阻燃整理

合集下载

织物的阻燃涂层整理

织物的阻燃涂层整理

织物的阻燃涂层整理1.前言据美、英、日等国家对火灾起因的统计,近年来纺织品引起的火灾呈上升趋势,已占据火灾总数的一半,造成了生命和财产的巨大损失,世界各国纷纷出台了纺织品阻燃的有关标准,对室内装饰、工业用布、服装用纺织品等做了严格的规定。

绝大部分的纺织材料是可燃的,需要经过阻燃处理来降低燃烧速度或使其离开火源后能够迅速停止燃烧。

纺织品的阻燃整理有两种方式:1、添加型,将阻燃材料与纺丝原液混和,或将阻燃剂加到聚合物中再纺丝,从而使纺出的丝具有阻燃效果。

2、后整理型,在染整加工过程中,将阻燃材料通过浸渍、浸轧或涂层等方法整理到织物上。

本文主要介绍织物的阻燃涂层整理。

阻燃涂层胶是功能性涂层胶的一种,是把阻燃材料通过一定的方式添加到涂层胶中去,整理后不仅具良好的涂层风格,同时赋予织物优异的阻燃效果。

涂层阻燃整理与传统的浸渍或浸轧阻燃整理相比,具有耐洗性好,强力不下降,不需要污水处理等优点,因此,在室内家纺、工业用布等领域应用广泛。

2. 阻燃涂层胶中涂层基胶的类型和性能特点印染行业应用的涂层胶主要有聚丙烯酸酯(PA)、聚氨酯(PU)和PUA。

PA的价格较低,合成和聚合技术较易掌握,能满足一般涂层要求,但目前市场上的产品质量参差不齐。

与PA相对,PU在性能上有独特之处,主要为耐磨、耐溶剂、耐低温(一30℃以下),防水透湿性好,具有优异弹性和皮膜感。

PUA是将PU与PA进行接枝,它结合了PU与PA的优点,但技术难度较高。

PA、PU和PUA都可以作为阻燃涂层胶的基胶。

从涂层胶使用的溶剂来分,可分为溶剂型涂层胶和水系型涂层胶。

溶剂型涂层胶使用最普通的溶剂有二甲基甲酰胺(DMF)、丁酮(MEK)、甲苯(TOL)、异丙醇(IPA)、乙二醇甲醚、乙二醇乙醚、丁醇、醋酸乙酯等,毒性较大,且易燃易爆。

与溶剂型涂层胶相比,水系型涂层胶具有环保、不燃、加工过程安全等优点,但与织物的粘着力,成膜性能、耐水压等性能相对略差。

目前,水系型涂层胶正通过产品改进或加入合适的交关剂来解决上述的缺点,加工工艺日趋成熟,将逐渐取代溶剂型涂层胶。

阻燃整理

阻燃整理


各种纤维的燃烧特性
名 称 燃烧性能 助燃,燃烧快,有阴燃 助燃,燃烧很快,无阴燃 难助燃 助燃,燃烧前熔融 难助燃,熔融 立即燃烧 难助燃,熔融 着火点(℃) (延迟10秒) 493 火焰最高温度 (℃) 860 极限氧指数 LOI值(%) 18.0
棉纤维 黏胶纤维 羊毛纤维 醋酯纤维 锦纶6 腈纶 涤纶
阻燃整理:纺织品的阻燃整理过去曾称为防 火整理。经阻燃整理后的织物并非接触火源不燃 烧,而只是降低了它的可燃性,能阻止火焰蔓延, 离开火源后不再燃烧,能迅速止燃(自动熄灭)。
所以纺织品的阻燃性只有相对意义,而不是 绝对的概念。


2、燃烧术语 (1)燃烧:可燃性物质接触火源时,产生的 氧化放热反应,伴有有焰或无焰的燃烧过程或发 烟。
高吸湿性,有天然的阻燃性能。

4、涤棉混纺织物的燃烧性能:
涤棉混纺织物的阻燃远比对其中任一组分的阻燃要困难。
原因: (1) 因为棉是一种不熔融不收缩的易燃性纤维,当涤棉 混纺制品燃烧时,棉纤维发生炭化,对涤纶起了一种类似烛 芯的支架作用,从而阻碍了涤纶的熔滴脱离火源,使涤纶的 自熄性减少,这就是所谓“支架效应”;


七、提高热裂解温度
在纤维大分子中引入芳环或芳杂环,增加大分 子链间的密集度和内聚力,提高纤维的耐热性;或 通过大分子链交联环化、与金属离子螯合等方法, 改变纤维分子结构,提高碳化程度,抑制热裂解, 减少可燃性气体的产生。

八、协同阻燃效应
含有两种或两种以上阻燃元素的阻燃剂整理织物所得到 的阻燃能力,比单一的阻燃元素的阻燃剂效果好。


(13)闪点:当物质加热分解所产生足够数量的可燃 性气体,与明火接触而刚好点燃时的温度称为闪点;

丙纶织物的阻燃涂层整理

丙纶织物的阻燃涂层整理

丙纶织物的阻燃涂层整理
丙纶织物的阻燃涂层用于提高织物的阻燃性能,防止其在受到火焰或高温时燃烧或熔化。

以下是丙纶织物阻燃涂层的整理步骤:
1. 清洁:将丙纶织物进行清洁,去除灰尘、油污等杂质,以确保涂层能够充分附着在织物表面。

2. 涂层剂准备:选择合适的阻燃涂层剂,通常会选择阻燃剂和粘合剂的混合物。

确保涂层剂的质量符合相关的阻燃标准。

3. 涂层:使用刷子、辊筒等工具将涂层剂均匀地涂抹在织物上。

涂层的厚度和均匀性需要控制好,以确保涂层能够有效地覆盖整个织物表面。

4. 干燥:让涂层的织物在适当的温度和湿度下进行干燥,以使涂层剂固化并附着在织物上。

根据涂层剂的要求,可能需要使用烘干设备来提高干燥效果。

5. 固化:为了增强涂层的附着力和阻燃性能,可以进行涂层的固化处理。

固化方法可以包括热固化、紫外线固化等。

6. 检测和验收:对涂层后的织物进行相关的阻燃性能测试,确保涂层达到要求。

如果涂层不符合要求,可以对涂层进行修补或重新涂层。

需要注意的是,涂层的整理步骤可能因不同的涂层剂和具体的
使用要求而有所变化。

因此,在进行丙纶织物阻燃涂层整理时,建议参考涂层剂的使用说明书和相关的标准要求,以确保涂层的质量和性能。

阻燃整理技术

阻燃整理技术

阻燃整理技术纺织纤维基本上属易燃烧物质,在~300℃裂解,裂解产物与空气混合,具有可燃性,自燃或遇明火燃烧。

阻燃整理:阻止织物燃烧。

或使纺织品燃烧速度放慢,离开火焰后不燃烧。

纺织品的燃烧性:纺织品燃烧过程有物理变化和化学变化。

燃烧模式纤维热裂解纤维热性能物理指标玻璃化温度(Tg):低---热塑性纤维,Tg、Tm<Tp、Tc。

燃烧前受热,先软化、收缩、熔融,后裂解、燃烧。

燃烧时由于熔融物滴落可以造成续燃困难,但高温熔滴粘着皮肤造成深度灼伤。

高---非热塑性纤维,如天然纤维、耐高温纤维,Tg、Tm>Tp、Tc, 受热至高温直接裂解,燃烧。

熔融温度(Tm)热裂解温度(Tp)燃烧温度(Tc)需氧指数LOI纺织品燃烧需氧指数(限氧指数):LOI指在N2、O2混合气体中,纺织品保持烛状燃烧所需O2的最小体积分数。

LOI = O2/N2+O2×100% 需氧指数,大---难燃。

>21%(空气中氧比例)小---易燃。

<21%燃烧骨架效应:也称蜡烛焰芯效应。

混纺织物如涤/棉织物在燃烧时,非热塑性纤维的炭化对热塑性纤维的熔融起骨架作用,熔融物不滴落,粘附在骨架上燃烧,如同蜡烛燃烧。

因此,混纺织物阻燃很困难。

阻燃方法纺织品阻燃针对燃烧的整个过程进行抑制,方法如下:1)对纺织品热分解产物进行控制,使分解产物成为不燃性产物和固体残碴。

2)热裂解产生气体为大量不燃性气体,如水、SO2、CO2,冲稀可燃性气体。

3)干扰、终止燃烧火焰的氧化还原反应,熄灭火焰。

4)形成阻隔层,阻止热、可燃气体在火焰与织物之间传递。

二、阻燃机理1、棉织物的阻燃机理纤维素热裂解:棉阻燃剂棉织物阻燃后,热裂解温度降低,裂解以炭化形式为主。

涤纶的阻燃机理:涤纶阻燃:裂解温度和裂解产物不改变,火焰燃烧受到抑制。

涤纶燃烧:自由基连锁氧化反应,放出大量热。

火焰反应涤纶阻燃剂阻燃整理工艺:1、棉织物的阻燃整理不耐洗阻燃整理:硼砂:硼酸:磷酸氢二铵= 7:3:5 或5:5:1 织物浸轧烘干,增重10~15%即有效。

磷氮阻燃剂ATZ对涤纶织物的阻燃整理

磷氮阻燃剂ATZ对涤纶织物的阻燃整理

涤纶产量大且性能优异,涉及服装、家居、建筑等领域。

但是涤纶易燃,极限氧指数仅为20%~22%,在火源作用下易发生熔融收缩形成熔滴,造成二次燃烧乃至次生灾害。

因此对涤纶进行阻燃整理以提高其安全性具有重要的现实意义[1]。

涤纶阻燃整理最常用的方法是原丝阻燃和涤纶织物阻燃。

涤纶原丝阻燃整理是阻燃剂参与PET 共聚或与PET 共混纺丝,阻燃效率高,但是需考虑对涤纶纤维性能的负面影响,如纤维水解、力学性能和染色性能下降等。

涤纶织物阻燃整理是以水为介质将阻燃剂固定在纤维上,灵活高效且对织物性能几乎无影响,在工业生产中占据重要地位[2]。

含卤阻燃剂最初用于涤纶阻燃整马梦婷1,王海琴1,唐思贤1,谭涛1,王鹏2,常硕1,3(1.嘉兴学院材料与纺织工程学院,浙江嘉兴314001;2.西南大学纺织服装学院,重庆400715;3.嘉兴学院浙江省纱线材料成形与复合加工技术研究重点实验室,浙江嘉兴314001)摘要:以2-氨基噻唑、对羟基苯甲醛和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO )为原料合成新型磷氮阻燃剂ATZ ,用傅里叶变换红外光谱、核磁共振氢谱和磷谱进行分子结构表征。

结果表明ATZ 热稳定性较好,溶解度参数为24.09J 1/2/cm 3/2,与涤纶较为接近,所以对涤纶有较好的亲和力。

利用ATZ 对涤纶进行阻燃整理,涤纶的垂直燃烧损毁长度由10.0cm 降为3.7cm ,续燃时间由30s 降为0s ,无熔滴,残炭量由16.5%增为19.3%,对基材提供隔绝保护作用。

关键词:磷氮阻燃剂;阻燃整理;涤纶;溶解度参数;残炭量中图分类号:TS195.24;TS156文献标志码:A文章编号:1004-0439(2021)02-0034-05Flame retardant finishing of polyester fabric with phosphorusnitrogen flame retardant ATZMA Mengting 1,WANG Haiqin 1,TANG Sixian 1,TAN Tao 1,WANG Peng 2,CHANG Shuo 1,3(1.College of Material and Textile Engineering,Jiaxing University,Jiaxing 314001,China;2.College of Textile andGarment,Southwest University,Chongqing 400715,China;3.Key Laboratory of Yarn Materials Forming andComposite Processing Technology of Zhejiang Province,Jiaxing University,Jiaxing 314001,China)Abstract:The phosphorus-nitrogen flame retardant ATZ was synthesized by 5-aminotetrazole monohy⁃drate,p-hydroxybenzaldehyde and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO).The structure of ATZ was characterized by FTIR,1H NMR and 31P NMR.The results showed that ATZ had good thermal stability,and its solubility parameter was 24.09J 1/2/cm 3/2,which was close to PET,so ATZ had good af⁃finity for polyester.After flame retardant finishing of polyester with ATZ,the length of damage in vertical flame test decreased from 10.0cm to 3.7cm,the continuous burning time decreased from 30s to 0s,and there was no droplet,the char yield increased from 16.5%to 19.3%,which provided insulation and protection for the base material.Key words:phosphorus-nitrogen flame retardant;flame retardant finishing;polyester;solubility param⁃eter;char yield收稿日期:2020-10-29基金项目:嘉兴市科技计划项目(2020AD10019);嘉兴学院SRT 项目(CD8517193241);浙江省纱线材料成形与复合加工技术研究重点实验室开放基金(MTC-2020-18)作者简介:马梦婷(1998—),女,本科,主要研究方向为功能纺织品,E-mail :****************。

棉织物的阻燃整理实验报告

棉织物的阻燃整理实验报告

棉织物的阻燃整理实验报告
一、实验目的
1. 了解棉织物的阻燃性能;
2. 通过实验,掌握棉织物的阻燃处理技术。

二、实验原理
棉织物的阻燃性能取决于其纤维的燃烧性能,纤维的燃烧性能取决于纤维的热稳定性和熔融点。

棉织物的阻燃处理可以通过改变纤维的热稳定性和熔融点来提高棉织物的阻燃性能。

三、实验材料和设备
1. 棉织物;
2. 阻燃剂;
3. 助燃剂;
4. 烘箱;
5. 热压机;
6. 热压机模具;
7. 热压机控制器;
8. 温度计;
9. 力计;
10. 分析仪;
11. 光谱仪;
12. 尺子;
13. 拉力机;
14. 胶带;
15. 低温冷冻机;
16. 水浴锅;
17. 烤箱;
18. 烟雾测试仪;
19. 火焰测试仪。

四、实验步骤
1. 将棉织物放入烘箱中,加热至180℃,保持10min,将棉织
物烘熟;
2. 将棉织物放入热压机中,加热至180℃,保持10min,将棉
织物热压;
3. 将阻燃剂和助燃剂混合,将混合物均匀的涂抹在棉织物表面;
4. 将棉织物放入热压机中,加热至180℃,保持10min,将棉
织物再次热压;
5. 将棉织物放入低温冷冻机中,冷冻至-10℃,保持10min,
将棉织物冷冻。

阻燃涤纶_棉织物的阻燃整理

阻燃涤纶_棉织物的阻燃整理

增重率 = m1 - m 0 ×100%
(1)
m0
式中 : m0 ———整理前试样质量 ;
m1 ———整理后试样质量 。
1. 3. 4 热重分析 ( TGA )
采用 TG7 型 热 重 分 析 仪 (美 国 Perkin2Elmer 公
司 ) ,氮气气氛 ,流速 20 mL /m in, 升温速率 10 ℃ /m in,
印 染 ( 2009 No. 1)
www. cdfn. com. cn
阻燃涤纶 /棉织物的阻燃整理
王晓春 1 , 傅 裕 2
(1. 北京服装学院材料研究开发与评价重点实验室 ,北京 100029; 2. 北京服装学院材料科学与工程学院 ,北京 100029)
摘 要 : 采用棉用阻燃剂 FPK8002对阻燃涤纶 /棉织物进行阻燃整理 ,探讨阻燃剂浓度 、焙烘条件及交联剂 用量对织物阻燃性能的影响 ,分析阻燃涤纶含量和织物组织结构对阻燃涤纶 /棉织物阻燃性能的影响 。阻燃 涤纶 /棉织物阻燃整理的优化工艺为阻燃剂 FPK8002用量 350 g /L ,交联剂用量 350 g/L ,焙烘温度 160 ℃,焙 烘时间 4 m in。测试结果表明 ,整理织物的裂解温度明显降低 ,阻燃性能符合国家 B1级标准 。 关键词 : 阻燃整理 ; 阻燃剂 ; 涤棉织物 中图分类号 : TS1951592 文献标识码 : A 文章编号 : 1000 - 4017 (2009) 01 - 00010 - 03
由图 1知 ,阻燃剂 FPK8002 用量为 250 ~500 g /L 时 ,整理织物的阻燃效果得到显著提升 ,损毁长度约为 10 cm ,且无续燃和阴燃 。这是因为混纺织物经阻燃剂 FPK8002处理后 ,阻燃剂在燃烧过程中可分解成具有 良好脱水作用的磷酸和多磷酸 ,使纤维素脱水成为焦 炭 。与此同时 ,含氮基团可释放出难燃性气体 ,稀释了 空气中的氧浓度 ,且磷 2氮的相互作用也有利于磷阻燃 剂的脱水炭化反应 。图 1 和图 2 显示 ,阻燃剂用量达 一定程度后 ,织物阻燃效果提升有限 ,而织物增重幅度 较大 ,使织物手感发涩 ,且成本提高 。因此 ,阻燃剂用 量以选用 350 g /L为宜 。 2. 2 焙烘条件的影响

纺织品阻燃整理技术的应用及发展

纺织品阻燃整理技术的应用及发展

纺织品阻燃整理技术的应用及发展近年来,纺织品阻燃整理技术已经成为了重要的研究方向,许多科学家和企业开始研发和应用这种技术,以提高纺织品的安全性能。

纺织品阻燃整理技术的应用范围十分广泛,例如火车、飞机、建筑、家具、汽车和电子设备等行业,这些行业都需要使用阻燃纺织品,以确保产品的质量和安全性。

纺织品阻燃整理技术是在原有的纺织品上增加一个阻燃材料层,或者将阻燃材料直接加入到纤维中,来达到阻燃的效果。

这种技术的研发和应用已经进行了多年,新的阻燃材料也不断被研发出来,如卤素化合物、磷系化合物和氮系化合物等。

目前,常见的纺织品阻燃整理技术有涂覆法、浸渍法、吹织法和共混法等。

涂覆法是指在纺织品表面加上一层阻燃涂层。

这种方法可以保持纺织品的原始手感和外观。

但是,涂层材料可能会在长时间的使用过程中脱落,从而降低阻燃性能。

浸渍法是将纺织品浸入含有阻燃化合物的溶液中,然后干燥该纺织品。

这种方法的阻燃效果比涂层法更长久,但浸渍剂太多可能会影响纺织品的外观和手感。

吹织法是将阻燃化合物与聚合物混合,然后直接用于制造纤维或者纱线。

由于这种方法不需要在纺织品表面添加额外的材料,所以阻燃性能能够更加长久。

共混法是指在纺织品核心部分或表面添加已经混合好的聚合物和阻燃化合物。

这种方法可确保阻燃材料能够均匀地分布在整个纺织品中,以达到更好的阻燃效果。

纺织品阻燃整理技术的发展趋势也在不断地变化和创新。

近年来,可可粉阻燃材料、木质素衍生物、纳米材料和天然纤维化合物等新型阻燃材料的研发和应用也逐渐受到关注。

与传统阻燃材料相比,新型阻燃材料具有更好的环保性和更高的阻燃性能,能够更好地满足市场需求。

总的来说,纺织品阻燃整理技术是一个快速发展的领域。

在未来,随着科技的不断进步,新型阻燃材料和技术会持续涌现,进一步改善纺织品的阻燃性能。

同时,在实际应用过程中,还应加强对于纺织品防火安全知识的普及,提高消费者的安全意识,共同构建一个更加安全的生活环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、阻燃纺织品(Flame resistance textile):纺织品被置 于火源时,它可被点燃或不被点燃。一旦点燃后移去火源, 即能停止燃烧,或焖烧(smoulder—无焰燃烧—阴燃)一 会儿,再自熄(self--extinguish)。
3、可燃纺织品(Flamenable textile):纺织品被置于 火源时,即被点燃。并发生燃烧至烧尽。
2001年5月16日,广州市的一所寄宿学校发生火灾,造成8名 正在准备高考的学生死亡,25人受伤。这是自1999年发生夏 令营火灾并造成19名儿童死亡以来发生的另一起校园火灾惨剧。 火灾是未熄的烟头引燃了一间休息室的沙发后引起的
2002年12月1日晚,位于南京老虎桥附近的南大成教院 宿舍楼电线老化引起发生大火,宿舍内的学生衣物等贵 重物品均被付之一炬,损失惨重。
表1 纤维素纤维热裂解产物
Madorsky及其合作者提出: “热裂解和脱水同时发生”机理,解释纤维素的热裂解反 应,认为: (1)C—O键C—C键不稳定,纤维素受热时,C5-C-, C1-O和C4-O键发生断裂,使一部分纤维素完全破坏生 成H2O,CO,CO2和C; (2)纤维素分子中的配醇键任意裂解,生成左旋葡萄糖, 左旋葡萄糖进一步分解为易挥发物质,引起火焰。 可燃气体是通过两条途径生成的。
c. 低烟、低毒性物质(smoke level and low toxicity level of combustion products ),阻燃剂本身及燃烧时产生的烟雾无毒 或低毒
d. 耐久的阻燃性
(2)阻燃整理后纺织品性能保持不变——物理机械性能,织物 外观等 (3)阻燃剂耐碱水解,耐水洗及干洗 (4)加工方便、污染少、价格低、无需特殊设备
基质在外部热量作用下,受热裂解,产生可 燃性气体(ΔH2),其中一部分气体与空气中的氧 结 合 而 呈 火 焰 燃 烧 ( ΔH1 ) , 余 下 的 可 燃 气 体 (ΔH2-ΔH1)随催化剂在剩余氧的作用下继续燃 烧。火焰产生的燃烧热(ΔH1),一部分不断提供 于基质,促使基质加热裂解,形成循环;另一部 分热量扩散周围环境中。因此材料热分解的难易 程度,即热分解发生的最低温度、气体化合物的 特性和质量都决定了材料的燃烧性。
纺织品的燃烧一般分为四个阶段
图1聚合物燃烧过程示意图
(1)加热(heating)―― 热量从火源传递到织物
(2)热裂解(pyrolysis) ――织物受热开始分解
(3)挥发(volatiligation) ――热分解化合物的扩散 及对流 (4)氧化(oxidigation) ――热分解产物与大气中 的氧发生反应(产生光和 热)
90年代至今 开发了高性能阻燃纤维如芳香聚酰胺 Nomex 、Kevlar 、 阻燃黏胶纤维、碳纤维、预氧丝 、新型阻燃剂。
三、有关阻燃纺织品的术语
1、防火纺织品(Fire resistance textile):纺织品被置 于温度为600℃的火源时,仍能保持原状而不被点燃, 纺织品不失其原有性能。
2002年11月6日,西安联合大学学生宿舍失火,原因为使用 电炉做饭,明火点燃地上报纸造成火灾。
2001年12月17日深夜,四川大学东区一座学生宿舍楼发生 火灾。一研究生寝室内电脑、电视等所有物品全遭焚毁。
2001年12月17日,四川大学一研究生宿舍发生火灾, 失火原因为台灯使用时间过长引燃床单。
第一节、概况
1912年 Perkin在纤维内沉积SnO2,得到了耐久的防火 效果。 第一、二次大战期间,美、英、德、日规定禁止出售按 DOCFF-3-71 垂直法阻燃试验不合格的产品(碳长 <7in 耐洗50次)
1975年 美、日为7-12岁儿童睡衣规定了标准 DOCPFF-5-13法(耐洗50次 上法测试)
Tovey指出 “尽管纺织品的着火是由于人们对热 源的使用或材料的点火不当而引起的,但这并 不能推卸纺织工业生产可燃性纺织品的责任。” 因此,研究纤维制品的可燃性,是科技工作者 面临的重要问题之一。
◆特殊作业环境要求阻燃防护纺织品 ; ◆强制性法规要求特殊场所使用阻燃纺织品。
(三)阻燃纺织品的开发途径 1、采用阻燃纤维织制阻燃纺织品 2、采用后整理手段制备阻燃纺织品
到1989年为止,约20%的住宅火灾是由纺织品引起的 (即纺织品是首先被引燃的材料),50%以上的死亡是 由这些(纺织品)火灾造成的。
1989年通过法律强制实施在英国国内市场销售阻燃装潢型家具。
2、日本的一项火灾调查显示: 起始着火物为纺织品的占37%。
3、美国20世纪90年代平均每年死于火灾的人数是 4600多人;平均每10万人口的火灾死亡数美国是1.77 人,日本是1.66人;
阻燃剂整理 80-307.25℃ 7.406% 305-382.63℃ 39.825% 382.63-701℃ 16.362%
经阻燃整理的纤维素纤维在初始和主要裂解阶段,失 重率明显低于未整理纤维,说明可燃气体释放量显著 减少。残渣阶段 释放CO2和水。纤维素裂解产生近 50个裂解底物,其中28个裂解底物已被鉴定,被认为 已鉴定的底物中,绝大部分为可燃性挥发化合物。
图2 纤维素纤维分解燃烧模型图
从纺织品燃烧的四个阶段分析,控制每个阶段都 有可能使其停止燃烧:
(1)去除热源或冷却基质,使织物达不到裂解温度。
(2)选择既不分解又不挥发的稳定的基质;或改变基 质的热分解历程,显著减少可燃性气体的生成量。
(3)降低燃烧区内氧气浓度以终止氧化。
(4)干扰火焰的燃烧反应,减少燃烧产生的热量
第二节 纺织品燃烧机理
Flame Mechanism
纺织品的热裂解及燃烧
燃烧包括:裂解和燃烧两个过程
纺织品无蒸气压,在燃烧前,必然先发生分解, 生成挥发性的可燃性气体(volatile combustible),再与氧反应发生燃烧。
纺织材料分解温度和热裂解产物决定于材料的组成。 不同的高聚物具有不同的热分解温度和产物,因此燃 烧机理和燃烧性能不同。
(四)阻燃纺织品的应用领域
1、军事上 军用个体防护的战训服; 军用集体防护的掩体; 武器的罩衣等。
2、产业上 消防员防护服、炼钢工作服、焊接工作服、医用 防护服等; 篷盖布、建筑纺织品、交通工具的装饰纺织品、 影剧院、宾馆等公共场所的纺织品都需要阻燃。 医院学校
3、家居生活 家庭装饰纺织品、服装; 我国对家庭用 装饰纺织品还没有防火的强制要 求,国外有些国家对装饰纺织品和儿童、老人 的家居服有防火要求的规定。
棉纤维的热裂解反应
纤维素分子结构
棉纤维是以1.4苷键相连的右旋葡萄糖所组成的大分 子,每个葡萄糖上有两个仲羟基和一个伯羟基,其热 裂解反应一般为:
纤维素高分子 → 降解成纤维素低分子 → 分解为左旋 葡萄糖 → 分解小分子有机化合物(包括可燃性气体)
纤维素分解成可燃气体的必由之路是先生成左旋葡萄 糖
初始裂解阶段到主要裂解阶段,其实质就是从 纤ຫໍສະໝຸດ 无定形部分到结晶区的逐步裂解的过程。
纤维素热分析及热裂解研究结果
未整理 初始裂解阶段 裂解温度 80-320.75℃
失 重 15.792% 主要裂解阶段 裂解温度 368-431℃
失 重 71.982% 残渣裂解阶段 裂解温度 429.88-701℃
失 重 6.502%
3、我国火灾调查显示:平均每年发生的火灾次数 为3—4万起,死亡人数2—3千人/年,火灾损 失折合人民币2—3亿。起始着火物纺织品占有很大 比例.
(二)研发阻燃纺织品的重要性:
◆防火:现代化大城市人口密集、高层与地下建筑越 来越多,灭火工作难度很大,为减少火灾发生及降 低火灾危害,包括阻燃纺织品在内的阻燃系列产品 的开发被提上日程,对纺织材料进行阻燃整理显得 更为重要。
织物阻燃整理
(flame retardant finishing)
第一节、概况
上海2010.11.15高层起火,10人死,消防员3人牺牲
2005.2.15吉林燎原中心医院火 灾
11月5日,吉林市商业大厦发生火灾,造成19人死亡,24人受 伤,家电、服装、鞋帽、家具大多化为灰烬。
云南省中心学校——21人死2人伤 1997年5月23日凌晨3时许,云南省富宁县洞波乡中心学校 学生侯应香在床上蚊帐内点蜡烛看书,不慎碰倒蜡烛引燃蚊帐 和衣物引起火灾。火灾损失烧死学生21人,伤2人, 烧毁宿舍 24平方米,直接经济损失1.5万元。
主要裂解阶段: 裂解温度:370-430℃ 主要裂解阶段发生区域:纤维的结晶区。 主要分解产物: 左旋葡萄糖; 纤维的变化:大部分失重在此阶段发生,这阶段的 失重速度快,失重率约为70%。 实测所得主要裂解阶段的活化能为50Kcal/mol左右 。
残渣裂解阶段: 裂解温度:高于430℃ 。 纤维素的残留部分脱水、脱羧,放出H2O和 CO2等,C/H比不断上升,残渣中含炭量越来 越高。
无定形部分纤维素的裂解又可分为两个子过程: (1)第一初始裂解过程――纤维素大分子上的甙键断 裂,发生转甙作用,生成跨环的桥键。 (2)第二初始裂解过程――第一葡萄糖单元变为左旋 葡萄糖,从大分子上断裂下来,接下来重复第二初始 裂解过程,不断产生左旋葡萄糖。 纤维的变化:物理性能有很小变化及少量失重,约在 14%以内;纤维素的D.P.开始时下降很快,然后趋向 于一稳定值150-400 。
阻燃整理纺织品的要求:
(1)燃烧性 a . max char length:(┸条法)<7in (17.8cm)。炭 长指试样在点燃后一定时间,试样原长与燃烧后未燃 着长度之差
b. Oxygen Index : LOI 大于27(26) (limiting oxygen index)。在一定试验条件下使纺织品维持燃 烧所需的最少含氧量(%)
1982年 美国规定1982年12月31日以后新出售的家具布 均需通过“一支烟”试验(一根香烟点完后,烧焦距离 不大于50.8mm)
当今,欧、美、日本等国,把纺织品的阻燃整理集中 于下列织物:产业用布、装饰用布,劳保用布,床单 布,家具布,老人、儿童睡衣。
相关文档
最新文档