C答案A4.(2022山东潍坊三模,1)已知集合A,B,若A={-1,1},A∪B={-1,0,1},则一定有( )A.A⊆BB.B⊆AC.A∩B=⌀D.0∈B答案D考点二集合的基本运算考向一求集合的交集、并集1.(2023届贵州遵义新高考协作体入学质量监测,1)若集合A={x|log2(x-2)<0},B={x|x2-3x≤0},则A∪B=( ) A.(2,3] B.(-∞,3]C.(2,3)D.[0,3]答案D≤0},则2.(2023届福建龙岩一中月考,1)已知集合A={x|y=√2−x2},B={x|x−2x+1A∩B=( )A.(-1,√2]B.[-1,√2]C.[-1,2]D.[-√2,2]答案A3.(2023届山西长治质量检测,2)已知集合A={x|x2≤9,x∈R},B={x|√x−1≤2,x∈Z},则A∩B=( ) A.(1,3) B.[1,3]C.(1,3]D.{1,2,3}答案D4.(2022新高考Ⅰ,1,5分)若集合M={x|√x<4},N={x|3x≥1},则M∩N=( )≤x<2}A.{x|0≤x<2}B.{x|13≤x<16}C.{x|3≤x<16}D.{x|13答案D},则A∩B=( ) 5.(2022全国甲文,1,5分)设集合A={-2,-1,0,1,2},B={x|0≤x<52A.{0,1,2}B.{-2,-1,0}C.{0,1}D.{1,2}答案A6.(2021新高考Ⅰ,1,5分)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=( )A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B7.(2022浙江,1,4分)设集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案D8.(2022新高考Ⅱ,1,5分)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=( )A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B9.(2021全国甲文,1,5分)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=( )A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案B10.(2021全国甲理,1,5分)设集合M={x|0<x<4},N={x|13≤x≤5},则M∩N=( )A.{x|0<x≤13} B.{x|13≤x<4}C.{x|4≤x<5}D.{x|0<x≤5}答案B11.(2022山东临沂二模,2)设集合A={x|-2≤x≤1},B={y|y=2x,x∈A},则A∩B=( )A.⌀B.[14,1]C.[-2,0)D.(0,+∞)答案B考向二集合的交、并、补混合运算1.(2023届浙南名校联盟联考一,5)设全集U=R,集合A={x|x2-2x-8<0},B={2,3,4,5},则(∁U A)∩B=( ) A.{2} B.{2,3}C.{4,5}D.{3,4,5}答案C2.(2022全国甲理,3,5分)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)=( ) A.{1,3} B.{0,3}C.{-2,1}D.{-2,0}答案D3.(2021新高考Ⅱ,2,5分)若全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},则A∩∁U B=( ) A.{3} B.{1,6}C.{5,6}D.{1,3}答案B4.(2021全国乙文,1,5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M ∪N)=( ) A.{5} B.{1,2}C.{3,4}D.{1,2,3,4}答案A5.(2022福建宁化一中月考,1)设集合A={x|x2-3x-4≤0},B={x|log2x>1},U=R,则(∁U A)∪B=( ) A.{x|x>4} B.{x|x>2或x<-1}C.{x|x>4或x<-1}D.{x|x<-1}答案B6.(2017天津理,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B7.(2021重庆二模,1)已知集合A={x|-2<x≤2},B={x|-1<x≤1},则下列结论正确的是( )A.A∩B=AB.B⊆(∁R A)C.A∩(∁R B)=⌀D.A∪(∁R B)=R答案D8.(2023届福建龙岩一中月考,13)已知集合A={x|log2x<2},则∁R A=.答案(-∞,0]∪[4,+∞)综合篇考法一集合间基本关系的求解方法考向一借助Venn图或数轴判断两集合关系1.(2021全国乙理,2,5分)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )A.⌀B.SC.TD.Z答案C2.(2021广州一模,1)若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A.M=NB.M⊆NC.N⊆MD.M∩N=⌀答案C3.(2022山东济宁二模,1)设集合A={x|log0.5(x-1)>0},B={x|2x<4},则( )A.A=BB.A⊇BC.A∩B=BD.A∪B=B答案D4.(2022山东枣庄一模,2)已知集合A={y|y=2cos x,x∈R},则满足B⫋A的集合B可以是( )A.[-2,2]B.[-2,3]C.[-1,1]D.R答案C考向二由集合的关系求参数的值(取值范围)1.(2022湖南新高考教学教研联盟联考,2)已知集合A={x|-2<x<1},集合B={x|-m≤x≤m},若A⊆B,则m的取值范围是( ) A.(0,1) B.(0,2]C.[1,+∞)D.[2,+∞)答案D2.(2021杭州高级中学期中,1)已知集合M={x|y=ln(3+2x-x2)},N={x|x>a},若M⊆N,则实数a的取值范围是( )A.[3,+∞)B.(3,+∞)C.(-∞,-1]D.(-∞,-1)答案C3.(2021河北张家口宣化一中模拟,1)已知集合A={x|x2+2ax-3a2=0},B={x|x2-3x>0},若A⊆B,则实数a的取值范围为( )A.{0}B.{-1,3}C.(-∞,0)∪(3,+∞)D.(-∞,-1)∪(3,+∞)答案D4.(多选)(2021广东肇庆统测三,10)已知集合A={x∈R|x2-3x-18<0},B={x∈R|x2+ax+a2-27<0},则下列命题中正确的是( )A.若A=B,则a=-3B.若A⊆B,则a=-3C.若B=⌀,则a≤-6或a≥6D.若B⫋A,则-6<a≤-3或a≥6答案ABC5.(2022浙江舟山中学模拟,4)若集合A={x|2a+1≤x≤3a-5},B={x|5≤x≤16},则能使A⊆B成立的所有a组成的集合为( )A.{a|2≤a≤7}B.{a|6≤a≤7}C.{a|a≤7}D.⌀答案C,1},又可表示成6.(2022河北邯郸模拟,13)含有三个实数的集合既可表示成{a,ba{a2,a+b,0},则a2 021+b2 022=.答案-17.(2022福建厦门二模,13)集合A=[1,6],B={x|y=√x−a},若A⊆B,则实数a的取值范围是.答案(-∞,1]8.(2023届江苏南京、镇江学情调查,17)集合A={x|x2-6x-7≤0},B={x|m+1<x<2m-1}.(1)若m=5,求A∪B;(2)若A∩B=B,求实数m的取值范围.解析A={x|x2-6x-7≤0}={x|-1≤x≤7}.(1)当m =5时,B ={x |6<x <9},所以 A ∪B ={x |-1≤x <9}. (2)若A ∩B =B ,则B ⊆A.当B =⌀时,m +1≥2m -1,即m ≤2,B ⊆A ,符合题意; 当B ≠⌀时,则有{m +1<2m −1,m +1≥−1,2m −1≤7,解得2<m ≤4.综上所述,m ≤4.故m 的取值范围是{m |m ≤4}.考法二 集合运算问题的求解方法考向一 利用Venn 图、数轴解决集合的运算问题1.(2023届长沙长郡中学月考,1)已知全集U =R,集合A ={2,3,4},集合B ={0,2,4,5},则图中的阴影部分表示的集合为( )A.{2,4}B.{0}C.{5}D.{0,5} 答案 D2.(2023届湖北摸底联考,2)已知全集U =A ∪B =(0,2],A ∩∁U B =(1,2],则B = ( )A.(0,1]B.(0,2)C.(0,1)D.⌀ 答案 A3.(2022山东泰安三模,1)已知集合M ={x |lg (x -1)≤0},N ={x ||x -1|<1},则M ∩N = ( ) A.(0,2] B.(0,2) C.(1,2) D.(1,2] 答案 C4.(2022湖北荆州中学三模,2)设集合A 、B 均为U 的子集,如图,A ∩(∁U B )表示区域( )A.ⅠB.ⅡC.ⅢD.Ⅳ 答案 B5.(2022山东日照三模,1)集合A ={x |-1≤x <2},B ={x |x >1},则A ∩(∁R B )= ( )A.{x |-1≤x <1}B.{x |-1≤x ≤1}C.{x |1≤x <2}D.{x |x <2}答案B6.(2022重庆涪陵实验中学期中,3)已知集合M={x|x2-3x-10<0},N={x|-3≤x≤3},且M、N 都是全集R的子集,则如图所示的韦恩图中阴影部分所表示的集合为( )A.{x|3<x≤5}B.{x|x<-3或x>5}C.{x|-3≤x≤-2}D.{x|-3≤x≤5}答案C7.(多选)(2022长沙一中4月模拟,9)图中阴影部分用集合符号可以表示为( )A.B∩(A∪C)B.∁U B∩(A∪C)C.B∩∁U(A∪C)D.(A∩B)∪(B∩C)答案AD考向二由集合的基本运算求参数值(范围)1.(2023届重庆南开中学月考,3)设集合A={x|(x-1)(x+2)≥0},B={x|x>a},且A∪B=R,则a的取值范围是( ) A.a>-2 B.a>1 C.a≤1 D.a≤-2答案D2.(2022湖南师大附中三模,1)已知集合A={1,2,3},B={x|x2-6x+m=0},若A∩B={2},则B=( ) A.{2,8} B.{2,4} C.{2,3} D.{2,1}答案B3.(2022山东威海模拟,1)设集合A={x|x2-2x-3<0},B={x|2x-a<0},且A∩B={x|-1<x<1},则a=( ) A.-1 B.-2 C.1 D.2答案D4.(2022武汉模拟,1)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},如果A∪B=A,则实数a的取值范围为( ) A.{a|a≤1}B.{a |a <-1或a =1}C.{a |a ≤-1}D.{a |a ≤-1或a =1} 答案 D5.(2022西安检测,2)已知集合A ={x |x 2-3x -4=0},B ={x |a <x <a 2},若A ∩B =⌀,则实数a 的取值范围是 ( )A.(-∞,-1]B.[4,+∞)C.(-∞,-1)∪(2,4)D.[-1,2]∪[4,+∞) 答案 D6.(2022广东潮州三模,13)已知集合A ={−1,12},B ={x |mx -1=0},若A ∩B =B ,则所有实数m 组成的集合是 . 答案 {-1,0,2}7.(2021天津联考,16)已知集合A ={x |x 2-5x -6<0},B ={x |m +1≤x ≤2m -1,m ∈R}. (1)若m =4,求集合∁R A ,集合A ∪∁R B ; (2)若A ∪B =A ,求实数m 的取值范围.解析 (1)A ={x |-1<x <6},则∁R A ={x |x ≤-1或x ≥6}.又∁R B ={x |x <5或x >7},因此A ∪∁R B ={x |x <6或x >7}.(2)因为A ∪B =A ,所以B ⊆A.当B =⌀时,m +1>2m -1,则m <2;当B ≠⌀时,由题意得{2m −1≥m +1,2m −1<6,m +1>−1,解得2≤m <72.综上,实数m 的取值范围是(−∞,72).。
(精选试题附答案)高中数学第一章集合与常用逻辑用语重点知识点大全
![(精选试题附答案)高中数学第一章集合与常用逻辑用语重点知识点大全](https://img.taocdn.com/s3/m/e9e9abc24793daef5ef7ba0d4a7302768e996f25.png)
(名师选题)(精选试题附答案)高中数学第一章集合与常用逻辑用语重点知识点大全单选题1、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.2、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.3、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.4、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q>0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.5、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.6、设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则A∩(∁U B)=()A.{−3,3}B.{0,2}C.{−1,1}D.{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.7、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.8、在数轴上与原点距离不大于3的点表示的数的集合是()A.{x|x≤−3或x≥3}B.{x|−3≤x≤3}C.{x|x≤−3}D.{x|x≥3}答案:B分析:在数轴上与原点距离不大于3的点表示的数的集合为|x|≤3的集合.由题意,满足|x|≤3的集合,可得:{x|−3≤x≤3},故选:B9、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+ B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.10、已知A是由0,m,m2﹣3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可答案:B分析:由题意可知m=2或m2﹣3m+2=2,求出m再检验即可.∵2∈A,∴m=2 或m2﹣3m+2=2.当m=2时,m2﹣3m+2=4﹣6+2=0,不合题意,舍去;当m2﹣3m+2=2时,m=0或m=3,但m=0不合题意,舍去.综上可知,m=3.故选:B.填空题11、已知集合A={x|−2≤x≤7},B={x|m+1≤x≤2m−1},若B⊆A,则实数m的取值范围是____________.答案:(−∞,4]分析:分情况讨论:当B=∅或B≠∅,根据集合的包含关系即可求解.当B=∅时,有m+1≥2m−1,则m≤2;当B≠∅时,若B⊆A,如图,则{m+1≥−2, 2m−1≤7,m+1<2m−1,解得2<m≤4.综上,m的取值范围为(−∞,4].所以答案是:(−∞,4]12、若全集U=R,集合A={x|−3≤x≤1},A∪B={x|−3≤x≤2},则B∩∁U A=___________. 答案:{x|1<x≤2}##(1,2]分析:由集合A,以及集合A与集合B的并集确定出集合B,以及求出集合A的补集,再根据交集运算即可求出结果.因为A={x|−3≤x≤1},A∪B={x|−3≤x≤2},所以∁U A={x|x<−3或x>1},{x|1<x≤2}⊆B⊆{x|−3≤x≤2},所以B∩∁U A={x|1<x≤2}.所以答案是:{x|1<x≤2}.13、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.14、若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合A={−1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则a的取值集合为_____.答案:{0,12,2}分析:分“鲸吞”或“蚕食”两种情况分类讨论求出a值,即可求解当a=0时,B=∅,此时满足B⊆A,当a>0时,B={−√2a ,√2a},此时A,B集合只能是“蚕食”关系,所以当A,B集合有公共元素−√2a=−1时,解得a=2,当A,B集合有公共元素√2a =2时,解得a=12,故a的取值集合为{0,12,2}.所以答案是:{0,12,2}15、定义集合A和B的运算为A∗B={x|x∈A,x∉B},试写出含有集合运算符号“*”“∪”“∩”,并对任意集合A和B 都成立的一个式子:_____________________.答案:A∗(A∩B)=(A∪B)∗B(答案不唯一).分析:根据运算A∗B={x|x∈A,x∉B}的定义可得出结论.如下图所示,由题中的定义可得A∗(A∩B)={x|x∈A,x∉(A∩B)}={x|x∈(A∪B),x∉B}=(A∪B)∗B.所以答案是:A∗(A∩B)=(A∪B)∗B(答案不唯一).小提示:本题考查集合运算的新定义,利用韦恩图法表示较为直观,考查数形结合思想的应用,属于中等题.解答题16、已知集合A={x|a−1≤x≤2a+3},B={x|−1≤x≤4},全集U=R.(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.答案:(1)(C U A)∩B={x|−1≤x<0}(2)a<−4或0≤a≤12分析:(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x∈B”是“x∈A”的必要条件等价于A⊆B.讨论A是否为空集,即可求出实数a的取值范围. (1)当a=1时,集合A={x|0≤x≤5},C U A={x|x<0或x>5},(C U A)∩B={x|−1≤x<0}.(2)若“x∈B”是“x∈A”的必要条件,则A⊆B,①当A=∅时,a−1>2a+3,∴a<−4;.②A≠∅,则a≥−4且a−1≥−1,2a+3≤4,∴0≤a≤12综上所述,a<−4或0≤a≤1.217、已知集合A={x|3−a≤x≤3+a},B={x|x≤0或x≥4}.(1)当a=1时,求A∩B;(2)若a>0,且“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.答案:(1)A∩B={4}(2)(0,1)分析:(1)首先得到集合A,再根据交集的定义计算可得;(2)首先求出集合B的补集,依题意可得A是∁R B的真子集,即可得到不等式组,解得即可;(1)解:当a=1时,A={x|2≤x≤4},B={x|x≤0或x≥4},∴A∩B={4}.(2)解:∵B={x|x≤0或x≥4},∴∁R B={x|0<x<4},∵“x ∈A ”是“x ∈∁R B ”的充分不必要条件,∴A 是∁R B 的真子集,∵a >0,∴A ≠∅,∴{3−a >03+a <4a >0,∴0<a <1,故实数a 的取值范围为(0,1).18、已知全集U ={1,2,4,6,8},集合A ={x ∈N +|4x ∈N + },B ={x |x =2a,a ∈A }.(1)求A ∪B ;(2)写出∁U (A ∩B)的所有非空真子集.答案:(1)A ∪B ={1,2,4,8}(2){1},{6},{8},{1,6},{1,8},{6,8}分析:(1)根据题意求出集合A,B ,然后结合并集的概念即可求出结果;(2)根据集合间的基本运算求出∁U (A ∩B),进而根据非空真子集的概念即可求出结果.(1)由题意得A ={1,2,4},B ={2,4,8},故A ∪B ={1,2,4,8}.(2)由题意得A ∩B ={2,4},∁U (A ∩B )={1,6,8},故∁U (A ∩B )的所有非空真子集为{1},{6},{8},{1,6},{1,8},{6,8}.19、设全集为Z ,A ={x|x 2+2x −15=0},B ={x|ax −1=0}.(1)若a =15,求A ∩(∁Z B);(2)若B ⊆A ,求实数a 的取值组成的集合C .答案:(1){−5,3}(2){−15,13,0}分析:(1)若a =15,求出集合A ,B ,即可求A ∩(∁Z B);(2)若B ⊆A ,讨论集合B ,即可得到结论.(1)解:A={x|x2+2x−15=0}={−5,3},当a=15,则B={x|ax−1=0}={5},则A∩(∁Z B)={−5,3};(2)解:当B=∅时,a=0,此时满足B⊆A,当B≠∅时,B={1a},此时若满足B⊆A,则1a =−5或1a=3,解得a=−15或13,综上C={−15,13,0}.。
高一数学集合、函数知识点总结、相应试题及答案
![高一数学集合、函数知识点总结、相应试题及答案](https://img.taocdn.com/s3/m/066ca1b90029bd64783e2cdc.png)
第一章(上) 集合[基础训练A 组] 一、选择题1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()AC B C B .()()A B A C C .()()A B B CD .()A B C4.下面有四个命题:其中正确命题的个数为( )(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; A .0个 B .1个 C .2个 D .3个5.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =∈∈ 2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =,则C 的非空子集的个数为 。
3.若集合{}|37A x x =≤<,{}|210B x x =<<,则AB =_____________.4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。
集合知识点+基础习题(有答案)
![集合知识点+基础习题(有答案)](https://img.taocdn.com/s3/m/efdf27f976a20029bd642d8c.png)
集合练习题知识点一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).1.集合中元素具的有几个特征⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.⑶无序性-即集合中的元素没有次序之分.2.常用的数集及其记法我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R3.元素与集合之间的关系4.反馈演练1.填空题2.选择题⑴以下说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可二、集合的几种表示方法1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集例如: A={1~20以内所有质数}⑵无限集--------含有无限个元素的集合叫无限集例如: B={不大于3的所有实数}2、描述法-用集合所含元素的共同特征表示集合的方法.具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.3、图示法 -- 画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示如: 集合{1,2,3,4,5}用图示法表示为:三、集合间的基本关系观察下面几组集合,集合A与集合B具有什么关系?(1) A={1,2,3},B={1,2,3,4,5}.(2) A={x|x>3},B={x|3x-6>0}.(3) A={正方形},B={四边形}.(4) A=∅,B={0}.1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A),即若任意x∈A,有x∈B,则A⊆B(或A⊂B)。
集合复习题带答案解析
![集合复习题带答案解析](https://img.taocdn.com/s3/m/d6641275492fb4daa58da0116c175f0e7cd119c5.png)
集合复习题带答案解析集合是数学中的基本概念之一,它描述了一组元素的全体。
在高中数学中,集合的概念和运算是基础中的基础。
以下是一些集合的复习题以及相应的答案解析。
题目1:已知集合A={x | x > 3},集合B={x | x < 5},求A∩B。
答案:A∩B = {x | 3 < x < 5}解析:集合A包含所有大于3的元素,集合B包含所有小于5的元素。
求两个集合的交集,即求同时满足两个条件的元素。
因此,交集中的元素x必须同时大于3且小于5。
题目2:集合C={x | x^2 - 5x + 6 = 0},求C的元素。
答案: C = {2, 3}解析:集合C由满足方程x^2 - 5x + 6 = 0的所有x组成。
解这个一元二次方程,我们可以得到x的值为2和3,因此C的元素就是这两个数。
题目3:已知集合D={x | x = 2k, k∈Z},集合E={x | x = 3m,m∈Z},求D∪E。
答案:D∪E = R (全体实数集)解析:集合D包含所有2的整数倍,集合E包含所有3的整数倍。
由于任何整数都可以表示为6的倍数(2和3的最小公倍数),因此D和E的并集包含了所有整数,也就是全体实数集。
题目4:集合F={x | x^2 - 4x + 3 = 0},判断F是否是空集。
答案: F不是空集。
解析:集合F由满足方程x^2 - 4x + 3 = 0的所有x组成。
这个方程可以通过因式分解为(x - 1)(x - 3) = 0,解得x = 1或x = 3。
因此,F包含元素1和3,不是空集。
题目5:已知集合G={x | x^2 + 2x + 1 = 0},求G的补集。
答案: G的补集是所有不在G中的实数。
解析:集合G由满足方程x^2 + 2x + 1 = 0的所有x组成。
这个方程可以写成(x + 1)^2 = 0,解得x = -1。
因此,G只包含一个元素-1。
G的补集就是除了-1以外的所有实数。
2022年数学高考集合专题知识点专项练习含答案
![2022年数学高考集合专题知识点专项练习含答案](https://img.taocdn.com/s3/m/bb8a700d4a35eefdc8d376eeaeaad1f3469311d5.png)
专题1 集合(原卷)一、单选题(本大题共12小题,共60.0分)B)=1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A; ②A∪B=A; ③A∩(∁I ⌀; ④A∩B=I⑤x∈B是x∈A的必要不充分条件.其中与命题A⊆B等价的有( )A. 1个B. 2个C. 3个D. 4个2.已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4}3,A∩B=⌀;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A. 1B. 2C. 3D. 43.已知集合M,P满足M∪P=M,则下列关系中:①M=P;②M⫌P;③M∩P=P;④P⊆M.一定正确的是()A. ①②B. ③④C. ③D. ④4.有下列命题:①mx2+2x−1=0是一元二次方程;②二次函数y=ax2+2x−1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.真命题有()A. 1个B. 2个C. 3个D. 4个5.对于任意两个数x,y(x,y∈N∗),定义某种运算“◎”如下:①当或,时,x◎y=x+y;②当,时,x◎y=xy则集合A= {(x,y)|x◎y=10}的子集个数是()A. 214个B. 213个C. 211个D. 27个6.已知集合A={x|−2<x<3},B={x|m<x<m+9}.若A∩B≠⌀,则实数m的取值范围为()A. {m|m<3}B. {m|m⩾−11}C. {m|−11⩽m⩽3}D. {m|−11<m<3}7.已知集合A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1}.若B⊆A,则实数m的取值范围为()A. m⩾3B. 2⩽m⩽3C. m⩾2D. m⩽38.设集合S,T中至少有两个元素,且S,T满足:①对任意x,y∈S,若x≠y,则x+y∈T②对任意x,y∈T,若x≠y,则x−y∈S,下列说法正确的是()A. 若S有2个元素,则S∪T有4个元素B. 若S有2个元素,则S∪T有3个元素C. 存在3个元素的集合S,满足S∪T有5个元素D. 存在3个元素的集合S,满足S∪T有4个元素9.已知集合A={x∈R|12x+1≤1},B={x∈R|(x−2a)(x−a2−1)<0},若(∁R A)∩B=⌀,则实数a 的取值范围是()A. [1,+∞)B. [0,+∞)C. (0,+∞)D. (1,+∞)10.设集合M={x|x2−x>0}.N={x|1x<1},则()A. M⊊NB. N⊊MC. M=ND. M∪N=R11.若集合A={x|x−3x+1≥0},B={x|ax+1≤0},若B⊆A,则实数a的取值范围是()A. [−13,1) B. (−13,1]C. (−∞,−1)⋃[0,+∞)D. [−13,0)⋃(0,1)12.设集合S={−20,21,5,−11,−15,30,a},我们用f(S)表示集合S的所有元素之和,用g(S)表示集合S的所有元素之积,例如:若A={2},则f(A)=g(A)=2;若B={2,3},则f(B)=2+3,g(B)= 2×3.那么下列说法正确的是()A. 若a=0,对S的所有非空子集A i,f(A i)的和为320B. 若a=0,对S的所有非空子集B i,f(B i)的和为−640C. 若a=−1,对S的所有非空子集C i,g(C i)的和为−1D. 若a=−1,对S的所有非空子集D i,g(D i)的和为0二、单空题(本大题共4小题,共20.0分)13.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.14.设集合A={0,3},B={m+2,m2+2},若A∩B={3},则集合A∪B的子集的个数为.15.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合是“好集合”,给出下列4个集合:①M={(x,y)|y=1x};②M={(x,y)|y=e x−2};③M={(x,y)|y=cosx};④M={(x,y)|y=lnx}.其中为“好集合”的序号是______.16.已知集合{a,b,c}={0,1,2},有下列三个关系①a≠2;②b=2;③c≠0,若三个关系中有且只有一个正确的,则a+2b+3c=____________.专题1 集合一、单选题(本大题共12小题,共60.0分)17. 若A 、B 是全集I 的真子集,则下列四个命题:①A ∩B =A ; ②A ∪B =A; ③A ∩(∁I B)=⌀; ④A ∩B =I⑤x ∈B 是x ∈A 的必要不充分条件.其中与命题A ⊆B 等价的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:由A ⊆B 得Venn 图,①A ∩B =A ⇔A ⊆B;②A ∪B =A ⇔B ⊆A;③A ∩(∁I B )=⌀⇔A ⊆B;④{A ∩B =IA ⊆IB ⊆I ⇔A =B =I ⇒A ⊆B,但A ⊆B 不一定能得出A =B =I ,故A ∩B =I 与A ⊆B 不等价;⑤x ∈B 是x ∈A 的必要不充分条件,则A ⊆B ,但A ⊆B 不一定能得x ∈B 是x ∈A 的必要不充分条件,所以不等价.故和命题A ⊆B 等价的有①③,故选B .18. 已知非空集合A ,B 满足以下两个条件:(1)A ∪B ={1,2,3,4}3,A ∩B =⌀;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(A,B )的个数为() A. 1 B. 2 C. 3 D. 4【答案】B【解析】若集合A 中只有1个元素,则集合B 中有3个元素,则1∉A ,3∉B ,即3∈A ,1∈B ,此时有1对;同理,若集合B只有1个元素,则集合A中有3个元素,有1对;若集合A中有2个元素,则集合B中有2个元素,2∉A,2∉B,不满足条件.所以满足条件的有序集合对(A,B)的个数为1+1=2,故选B.19.已知集合M,P满足M∪P=M,则下列关系中:①M=P;②M⫌P;③M∩P=P;④P⊆M.一定正确的是()A. ①②B. ③④C. ③D. ④【答案】B已知集合M,P满足M∪P=M,则P⊆M,故④正确,①错误,②错误;由P⊆M可得M∩P=P,故③正确,故选B20.有下列命题:①mx2+2x−1=0是一元二次方程;②二次函数y=ax2+2x−1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.真命题有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】①当m=0时,方程是一元一次方程,错误;②方程ax2+2x−1=0(a≠0)的判别式Δ=4+ 4a,其值不一定大于或等于0,所以与x轴至少有一个交点不能确定,错误;③正确;④空集不是空集的真子集,错误.故选A.21.对于任意两个数x,y(x,y∈N∗),定义某种运算“◎”如下:①当或,时,x◎y=x+y;②当,时,x◎y=xy则集合A= {(x,y)|x◎y=10}的子集个数是()A. 214个B. 213个C. 211个D. 27个【答案】C【解析】按照题意,将集合A中元素逐一列举出来如下:A={(10,1),(2,5),(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5)},故集合A中共有11个元素,所以集合A的子集个数为211.故选C.22.已知集合A={x|−2<x<3},B={x|m<x<m+9}.若A∩B≠⌀,则实数m的取值范围为()A. {m|m<3}B. {m|m⩾−11}C. {m|−11⩽m⩽3}D. {m|−11<m<3}【答案】D【解析】若A∩B=⌀,利用下图的数轴可得m+9⩽−2或m⩾3,∴m⩽−11或m⩾3.∴满足A∩B≠⌀的实数m的取值范围为{m|−11<m<3}.故选D.23.已知集合A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1}.若B⊆A,则实数m的取值范围为()A. m⩾3B. 2⩽m⩽3C. m⩾2D. m⩽3【答案】D【解析】A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1},而B⊆A,(1)当B=⌀时,满足B⊆A,此时m+1>2m−1,解得m<2;(2)当B≠⌀时,B⊆A,则计算得出2≤m≤3.综上,m≤3.故选D.24.设集合S,T中至少有两个元素,且S,T满足:①对任意x,y∈S,若x≠y,则x+y∈T②对任意x,y∈T,若x≠y,则x−y∈S,下列说法正确的是()A. 若S有2个元素,则S∪T有4个元素B. 若S有2个元素,则S∪T有3个元素C. 存在3个元素的集合S,满足S∪T有5个元素D. 存在3个元素的集合S,满足S∪T有4个元素【答案】B【解析】若S有2个元素,不妨设S={a,b},由 ②知集合S中的两个元素必为相反数,故可设S={a,−a};由 ①得0∈T,由于集合T中至少有两个元素,故至少还有另外一个元素m∈T,当集合T有2个元素时,由 ②得:−m∈S,则m=±a,T={0,−a}或T={0,a},当集合T有多于2个元素时,不妨设T={0,m,n},由 ②得:m,n,−m,−n,m−n,n−m∈S,由于m,n≠0,所以m≠m−n,n≠n−m,又m≠n,故集合S中至少有3个元素,矛盾,综上,S∪T={0,a,−a},故B正确;若S有3个元素,不妨设S={a,b,c},其中a<b<c,则{a+b,b+c,c+a}⊆T,所以c−a,c−b,b−a,a−c,b−c,a−b∈S,集合S中至少两个不同正数,两个不同负数,即集合S中至少有4个元素,矛盾,排除C,D.故选B.25.已知集合A={x∈R|12x+1≤1},B={x∈R|(x−2a)(x−a2−1)<0},若(∁R A)∩B=⌀,则实数a 的取值范围是()A. [1,+∞)B. [0,+∞)C. (0,+∞)D. (1,+∞)【答案】B【解析】∵集合A={x∈R|12x+1≤1}={x|−2x2x+1≤0}={x|x<−12或x≥0},B={x∈R|(x−2a)(x−a2−1)<0},∵2a≤a2+1,∴当2a=a2+1时,a=1,B=⌀,满足题意;当2a<a2+1时,a≠1,B={x|2a<x<a2+1},∁R A={x|−12≤x<0},∴a2+1≤−12或2a≥0,a≠1,解得a≥0,且a≠1,综上,a≥0,即实数a的取值范围是[0,+∞).故选:B.26.设集合M={x|x2−x>0}.N={x|1x<1},则()A. M⊊NB. N⊊MC. M=ND. M∪N=R 【答案】C【解析】解:解x2−x>0得,x<0或x>1;解1x<1得,x>1,或x<0;∴M=N.故选:C.27.若集合A={x|x−3x+1≥0},B={x|ax+1≤0},若B⊆A,则实数a的取值范围是()A. [−13,1) B. (−13,1]C. (−∞,−1)⋃[0,+∞)D. [−13,0)⋃(0,1)【答案】A【解析】因为x−3x+1≥0,所以{x+1≠0(x−3)(x+1)≥0,所以x<−1或x≥3,所以A={x|x<−1或x≥3},当a=0时,1≤0不成立,所以B=⌀,所以B⊆A满足,当a>0时,因为ax+1≤0,所以x≤−1a,又因为B⊆A,所以−1a<−1,所以0<a<1,当a<0时,因为ax+1≤0,所以x≥−1a,又因为B⊆A,所以−1a ≥3,所以−13≤a<0综上可知:a∈[−13,1).故选:A28.设集合S={−20,21,5,−11,−15,30,a},我们用f(S)表示集合S的所有元素之和,用g(S)表示集合S的所有元素之积,例如:若A={2},则f(A)=g(A)=2;若B={2,3},则f(B)=2+3,g(B)= 2×3.那么下列说法正确的是()A. 若a=0,对S的所有非空子集A i,f(A i)的和为320B. 若a=0,对S的所有非空子集B i,f(B i)的和为−640C. 若a=−1,对S的所有非空子集C i,g(C i)的和为−1D. 若a=−1,对S的所有非空子集D i,g(D i)的和为0【答案】C【解析】由于S={−20,21,5,−11,−15,30,a}中的所有元素的和为a,则在S的所有非空子集中,对任意x∈S,含有x的非空子集的个数为26,从而∑fA⊂S (A)=26⋅∑xA⊂S=a⋅26.从而当a=0时,∑fA⊂S(A)=0,故选项A,B均错误.当a=−1时,S={−20,21,5,−11,−15,30,−1},对于S中的任意子集A,若−1∈A,则将元素−1从集合A中删除得集合B=A={−1},则g(A)=−g(B);若−1∉A,则将元素−1添加到集合A中得集合B=A∪{−1},则g(A)=−g(B).由此∑gA⊂S(A)=g({−1))=−1,因此C选项正确.故选C.二、单空题(本大题共4小题,共20.0分)29.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.【答案】{0,1,2};{0,1,2,4}.【解析】A={x|x2−6x+8=0}={2,4},∵B∩A=B,∴B⊆A,当m=0时,B=⌀,满足条件,B⊆A,当m≠0时,B={4m},若满足条件,B⊆A,则4m =2或4m=4,即m=2或m=1,综上实数m的值构成的集合C={0,1,2};∵A={2,4},C={0,1,2},则A∪C={0,1,2,4}.故答案为:{0,1,2};{0,1,2,4}.30.设集合A={0,3},B={m+2,m2+2},若A∩B={3},则集合A∪B的子集的个数为.【答案】8【解析】因为集合A={0,3},B={m+2,m2+2},且A∩B={3},所以3∈B,所以m+2=3或m2+2=3,解得m=1或m=−1,当m=1时,此时B={3,3},不满足集合中元素的互异性,故舍之,当m=−1时,B={1,3},满足题意,此时A∪B={0,1,3},所以集合A∪B的子集的个数为23=8.故答案为8.31.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合是“好集合”,给出下列4个集合:};②M={(x,y)|y=e x−2};③M={(x,y)|y=cosx};④M={(x,y)|y=lnx}.①M={(x,y)|y=1x其中为“好集合”的序号是______.【答案】②③=0无实数解,因此①不是“好集合”;【解析】对于①,注意到x1x2+1x1x2对于②,如下左图,注意到过原点任意作一条直线与曲线y=e x−2相交,过原点与该直线垂直的直线必与曲线y=e x−2相交,因此②是“好集合”;对于③,如下中图,注意到过原点任意作一条直线与曲线y=cosx相交,过原点与该直线垂直的直线必与曲线y=cosx相交,因此③是“好集合”;对于④,如下右图,注意到对于点(1,0),不存在(x2,y2)∈M,使得1×x2+0×lnx2=0,因为x2=0与真数的限制条件x2>0矛盾,因此④不是“好集合”.故答案为:②③32.已知集合{a,b,c}={0,1,2},有下列三个关系①a≠2;②b=2;③c≠0,若三个关系中有且只有一个正确的,则a+2b+3c=____________.【答案】5【解析】由已知,若a≠2正确,则a=0或a=1,即a=0,b=1,c=2或a=0,b=2,c=1或a=1,b=0,c=2或a=1,b=2,c=0,均与“三个关系有且只有一个正确”矛盾;若b=2正确,则a≠2正确,不符合题意;所以,只有c≠0正确,a=2,b=0,c=1,故a+2b+3c=5.故答案为:5.。
(完整版)集合知识点总结与习题《经典》
![(完整版)集合知识点总结与习题《经典》](https://img.taocdn.com/s3/m/58d686f2a26925c52cc5bffd.png)
集合详解集合的含义与表示1、集合的概念把某些特定的对象集在一起就叫做集合. 2、常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). 二、集合间的基本关系 1、子集、真子集、集合相等2、已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.三、集合的基本运算1、交集、并集、补集【经典例题】1.知集合{(,)|,A x y x y=为实数,且}221,x y +={(,)|,B x y x y =为实数,且},A By x =I 则的元素个数为( )A 、0B 、1C 、2D 、3 2.已知集合{{},1,,A B m A B A==⋃=,则m = ( )A 、0或3B 、0或3C 、1或3D 、1或33.A={1,2,3,4},B==⋂∈=B A A n n x x 则},,|{2( ) A,{1,4} B,{2,3} C,{9,16} D,{1,2}4.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则)(B A C U ⋃=( )A .{1,3,4}B .{3,4}C .{3}D .{4}5.已知集合{}{}1,2,3,4,|2,A B x x A B ==<=I 则( )A .{1}B .{}0,1C .{}0,2D .{}0,1,26.若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a=( )A .4B .2C .0D .0或47.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-D .{2,0,2}-8.下列八个关系式①{0}=φ;①φ=0;①φ={φ};①φ∈{φ};①{0}⊇φ;①0∉φ;①φ≠{0};①φ≠{φ}其中正确的个数( )A.4B.5C.6D.7 9.下列各式中,正确的是( ) A.2}2{≤⊆x x B.{}≠<>12x x x 且φC.{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠D.{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}练习:一、选择题1.若集合{|1}X x x =>-,下列关系式中成立的为( )A .0X ⊆B .{}0X ∈C .X φ∈D .{}0X ⊆2.已知集合{}2|10,A x x A R φ=+==I 若,则实数m 的取值范围是( ) A .4<m B .4>m C .40<≤m D .40≤≤m 3.下列说法中,正确的是( )A . 任何一个集合必有两个子集;B . 若,A B φ=I则,A B 中至少有一个为φC . 任何集合必有一个真子集;D . 若S 为全集,且,A B S =I 则,A B S ==4.设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( ) A .0 B .{}0 C .φ D .{}1,0,1- 二、填空题 7.已知{}Rx x x y y M ∈+-==,34|2,{}Rx x x y y N ∈++-==,82|2则__________=N M I 。
集合练习题及详细答案
![集合练习题及详细答案](https://img.taocdn.com/s3/m/8056e4f2f705cc1755270991.png)
知识点一:集合间的基本关系例1、已知集合M 满足M {1,2,3},且集合M 中至少含有一个奇数,试写出所有的集合M 。
知识点二:集合的基本运算例2、 如图,设A 、B 、I 均为非空集合,且满足A B I ⊆⊆,则下列各式中错误的是( )A. ()C A B I I =B. ()()C A C B I I I =C. A C B I ()=φD. ()()C A C B C B I I I =例3、已知集合{}0)6x ()3(x |x A >+-=,{}B x x k x k =---≤|()()10,若A B ≠φ,求k 的取值范围。
例4、若{}0322=--=x x x A ,{}02=-=ax x B ,且B B A = ,求由实数a 组成的集合C 。
例5、已知,{}23B x a x a =∈≤≤+R ,若A B A = ,求实数a 的取值范围。
例6、已知集合{}22342M a a =++,,,{}207422N a a a =+--,,,,且{}37M N =,,求实数a 的值。
【答案解析】例1【思路分析】题意分析:本题主要考查真子集和集合中元素的概念,另外需要理解“至少”和“奇数”这两个条件。
解题思路:首先应该写出集合{1,2,3}所有的真子集,然后挑选出符合“集合M 中至少含有一个奇数”作为答案。
【解答过程】所有符合条件的集合M 有:{1},{3},{1,2},{1,3},{2,3}。
【题后思考】本题主要考查集合间的基本关系,尤其是要正确理解符号“”和“⊆”的含义。
例2【思路分析】题意分析:本题主要考查对子集、集合的基本运算和Venn 图的理解,另外本题要求选择错误的答案,对于选择错误答案这一类型的题,一定要细心,避免审题失误。
解题思路:首先要能利用Venn 图准确表示集合A 或B 的补集,然后再按要求求相应的交集或并集,最后判断与选项中所给的结果是否一致。
不一致的就是答案。
集合的概念及运算例题及答案
![集合的概念及运算例题及答案](https://img.taocdn.com/s3/m/262a5b3f0622192e453610661ed9ad51f01d5404.png)
1 集合的概念与运算(一) 目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题理解集合、子集的概念,能利用集合中元素的性质解决问题2.2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,理解交集、并集、全集、补集的概念,掌握集合的运算性质,理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.3.能利用数轴或文氏图进行集合的运算能利用数轴或文氏图进行集合的运算能利用数轴或文氏图进行集合的运算,,掌握集合问题的常规处理方法.掌握集合问题的常规处理方法. 重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用种表示方法,集合语言、集合思想的运用; ;2.2.交集、并集、补集的求法,集合语言、集合思想的运用.交集、并集、补集的求法,集合语言、集合思想的运用.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称:某些指定的对象集在一起就形成一个集合(简称集集) (2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a Ï注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出):集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q …………元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q …………例题精析1: 1、下列各组对象能确定一个集合吗?、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(不确定)(2)好心的人 (不确定)(不确定)(3)1,2,2,3,4,5.(有重复)(有重复)2、设a,b 是非零实数,那么b b a a +可能取的值组成集合的元素是可能取的值组成集合的元素是_-2,0,2___-2,0,2__3、由实数x,x,--x,x,||x |,332,x x -所组成的集合,最多含(所组成的集合,最多含( A A) (A )2个元素个元素 (B )3个元素个元素 (C )4个元素个元素 (D )5个元素个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:)的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明证明(1)(1)(1):在:在a +b 2(a ∈Z, b ∈Z )中,令a=x a=x∈∈N,b=0,则x= x +0*2= a +b 2∈G,G,即即x ∈G证明证明(2)(2)(2):∵:∵:∵x x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c Z,c∈∈Z, d∈Z ∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+-且22222,2b a b b a a ---不一定都是整数,不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为的所有解组成的集合,可以表示为{-1{-1{-1,,1}注:(1)有些集合亦可如下表示:)有些集合亦可如下表示:从51到100的所有整数组成的集合:的所有整数组成的集合:{51{51{51,,5252,,5353,…,,…,,…,100} 100}所有正奇数组成的集合:所有正奇数组成的集合:{1{1{1,,3,5,7,…,…} }(2)a 与{a}{a}不同:不同:不同:a a 表示一个元素,表示一个元素,{a}{a}{a}表示一个集合,该集合只有一个元素表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x {x∈∈A| P(x )} 含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-Îx R x 或}23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:如:{{直角三角形直角三角形}};{大于104的实数的实数} }(2)错误表示法:)错误表示法:{{实数集实数集}};{全体实数全体实数} }(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:思考:何时用列举法?何时用描述法?何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y yx ;集合;集合{1000{1000以内的质数以内的质数} } 例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{³y y是函数12+=x y 的所有函数值构成的数集 例题精析2:1、用描述法表示下列集合、用描述法表示下列集合 ①{1{1,,4,7,1010,,13}}5,23|{£Î-=n N n n x x 且 ②{-2{-2,,-4-4,,-6-6,,-8-8,,-10}}5,2|{£Î-=n N n n x x 且 2、用列举法表示下列集合、用列举法表示下列集合①{x {x∈∈N|x 是15的约数的约数} {1} {1,3,5,15} ②{(x ,y )|x |x∈∈{1{1,,2}2},,y ∈{1{1,,2}}{(1,1),(1,2),(2,1)(2,2)} 注:防止把注:防止把{{(1,2)}写成写成{1{1{1,,2}2}或或{x=1{x=1,,y=2}③îíì=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n Î-= {-1,1}⑤},,1623|),{(N y N x y x y x ÎÎ=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax ax++b=0b=0,当,当a,b 满足条件满足条件____________时,解集是有限集;当时,解集是有限集;当a,b 满足条件满足条件_______________时,解集是时,解集是无限集4、用描述法表示下列集合:、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, …………}= }= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是所满足的条件是2、已知{}23,21,1A a a a=--+,其中a R Î,⑴若3A -Î,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
集合练习题以及答案
![集合练习题以及答案](https://img.taocdn.com/s3/m/589719856e1aff00bed5b9f3f90f76c661374cb2.png)
集合练习题以及答案集合是数学中的基本概念之一,它涉及到元素与集合之间的关系,以及不同集合之间的运算。
以下是一些集合练习题及其答案,供学习者练习和参考。
练习题1:判断下列命题的真假。
- A = {1, 2, 3}- B = {2, 3, 4}- 命题1:1 ∈ A- 命题2:4 ∈ A- 命题3:A ⊆ B答案1:- 命题1:真,因为1是集合A的元素。
- 命题2:假,因为4不是集合A的元素。
- 命题3:假,因为集合A不包含集合B的所有元素。
练习题2:集合C和D的定义如下,请找出C ∪ D和C ∩ D。
- C = {1, 2, 3, 5}- D = {2, 4, 5, 6}答案2:- C ∪ D = {1, 2, 3, 4, 5, 6},这是C和D所有元素的并集。
- C ∩ D = {2, 5},这是C和D共有的元素。
练习题3:集合E和F如下,求E - F。
- E = {1, 3, 5, 7, 9}- F = {3, 5, 7}答案3:- E - F = {1, 9},这是E中所有不在F中的元素。
练习题4:集合G和H如下,判断它们是否相等。
- G = {x | x是小于10的正整数}- H = {1, 2, 3, 4, 5, 6, 7, 8, 9}答案4:- G和H相等,因为它们包含相同的元素。
练习题5:集合I和J如下,求I的补集。
- I = {x | x是偶数}- J = R(实数集)答案5:- I的补集是所有不在I中的元素,即所有奇数,可以表示为{x ∈ J | x是奇数}。
练习题6:集合K和L如下,找出K相对于L的补集。
- K = {x | x是小于20的正整数}- L = {x | x是小于50的正整数}答案6:- K相对于L的补集是所有在L中但不在K中的元素,即{x ∈ L | 20 ≤ x < 50}。
结束语:通过这些练习题,我们可以加深对集合概念的理解,包括元素与集合的关系、集合的运算以及集合的表示方法。
集合练习题含答案
![集合练习题含答案](https://img.taocdn.com/s3/m/72c68b11ff4733687e21af45b307e87100f6f869.png)
集合练习题含答案1. 定义题:什么是集合?请给出集合的三个基本性质。
- 答案:集合是由一些确定的、不同的元素所组成的整体。
集合的三个基本性质包括:确定性(集合中的元素是明确的)、互异性(集合中不会有重复的元素)、无序性(元素的排列顺序不影响集合的确定性)。
2. 列举题:列举出集合{1, 2, 3, 4, 5}的所有子集。
- 答案:集合{1, 2, 3, 4, 5}的所有子集包括空集∅和所有可能的元素组合,共32个子集。
3. 运算题:设集合A={1, 2, 3},B={2, 3, 4},求A∪B和A∩B。
- 答案:A∪B={1, 2, 3, 4},表示A和B中所有元素的集合。
A∩B={2, 3},表示A和B中共有的元素集合。
4. 关系题:如果集合C={x | x是偶数},D={x | x是小于10的正整数},判断C和D的关系。
- 答案:C是D的子集,因为C中的所有元素都是偶数,而D包含了所有小于10的正整数,包括了C中的所有元素。
5. 证明题:证明对于任意集合A,A⊆A。
- 答案:根据子集的定义,如果集合A中的每一个元素都是集合A的元素,则A是A的子集。
因为集合A中的元素自然属于A本身,所以A⊆A。
6. 应用题:某班级有30名学生,其中15名喜欢数学,12名喜欢物理,8名既喜欢数学又喜欢物理。
求至少喜欢一门科目的学生人数。
- 答案:设喜欢数学的学生集合为M,喜欢物理的学生集合为P。
根据集合的并集公式,至少喜欢一门科目的学生人数为|M∪P| = |M|+ |P| - |M∩P| = 15 + 12 - 8 = 19。
7. 推理题:如果A={x | x是大于10的整数},B={x | x是小于20的整数},C={x | x是奇数},判断A∩(B∪C)是否为空集。
- 答案:A∩(B∪C)不为空集。
因为B∪C包含了所有小于20的整数,而A包含了所有大于10的整数,所以它们有交集,即11, 13, 15, 17, 19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合练习题
知识点
一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).
1.集合中元素具的有几个特征
⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.
⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.
⑶无序性-即集合中的元素没有次序之分.
2.常用的数集及其记法
我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.
常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
3.元素与集合之间的关系
4.反馈演练
1.填空题
2.选择题
⑴以下说法正确的( )
(A) “实数集”可记为{R}或{实数集}
(B){a,b,c,d}与{c,d,b,a}是两个不同的集合
(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定
⑵已知2是集合M={ }中的元素,则实数为( )
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
二、集合的几种表示方法
1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.
*有限集与无限集*
⑴有限集-------含有有限个元素的集合叫有限集
例如: A={1~20以内所有质数}
⑵无限集--------含有无限个元素的集合叫无限集
例如: B={不大于3的所有实数}
2、描述法-用集合所含元素的共同特征表示集合的方法.
具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.
3、图示法 -- 画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示
如: 集合{1,2,3,4,5}用图示法表示为:
三、集合间的基本关系
观察下面几组集合,集合A与集合B具有什么关系?
(1) A={1,2,3},B={1,2,3,4,5}.
(2) A={x|x>3},B={x|3x-6>0}.
(3)A={正方形},B={四边形}.
(4)A=∅,B={0}.
1.子集
定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A),即若任意x∈A,有x∈B,则A⊆B(或A⊂B)。
这时我们也说集合A是集合B的子集(subset)。
如果集合A不包含于集合B,或集合B不包含集合A,就记作A⊈B(或B⊉A),即:若存在x∈A,有x∉B,则A⊈B(或B⊉A)
说明:A ⊆B 与B ⊇A 是同义的,而A ⊆B 与B ⊆A 是互逆的。
规定:空集∅是任何集合的子集,即对于任意一个集合A 都有∅⊆A 。
例1.判断下列集合的关系.
(1) N_____Z; (2) N_____Q; (3) R_____Z; (4) R_____Q;
(5) A={x| (x-1)2=0},B={y|y 2-3y+2=0};
(6) A={1,3}, B={x|x 2-3x+2=0};
(7) A={-1,1}, B={x|x 2-1=0};
(8)A={x|x 是两条边相等的三角形} B={x|x 是等腰三角形}。
问题:观察(7)和(8),集合A 与集合B 的元素,有何关系?
⇒集合A 与集合B 的元素完全相同,从而有:
2.集合相等
定义:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素(即A ⊆B ),同时集合B 的任何一个元素都是集合A 的元素(即B ⊆A ),则称集合A 等于集合B ,记作A=B 。
如:A={x|x=2m+1,m ∈Z},B={x|x=2n-1,n ∈Z},此时有A=B 。
问题:(1)集合A 是否是其本身的子集?(由定义可知,是)
(2)除去∅与A 本身外,集合A 的其它子集与集合A 的关系如何?(包含于A ,但不等于
A )
3.真子集:
由“包含”与“相等”的关系,可有如下结论:
(1)A ⊆A (任何集合都是其自身的子集);
(2)若A ⊆B ,而且A ≠B (即B 中至少有一个元素不在A 中),则称集合A 是集合B 的真子集(proper s
u b s e t ),记作 B 。
(空集是任何非空集合的真子集) (
3)对于
集合
A ,
B ,
C ,
若
A
⊆
B ,
B
⊆C
,
即
4.证明集合相等的方法:
(1) 证明集合A ,B 中的元素完全相同;(具体数据)
(2) 分别证明A ⊆B 和B ⊆A 即可。
(抽象情况) 对于集合A ,B ,若A ⊆B 而且B ⊆A ,则A=B 。
例1.判断下列两组集合是否相等?
(1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}
例2.解不等式x-3>2,并把结果用集合表示。
结论:一般地,一个集合元素若为n 个,则其子集数为2n 个,其真子集数为2n -1个,特别地,空集的子集个数为1,真子集个数为0。
1、已知集合,,且,则等于 (A )(B )(C )(D )
2、设全集,集合,,则
A. B. C. D.
3、若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是
A.(-1,1) B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)4、若集合M={-1,0,1},N={0,1,2},则M∩N等于
A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2}
5、若全集,则集合等于()
A. B. C. D.
6、若,则
A. B. C. D.
7、已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},则=
A.{6,8}
B. {5,7}
C. {4,6,7}
D. {1,3,5,6,8}
8、若全集M=,N=,=()
(A) (B) (C) (D)
9、设全集则()
A. B.C.D.
10、已知集合P={x︱x2≤1},M={a}.若P∪M=P,则a的取值范围是
A.(-∞, -1] B.[1, +∞) C.[-1,1] D.(-∞,-1] ∪[1,+∞)
11、若全集,集合,则。
12、已知集合A={x},B={x}},则A B=
A.{x} B.{x} C.{x} D.{x}
13、集合,,,则等于
(A) (B) (C) (D)
14、已知集合A={x|x<3}.B={1,2,3,4},则(C R A)∩B=
(A){4} (B){3,4} (C){2,3,4} (D){1,2,3,4}
15、已知集合M={1,2,3,4},M N={2,3},则集合N可以为().
A.{1,2,3}
B.{1,3,4}
C.{1,2,4}
D.{2,3,5}
16、已知全集,,,则
A. B.C. D.
17、已知集合,若,则实数的取值范围是()
A.B.C.D.
18、已知集合,,则()
A. B. C. D.
19、设全集,集合,则集合=
A. B. C. D.
20、若集合,,则等于
(A)(B)(C)(D){,}
21、已知集合,,则图中阴影部分表示的集合为
A. B. C. D.
22、设集合()
A. B. C. D.
23、设全集则(CuA)∩B=( )
A. B. C. D.24、设全集,集合,,则
A. B. C. D.
25、已知为实数集,,则=( ) A. B. C. D.
26、若全集U=R,集合= ()
A.(-2,2) B. C. D.
27、设全集则(CuA)∩B= ( )
A. B. C. D.
28、已知集合,集合,则
A. B. C. D.
29、设集合,,则
A. B.C.D.30、设U={1,2,3,4},M={1,2},N={2,3},则C U(M N)=
A.{1,2,3} B.{2} C.{1,3,4} D.{4}
31、已知全集,集合,则等于
A. B. C. D.
32、设集合,=
A.[0,2] B. C. D.(0,2)
33、设全集,则等于
34、设全集U={1,3,5,7}则集合M满足={5,7},则集合M为
A. B.或 C.{1,3,5,7} D.或或
35、已知集合则
36、若全集,集合,则。
37、已知全集,,,那么_______.
38、设U={1,2,3,4,5}, A={1,2,3}, B={2,4}, 则A∪=
39、集合,,若,则实数的值为.
40、设全集,集合 C U M={5,7},则的值为__________.。