四边形知识点总结大全
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.S平行四边形 =ah. a为平行四边形的边,h为a上的高)
3.S梯形 = (a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四 常识:
※1.若n是多边形的边数,则对角线条数公式是: .
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
11.等腰梯形的性质:
因为ABCD是等腰梯形
12.等腰梯形的判定:
四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD
∴ABCD四边形是等腰梯形
14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.
15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
.
5.矩形的性质:
因为ABCD是矩形
6. 矩形的判定:
四边形ABCD是矩形.
7.菱形的性质:
因为ABCD是菱形
8.菱形的判定:
四边形四边形ABCD是菱形.
9.正方形的性质:
因为ABCD是正方形
(1) (2)(3)
10.正方形的判定:
四边形ABCD是正方形.
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
对角线相等的菱形是正方形
二、梯形常见的辅助线
1.延长两腰交于一点
作用:使梯形问题转化为三角形问题。
若是等腰梯形则得到等腰三角形。
2.平移一腰
作用:使梯形问题转化为平行四边形及三角形问题。
3.作高
作用:使梯形问题转化为直角三角形及矩形问题。
4.平移一条对角线
作用:(1)得到平行四边形ACED,使CE=AD,BE等于上、下底的和
二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
三 公式:
1.S菱形 = ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)
图形
定义
平行四边形
两组对边分别平行的四边形叫做平行四边形
菱形
一组邻边相等的平行四边形叫做菱形
矩形
一个内角是直角的平行四边形叫做矩形
正方形
一组邻边相等的矩形叫做正方形
平行四边形、菱形、矩形、正方形的有关性质
图形
边
角
对角线
平行四边形
对边平行且相等
对角相等
对角线互相平分
菱形
对Βιβλιοθήκη Baidu平行,四条边相等
对角相等
两对角线互相垂直平分,每一条对角线平分一组对角
(2)S梯形ABCD=S△DBE
5.当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。
作用:可得△ADE≌△FCE,所以使S梯形ABCD=S△ABF。
感谢您的支持与配合,我们会努力把内容做得更好!
矩形
对边平行且相等
四个角都是直角
对角线互相平分且相等
正方形
对边平行、四条边都相等
四个角都是直角
两条对角线互相平分、垂直、相等,每一条对角线平分一组对角
平行四边形、菱形、矩形、正方形的判别方法
图形
判别方法
平行四边形
两组对边分别平行的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
四边形知识点总结大全
1.四边形的内角和与外角和定理:
(1)四边形的内角和等于360°;
(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理:
(1)n边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于360°.
3.平行四边形的性质:
因为ABCD是平行四边形
4.平行四边形的判定:
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
※5.梯形中常见的辅助线:
正方形、矩形、菱形和平行四边形四者知识点串联汇总
平行四边形、菱形、矩形、正方形的有关概念
两组对角分别相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
菱形
一组邻边相等的平行四边形是菱形
四条边都相等的四边形是菱形
对角线互相垂直的平行四边形是菱形
矩形
一个内角是直角的平行四边形是矩形
对角线相等的平行四边形是矩形
正方形
一组邻边相等的矩形是正方形
对角线互相垂直的矩形是正方形
有一个角是直角的菱形是正方形
3.S梯形 = (a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四 常识:
※1.若n是多边形的边数,则对角线条数公式是: .
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
11.等腰梯形的性质:
因为ABCD是等腰梯形
12.等腰梯形的判定:
四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD
∴ABCD四边形是等腰梯形
14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.
15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
.
5.矩形的性质:
因为ABCD是矩形
6. 矩形的判定:
四边形ABCD是矩形.
7.菱形的性质:
因为ABCD是菱形
8.菱形的判定:
四边形四边形ABCD是菱形.
9.正方形的性质:
因为ABCD是正方形
(1) (2)(3)
10.正方形的判定:
四边形ABCD是正方形.
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
对角线相等的菱形是正方形
二、梯形常见的辅助线
1.延长两腰交于一点
作用:使梯形问题转化为三角形问题。
若是等腰梯形则得到等腰三角形。
2.平移一腰
作用:使梯形问题转化为平行四边形及三角形问题。
3.作高
作用:使梯形问题转化为直角三角形及矩形问题。
4.平移一条对角线
作用:(1)得到平行四边形ACED,使CE=AD,BE等于上、下底的和
二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
三 公式:
1.S菱形 = ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)
图形
定义
平行四边形
两组对边分别平行的四边形叫做平行四边形
菱形
一组邻边相等的平行四边形叫做菱形
矩形
一个内角是直角的平行四边形叫做矩形
正方形
一组邻边相等的矩形叫做正方形
平行四边形、菱形、矩形、正方形的有关性质
图形
边
角
对角线
平行四边形
对边平行且相等
对角相等
对角线互相平分
菱形
对Βιβλιοθήκη Baidu平行,四条边相等
对角相等
两对角线互相垂直平分,每一条对角线平分一组对角
(2)S梯形ABCD=S△DBE
5.当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。
作用:可得△ADE≌△FCE,所以使S梯形ABCD=S△ABF。
感谢您的支持与配合,我们会努力把内容做得更好!
矩形
对边平行且相等
四个角都是直角
对角线互相平分且相等
正方形
对边平行、四条边都相等
四个角都是直角
两条对角线互相平分、垂直、相等,每一条对角线平分一组对角
平行四边形、菱形、矩形、正方形的判别方法
图形
判别方法
平行四边形
两组对边分别平行的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
四边形知识点总结大全
1.四边形的内角和与外角和定理:
(1)四边形的内角和等于360°;
(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理:
(1)n边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于360°.
3.平行四边形的性质:
因为ABCD是平行四边形
4.平行四边形的判定:
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
※5.梯形中常见的辅助线:
正方形、矩形、菱形和平行四边形四者知识点串联汇总
平行四边形、菱形、矩形、正方形的有关概念
两组对角分别相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
菱形
一组邻边相等的平行四边形是菱形
四条边都相等的四边形是菱形
对角线互相垂直的平行四边形是菱形
矩形
一个内角是直角的平行四边形是矩形
对角线相等的平行四边形是矩形
正方形
一组邻边相等的矩形是正方形
对角线互相垂直的矩形是正方形
有一个角是直角的菱形是正方形