汽车冷却系统设计要求

合集下载

发动机冷却系统的设计与匹配

发动机冷却系统的设计与匹配

发动机冷却系统的设计与匹配随着汽车技术的不断进步,发动机冷却系统的设计与匹配变得越来越重要。

发动机冷却系统负责将发动机中产生的过热能量散发出去,以保持发动机的工作温度在合理范围内,确保发动机的正常工作。

下面将介绍发动机冷却系统设计与匹配的几个重要方面。

首先,设计与匹配发动机冷却系统需要考虑的是发动机的散热需求。

发动机冷却系统的设计应该根据发动机的排量、功率以及使用环境等因素来确定冷却水的流量和温度。

通常情况下,发动机的散热需求与发动机的功率密切相关,功率越大,散热需求越大,因此冷却系统的设计应该满足发动机的散热需求。

其次,发动机冷却系统的设计与匹配还应考虑到冷却系统的稳定性和可靠性。

发动机在运行中产生的热量非常大,如果散热不及时或不稳定,容易导致发动机温度过高,甚至发生过热。

因此,冷却系统的设计应该考虑到温度传感器的安装位置、水泵的流量控制和风扇的控制等因素,以确保冷却系统的稳定性和可靠性。

此外,发动机冷却系统的设计与匹配还应考虑到节能和环保的要求。

传统的冷却系统主要依靠水泵和风扇来降低发动机的温度,但是这样会消耗大量的能量。

因此,在设计和匹配发动机冷却系统时,可以考虑使用电动风扇和电动水泵等节能环保的设备,以减少能量的消耗和对环境的污染。

在发动机冷却系统的设计与匹配中,还需要考虑到发动机的结构特点。

不同类型的发动机有不同的散热方式和散热需求,比如液冷发动机和空冷发动机的散热方式就不同。

在设计和匹配冷却系统时,应该根据发动机的结构特点来选择合适的冷却方式和散热器的类型。

最后,发动机冷却系统的设计与匹配还需要考虑到维护和保养的方便性。

发动机冷却系统是汽车的重要部件之一,因此在设计和匹配时,应该考虑到冷却系统的易维护性和保养性。

比如冷却系统的管路布局应该合理,以便于维护和检修;同时,还需要选择易于更换的冷却液和过滤器等设备,以便于冷却系统的保养。

综上所述,发动机冷却系统的设计与匹配需要考虑到多个方面的因素,包括发动机的散热需求、稳定性和可靠性、节能和环保、发动机的结构特点以及维护和保养等。

发动机冷却系统设计规范

发动机冷却系统设计规范

编号:冷却系统设计规范编制:万涛校对:审核:批准:厦门金龙联合汽车工业有限公司技术中心年月日一、概述要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严重的影响。

冷却不足,发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增加,磨损加剧,特别是活塞环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动机停转或者发生“拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现象。

也会使润滑油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。

同时会降低发动机充气量,使发动机功率下降。

发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。

发动机过冷,气缸磨损加剧。

同时,由于过冷,混合气形成的液体,容易进入曲轴箱使润滑油变稀,影响润滑作用。

由此可见,使发动机工作温度保持在最适宜范围内的冷却系,是何其重要。

一般地,发动机最适宜的工作温度是其气缸盖处冷却水温度保持在80℃~90℃,此时发动机的动力性、经济性最好。

二、冷却系统设计的总体要求a)具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值(一般为55°);b) 冷却系统的设计应保证散热器上水室的温度不超过99 ℃。

c) 采用105 kPa压力盖,在不连续工况运行下,最高水温允许到110 ℃,但一年中水温达到和超过99 ℃的时间不应超过50 h。

d) 冷却液的膨胀容积应等于整个系统冷却液容量的6 %。

e) 冷却系统必须用不低于19 L/min的速度加注冷却液,直至达到应有的冷却液平面,以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。

三、冷却系统的构成液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。

四、主要部件的设计选型1、散热器散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T其中:Q---散热器的散热量(kcal/h)K---散热器散热系数(kcal/m2•h•ºC)A---散热器散热面积(m2)⊿T---气液温差:散热器进水温度和散热器进风温度之差(ºC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下:①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效率有较大提高,但超过0.8m/s后,效果不大;②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决于空气的流动,通过散热器芯部的风量起了决定性作用;③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化;④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量;1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。

车辆冷却系统设计手册

车辆冷却系统设计手册

车辆冷却系统设计手册The vehicle cooling system is a crucial component of any automobile, ensuring that the engine does not overheat and functions at an optimal temperature. 车辆冷却系统是任何汽车的重要组成部分,确保发动机不会过热,并在最佳温度下运行。

From a technical perspective, the design of a vehicle cooling system must take into account the specific requirements of the engine, including its size, power output, and thermal characteristics. 从技术的角度来看,车辆冷却系统的设计必须考虑发动机的特定要求,包括其大小、功率输出和热特性。

One important aspect of the cooling system's design is the selection of the cooling fluid, commonly known as coolant, which circulates through the engine and radiator to dissipate heat. 冷却系统设计中一个重要的方面是冷却液的选择,通常称为冷却剂,它通过发动机和散热器循环以散热。

In addition to the choice of coolant, the design of the cooling system must also consider the airflow through the radiator and theeffectiveness of the cooling fan in dissipating heat. 除了选择冷却剂之外,冷却系统的设计还必须考虑通过散热器的空气流动以及冷却风扇在散热方面的效果。

acea2021标准全文

acea2021标准全文

acea2021标准全文一、标准概述acea2021标准是一套关于汽车发动机冷却系统的技术标准,旨在规范冷却系统的设计、制造和测试。

该标准由欧洲汽车制造商协会(acea)制定,旨在确保汽车发动机在各种环境条件下都能得到有效的冷却,从而提高车辆的可靠性和耐久性。

二、标准内容1.冷却系统设计要求:*冷却液容量:规定了一定的冷却液容量范围,以确保发动机得到足够的冷却。

*泵流量:规定了冷却系统所需的泵流量,以确保发动机在各种转速下都能得到适当的冷却。

*水管长度和直径:规定了冷却水管长度和直径的要求,以确保冷却液能够有效地传递到发动机各个部位。

*散热器面积:规定了散热器的面积,以确保发动机产生的热量能够及时散出。

*冷却液种类:规定使用特定类型的冷却液,以确保其具有良好的冷却效果和稳定性。

2.制造要求:*材料选择:要求冷却系统必须采用高品质的材料,如不锈钢、铜等,以确保其耐久性和可靠性。

*生产工艺:规定了冷却系统的生产工艺,以确保其制造质量和一致性。

*质量控制:要求对冷却系统进行严格的质量控制,确保其符合标准要求。

3.测试要求:*模拟环境条件测试:通过模拟各种环境条件下的测试,确保冷却系统的性能符合标准要求。

*耐久性测试:通过模拟车辆行驶过程中的各种工况,测试冷却系统的耐久性。

*温度性能测试:测试冷却系统的温度控制性能,以确保其在各种温度条件下都能正常工作。

4.维护要求:*建议定期检查和维护冷却系统,以确保其正常工作。

*定期更换冷却液和滤清器:根据标准建议的更换周期,定期更换冷却液和滤清器。

*到授权维修站进行全面检查:建议车主定期到授权维修站进行全面检查,以确保冷却系统的性能不受影响。

三、标准的实施情况acea2021标准已在欧洲汽车制造业界得到广泛实施和应用。

许多汽车制造商都按照该标准设计和制造冷却系统,并对其产品进行了认证。

此外,欧洲汽车保险机构也将其纳入保险条款和条件中,以确保车主的权益得到保障。

同时,acea还提供了相关的培训和指导,以提高制造商和维修站的执行水平。

汽车发动机冷却系统的设计原则

汽车发动机冷却系统的设计原则

发动机冷却系统的设计原则(李勇)水冷式汽车发动机冷却系统一般由散热器、节温器、水泵、缸体水道、缸盖水道、风扇及连接水管、冷却液等组成。

我们主机厂主要根据整车布置及发动机功率的要求来选定散热器及各零部件的形状、大小,并合理布置整个冷却系统,保证发动机的动力性、经济性、可靠性和耐久性,从而提高整车的性能。

一、冷却系统的总体布置原则冷却系统总布置主要考虑两方面,一是空气流通系统;二是冷却液循环系统。

因此在设计中必须做到提高进风系数和冷却液循环中的散热能力。

1,提高进风系数。

要做到提高进风系数就必须要做到:(1)减小空气的流通阻力,(2)降低进风温度,防止热风回流。

(1)减小空气的流通阻力设计中应尽量减少散热器前面的障碍物,进风口的有效进风面积不要小于60%的散热器芯部正面积;在整车布置允许的前提下,尽可能采用迎风正面积较大的散热器;风扇与任何部件的距离不应小于20mm这样就可以组织气流通畅排出,可以减少风扇后的排风背压。

(2)降低进风温度,要合理布置散热器的进风口,提高散热器与车身、发动机舱接合处的密封性,防止热风回流。

(3)合理布置风扇与散热器芯部的相对位置从正面看,尽量使风扇中心与散热器中心重合,并使风扇直径与正方形一边相等,这样可以使通过散热器的气流分布最为均匀,或者使风扇中心高一下些,使空气流经散热器上部的高温高效区。

另:考虑发动机振动的因素,风扇和护风罩之间的间隙应该在20mm 以上。

从轴向看,尽可能加大风扇前端面与散热器之间的距离,并合理设计护风罩。

要使气流均匀通过散热器芯部整个面积,必须要求风扇与散热器之间保持一定的距离,一般对载货汽车,风扇与散热器芯部之间的距离不得小于50mm。

2,提高冷却液循环中的散热能力要提高冷却液循环中的散热能力,提高冷却液循环中的除气能力是关键。

冷却系统的气体会造成水泵流量下降,使散热器的冷却率下降;还会造成发动机水套内局部沸腾,致使局部热应力猛增,影响发动机性能;在热机停工况,气体还会造成冷却液过多的损失。

发动机冷却系统设计规范

发动机冷却系统设计规范

发动机冷却系统设计规范发动机冷却系统在汽车和其他内燃机动力设备中起着至关重要的作用。

它的设计和工作原理直接影响到发动机的性能、寿命和可靠性。

因此,对于发动机冷却系统的设计规范十分重要。

本文将探讨一些常见的发动机冷却系统设计规范。

首先,冷却剂的选择是冷却系统设计的首要考虑因素之一、冷却剂应具有良好的热传导性能、高温稳定性、低粘度和耐腐蚀性。

一般来说,乙二醇和甘油是常用的冷却剂。

冷却剂的选择应根据发动机的工作条件和环境温度进行合理的考虑。

其次,冷却系统的设计应根据发动机的散热需求进行。

发动机在工作时会产生大量的热量,因此需要一个有效的散热系统来保持发动机的温度在可控制的范围内。

冷却系统应包括散热器、水泵、温度传感器和风扇等组件。

散热器的设计应充分考虑到冷却剂的流动性和散热面积,以提高散热效果。

另外,冷却系统的设计还应考虑到发动机的工作性质和负载条件。

例如,对于大型货车或挖掘机等需要长时间连续工作的设备,冷却系统应具备足够的散热能力,以保证发动机在高负荷下不会过热。

此外,还需要考虑到环境温度和海拔等因素对冷却系统的影响,以确保发动机在各种工作条件下都能保持适当的温度。

值得注意的是,冷却系统设计应注重节能和环保。

冷却系统的能源消耗在整个发动机系统中占据很大比例,因此应设计出能有效降低能耗的冷却系统。

例如,可以采用可变速风扇或控制风扇的闭环反馈系统,以根据发动机的温度自动调整风扇转速。

此外,应选择符合环保要求的冷却剂和材料,以减少对环境的污染和健康的影响。

最后,冷却系统的设计还应注重可靠性和维护性。

一个好的冷却系统应具备稳定的性能和长久的使用寿命。

例如,冷却系统的管道应采用高质量的材料和耐腐蚀的涂层,以防止管道的堵塞和泄漏。

此外,冷却系统的设计还应方便维护和检修,以减少维修时间和成本。

综上所述,发动机冷却系统设计规范是确保发动机正常运行和延长其使用寿命的关键因素之一、冷却剂的选择、散热系统的设计、能耗和环保、可靠性和维护性等都是设计冷却系统时需要考虑的重要因素。

汽车乘用车冷却系统布置及主要零部件设计规范

汽车乘用车冷却系统布置及主要零部件设计规范

乘用车冷却系统布置及主要零部件设计规范1范围本标准规½T ⅛F∏车冷知姿统布置及主更零部件的设计杓想、设计要求、BeMhi U ark 和灾效模式“ 本标准适用丁本公司皮F Λ SLV 、轿年齒总布置设计中冷知系统的布宣及主要谷部件设计・ 2规范性引用文件下列文件对于本乂件的用用足必不町少的。

凡足注日期的引用丈件.仅所注日期的版本适用于本文 件=凡足不注日期的引用文件,rtsa 版本(包括所有的修改单)适用于本文件・Q/CC JT (K )2-2011汽车取热躊 技术条件汽年用输术掾胶软待技术条件 汽车散热辭电动・风塌技术条件 溢水罐总成技术条件 水冷式油冷器总成技术条件 内燃机 晦乐空代冷却器 技术条件 Q/CC JT33O —2012凤冷式油冷器 技术条件 Q/CC JT342—2012 HT-ACMjfi 轮增圧胶曾技术条件3设计构想 3.1功能要求发动机运∙⅛髙湿燃弋相技处的号部件受如采不加以适当冷却J 会使发动机过热,充气系 数卜降.导致燃疣不止常(辉熾、早燃等)、机油变质和烧损,不那件的障擦和管损加剧,引起发动机 的动力性、经济性、可维性和咐久性全面恶化.但是如采冷却过强,汽油机混合U 形成不良,伍St 表面 机油彼燃油烯驿造成气缸曙损增加.丙此,冷却系统的主亜任务足保证发动机在适合的温度状态下正常 运魚3.2顾喜、市场要求3.2.1 —个良好的冷却累统应诛满足下列件项娶求:a ) 敵热呢力能满足发动机在备种T 况卜远转的%要・当丁况和坏境条件变化时•仍能;保证发动机 可塑的工作和维持的最佳冷却水ISJ 支?b ) 柱規定的时间内,排除系統内气淹IC )膨胀水辑的总容枳应•包含占冷却系统总容枳6%的膨胀容段、占•冷却系统总容⅛1 10%的储⅛∙容 枳以及必备的残射容枳;d )貝有较离的加木運率,初次加注IE 能达到系统容枳的X%以h :e ) 在发动机离速运转时•泵统乐力打开时,水帝进水口为f ) 保址一定的缺水丁作能力,Wt ⅛ft 人于笫一次未加满的容积:g ) 设置水温报警驶置Jh ) 密封性较好,不允许StiS :I ) 冷却系统消耗功率小,启动后,龍在短时州内达到止⅛∙MT 作溫度:J ) 可靠性、寿1⅛要有保障•,同时制造成本低亠Q/CC JToI4—2008 Q/CC JTI47—2OID Q/CC JTl 56—2009Q/CC JTl 72—Q/CC JT305—2011 承圧式淋朮罐总成技术*件 Q/CC SY0B2—2013 整千保安防灾评价3.2.2随右冷却系统的发展,电控冷却系统即将取代传統的冷知系统,冷却系统部件也随之增加" 33相关法规要求相关的法规莹求见本标准在条款中所规范性引用的冇关文件, 4设计要求41冷却系统的总体布直4 1 1冷却系统总布罢主翌考坦两方面:U)空气流通系统:b)冷却術坏系统,4 1. 2在设汁中必须做JiIffir⅛St风系数和冷却液循坏中的散热机力亠4 1.3尽Mffiδ⅛ft进K系敎,总的进址口有效面族和散热器芯休疋面枳之比不小T* 15⅛ CCFKOlI车型实测及验证数Ie).・故热模块茴端需要加导风装負使风能有吹到故热器的正荷秋上,捉高散M器的和用率,冷空气从车头而罩流入,经散热器芯部,空气温反升高,热空气被入机舱,从发动机两側和底部甘出,在布置过程中应特别注说以F二点:H)冷却枳块曲端尽可能不被阻挡,否则会造成空代进代配力增加从而降低JSK^数;D 由于风席丁作后,会造成风朗的前后斥差较人,部分储空气通过周者朮它路轻从后部高乐处冋流到丽端低圧处,所权必须增加密钊装負:C)风扇中心偏离散热器茁部中心不atiiΛ4o轴向护旳过近,否则κ⅛,⅞⅞能不能得封充分发挥,容品左Ift烛养上形成气流“死金",便气流产生人^i⅛i⅛或者iffi流损失亠4 14 —农完整的冷却.系统示心见圈1・系统中的主更不部件布置间隙应符fr Q/CC SY082-2013中飽相关规定。

冷却系统基本设计规范

冷却系统基本设计规范

冷却系统基本设计规范简式国际汽车设计(北京)有限公司2008.5目录1.冷却系统的构成和设计要求 (1)1.1 冷却系统的构成 (1)1.2 冷却系统的设计要求 (1)2 冷却系统设计 (2)2.1 散热器 (2)2.2 冷却风扇 (6)2.3 风扇护风罩 (7)2.4 压力盖 (8)2.5 膨胀水箱 (10)2.6 取暖器 (13)2.7 水泵 (13)2.8 散热器管路 (13)2.9 冷却液 (14)1.冷却系统的构成和设计要求1.1 冷却系统的构成冷却系统由散热器、风扇、膨胀箱等部件组成。

其功能是对发动机进行强制冷却,保证发动机能始终处于最适宜的温度状态下工作,以获得较高的动力性、经济性及可靠性。

汽车冷却系统的结构简图见图1-1所示:图1-1 冷却系统的构成1.2 冷却系统的设计要求1) 冷却系统的设计应保证:使用冷却水作冷却液和 0.5bar 以下的压力盖时,发动机出水口的温度允许到 100 ℃;使用冷却水作冷却液和 0.7-0.9bar 压力盖,在不连续工况运行下,最高水温允许到 110 ℃。

2)如果使用长效防冻防锈液作冷却液和 0.5bar 以下的压力盖时,发动机出水口的温度允许到105℃;使用长效防冻防锈液作冷却液和 0.7-0.9bar 压力盖,在不连续工况运行下,最高水温允许到 115 ℃。

3) 冷却液的膨胀容积应大于等于整个系统冷却液容量的 6 %。

4) 冷却系统必须用不低于 19 L/min 的速度加注冷却液,直至达到应有的冷却液平面,以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。

2 冷却系统设计件进行冷却系统内流场计算分析,最终以整车高温试验结果对冷却系统设计是否满足使用要求进行确认。

具体各主要部件的设计过程如下。

2.1 散热器散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。

新能源汽车冷却系统设计

新能源汽车冷却系统设计

新能源汽车冷却系统设计随着世界能源和环境保护问题的不断升级,新能源汽车逐渐成为了人们选择出行的新标准。

而冷却系统便是新能源汽车中一个不可或缺的部分,也是设计中需要重点关注的部分。

在新能源汽车的冷却系统设计中,需要考虑到传统汽车冷却系统设计中的种种问题,并综合考虑新能源汽车特有的因素,才能确保汽车高效、安全、环保地运行。

本文将就新能源汽车冷却系统的设计要点进行探讨。

一、冷却系统设计原则在新能源汽车的冷却系统设计中,需要遵循以下五大原则:1. 安全性原则冷却系统应具备防漏、防爆、防冻等特性,从而确保行车中的安全性。

2. 效率性原则冷却系统的设计应尽可能地提高制冷效率,才能满足日常使用时的需求。

3. 节能性原则冷却系统的设计原则应兼顾节能保护环境,尽可能地减少能源的消耗。

4. 全面性原则冷却系统应考虑车辆各个方面的换热需求,满足整车的热平衡需求。

5. 维护性原则冷却系统应尽可能地减少维护方面的成本和时间,方便用户使用和维修。

二、冷却系统设计要点在设计冷却系统时,需要考虑以下四个方面的因素:1. 散热制冷系统在设计散热制冷系统时,需要充分解决传统汽车冷却系统可能存在的漏洞。

新能源汽车在调节温度的时候,要使用额外的冷却系统,这个系统就应该在设计时能够承受循环时的高压和高温。

2. 循环系统在设计循环系统时,需要考虑到整车的运行情况和车型的需求。

特别是在电动汽车运行时,能量的消耗要考虑到循环系统的负载,不应该将整辆车的行车压力全部交给循环系统。

3. 温控系统在设计温控系统时,需要合理控制整车内的温度,从而保证行驶中的舒适度。

同时,在设计温控系统时,需要考虑到发动机(电动机)和驱动系统所在的位置、散热部位以及散热实效等因素,确保车辆在不同的运行情况下,都能自动适应温度变化。

4. 保护系统在设计保护系统时,需要考虑到车辆使用中的一些可能存在的异常情况,如汽车超载、道路情况、高温环境等因素。

设计保护系统的目的是能够在出现异常情况的时候,自动保护车辆不受损害。

载货汽车冷却系统匹配设计

载货汽车冷却系统匹配设计

载货汽车冷却系统匹配设计一、设计思路:为选定的发动机匹配相应的散热器,保证发动机在使用环境下正常运转。

二、设计步骤1、根据发动机参数及统计数据,初步选定一种散热器。

2、利用热平衡原理,计算发动机在标定工况下散热器的散热量,校核是否满足发动机的散热要求;并验算发动机在最大扭矩工况下的热平衡。

3、冷却系统设计中应考虑的其它问题。

三、初选散热器经验,为充分发挥风扇的能力,一般要求散热器的宽度和高度略大于风扇的直径;载重汽车散热器的比散热面积约A/Ne 为0.2 m2/kW.由此,初选一散热器SHQ2202.3 散热器的性能2.3.1 散热器的基本性能散热器的基本性能是由低温流体的空气和高温流体的水进行热交换前后的各种温度和热量而表征的。

它是由散热器入口的空气和水的温度,散热器的整个散热面积,热通过率、各流体(空气,水受到热量时空气吸热后的温度,水放热后的温度以及水的放热量(空气的吸热量)来所决定的。

放热量与所需的目标温度是否一致,是决定散热器的基本性能的基础,请参考表2.1。

散热器的基本性能表2.1求汽车散热器性能的重点是从表2.1设定值,利用ε–NTU 的方法来求ε(参考2.3.2))(1112a w a a t t t t -=-ε (2.1)由此求得未知数t a2 此外,水的散热量为)(21w w pw w w t t G G Q -••= 空气的吸热量)(12a a pa a a t t C G Q -••= 散热量和吸热量根据能量守恒定律,则有 Q w =Q a 故)()(2121w w pw w a a pa a t t C G t t C G -••=-••从式(2.5)求得未知数t w2,也可以求得散热器的散热量。

t a1: 入口空气温度 ℃ t a2: 出口空气温度 ℃ ε:ε-NTU 的系数 t w1:入口水温度 ℃ t w2:出口水温度 ℃ Q w :水的散热量 kJ/h G w :水的重量流量N/hG pw:: 水比热 kJ/kg ℃{J/kgK }Q a : 空气的吸热量 kJ/h G a :空气的重量流量N/h C pa : 空气的比热 kJ/kg ℃ 2.3.2 ε-NTU 法ε-NTU 是Effective Number of Heat Transfer Unit 的缩写。

汽车冷却系统结构与设计概要

汽车冷却系统结构与设计概要

汽车冷却系统结构与设计冷却系统基本要求:1 冷却系统应具有足够的冷却能力,保证发动机在所有工况下出水温度低于发动机要求的许用值;2 冷却系统应能在规定的时间内排除系统内的空气;3 冷却系统设计应留有膨胀空间,其容积占系统容积的比例应满足发动机安装。

当系统总容量>20L时,膨胀水箱容积应大于系统总容量的20%;4 冷却系统的加水速率、初次加注量应满足发动机厂家推荐要求;5 发动机高怠速运转,散热器或冷却系统加水盖打开,水泵进口为正压;6 冷却系统应有一定的缺水工作能力,缺水量应满足发动机厂家推荐值,缺水量约为系统总容量的7%;7 冷却系统应有防腐功能。

常用冷却系统布臵见图1:图1 冷却系工作原理图简图1发动机2节温器3排气管4空气蒸汽阀5膨胀水箱6、7空气蒸汽阀8补偿水箱9排气管10散热器11散热器出水管12水泵13补偿水管14散热器进水管风扇与周边其它物体距离的确定:风扇的性能会因气流中障碍物紧靠风扇而受到不良影响,所以根据发动机的安装要求,风扇端面应离散热器芯子有足够的距离(图2中s1,该值可从发动机安装手册中查找;风扇与导风罩的径向距离(图2中Δ应控制在2.5%风扇直径内,最大不能超过3%,否则将大大降低风扇效率,但实际由于结构的改进,风扇与导风罩的径向距离一般可达到11(+/-2㎜;吸风式风扇在导风罩内的轴向位臵(图2中δ1为2/3风扇叶片宽度。

图2 风扇与周边其它物体距离示意图系统零部件选型及匹配计算散热器散热器布臵在发动机前部,散热器由进水室、出水室及散热器芯等三部分构成(图3。

冷却液在散热器芯内流动,空气在散热器芯外通过。

按照散热器中冷却液流动的方向,散热器分为纵流式和横流式两种,我们普遍采用纵流式。

散热器芯有多种结构形式(图4。

管片式散热器芯由散热管和散热片组成。

散热管是焊在进出水室的直管,作为冷却液的通道。

散热管有扁管和圆管两种(图4中a、b。

扁管和圆管相比,在容积相同的情况下有较大的散热面积。

汽车冷却系统的设计及匹配试验

汽车冷却系统的设计及匹配试验

了的 , 散热量 比最初设计 的增加 了 2 %, 3 散热面积 比 6 0×2 0% = 1 2kW 。 最初 设 计 的增加 了 7 . ,迎 风 面积 比最初 设 计 的 28% 这样看来 , 整车在 6 / 行驶时 , 0 mh k 就达到了热平 增加 了 5 0%, 居然还会 出现水温高的问题。 衡 ;当车速达 到 7 mh时 ,一定 会 出现水 温高 的 问 0k / 22 对 问题 的分 析 . 题。因为满载时,发动机散发到冷却系统的散热量为 针对 以上 问题 , 我们从冷却风道上思考 , 细观 1 大于冷却系统的吸热量 1 热平衡不好 , 仔 7 W, k 2 w, k 难 察整车发动机仓 的内部结构布置 , 发现如下问题 : 怪会出现高速 7 r 0 rh以上车速水温高的问题。 kd () 1 导风罩与散热器不匹配。 最初选择的电子扇 为了证实导风罩及重叠影响散热效果 ,我们将 的 最 大外 径 太 小 ,水 箱 大部 分 散 热 面积 被 导风 罩 盖 不 合理 的导风 罩 拆 下 ,只装 了适 合 于 3 5风 扇 直径 0 住, 在整车高速行驶时 , 由于导风罩挡住 了出风 口, 的 小 导 风罩 , 箱 及 其他 部 位 无 阻 挡 物 , 外 , 整 水 另 调 对 自然 空气流动有严重的影响 ,这严重影响了高速 了散热 器 与冷 凝 器 的重 叠 部位 及水 箱 上 部 的 0距 离 的空 气 流 动 , 形 中减 少 了水 箱 的 散热 面 积 , 以导 的横梁, 了如下试验 , 无 所 做 如表 l 所列。 致 了高速行驶时出现水温高的现象 ; 表 1 导风罩与散热器改进试验数据表 () 2 水箱布置中与冷凝器重叠过多 , 两者之间 且 各 车速工 况 散热器配原 电子扇及不 合理 去掉导风罩多余 的 (m k m) 的导风罩和多重叠( ) ℃ 部 分. 无重叠( c o) 的间 隙 小 , 小 处 仅 为 2—4m 这 也 严 重 地影 响 了 最 m, 城 市工况 正常 正常 水箱 的散热面积的正常发挥 , 影响了冷却效果 ; 7 0 9 7 正 常 () 3 水箱 上安 装梁 与水箱 距 离小 , 仅为 0 5mm, 8 0 9 8 正常 这也减少了水箱的散热面积; 9 0 9 9 正常 lo o l0 o 正常 () 4 发动机仓的排风 口小 , 排风 口面积小于水箱 l0 l l5以 上 o 13 0 的进风 口面积 , 排气背压大, 热风难 以排 出去 ; lO 2 不敢开 lO l () 5 水箱的进风面积小 , 前保险杠上的进风 口离 . 水 箱 的 正 面距 离太 近 ,有 的地 方 几乎 与 散 热器 的进 32 对发 动机 仓排 风 口小 的改进 针对 22中 问题 ( )经计 算 , 设计 发 动机 仓 水 . 4, 原 风 口处 为 0距 离 , 严重 地 影响 了冷 却效 果 ; 这 () 6 发动机仓 内的冷却通风无导流 , 发动机后的 箱 侧 的通 风 口的面积 约为

冷却水系统设计要点

冷却水系统设计要点

冷却水系统设计要点
1.冷却水系统应符合下列要求:
(1)具有过滤、缓蚀、阻垢、杀菌、灭藻等水处理功能:
(2)冷却塔补水总管上设置水流量计量装置。

2.多台冷却塔并联安装时,为了确保多台冷却塔流量分配与水位的平衡,可以
采取以下措施:
(1)各个塔进水与出水系统布置时,力求并联管路阻力平衡;
(2)每台冷却塔的进出水管上可设电动调节阀,并与水泵和冷却塔风机连锁控制;
(3)各冷却塔(包括大小不同的冷却塔)的水位应控制在同一高度,高差不应大于30mm,设计时应以集水盘高度为基准考虑不同容量冷却塔的底座高度。

在各塔
的底盘之间安装平衡管,并加大出水管共用管段的管径。

一般平衡管可取比总
回水管的管径加大一号。

3.校核冷却塔集水盘的容积,确定浮球阀控制的上限水位。

集水盘的水容积应
满足以下要求:
(1)水泵抽水不出现空蚀现象;
(2)保持水泵吸人口正常吸水的最小淹没深度,以避免形成旋涡而使空气进人吸
水管中,该值与吸水管流速有关。

汽车冷却系统设计毕业设计

汽车冷却系统设计毕业设计

汽车冷却系统设计毕业设计汽车冷却系统设计毕业设计汽车是现代社会不可或缺的交通工具之一,而汽车的冷却系统则是保证汽车正常运行的重要组成部分。

冷却系统的设计对汽车的性能和寿命有着直接的影响。

本文将探讨汽车冷却系统设计的一些关键要素,以及如何提升冷却系统的效能。

首先,冷却系统的设计需要考虑汽车发动机的热量产生和散热的原理。

发动机在工作过程中会产生大量的热量,如果不及时散热,就会导致发动机过热,从而影响汽车的性能和寿命。

因此,冷却系统应该能够高效地将发动机的热量散发出去,保持发动机的适宜工作温度。

其次,冷却系统的设计需要考虑汽车的使用环境和工况。

不同的使用环境和工况会对冷却系统的设计提出不同的要求。

例如,在高温环境下,冷却系统需要具备更强的散热能力;在高海拔地区,冷却系统需要考虑气压变化对散热效果的影响。

因此,冷却系统的设计需要根据实际情况进行合理的调整和改进。

第三,冷却系统的设计需要考虑材料的选择和结构的优化。

合适的材料能够提高散热效率和耐腐蚀性,从而延长冷却系统的使用寿命。

同时,优化冷却系统的结构可以提高冷却效果,减少能量损失。

例如,采用流线型设计的散热器可以增加冷却风扇的效率,提高散热效果。

第四,冷却系统的设计需要考虑节能环保的要求。

随着环境保护意识的提高,汽车冷却系统的设计也要朝着节能环保的方向发展。

例如,可以采用可再生能源来驱动冷却风扇,减少对传统能源的依赖;可以采用节能材料来制造冷却系统的组件,减少能量消耗。

最后,冷却系统的设计需要进行实验验证和优化。

通过实验,可以验证设计的可行性和效果,并对冷却系统进行进一步的优化。

例如,可以通过温度传感器监测发动机的温度变化,以评估冷却系统的性能。

同时,可以通过改变冷却系统的参数和结构,比如增加散热面积或改变冷却液的流动速度,来提升冷却系统的效能。

综上所述,汽车冷却系统设计是一项复杂而重要的工作。

它需要考虑发动机的热量产生和散热原理、使用环境和工况、材料选择和结构优化、节能环保要求等多个方面的因素。

发动机冷却和中冷系统设计规范

发动机冷却和中冷系统设计规范

发动机冷却和 xx 系统设计标准1.适用范围本设计标准适用于重型汽车冷却、中冷系统设计。

本设计标准规定了冷却、中冷系统设计中应遵循的通用原那么,和一般的设计方法。

2.设计原那么设计良好的冷却、中冷系统应该充分考虑以下几方面原那么:2.1 首先应优先考虑冷却、中冷系统的冷却能力问题。

其中所要求的冷却常数、中冷系统冷却效率及发动机进气温度等皆应一一满足。

2.2 冷却、中冷系统的安装方式及在整车中的合理位置也应充分考虑,不应有因为安装点位置及结构引起系统损坏或造成潜在易损坏因素。

系统在整车中的位置将影响其性能,应谨慎考虑。

2.3 冷却、中冷系统的管路应合理并力求简洁清晰。

防止因管路走向不合理而引起的系统内阻的增加和性能的下降。

2.4 冷却、中冷系统应有良好的保护装置,防止系统异常损坏和性能下降。

2.5 冷却、中冷系统的设计应考虑到装车工艺性要求和维修的接近性要求。

3.设计方法3.1 中冷器和散热器的设计、选择及安装:如果有足够的空间,冷却系统可以选用迎风面积大、芯子薄、散热效率高的热交换器。

在有风扇离合器控制风扇运作的情况下,应充分利用空间加大热交换器的尺寸,这样可以降低风扇的功耗和降低风扇工作噪声。

在无中冷器的情况下且无风扇离合器情况下,按经验推荐,发动机功率每 100 千瓦的散热器迎风面积应为0."3 ~0."375m2 之间。

由于排放法规要求,现代重型车上一般具有空空中冷系统。

所以在推荐迎风面积上稍作增加。

散热器散热面积〔冷侧〕的推荐值大概为:0."1 ~0."16 m2/kW( 发动机功率 )。

在中冷系统布置空间足够时,一般推荐采用一字流向的中冷器,反之那么为U 型流向的中冷器。

因为U 型的中冷器的内阻大于一字流的中冷器。

另外中冷器气室应尽量防止遮蔽散热器芯子太多面积。

中冷器和散热器的芯子可参考以往系统配置,因为主片模具价格较贵,如无必要,尽量采用同样的管型和散热带波高。

汽车冷却系统设计

汽车冷却系统设计

汽车冷却系统设计汽车冷却系统主要由水泵、散热器、恒温器(水箱),以及各种管道、软管组成。

当发动机运转过程中产生大量热量时,水泵将冷却液从水箱中抽出,通过水管输送至发动机内部。

冷却液在发动机内部经过散热器,通过与散热器外部流过的冷空气进行热交换,将热量传递给空气,实现发动机的降温。

降温后的冷却液再次被水泵抽回水箱中,从而形成循环。

在汽车冷却系统的设计中,几个关键要点需要考虑:首先是水泵的选择。

汽车冷却系统的水泵需要具备足够的流量和扬程,以确保循环冷却液能够顺畅地流动。

水泵的转速、叶轮的形状、材料的选择等都会对水泵的性能产生影响,需要根据发动机的冷却需求进行选择。

其次是散热器的设计。

散热器的主要作用是通过散热片的扩散和导热管的传导,将冷却液的热量传递给空气。

冷却液和空气之间的热交换效果取决于散热片的面积和设计,导热管的材料和结构等因素。

同时,还需考虑散热器与风扇之间的匹配,以确保散热效果最佳。

同时,恒温器(水箱)的设计也非常重要。

恒温器的作用是调节冷却系统的温度,保持发动机在适宜的工作温度范围内。

恒温器的工作原理是通过内部的阀门控制冷却液的流动,当发动机冷却液温度升高到一定程度时,阀门打开,使冷却液进入散热器进行散热。

当温度降低到一定程度时,阀门关闭,阻止冷却液流向散热器,从而保持温度稳定。

恒温器的選擇要根据发动机运行温度范围进行,以确保发动机的正常工作。

此外,汽车冷却系统设计中需考虑冷却液的选择。

冷却液需要具备良好的导热性能、抗腐蚀性能和抗气泡性能,以确保发动机可以高效而稳定地降温。

冷却液的选择要根据气候条件、发动机类型、材料等因素来决定,需要满足相关标准和要求。

最后,汽车冷却系统设计中还需要考虑管道和软管的布置和选材等因素。

管道和软管的设计应尽量减少冷却液的阻力和压力损失,同时需要避免冷却液泄漏和磨损。

材料的选择应考虑到防腐蚀、耐高温、柔韧性等特点,以确保系统的可靠性和耐用性。

综上所述,汽车冷却系统设计需要考虑水泵、散热器、恒温器、冷却液的选择和管道、软管等的布置和选材等因素。

汽车冷却系统设计要求

汽车冷却系统设计要求

汽车冷却系统设计——叶海见汽车冷却系统设计 (1)一、概述 (2)二、要求 (2)三、结构 (2)四、设计要点 (4)(一)散热器 (4)(二)散热器悬置 (4)(三)风扇 (4)(四)副水箱 (5)(五)连接水管 (6)(六)发动机水套 (6)五、设计程序 (6)六、匹配 (6)七、设计验证 (6)八、设计优化 (6)一、概述二、汽车对冷却系统的要求(一)汽车对冷却系统有如下几点要求1、保证发动机在任何工况下工作在最佳温度范围;2、保证启动后发动机能在短时间内达到最佳温度范围;3、保证散热器散热效率高,可靠性好,寿命长;4、体积小,重量轻,成本低;5、水泵,风扇消耗功率小,噪声低;6、拆装、维修方便。

(二)冷却系统问题对汽车的影响1、冷却不足时,会导致内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零部件摩擦和磨损加剧(如活塞、活塞环和缸套咬伤,缸盖发生热疲劳裂纹等),引起内燃机的动力性、经济性、可靠性全面恶化.2、冷却过剩时(40~50℃),汽油机混合气形成不良,机油被燃油稀释;柴油机工作粗暴,散热损失增加,零部件磨损加剧(比正常工作温度工作时大好几倍),也会使内燃机工作变坏。

三、冷却系统布置选型(一)冷却系统结构2、常用结构:(1)基本结构.组成:发动机水路、水泵、节温器、散热器、风扇以及连接管路。

原理:散热器上水室兼起膨胀水箱或者补偿水箱的作用。

注意事项:为保证冷却系统排气顺畅,加水充分,排水彻底,散热器的上水室加水口处为冷却系统的最高点,下水室出水口为冷却系的最低点。

同时,为满足发动机排气、冷却液膨胀蒸发和冷却系统补水的需要,上水室要有足够的空间。

其结构如(图1)。

(图1)(2)带补偿水桶结构。

(图2)组成:发动机水路、水泵、节温器、散热器、风扇、补偿水桶以及连接管路。

原理:发动机温度升高后,冷却液受热膨胀,冷却系统内部压力升高,散热器压力盖出气阀开启排气.随着压力的持续升高,冷却系统内部气体排尽,冷却液开始外溢并流入补偿水桶内。

汽车冷却系统设计要求

汽车冷却系统设计要求

汽车冷却系统设计——叶海见汽车冷却系统设计 (1)一、概述 (2)二、汽车对冷却系统的要求 (2)三、冷却系统布置选型 (3)(一)冷却系统结构 (3)四、设计要点 (7)(一)散热器 (7)(二)散热器悬置 (7)(三)风扇 (8)(四)副水箱 (11)(五)连接水管 (11)(六)发动机水套 (11)五、设计程序 (11)六、匹配 (11)七、设计验证 (12)八、设计优化 (12)一、概述二、汽车对冷却系统的要求(一)汽车对冷却系统有如下几点要求1、保证发动机在任何工况下工作在最佳温度范围;2、保证启动后发动机能在短时间内达到最佳温度范围;3、保证散热器散热效率高,可靠性好,寿命长;4、体积小,重量轻,成本低;5、水泵,风扇消耗功率小,噪声低;6、拆装、维修方便。

(二)冷却系统问题对汽车的影响1、冷却不足时,会导致内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零部件摩擦和磨损加剧(如活塞、活塞环和缸套咬伤,缸盖发生热疲劳裂纹等),引起内燃机的动力性、经济性、可靠性全面恶化。

2、冷却过剩时(40~50℃),汽油机混合气形成不良,机油被燃油稀释;柴油机工作粗暴,散热损失增加,零部件磨损加剧(比正常工作温度工作时大好几倍),也会使内燃机工作变坏。

三、冷却系统布置选型(一)冷却系统结构1、分类:气冷却强制空气冷却利用风扇迫使空气循环的冷却方式。

2、常用结构:(1)基本结构。

组成:发动机水路、水泵、节温器、散热器、风扇以及连接管路。

原理:散热器上水室兼起膨胀水箱或者补偿水箱的作用。

注意事项:为保证冷却系统排气顺畅,加水充分,排水彻底,散热器的上水室加水口处为冷却系统的最高点,下水室出水口为冷却系的最低点。

同时,为满足发动机排气、冷却液膨胀蒸发和冷却系统补水的需要,上水室要有足够的空间。

其结构如(图1)。

(图1)(2)带补偿水桶结构。

(图2)组成:发动机水路、水泵、节温器、散热器、风扇、补偿水桶以及连接管路。

汽车冷却系统设计

汽车冷却系统设计

汽车冷却系统设计汽车冷却系统是汽车发动机的重要组成部分之一,其主要作用是通过循环水来保持发动机在适宜的工作温度范围内运行。

汽车发动机在工作过程中会产生大量的热量,如果不及时散发掉,会导致发动机过热,从而影响汽车的性能、寿命甚至引发安全事故。

因此,合理设计汽车冷却系统对汽车的正常运行至关重要。

汽车冷却系统主要由以下几个部分组成:水箱、水泵、散热器、风扇、水管和水套等。

水箱是储存和供给循环水的容器,通常设置在发动机前面。

水泵通过转动来产生水流,将发动机内部产生的热量带走。

散热器通过散热片将冷却液的热量散发出去,以保持发动机的适宜工作温度。

风扇则帮助提升散热效果,通常安装在散热器后方。

水管将散热水流连接起来,完成循环。

水套是与发动机连接的部分,通过水套,发动机可以将热量传送到冷却液中,从而实现散热。

在设计汽车冷却系统时,需要考虑以下几个因素:1.温度范围:发动机的工作温度通常在90℃-100℃之间,应根据不同的发动机类型和工作情况确定适宜的温度范围。

过低的温度会影响燃油的燃烧效率,过高的温度会导致发动机过热,从而损坏发动机部件。

2.冷却液:冷却液通常采用蒸馏水和防冻剂的混合物,以提高其抗冻、抗腐蚀和润滑性能。

选择合适的冷却液要考虑当地气候和环境条件,以及供应的方便性和成本等因素。

3.循环水流:汽车冷却系统的循环水流应保持畅通,并且要保证循环速度适中。

循环水流过慢会导致热量不能迅速带走,循环水流过快则会影响散热效果。

4.散热器:散热器是汽车冷却系统中最重要的组件之一、在设计散热器时,需要根据发动机的热量产生情况和散热需求来确定其尺寸和散热片的数量。

同时,散热器的材料也要具有良好的导热性能和耐腐蚀性。

5.风扇:风扇的作用是帮助加速冷却液的散热。

目前,大多数汽车采用电动风扇,可以根据发动机温度自动启动和关闭,以达到节能降耗的目的。

6.水泵:水泵的作用是产生水流,帮助冷却液循环流动。

水泵的设计需要考虑到体积、重量、效率和耐久性等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车冷却系统设计要求汽车冷却系统设计——叶海见汽车冷却系统设计 (2)一、概述 (3)二、要求 (3)三、结构 (3)四、设计要点 (6)(一)散热器 (6)(二)散热器悬置 (6)(三)风扇 (6)(四)副水箱 (8)(五)连接水管 (8)(六)发动机水套 (8)五、设计程序 (8)六、匹配 (8)七、设计验证 (9)八、设计优化 (9)一、概述二、汽车对冷却系统的要求(一)汽车对冷却系统有如下几点要求1、保证发动机在任何工况下工作在最佳温度范围;2、保证启动后发动机能在短时间内达到最佳温度范围;3、保证散热器散热效率高,可靠性好,寿命长;4、体积小,重量轻,成本低;5、水泵,风扇消耗功率小,噪声低;6、拆装、维修方便。

(二)冷却系统问题对汽车的影响1、冷却不足时,会导致内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零部件摩擦和磨损加剧(如活塞、活塞环和缸套咬伤,缸盖发生热疲劳裂纹等),引起内燃机的动力性、经济性、可靠性全面恶化。

2、冷却过剩时(40~50℃),汽油机混合气形成不良,机油被燃油稀释;柴油机工作粗暴,散热损失增加,零部件磨损加剧(比正常工作温度工作时大好几倍),也会使内燃机工作变坏。

三、冷却系统布置选型(一)冷却系统结构1、分类:液体蒸发简单蒸发冷却以加注冷却液来补偿冷却介质蒸发损失的蒸发冷却。

冷却冷却带辅助水箱的蒸发冷却用辅助水箱补充冷却介质的蒸发冷却。

带冷凝器的蒸发冷却蒸发的冷却介质在冷凝器中凝结后,通。

过冷却回路流回到发动机加水箱的蒸发冷却。

循环冷却对流冷却利用热虹吸作用使冷却液自然循环的冷却方式。

强制冷却开式强制冷却冷却介质不进行再循环的强制。

冷却方式。

单循环强制冷却冷却介质在冷却水箱、冷却塔、管式冷却器、散热器等中进行冷却的强制冷却方式。

双循环强制冷却利用副回路(外循环)中的冷却液在热交换器中对发动机冷却介质进行再冷却的强制冷却方式。

空气冷却自然空气冷却利用自然空气循环的冷却方式。

强制空气冷却利用风扇迫使空气循环的冷却方式。

2、常用结构:(1)基本结构。

组成:发动机水路、水泵、节温器、散热器、风扇以及连接管路。

原理:散热器上水室兼起膨胀水箱或者补偿水箱的作用。

注意事项:为保证冷却系统排气顺畅,加水充分,排水彻底,散热器的上水室加水口处为冷却系统的最高点,下水室出水口为冷却系的最低点。

同时,为满足发动机排气、冷却液膨胀蒸发和冷却系统补水的需要,上水室要有足够的空间。

其结构如(图1)。

(图1)(2)带补偿水桶结构。

(图2)组成:发动机水路、水泵、节温器、散热器、风扇、补偿水桶以及连接管路。

原理:发动机温度升高后,冷却液受热膨胀,冷却系统内部压力升高,散热器压力盖出气阀开启排气。

随着压力的持续升高,冷却系统内部气体排尽,冷却液开始外溢并流入补偿水桶内。

当冷却液温降低后,系统内冷却液体积减小,压力下降,散热器压力盖进气阀开启,补偿水桶内的冷却液会被重新被吸回冷却系。

注意事项:为保证冷却系统内的气体能够全部排除,散热器的加水口及下水室应处在冷却系统(补偿水桶出外)的最高点及最低点。

补偿水桶到散热器的连接管路要密封紧密。

另外,补偿水桶还要有足够的容量和膨胀空间。

(3)带膨胀水箱结构。

(图3)组成:发动机水路、水泵、节温器、散热器、风扇、膨胀水箱以及连接管路。

原理:膨胀水箱布置在冷却系统的最高点,系统压力盖安装在膨胀水箱上,系统直接通过膨胀水箱排气和补水。

注意事项:因包括膨胀水箱在内的整个系统压力一样,所以各连接管路一定要密封紧密。

膨胀水箱要有足够的抗压能力和空间。

散热器的最高点可以低于发动机。

(图2)(图3)四、设计要点(一)散热器1、在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。

这样可以充分利用风扇的风量和车的迎面风,提高散热器的散热效率。

2、货车散热器一般采用纵流结构,因为货车的布置空间较宽裕。

而且纵流式结构的散热器强度及悬置的可靠性好。

轿车由于空间限制,也可采用横流结构。

(二)散热器悬置悬置点应设计在一个部件总成上,改善散热器受力状况,尽量减少散热器的振动强度。

主悬置点应与辅助悬置点保持一定的距离,以提高散热器的稳定性。

主悬置点,辅助悬置点处散热器与其连接的部件总成之间以胶垫或胶套等柔性非金属材料过度达到减振的目的。

(三)风扇对风扇的要求:提供足够的风量;有一定的风扇压力值以便克服系统阻力;直径对散热器芯部覆盖面积足够大,是通过散热器的风速均匀;风扇要结构紧凑、质量轻、噪声小、适合大量生产、成本低。

1、机械风扇1.1护风罩1、确保风扇产生的风量全部流经散热器,提高风扇效率。

护风罩对低速大功率风扇效率提高特别显著。

2、风扇与护风罩的径向间隙越小,风扇的效率越高。

一般控制在5-25mm。

3、从成本角度考虑,在大批量生产的车型中,多采用塑料护风罩。

1.2 风扇发动机曲轴带动风扇发动机曲轴通过皮带轮带动冷却风扇旋转,发动机转速越快,风扇转动越快。

只要发动机启动,它就要运转,不能视发动机温度变化而变化,采用这种方案,如果要调节散热器的冷却强度,要在散热器上装上活动百页窗以控制进入的风量。

风扇离合器控制风扇为了确保冷却风扇的送风能力,设计时都按低速考虑,保证在低速时风扇有足够的送风量,这样考虑的结果,使高速时的风扇送风能力过大。

因此,在车辆通常行驶情况下,应该把风扇的转速控制在适当范围内,这样才能降低噪声,提高发动机经济性。

使用风扇离合器可以控制转速(以下简称AFC)。

在AFC内部粘有粘性流体(硅油),靠其剪切力传递扭矩。

在风扇前面装有双金属片,用来感知流过散热器的空气温度,因此,控制风扇离合器工作腔内的硅油量,使其只是在必要时,才传递扭矩使风扇旋转,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。

由于风扇离合器容易实现远距离控制、使发动机工作温度得到了控制,在汽车行业得到了一定程度的推广。

但是经过实验,风扇离合器的温度控制性能、可靠性、维修性相对较差,因此越来越多的汽车上开始采用电动风扇。

2、电动风扇电动风扇是由电动机来驱动风扇,电动机的起停是受水温直接感应的温度开关来控制。

汽车在低速怠速时冷却效果好,冷车启动时水温上升较快。

电动机功率一般比较低,因此风扇的风量受到限制。

电控式冷却风扇是一种更先进的控制方式,该系统能使风扇产生最佳风量,并大幅度降低风扇的噪声。

为了控制合理的送风量,使用专用计算机收集下列传感器信号,如水温传感器、空调器开关、发动机转速传感器等,计算机利用这些信息,计算出最佳风扇转速。

该系统仅仅在需要时由电动马达带动风扇工作,供给所需的风量。

这种系统的位置布置自由度大,故在发动机横置的车中的应用逐渐增加。

用这种方式控制的风扇,在冷却液温度低时风扇停止转动,而在冷却液温度高时风扇增加转速。

由于电动风扇容易实现上述控制,故其有提高发动机暖机性能、提高经济性、降低噪声的优点。

电动风扇不使用发动机做动力源,所以其转速与发动机转速无关。

电动风扇使用蓄电池电能,蓄电池只在需要风扇供风时才给风扇供电。

这种风扇无动力损失,构造简单,总布置方便。

电动风扇按其转速分为二种形式,一种为单速式,一种为双速式。

自控电动冷却风扇可以充分利用汽车行驶迎面风的冷却作用而大量减少发动机驱动冷却风扇的功率损失,缩短了预热时间,实现最佳温度控制,大量减少了发动机的传热损失,是当前降低汽车耗油最有效、最简捷的途径之一。

因此在节能和排放法规日趋严格的发达国家的轿车上得到广泛的应用。

3、进风量估算一、标准状态时温度20℃、大气压760mmHg 、湿度65%的潮湿空气为标准空气。

其中:H = Cp×W×△TcW = (Q/60) ×t×D=2Qt×10-2kgH = P×t/4.2所以:Q = 0.05P/△Tc(CMM,每分钟所排出空气体积,m3/min)= 1.76P/△Tc(CFM,in3/min)= 0.09P/△Tf(CMM,m3/min)= 3.16P/△Tf(CFM,in3/min)式中:H ——风扇总排出热量,JCp ——空气比热,标态下为0.24(Kcal/Kg℃)W ——空气质量,kg△Tc——容器允许温升,℃Q ——空气流量,m3/mint ——工作时间,sD ——空气比重,标态下为1.2Kg/m3P ——系统消耗功率,W△T f——容器允许温升,℉(四)副水箱1、开放式2、压力式3、注意事项1、(五)连接水管(六)发动机水套五、设计程序六、匹配水的膨胀系数F与温度t(℃)的关系为:F=0.9992+0.0002t。

按水的温度校正加水量,V校正=V×F。

如配制总量为100万ml的葡萄糖注射液,稀配桶水的温度为95℃,则F=1.0182,加水量应为101.82万ml,否则含量将偏高1.82%。

七、设计验证八、设计优化。

相关文档
最新文档