汽车构造期末考试知识点下归纳
汽车构造与原理期末考试复习提纲DOC
汽车构造与原理期末考试复习提纲DOC《汽车构造与原理》复习提纲第一部分汽车概论1.汽车如何分类?我国是如何规定汽车的编号的?A、按动力装置类型分类:B、(1)活塞式内燃机汽车:以活塞式内燃机为动力来源,合成液体石油(汽油、柴油)、液化石油(LPG)、压缩天然气(CNG)、醇类等为燃料。
汽油车、柴油车、液化石油气(LPG)汽车、压缩天然气汽车(CNG)、醇类汽车(2).电动汽车:以电动机为驱动机械,并以蓄电池为能源的车辆。
(3)燃料电池汽车(4).复合车(混合驱动车)B.按行驶道路条件分类(1)公路用车:适于公路和城市道路上行驶的汽车。
(2)非公路用车a.外廓尺寸和单轴负荷等参数超过公路用车法规的限制,只能在矿山、机场、工地、专用道路等非公路地区使用。
b.能在无路地面上行驶的高通过性汽车,即越野车。
定义:全部车轮都是驱动轮。
越野车表示方法:车轮数X驱动轮数;4Ⅹ4越野车按总质量分级。
C、按用途分类国际标准(ISO)汽车分为乘用车和商用车两大类:乘用车是指设计和技术特性上主要用于载运乘客及随身行李和临时物品的汽车,包括驾驶员座位在内最多不超过9个座位,它也可以牵引一辆挂车。
乘用车又可细分为:轿车,旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。
商用车是指在设计和技术特性上用于运送人员和货物的汽车,并且可以牵引挂车。
乘用车不包括在内。
商用车可细分为:客车、小型客车、城市客车、旅游客车、铰链客车、越野客车、专用客车、半挂牵引车、货车、普通货车、多用途货车、全挂牵引车、越野货车、专用作业车、专用货车。
ISO3833分类:轿车、商用汽车、汽车列车、挂车。
我国:轿车、客车、货车、专用车汽车编号::汽车型号包括首部、中部和尾部三部分。
首部:由2个或3个拼音字母组成,是企业代号。
如CA代表一汽,EQ代表二汽等。
中部:由4位数字组成,分为首位、中间两位和末位数字三部分,其含义如下页表所示。
尾部:由拼音字母或拼音字母加上数字表示,可以表示专用汽车或变型车与基本型的区别。
汽车构造下册复习重点
传动系统的组成与功用:基本功用是将发动机的动力传给驱动轮。
传动系统的组成:离合、变速器、万向节、传动轴、驱动桥:主减速器、差速器、半轴。
传动路线:发动机发出动力依次经过离合器1、变速器2、由万向节3和传动轴8组成的万向传动装置以及安装在驱动桥4中的主减速器7、差速器5和半轴6.最后传到驱动车轮。
(离合器、变速器、万向节、传动轴、主减速器、差速器、半轴、车轮)传动系统的功能:1、实现减速增距(变速器、主减速器)。
2、实现汽车变速(变速器)。
3、实现汽车倒使(变速器内加设具有中间减速齿轮副的倒档机构)。
4、必要时中断传动系统的动力传递(离合器、变速器空档)(起步、怠速、换挡)。
5、应使两侧驱动车轮具有差速作用(差速器)。
机械式传动系统的布置方案:1、发动机前置后轮驱动FR。
2、发动机前置前轮驱动FF。
3、发动机后置后轮驱动RR.4、发动机中置后轮驱动MR.5、全轮驱动nWD方案。
电动式传动系统根据装用的发电机和牵引电动机的形式,可以分为以下几种:1、直流发电机——直流电动机(直——直系统)。
2、交流发电机——直流电动机系统(交——直系统)。
3、交流发电机——直流变频——交流电动机系统(交——直——交系统),即交流发电机发出的三相交流电,经过硅整流器整流成直流电以后,直流电再通过晶闸管逆变器,把直流电变成预定可变频率的三相交流电,以供给各个交流牵引电动机的使用。
4、交流发电机——交流电动机(交——交系统)。
离合器的基本功用:1、确保汽车平稳起步。
2、保证换挡工作平顺。
3、防止传动系统过载。
简单摩擦离合器的组成:1、主动部分2、从动部分3、压紧机构4、操纵装置工作原理:欲使离合器分离时,只要踩下操纵机构中的(离合器踏板),套在从动盘毂环槽中的拨叉拨动(从动盘),克服压紧弹簧的压力向右移动而与(飞轮)分离,摩擦副之间的摩擦力消失,从而中断动力传递。
当需要重新恢复动力传递时,为使汽车的速度和发动机转速的变化比较平稳,应该适当控制放松离合器踏板的速度,使从动盘在压紧弹簧的压力作用下向左移动,与飞轮恢复接触,两者接触面的压力逐渐增加,相应的摩擦力矩也逐渐增加。
山东交通学院汽车构造(下册)期末重点总结
第十七章1。
万向传动装置的功用是能在轴间夹角及相互位置经常发生变化的转轴之间传递动力。
1.万向传动装置主要由万向节,传动轴组成,有的装有中间支承。
2.普通万向节允许相邻两轴的最大交角为15度~20度。
3。
当十字轴式刚性万向节的主动叉等角速转动时,从动叉是不等角速的。
4.等角速传动的条件:(1)第一万向节两轴间夹角a1与第二万向节两轴间夹角a2相等,即a1=a2;(2)第一万向节的从动叉与第二万向节的主动叉处于同一平面.5.所谓等角速传动是指传动轴两端的输入轴和输出轴而言。
对传动轴来说,只要夹角不为零,它就不等角速转动,与传动轴的排列方式无关。
6。
双万向节的等速排列方式:(1)平行排列(2)等腰式排列7。
等速万向节的基本原理是,传力点永远位于两轴夹角的平分面上。
第十八章1.驱动桥的功用:将万向传动装置传来的发动机转矩通过主减速器,差速器,半轴等传到驱动车轮,实现降速,增大转矩;通过主减速器圆锥齿轮副改变转矩的传递方向;通过差速器实现两侧车轮差速作用,保证内,外侧车轮以不同转速转向。
2.驱动桥由主减速器,差速器,半轴和驱动桥壳等组成。
3.主减速器的功用是降速增矩,改变传动方向。
4.主减速器(1)按齿轮副数目分,有单级式主减速器和双级式主减速器。
(2)按主减速器传动比挡数分,有单速式和双速式。
(3) 按齿轮副结构形式分,有圆柱齿轮式,圆锥齿轮式和准双曲面齿轮式.5.主动锥齿轮常见的支承形式有跨置式和悬臂式。
跨置式——主动锥齿轮前后方均有轴承支承。
负荷较大的单级主减速器,多采用这种形式。
悬臂式-—主动锥齿轮只在前方有支承,后方没有支承。
多用负荷较小的汽车单级主减速器。
5.主减速器的调整装置(1)轴承预紧度的调整装置(2)齿轮啮合印痕和啮合间隙的调整装置(3)从动锥齿轮的止推装置的调整6.圆锥滚子轴承预紧度的调整必须在齿轮啮合印痕调整之前进行。
7.锥齿轮的啮合印痕和间隙是通过齿轮的轴向移动改变其相对位置来实现的。
汽车构造期末考试知识点下归纳
第十一章汽车传动系统汽车传动系统的基本功用是将发动机所发出的动力传递到驱动车轮,按能量传递方式的不同分为机械式、液力式、电力式传动系统,均具有减速增矩、变速、倒车、中断动力、轮间差速和轴间差速等功能;货车采用发动机前置、后轮驱动的传统布置方式,简称FR式,其技术特点是前排车轮负责转向,后排车轮承担整个车辆的驱动工作,它能有效利用载荷重量产生驱动力;它将发动机纵向放置在汽车前部,通过一线展开的离合器、变速器、万向传动装置万向节和传动轴将动力传给后部的驱动桥,经驱动桥内的主减速器、差速器和半轴带动后轮,推着汽车前进;轮间差速汽车转向时,外侧车轮滚过的路程长,内侧车轮滚过的路程短,要求外侧车轮转速快于内侧车轮;通过驱动桥中的差速器,可以使两驱动轮能以不同转速转动,实现差速功能;分时四轮驱动系统有前后两个驱动桥,前置发动机通过离合器、变速器将动力传给分动器,再经传动轴分别传递到前后驱动桥,驾驶员一般通过操纵杆或按钮控制分动器在两驱与四驱之间进行切换;分动器一般配有H2、H4及L4等档位,H2是高速两轮驱动,H4用于雨雪天和沙石路面,L4适宜于拖曳重物或越野攀坡;离合器安装在发动机与变速器之间,用来分离或接合前后两者之间动力联系;汽车离合器有摩擦式离合器、液力偶合器、电磁离合器等几种;目前在汽车上广泛采用的是用弹簧压紧的摩擦式离合器简称为摩擦离合器;功用:平稳起步,平顺换档,防止过载;一、摩擦离合器由主动部分从动部分压紧机构操纵机构组成二、螺旋弹簧离合器采用螺旋弹簧作为压紧元件的离合器,称为螺旋弹簧离合器;将若干个螺旋弹簧沿压盘圆周分布的称为周布弹簧离合器 ,将一个大螺旋弹簧置于离合器中央的称为中央弹簧离合器;三、膜片弹簧离合器采用膜片弹簧作为压紧元件的离合器,称为膜片弹簧离合器;膜片弹簧为碟形,其上开有若干个径向开口,形成若干个弹性杠杠;弹簧中部两侧有钢丝支承圈,用铆钉将其安装在离合器盖上;五、离合器操纵机构操纵机构是为驾驶员控制离合器分离与接合程度的一套专设机构;按照操纵离合器的能源划分,离合器操纵机构分为人力式、助力式和动力式三种;按传动方式划分,离合器操纵机构有机械、液压和气压三种;离合器接合时,分离轴承前端与膜片弹簧或分离杠杠内端之间有一定的轴向间隙,称为自由间隙;从踩下离合器踏板到消除自由间隙所对应的踏板行程称为离合器踏板自由行程;摩擦衬片磨损后膜片弹簧离合器比螺旋弹簧离合器能更可靠地传递转矩;变速器1.变速器的功用①改变传动比;②改变行驶方向;③中断动力传递; 2.变速器的组成①变速传动机构②变速操纵机构;3.变速器的分类①按传动比变化方式:有级式、无级式和综合式; ②按换档操纵方式:手动操纵式、自动操纵式和半自动操纵式;变速传动机构主要由齿轮、轴及变速器壳体等零部件组成,它利用不同齿数的齿轮对相互啮合来改变变速器的传动比,通过增加齿轮传动的对数来实现倒档;按传动齿轮轴的数目不包括倒档轴,普通齿轮式变速器有二轴式和三轴式之分;货车一般采用三轴式变速器,其传动机构由壳体、第一轴输入轴、中间轴、第二轴输出轴、倒档轴、各轴上齿轮等部分组成;其中,第一轴和第二轴在同一轴线上,并与中间轴平行;轿车一般采用两轴变速器,在一般档位只经过一对齿轮就可以将输入轴的动力传至输出轴,所以传动效率要高一些,但最高效率不如三轴变速器直接档的高同步器采用接合套换档时,必须使待啮合的接合套与接合齿圈花键齿的圆周速度一致同步,才能顺利进入啮合而完成挂档;而高档换低档和低档换高档实现同步的方法还有所不同;同步器的功用是使接合套与待啮合的齿圈迅速同步,并阻止二者在同步前进入啮合,从而消除换挡时的冲击,缩短换挡时间,简化换挡过程,使换挡操作简捷轻便,并可延长变速器的使用寿命;现代汽车上广泛使用的是惯性式同步器,利用摩擦原理实现同步;如果变速器布置在驾驶员座位附近,则变速杆可以从驾驶室底板伸出,由驾驶员直接操纵,这种操纵机构称为直接操纵机构;它一般由变速杆、拨块、拨叉、拨叉轴以及安全装置等组成,多集装于变速器上盖或侧盖内,结构简单,操纵方便;为了保证变速器在任何情况下都能准确、安全、可靠地工作,操纵机构均设有自锁、互锁、倒档锁等安全装置;自锁装置自锁钢球和自锁弹簧的作用是:保证换档到位; 防止自动脱档;互锁装置互锁销,互锁钢球用于防止同时挂入两档;倒档锁的作用是防止误挂倒档;有些汽车上,变速器的安装位置离驾驶员座位较远,需要在变速杆与拨叉之间加装一些辅助杠杆或一套传动机构,构成远距离操纵机构;远距离操纵机构分为变速杆布置在转向盘旁边和变速杆布置在驾驶座椅旁边的地板上两种类型;分动器的功用就是将变速器输出的动力分配到各驱动桥,并且进一步增大扭矩,是越野车汽车传动系中不可缺少的传动部件,它的前部与汽车变速箱联接,将其输出的动力经适当变速后同时传给汽车的前桥和后桥,此时汽车全轮驱动,可在冰雪、泥沙和无路的地区地面行驶;当越野车在良好路面上行驶,只需后轮驱动时,可用操纵手柄控制前桥接合套,切断前驱动桥输出轴的动力;操作时必须注意:1先接前桥,后挂低速档;2先退出低速档,再摘下前桥;上述要求也可以通过操纵机构加以保证;日前汽车使用最普遍的是液力自动变速器AT,由变矩器、机械式变速器一般采用行星齿轮和控制系统三部分组成,按控制方式分为液控液压式和电控液压式两种;液力变矩器主要由泵轮、涡轮和导轮组成;泵轮是主动部分,将发动机动力变成油液动能;涡轮是输出部分,将动力传至机械式变速器的输入轴;导轮是反作用元件,它对油流起反作用,达到增扭作用;泵轮与变矩器外壳连为一体,是主动元件;涡轮悬浮在变矩器内,通过花键与输出轴相连,是从动元件;单向离合器的作用是只允许导轮单向旋转,不允许其逆转;常用的有滚柱式单向离合器和楔块式单向离合器;液力变矩器一般均带有锁止离合器TCC,在汽车变工况行驶时如起步、经常加减速,锁止离合器分离,相当于普通液力变矩器;当汽车在稳定工况下行驶时,锁止离合器接合,动力不经液力传动,直接通过机械传动传递,变矩器效率为1;在行星齿轮式自动变速器中,因为所有齿轮均处于常啮合状态,其挡位变换是以对行星机构的基本元件进行约束来实现的;自动变速器中的约束元件,即换挡执行机构通常有换挡离合器、换挡制动器和单向离合器等,分别具有连接、固定或锁止功能,使变速器获得不同传动比;机械式自动变速器AMT是在普通人工换挡机械式变速器基础上增加电子控制操纵机构,达到替代人工换挡的目的;AMT保留了原来的机械变速器,因此其传动性能基本上和机械变速器相同;这种纯机械传动的传动效率高,结构简单,但是换挡过程不可避免地存在动力中断,乘坐舒适性较差;万向传动装置用于实现一些轴线相交且相对位置经常变化的转轴之间的动力传递,典型应用场合有变速器、分动器、驱动桥之间,以及驱动桥与驱动轮之间的万向传动;货车万向传动装置一般由万向节和传动轴组成,当变速器与驱动桥之间距离较远时,应将传动轴分成两段甚至多段,并加设中间支承,以降低自振频率,防止共振;万向节是实现转轴之间变角度传递动力的部件;按万向节在扭转方向上是否有明显的弹性可分为刚性万向节和挠性万向节;汽车上一般使用刚性万向节,又分为不等速万向节、准等速万向节和等速万向节三种;十字轴式刚性万向节为货车上广泛使用的不等速万向节,由一个十字轴、两个万向节叉和四个滚针轴承等组成,允许相邻两轴的最大交角为15゜~20゜;v 使用两个十字轴式刚性万向节,并按下述条件布置时可实现由变速器的输出轴到驱动桥的输入轴的等角速传动:1第一万向节两轴间的夹角α1与第二万向节两轴间的夹角α2相等;2第一万向节的从动叉与第二万向节的主动叉在同一平面内;v 根据双万向节实现等速传动的原理而设计的万向节称为准等速万向节, 最典型的是双联式万向节 ,其特点是:两个十字轴式万向节相连,中间传动轴长度缩减至最小;v 现代轿车普遍采用发动机前置、前轮驱动,万向传动装置位于变速驱动桥和车轮之间,由二根传动轴和四个万向节组成,分为左、右两组,传动轴为实心轴,工作时差速器与驱动轮之间的距离变化靠伸缩型万向节来完成;习惯上将差速器与驱动轮之间的传动轴称为半轴;球笼式万向节属于一种等速万向节,承载能力强,结构紧凑,拆装方便,根据在传递转矩的过程中,主从动件之间能否产生轴向位移,分为RF型不能移动和VL型能移动,其中RF型用于靠近车轮处,VL型用于靠近变速驱动桥处;驱动桥的主要作用是:①通过主减速器齿轮的传动,降低转速,增大转矩;②部分主减速器采用锥齿轮传动,改变转矩的传递方向;③通过差速器使内外侧车轮以不同转速转动,适应汽车的转向要求;④通过桥壳和车轮,实现承载及传力作用;货车一般采用整体式驱动桥,也称为非断开式驱动桥,桥壳通过钢板弹簧与车架相连,车轮安装在桥壳两端上,不能在横向平面内作相对运动;货车驱动桥由驱动桥壳、主减速器、差速器和半轴等组成;万向传动装置输入驱动桥的转矩,首先传到主减速器,在此降低转速、增大转矩后,经差速器分给左右两半轴,最后通过半轴外端凸缘盘传至驱动轮的轮毂;主减速器的主要功用减速增矩,当发动机纵置时还能改变转矩的方向;按参加减速传动的齿轮副数目分,有单级主减速器和双级主减速器之分;单级主减速器由一对齿轮完成主减速传动,具有结构简单、体积小、重量轻和传动效率高等优点;要求主减速器有较大传动比时,由一对锥齿轮传动将会导致尺寸过大,不能保证最小离地间隙的要求,这时多采用两对齿轮传动,即双级主减速器;差速器的功用是既能向两侧驱动轮传递转矩,又能使两侧驱动轮以不同转速转动,以满足转向等情况下内外驱动轮要以不同转速转动的需要;目前汽车上广泛应用的是对称式锥齿轮差速器,它由行星齿轮、半轴齿轮、行星齿轮轴十字轴或一根直销轴和差速器壳等组成 ;差速器壳作为差速器中的主动件,与主减速器的从动齿轮和行星齿轮轴连成一体;半轴齿轮为差速器中的从动件;行星齿轮即可随行星齿轮轴一起绕差速器旋转轴线公转,又可以绕行星齿轮轴轴线自转;半轴是在差速器与驱动轮之间传递动力的实心轴,它的支承形式主要有全浮式和半浮式两种;全浮式支承对地面反力N和F以及由F形成的弯矩均通过桥壳传至车身,故半轴只承受转矩,不承受任何反力和弯矩作用,受力状态简单,广泛用于各种载货汽车;驱动桥壳分为整体式和分段式两类;整体式桥壳因强度和刚度性能好,便于主减速器的安装、调整和维修,而得到广泛应用;整体式桥壳因制造方法不同,可分为整体铸造式、中段铸造压入钢管式和钢板冲压焊接式等;在全浮式支承结构中,轮毂通过两个跨距较大的圆锥滚子轴承支承在半轴套管上,半轴套管与空心梁压配在一起形成桥壳;半轴外端凸缘借助螺栓与轮毂相连,内端通过花键与半轴齿轮相连;发动机横置前桥驱动的轿车,一般采用圆柱齿轮式单级主减速器,只改变转矩的大小,不改变转矩的方向;发动机纵置前桥驱动的轿车,一般采用圆锥齿轮式单级主减速器,既改变转矩的大小,又改变转矩的方向;发动机前置、后轮驱动的轿车,一般也采用断开式驱动桥,主减速器壳固定在车架上,差速器的半轴齿轮通过万向节与传动轴半轴铰接,传动轴的另一端通过万向节与驱动轮铰接;驱动轮采用独立悬架,两侧的驱动轮可彼此独立地相对于车架上下跳动;汽车行驶系统行驶系统一般由车轮、车桥、悬架和车架等组成,其基本功用是:①接受传动系的动力,通过驱动轮与路面的作用产生牵引力,使汽车正常行驶;②承受汽车的总重量和地面的反力;③缓和不平路面对车身造成的冲击,衰减汽车行驶中的振动,保持行驶的平顺性;④与转向系配合,保证汽车操纵稳定性;车架俗称“大梁”,是汽车上各部件的安装基础,其主要功用是支承、连接汽车的各总成,保持它们之间的正确位置,并承受来自车内外的各种载荷;大多数轿车和部分大型客车取消了车架,而以车身兼代车架的作用,即将所有部件固定在车身上,所有的力也由车身来承受,这种车身称为承载式车身;承载式车身由于无车架,可以减轻整车质量,并且还能使地板高度降低,方便乘客上、下车;将左、右两侧车轮连接在一条轴线上并通过悬架和车架或承载式车身相连的装置为车桥,它功用是传递车架或承载式车身与车轮之间各方向的作用力及其力矩;安装转向轮的车桥叫转向桥;转向桥是利用车桥中的转向节使车轮可以偏转一定角度,以实现汽车的转向;由于转向桥通常位于汽车前部,因此也称为前桥;货车前桥的结构大体相同,主要由前梁、转向节、主销和轮毂等部分组成;转向桥在保证汽车转向功能的同时,应使转向轮有自动回正作用,以保证汽车稳定直线行驶,即当转向轮在偶遇外力作用发生偏转时, 一旦作用的外力消失后,应能立即自动回到原来直线行驶的位置;这种自动回正作用是由转向轮的定位参数采保证的,也就是转向轮、主销和前轴之间的安装应具有一定的相对位置;这些转向轮的定位参数有主销后倾角、主销内倾角、前轮外倾角和前轮前束;汽车水平停放时,在汽车的纵向垂直面内,主销上部向后倾斜一个角度r,称为主销后倾角,前轮偏转时,在与路面的接触点处会产生一个侧向反作用力,并围绕主销形成一个力矩,使车轮回复到原来的中间位置,保证汽车直线行驶的稳定性汽车水平停放时,在汽车的横向垂直面内,主销轴线与地面垂线之间的夹角β,称为主销内倾角;当车轮转过一个角度,车轮轴线就离开水平面往下倾斜,致使车身上抬,势能增加;这样汽车本身的重力就有使转向轮回复到原来中间位置的效果汽车水平停放时,在汽车的横向垂直面内,车轮平面与地面垂线的夹角α,称为前轮外倾角;如果车轮垂直地面,一旦满载就会因车桥承载变形引起车轮上部向内倾侧,导致车轴外端小轴承损坏,并使轮胎产生偏磨;转向车轮的前端略微向内收束,使左右两端车轮之间的距离前后不相等,后端大于前端,这就称为前轮前束,两车轮前后距离差即后端去前端就为前束值;转向驱动桥主要由主减速器、差速器、万向节、半轴、转向节、主销等组成;转向驱动桥为了将动力传给前轮,又能使前轮偏转,必须在转向节内加装万向节,且主销的轴线必须通过万向节中心,以确保不发生运动干涉;既无转向功能又无驱动功能的车桥称为支持桥,现代普遍采用发动机前置前轮驱动的布置形式,其后桥为典型的支持桥;车轮是介于轮胎和车轴之间承受负荷的旋转组件,主要由轮辋和轮辐组成,货车车轮多为可拆卸式;轮辋是在车轮上安装和支承轮胎的部件,轮辐是在车轮上介于车轴和轮辋之间的支承部件;按轮辐的构造,车轮分为辐板式和辐条式两种形式轿车一般采用深槽式轮辋,它有带肩的凸缘,用以安放外胎的胎圈,断面中部制成深凹槽.以便于外胎的拆装;轮胎总成安装在轮辋上,直接与路面接触;货车一般采用有内胎的充气轮胎,主要由外胎1、内胎2、垫带3组成;内胎中充满压缩空气,外胎用来保护内胎不受损伤且具有一定弹性;垫带放在内胎下面,防止内胎与轮辋硬性接触受损伤;外胎主要由胎体、胎冠、胎肩、胎侧和胎圈等部分组成;普通斜交轮胎:帘布层和缓冲层各相邻层帘线交叉排列,且与胎冠中心线成35o~40o交角;子午线轮胎:帘线与胎面中心线呈90度或接近90o角排列,分布如地球子午线;现代轿车广泛使用无内胎轮胎;它在外观上与普通轮胎相似,所不同的是轮胎内壁上附加了一层厚约2~3mm的专门用来封气的橡胶密封层;部分密封层下面贴着一层未硫化橡胶的特殊混合物制成的自粘层;当轮胎穿孔时,自粘层能自行将刺穿的孔粘合;部分胎圈上还有若干道同心环形槽纹,在轮胎内空气压力作用下,能使胎圈紧贴在轮辋边缘上,保证良好气密性;气门嘴直接固定轮辋上,用橡胶衬垫密封;悬架是车架或承载式车身与车桥之间一切传力连接装置的总称,其作用是传递作用在车轮上的力和力扭,缓冲由不平路面传给车架的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶;现代汽车的悬架尽管有各种不同的结构形式,但是一般都由弹性元件、减振器和导向机构三部分组成,分别起缓冲、减振和导向作用,三者联合起到共同传力的作用;为防止车身在转向时发生过大的横向倾斜,部分汽车还装有横向稳定器;1-弹性元件 2-纵向推力杆 3-减振器 4-横向稳定器 5-横向推力杆减振器与弹性元件并联安装在悬架中,为改善行驶平顺性,要求:①在压缩行程车桥和车架相互靠近,减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击; ②在伸张行程车桥和车架相互远离,减振器阻尼力应大,迅速减振;非独立悬架结构简单,工作可靠,应用广泛;货车的前、后桥一般采用纵置板簧式非独立悬架,主要由钢板弹簧和减振器组成;一般载货汽车的前、后桥均采用纵置板簧式非独立悬架,因钢板弹簧既有缓冲、减振的功能,又起传力和导向的作用,使得悬架结构大为简化;为加速振动的衰减,改善驾驶员的乘坐舒适性,在货车的前悬架中一般都装有减振器;发动机前置、前轮驱动轿车的后桥常采用多连杆横梁式非独立悬架;两端车轮用一根整体后轴相连,纵向推力杆的一端和车轴固定在一起,另一端头部有孔,里边装有橡胶衬套,联接螺栓穿过橡胶衬套中间的孔和车身相连,并形成铰链点;汽车行驶过程中,整个后轴可以通过纵向推力杆和车身连接的铰链点进行纵向摆动;横向推力杆是用来传递车轴和车身之间的横向作用力及其力矩的;加强杆的作用是加强横向推力杆的安装强度,并可使车身受力均匀;独立悬架的主要优点是:①两侧车轮可以单独运动互不影响;②减小了非簧载质量,有利于汽车的平顺性;③采用断开式车桥,可以降低发动机位置,降低整车重心;④车轮运动空间较大,可以降低悬架刚度,改善平顺性;汽车上用来改变或恢复其行驶方向的专设机构称为转向系统,其功用是保证汽车能按驾驶员的意志进行转向行驶;按转向能源的不同,转向系统分为机械转向系统和动力转向系统助力转向系统两大类;转向器是转向系统中的减速传动装置,并负责将转向盘的转动变为转向摇臂的摆动;转向器的传动比越大,转动转向盘所需要的操纵力就越小,但转向操纵的灵敏度就会下降;转向器除要保证汽车转向轻便灵活外,还应能防止由于路面反力对转向盘产生过大的冲击;为了实现这一目的,转向器应具有较高的正传动效率和适当的逆传动效率;循环球式转向器中一般有两级传动副,第一级是螺杆螺母传动副,第二级是齿条齿扇传动副;为了减少转向螺杆转向螺母之间的摩擦,二者的螺纹并不直接接触,其间装有多个钢球,以实现滚动摩擦;转向横拉杆是转向梯形机构的底边,由横拉杆体和旋装在两端的横拉杆接头组成;其特点是长度可调,通过调整横拉杆的长度,可以调整前轮前束;普通轿车多采用以齿轮齿条式转向器为基础的机械转向系统;转动转向盘时,转向齿轮转动,使与之啮合的转向齿条沿轴向移动,通过托架带动左、右横拉杆及左、右转向节运动,从而使转向轮偏转;转向盘由轮缘、轮辐和轮毂组成;转向盘轮毂的细牙内花键与转向轴连接,转向盘上都装有喇叭按钮,有些轿车的转向盘上还装有车速控制开关和安全气囊等装置; 转向盘的自由行程:转向盘在空转阶段的角行程;转向盘的自由行程有利于缓和路面冲击,避免驾驶员过度紧张,但不宜过大,否则将使转向灵敏性能下降;助力转向系统是兼用驾驶员体力和发动机或电机的动力为转向能源的转向系统,它是在机械转向系统的基础上加设一套转向加力装置而形成的;目前以液压助力转向系统较为常见,属于转向加力装置的主要部件有:转向油泵、转阀式转向控制阀、转向动力缸等;转向动力缸的助力直接作用在齿条上,齿条的动力由两端输出;汽车上用以使外界主要是路面在汽车某些部分主要是车轮施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统;其作用主要是使行驶中的汽车减速或停车,使已停驶的汽车能稳定驻车;。
汽车构造考点知识点总结(共5篇)
汽车构造考点知识点总结(共5篇)第一篇:汽车构造考点知识点总结1、汽车传动系统有机械式、液力式和电力式2、传动系组成:机械式传动系统主要由离合器、变速器、万向传动装置和驱动桥组成。
3、功用:减速增矩、变速变矩、实现倒车、必要时中断传动系统的动力传递、差速功能4、离合器功用:平顺接合动力,保证汽车平稳起步、临时切断动力,保证换档时工作平顺、防止传动系统过载。
5、摩擦离合器的基本性能要求:(1)分离彻底,便于变速器换档;2)接合柔和,保证整车平稳起步;(3)从动部分转动惯量尽量小,减轻换档时齿轮的冲击;(4)散热良好,保证离合器正常工作6、组成:主动部分(曲轴,飞轮,离合器壳,压盘),从动部分(从动盘,从动轴),压紧机构(压紧弹簧),分离部分(分离杠杆,分离轴承,分离套筒),操纵机构(分离叉,踏板)。
7、工作原理:摩擦离合器依靠摩擦原理传递发动机动力。
当从动盘与飞轮之间有间隙时,飞轮不能带动从动盘旋转,离合器处于分离状态。
当压紧力将从动盘压向飞轮后,飞轮表面对从动盘表面的摩擦力带动从动盘旋转,离合器处于接合状态。
8、摩擦离合器的类型:按从动盘的数目分类:单盘式离合器双盘式离合器。
按压紧弹簧的结构形式分类:螺旋弹簧离合器(周布,中央)膜片弹簧离合器9、.膜片弹簧离合器的优点(1)传递的转矩大且较稳定;(2)分离指刚度低;(3)结构简单且紧凑;4)高速时平衡性好;(5)散热通风性能好;6)摩擦片的使用寿命长。
2.膜片弹簧离合器的缺点1)制造难度大;(2)分离指刚度低,分离效率低;(3)分离指根易出现应力集中;(4)分离指舌尖易磨损。
10、自由间隙:离合器接合时,分离轴承前端面与分离杠杆端头之间的间隙。
11、离合器踏板自由行程:从踩下离合器踏板到消除自由间隙所对应的踏板行程是自由行程。
12、压盘是离合器的主动部件,始终随飞轮旋转,通常可以通过凸台、键或销传动,使其与飞轮一同旋转,同时压盘又可以相对飞轮向后移动,使离合器分离13、离合器在使用过程中,从动盘会因磨损而变薄使自由间隙变小,最终会影响离合器的正常接合,所以离合器使用过一段时间后需要调整。
汽车构造(下)期末复习
1.汽车底盘一般由传动系统、行驶系统、转向系统、制动系统四大系统组成。
2.传动系统的功能主要有变速、差速、减速增距、中断动力传递、实现汽车倒车作用。
3.传动系统布置形式有发动机前置后驱动、发动机前置前驱动、发动机后置后驱动、发动机中置后驱动和四轮驱动。
4.离合器的主动部分包括离合器盖、压盘和飞轮、,从动部分包括从动盘,其由摩擦片、从动盘本体和从动盘毂三个基本部分组成。
5.离合器主要有主动部分、从动部分、压紧机构和操纵机构组成。
6.普通齿轮变速器主要分为两轴式变速器和三轴式变速器,他们的组成均包括变速传动机构和操纵机构两部分。
7.目前汽车上装用的自动变速器主要有电控液力机械自动变速器、无极自动变速器、双离合器自动变速器。
8.电控液力机械自动变速器主要有行星齿轮变速器、液力变矩器、液压操纵系统和电子控制系统四部分组成。
9.金属带式无级变速器(CVT)主要有金属带、工作轮、液压泵、起动离合器、控制装置、主减速器和差速器等组成。
10.汽车行驶系统一般有车架、前后桥、前后轮、前后悬架等组成。
11.悬架主要有减震器、弹性组件和导向装置等组成,汽车悬架可分为独立悬架和非独立悬架等组成。
12.按照车桥上车轮的运行方式和作用,车桥可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。
13.全主动悬架由可调式悬架和电子控制装置组成,其中电子控制装置又包括信号输入装置(传感器)、控制器、执行机构三部分组成。
(即:传感器,控制器,执行器。
)14.转向传动机构主要由转向摇臂、转向直拉杆、转向节臂、转向梯形臂和转向横拉杆等组成。
15.根据机械转向器、转向动力缸和转向控制阀三者在转向装置中的布置和连接关系的不同,液压动力转向装置分为整体式、分离式、组合式三种结构形式。
16. 电控电动转向系统主要部件有控制器、转向转矩传感器、转向角传感器、车速传感器、电动机、离合器、减速机构等。
17.双回路液压制动传动装置由制动器、制动踏板、双腔式制动主缸、前后车轮制动轮缸及制动油管等组成。
汽车构造下册复习资料
汽车传动系统的基本功用是将发动机发出的动力传给驱动车轮。
组成:离合器及其操纵变速器及其操纵万向节与传动轴驱动桥5个功能作用:1.实现汽车减速增矩2.实现汽车变速;3.实现汽车倒车;4.必要时中断动力传递;5.应使车轮具有差速功能;6.能够消除变速器与驱动桥之间因相对运动而产生的不利影响FR(发动机前置后驱动)4x2型汽车的传统布置方案,应用范围:大、中型载货汽车,部分轿车、客车。
FF——发动机前置前驱动应用于微型和中级轿车上,在中高级和高级轿车上得应用也日渐增多。
离合器的功用1.保证汽车起步平稳2.保证换档工作平顺3.防止传动系统过载离合器分离杠杆内端与分离轴承之间的间隙△,由于间隙△的存在,驾驶员在踩下离合踏板后,先要消除这一间隙,然后才能开始分离离合器,为消除这一间隙所需的离合器踏板行程,称为离合器踏板自由行程。
(间隙)变速器的类型按传动比变化方式可分为有级式、无级式和综合式3种。
第一档传动路线;1---2---38---33---22---21---20---28---26十字轴式双万向节传动的等速条件1、3主动叉2、4从动叉准等速万向节——双联式万向节、三销轴式准等速万向节(允许相邻两轴有较大的交角,最大可达45°等速万向节------球叉式万向节、球笼式等速万向节(RF节)差速器:当汽车转弯时,在同一时间内:外侧车轮位移长,内侧车轮位移短,如果内外车轮转速相同。
则:外侧车轮一边滚动,一边滑移;内侧车轮一边滚动,一边滑转。
汽车直线行驶,也会因路面不平或虽然路面平直但轮胎滚动半径不等(轮胎制造误差、磨损不同、受载不均或气压不等)而引起车轮的滑动。
差速器的差速原理:主动件:主减速器从动齿轮---差速器壳---行星齿轮轴从动件:半轴齿轮。
A点为左半轴锥齿轮与行星齿轮的啮合点;B点为右半轴锥齿轮与行星齿轮的啮合点。
C点为行星齿轮的回转中心。
行星齿轮只随行星架绕差速器旋转轴线公转时,处于同一半径r上A、B、C三点到差速器旋转中心的距离相等,其值为ω0R0,ω1=ω2=ω0,差速器不起作用,半轴角速度等于差速器壳的角速度。
大一汽车构造期末复习知识点
大一汽车构造期末复习知识点汽车构造是大一学生学习的一门基础课程,而期末考试是对学生们所学知识的全面检验。
为了帮助大家更好地复习,本文将围绕大一汽车构造的相关知识点展开讲解。
以下是本文的核心内容:一、汽车发动机1. 内燃机原理:包括吸气、压缩、燃烧和排气四个过程,各个过程的特点和作用。
2. 发动机结构示意图:通过图示进行发动机主要部件的介绍,如气缸、活塞、曲轴等。
二、汽车传动系统1. 变速器:包括手动变速器和自动变速器,介绍其结构和工作原理。
2. 离合器:解释离合器的作用,以及与发动机和变速器之间的连接关系。
三、汽车悬挂系统1. 悬挂系统类型:介绍常见的独立悬挂和非独立悬挂系统,并分别列举其优缺点。
2. 悬挂系统组成部分:如减震器、弹簧等,分别介绍其功能和作用。
四、汽车制动系统1. 制动原理:包括摩擦制动和液压制动两种方式,以图例形式进行直观解释。
2. 制动系统组成部分:如制动盘、制动片等,阐述其具体功能和工作原理。
五、汽车电气系统1. 电瓶和充电系统:解释电瓶对汽车电器系统的供电作用,以及充电系统的工作原理。
2. 点火系统:介绍传统点火系统和电子点火系统的区别和工作方式。
六、汽车底盘与车身1. 底盘结构与构造:解释底盘的组成部分,如车架、传动轴等。
2. 车身结构与安全:介绍车身的基本结构和安全设计原则。
七、汽车辅助系统1. 制动辅助系统:阐述如防抱死制动系统(ABS)和制动力分配系统(EBD)等辅助系统的作用。
2. 安全辅助系统:包括倒车雷达、盲点监测等辅助系统的介绍。
以上是大一汽车构造期末复习的核心知识点。
希望通过本文的讲解,能够帮助大家对汽车构造的相关知识有更加清晰的理解。
祝大家期末考试顺利!。
汽车构造考试知识点上、下册
汽车构造上册第一章、发动机的工作原理和总体构造发动机基础知识:现代汽车一般采用往复活塞式内燃机,主要由活塞、气缸、连杆、曲轴、飞轮等组成,通过燃料在气缸内燃烧产生动力,推动活塞上下运动,再由连杆转变为曲轴的旋转运动对外输出。
根据使用燃料的不同分为汽油机和柴油机。
活塞在气缸里作往复直线运动,向上运动到的最高位置称为上止点,向下运动到的最低位置称为下止点,上、下止点之间的距离称为活塞行程,曲轴旋转中心到曲柄销中心之间的距离称为曲柄半径。
活塞从一个止点运动到另一个止点所扫过的容积,称为气缸工作容积;活塞位于上止点时,其顶部与气缸盖之间的容积称为燃烧室容积;活塞位于下止点时,其顶部与气缸盖之间的容积称为气缸总容积;多缸发动机各气缸工作容积的总和,称为发动机排量。
压缩比的大小表示活塞由下止点运动气缸总容积与燃烧室容积之比称为压缩比,用ε表示,ε=VaVc到上止点时,气缸内的气体被压缩的程度。
压缩比越大,压缩终了时混合气体压力和温度就越高,燃烧速度增快,因而发动机输出功率增大,热效率提高,经济行就越好。
汽油机的压缩比一般为8~11,柴油机的压缩比一般为16~22发动机工作原理:发动机工作时必须先将可燃混合气引入气缸,然后进行压缩,接着使其燃烧膨胀推动活塞下行对外作功,最后排出废气,完成一个工作循环。
工作循环不断重复,就能使发动机连续运转,而每一个工作循环都必须包括进气、压缩、作功、排气四个过程。
四冲程汽油机工作过程:P22 四冲程汽油机的进气、压缩、作功、排气四个过程分别安排在四个活塞行程中,称之为进气行程、压缩行程、作功行程和排气行程。
四冲程柴油机工作原理:柴油机与汽油机性能比较优点:☆经济性好,行程长,排气温度低,热效率高,柴30-40%,汽25-30%,而且柴油价格较低。
☆污染较轻,柴油和空气混合比大,燃烧较完全,废气中一氧化碳较少(CO)。
没有高压点火装置,不产生无线电干扰。
☆危险性小,柴油燃点高,不会自燃,不怕严冬烤机。
汽车构造(下)复习资料
一、填空题1.根据车桥作用的不同,车桥可分为转向桥、驱动桥、转向驱动桥和支持桥等 4 种。
2.转向桥由前轴、转向节、主销和轮毂等主要部分组成。
3.前轮定位包括主销后倾、主销内倾、前轮外倾和前束等 4 个参数。
4.按悬架结构不同,车桥分为整体式车桥和断开式车轿两种。
整体式车桥与非独立悬架配用,断开式车轿与独立悬架配用。
5.主销安装在前轴上,其上端略向后倾斜,这种现象称为主销后倾;其上端略向内侧倾斜,这种现象称为主销内倾。
6.汽车悬架可分为两大类:即非独立悬架和独立悬架悬架。
7.现代汽车的悬架虽有不同的结构形式,但一般都由弹性元件、减振器、导向机构等组成,轿车一般还有横向稳定器。
8.汽车上常用的弹性元件包括钢板弹簧、螺旋弹簧、扭杆弹簧和气体弹簧等。
9.按照所采用弹性元件的不同,非独立悬架可以分为钢板弹簧式非独立悬架和螺旋弹簧式非独立悬架。
10.车轮沿主销移动的独立悬架可以分为车轮沿固定不动的主销移动的烛式独立悬架和车轮沿摆动的主销轴线移动的麦弗逊式独立悬架。
11.车轮是介于轮胎和车桥之间,其功用是安装轮胎,承受轮胎与车桥之间的各种载荷的作用。
12.按轮辐结构的不同,车轮可以分为辐板式车轮和辐条式车轮。
13.按胎体帘布层结构的不同,轮胎分为斜交轮胎和子午线轮胎。
14.外胎是轮胎的主要组成部分,主要由胎面、胎圈和胎体等组成。
15.胎面是轮胎的外表面,可分为胎冠、胎肩和胎侧等 3 部分。
16.汽车上采用的车架有边梁式车架、中梁式车架、综合式车架和无梁式车架 4 种类型。
二、选择题1.转向轮绕着(B )摆动。
A.转向节 B.主销 C.前梁 D.车架2.车轮定位中,(D )可通过改变横拉杆的长度来调整。
A.主销后倾 B.主销内倾 C.前轮外倾 D.前轮前束3.越野汽车的前桥属于(C )。
A.转向桥 B.驱动桥 C.转向驱动桥 D.支承桥4.前轮定位中,转向操纵轻便主要是靠(B )。
A.主销后倾 B.主销内倾 C.前轮外倾 D.前轮前束5.横向稳定杆的作用是防止(B )。
汽车构造下期末总结
汽车构造下期末总结一、引言本期末报告主要围绕汽车构造展开,通过深入研究和分析汽车的各个构造部分,深入了解汽车的组成和原理,并总结汽车构造在设计和使用中的一些重要问题。
本报告将分为五个部分进行阐述,分别是发动机系统、底盘系统、车身系统、电气系统以及悬挂系统。
二、发动机系统发动机是汽车最重要的部分之一,它负责提供动力和驱动汽车前进。
在学习发动机系统时,我们首先了解了内燃机的基本原理和工作过程。
发动机系统主要由进气系统、燃油系统、冷却系统、点火系统和排气系统组成。
我们通过研究这些系统的构造和作用,掌握了发动机系统的工作原理和关键技术。
三、底盘系统底盘系统是汽车的支撑结构,负责承载车身和其他重要部件。
在学习底盘系统时,我们了解了悬挂系统和转向系统的构造和原理。
悬挂系统主要由弹簧、减震器和悬挂手臂组成,它们共同协调车身和路面之间的相互作用,提高车辆的稳定性和乘坐舒适性。
转向系统主要由转向装置和转向机构组成,它们负责控制车辆行驶方向的改变。
通过研究底盘系统,我们对汽车的悬挂和转向原理有了更深入的了解。
四、车身系统车身是汽车的外部部分,它不仅承载着乘客和货物,还起到保护内部部件的作用。
在学习车身系统时,我们了解了车身的构造和设计原理。
车身系统包括车身骨架、车身皮肤和车门、车窗等部件。
车身结构的合理设计可以提高汽车的刚性和安全性能。
在本期末报告中,我们还重点研究了汽车碰撞的力学原理和安全设计,以提高车辆的碰撞安全性。
五、电气系统电气系统是汽车的重要组成部分,它负责电力供给和各种电子设备的控制。
在学习电气系统时,我们了解了电池、发电机和电动机的原理和构造。
电气系统还包括启动系统、点火系统和充电系统等。
通过研究电气系统,我们掌握了汽车电气原理的基本知识,并了解了电子设备在汽车中的应用。
六、悬挂系统悬挂系统是汽车的重要组成部分,它负责保持车身与轮胎接触,减震和吸收道路不平的冲击。
在学习悬挂系统时,我们了解了悬挂系统的构造和工作原理。
汽车构造期末考试复习提
1.行驶安全,节约能源,环境保护2.曲柄连杆机构,配气机构,供给系统,冷却系统,润滑系统,点火系统,起动系统。
3.地盘:传动系统,转向系统,行驶系统,制动系统。
4.前置前驱,后置后驱,前置后驱,中置后驱,全轮驱动。
5.驱动力画图:6.发动机,地盘,车身,电器及电子设备。
7.发动机:是将自然界某种能量直接转换为机械能并拖动某些机械进行工作的机器。
工作循环:在发动机内,每一次将热能转变为机械能,都必须经过吸入新鲜充量,压缩,使之着火燃烧而膨胀作功,然后将生成的废气排出气缸这样一系列连续的过程,称为一个工作循环。
发动机排量:一台发动机全部气缸工作容积的总和。
压缩比:压缩前气缸中气体的最大容积与压缩后的最小容积之比。
8.可燃混合气的形成和着火方式不同。
9.动力性能指标,经济性能指标,运转性能指标。
有效转矩:发动机通过飞轮对外输出的平均转矩。
有效功率:发动机通过飞轮对外输出的功率。
燃油消耗率:发动机每发出1KW 的有效功率,在1h内所消耗的燃油质量。
10.发动机的速度特性:当燃料供给调节机构位置固定不变时,发动机性能参数随转速改变而变化的曲线。
最高动力性能。
负荷:发动机驱动从动机械所耗费的功率或有效转矩的大小。
11.曲柄连杆的功用:把燃气作用在活塞顶上的力转变为曲轴的转矩,以向工作机械输出机械能。
组成:机体组,活塞连杆组,曲轴飞轮组。
12.水冷,风冷13.直列式发动机,V形发动机,对置式发动机。
14.顶部,头部,裙部。
气环和油环。
气环作用:保证活塞与气缸壁间的密封,将活塞顶部的大部分热量传给气缸壁。
油环:在气缸壁上涂布一层均匀的机油膜,起到封气的辅助作用。
15.连杆的功用:连接活塞和曲轴,把活塞的往复运动转变为曲轴的旋转运动,并将活塞承受的力传递给曲轴。
曲轴的功用:承受连杆传递的力,并由此造成绕其本身轴线的力矩,并对外输出转矩。
16.配气机构的功用:按照发动机每一气缸内进行的工作循环和发火次序的要求,定时开启和关闭进,排气门,使新鲜充量及时进入气缸,而废气及时从气缸排出。
汽车构造期末总结
汽车构造期末总结一、引言汽车是现代社会交通的重要组成部分,也是人们生活和工作中必不可少的交通工具之一。
随着科技的不断进步和人们生活水平的提高,汽车的发展也越来越快速。
本次期末总结将围绕汽车的构造进行深入探讨,总结汽车构造的相关知识。
二、汽车构造的基本原理1. 发动机发动机是汽车的心脏,提供动力给汽车行驶。
发动机的类型有很多,最常见的是内燃机和电动机。
内燃机又分为汽油发动机和柴油发动机。
发动机的运转原理是通过燃烧燃料使活塞做往复运动,从而带动曲轴旋转。
发动机的构造包括缸体、活塞、曲轴、连杆、气门、分配机构等。
2. 传动系统传动系统将发动机的动力传递给车轮,使汽车行驶。
传动系统包括离合器、变速器、传动轴、差速器和驱动轴等。
离合器是用来连接和分离发动机和变速器的装置,使发动机和变速器之间的传动有效。
变速器可以根据行驶速度和工作负荷的不同,改变传动比来适应各种行驶情况。
3. 悬挂系统悬挂系统是汽车上的重要组成部分,它支撑着汽车的重量,保证车身稳定和乘坐舒适。
悬挂系统包括弹簧、减震器、悬挂臂和轮毂等。
弹簧起到支撑和缓冲的作用,减震器则用来消除悬挂系统的震动和冲击。
4. 制动系统制动系统是保证汽车安全行驶的重要保障,它可以减低汽车的速度或停车。
制动系统包括刹车片、刹车盘、制动液、刹车油管、制动机构等。
刹车片和刹车盘通过摩擦产生阻力,减低汽车的速度。
5. 转向系统转向系统是用于改变汽车行驶方向的装置。
转向系统包括转向柱、转向齿轮和转向节等。
通过转向柱和转向齿轮的作用,可以将司机的转向操作传导到车轮上,改变车辆行驶的方向。
6. 车身结构车身结构是汽车的骨架,它承载汽车的重量和保护车内乘员的安全。
车身结构包括车顶、车侧、底盘和车门等。
车身结构的设计要符合安全、节能、舒适的原则。
三、汽车构造的发展趋势随着科技的不断发展,汽车构造也在不断变化和创新。
以下是汽车构造的主要发展趋势:1. 电动化电动车的出现和普及,使得电动技术在汽车构造中越来越重要。
汽车构造期末复习资料
3)发动机后置后轮驱动(RR):主要大、中型客车 4)发动机中置后轮驱动(MR):赛车,部分大、中型客车 5)全轮驱动(nWD):越野汽车(分动器分配动力给各驱动轮) 2.液力式传动系统 1)液力机械式:轿车和重型汽车
周布弹簧离合器 螺旋弹簧离合器{
中央弹簧离合器
膜片弹簧离合器 4 膜片弹簧离合器
1.膜片弹簧:圆锥形弹簧片,由碟簧部分(起压紧弹簧作用)、分离指部分(起分离杠杆 作用)组成(图 14-2)
2.构造与原理:图 14-3 离合器盖用螺钉固定在飞轮上 相关部件:飞轮 2,从动盘,离合器盖 14,压盘 4,膜片弹簧 8,膜片弹簧支撑圈 15, 分离弹簧钩 7,分离轴承 13,铆钉
3.优点:
1)转矩容量大且稳定(图 14-4) 2)操纵轻便(图 14-4) 3)结构简单且较紧凑 4)高速时平衡性好 5)散热通风性能好 6)摩擦片的使用寿命长 缺点:制造有一点难度;分离指部分刚度较低,根部易形成应力集中,使碟簧部分应力
增大,容易产生疲劳裂纹而损坏;分离指舌尖部易磨损,且难以修复。 4.结构形式:
5 螺旋弹簧离合器 1.压盘能随飞了一起旋转。离合器盖和压盘之间通过四组均匀分布传动片来传递转矩, 离合器分离时弹性的传动片产生弯曲变形(其两端沿离合器轴做相对位移)。 2.从动盘毂的花键套筒套在从动轴(变速器主动轴)前端的花键上,并可在花键上作轴向 移动。
3.离合器必须与曲轴飞轮组组装在一起进行动平衡校正,并有定位销定位。 4.离合器工作时分离套筒不转动,分离杠杆随离合器盖和压盘转动,为避免直接摩擦设置
15 变速器与分动器
1 变速器的功用、组成和类型 1.功用: 1)改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件(如 起步、加速、上坡等),同时使发动机在有利的工况(功率较高而耗油率较低)下工 作; 2)在发动机曲轴旋转方向不变的前提下,使汽车能倒退行驶; 3)利用空挡中断动力传递,以使发动机能够启动、怠速,并便于变速器换挡或进行动 力传输。 2.组成: 1)变速器传动机构 2)操纵机构 根据需要,可加装动力输出器。 3.类型: 1)按传动比变化方式:
汽车构造期末知识总结
汽车构造期末知识总结前言:汽车是现代社会的重要交通工具之一,也是人们生活中必不可少的一部分。
汽车的构造是汽车制造工艺的重要组成部分,对于了解汽车的工作原理和性能具有重要意义。
本文将对汽车构造的一些重要知识进行总结,包括发动机、车身结构、悬挂系统、制动系统等方面。
一、发动机1. 发动机的基本构造发动机是汽车的“心脏”,是汽车提供动力的主要设备。
发动机的基本构造包括气缸体、活塞、连杆、曲轴、气门、点火系统等。
2. 发动机的工作原理发动机的工作原理是通过燃烧油料与空气产生爆发力来产生动力。
其中,发动机的四个冲程包括进气、压缩、爆炸和排气。
通过这些冲程的周期循环来推动汽车。
3. 发动机的类型发动机根据燃料形式的不同主要分为汽油发动机和柴油发动机。
汽油发动机具有重量轻、功率大的优点,能够提供高速行驶的需求;柴油发动机则具有燃油稳定、效率高等特点,适用于长途运输。
二、车身结构1. 车身结构的基本组成汽车车身结构主要由车架、车轮、轮胎、车壳等组成。
车架是连接各部件的主要结构,承载汽车的重量和各种负荷;车轮和轮胎是支撑汽车行驶的重要部件;车壳则是用于保护驾驶员和乘客安全的车身外壳。
2. 车身材料的选择现代汽车的车身材料包括钢铁、铝合金、聚合物复合材料等。
钢铁具有强度高、成本低的优点,但重量较大;铝合金则具有重量轻、强度高的特点,但成本较高;聚合物复合材料则具有重量轻、强度高、表面处理方便等特点,但成本也较高。
3. 车身结构设计原则车身结构设计的原则包括安全性、刚性、稳定性和舒适性等。
安全性是车身结构设计的首要考虑因素,刚性和稳定性可以提高汽车的操控性,而舒适性则是提高驾乘者的舒适感。
三、悬挂系统1. 悬挂系统的功能汽车悬挂系统主要是为了减少驾乘者由于道路不平而产生的震动和冲击力,提供稳定的行驶性能和舒适的驾乘感受。
2. 悬挂系统的组成悬挂系统由弹簧、减震器和支架组成。
弹簧主要是为了减缓车身的震动和冲击,提供弹性支撑;减震器是为了消除弹簧弹性的颤动,提供稳定的悬挂效果;支架则是连接悬挂系统和车身框架的支撑部件。
汽车构造下册知识点总结
汽车构造下册知识点总结第一节发动机构造1. 发动机的基本构造发动机是汽车的心脏,通过内燃机工作原理将燃油和空气混合后燃烧产生动力,驱动汽车前进。
发动机的基本构造包括气缸、活塞、曲轴、气门、火花塞等部件,通过这些部件的协同工作,实现了燃油燃烧后的动力输出。
2. 发动机的工作原理发动机的工作原理是通过往复式活塞运动与曲轴旋转来实现能量转换,完成燃烧室内混合气的燃烧,产生高温高压气体,从而推动曲轴旋转带动汽车前进。
3. 发动机的类型发动机按燃料类型可分为汽油发动机和柴油发动机,按工作原理可分为四冲程发动机和两冲程发动机,按排列方式可分为直列式发动机和V型发动机等。
第二节传动系统构造1. 变速器的构造与工作原理变速器是汽车传动系统的关键部件,通过其内部齿轮的组合实现不同档位的换挡,从而使发动机输出的动力以最佳方式传递到车轮上,实现汽车的前进和倒车。
2. 差速器的构造与作用差速器是汽车传动系统的重要组成部分,其作用是使左右车轮在转弯时以不同速度旋转,保证汽车的平稳行驶和转向效果。
3. 传动轴的构造与传动方式传动轴是将发动机输出的动力传递到车轮的关键部件,根据不同车型和传动方式可以分为前驱、后驱和四驱的传动轴结构,从而实现汽车前进、倒车和转向的功能。
第三节制动系统构造1. 制动系统的构造与工作原理制动系统是保证汽车安全行驶的重要部件,通过制动盘和刹车片的摩擦来实现汽车的减速和停车,从而避免交通事故。
2. ABS制动系统的工作原理ABS制动系统是一种防抱死制动系统,通过传感器监测车轮的速度,并通过控制单元调整刹车盘的压力,避免车轮抱死,保证汽车的操控性和安全性。
3. 刹车油和刹车管路的作用刹车油和刹车管路是保证刹车系统正常工作的关键部件,刹车油通过刹车管路将刹车踏板的压力传递到制动器,实现汽车的减速和停车。
第四节车身构造1. 车身的结构汽车车身的结构包括车体、车门、车窗、车顶、后备箱等部件,不同车型的车身结构稍有不同,但都包含这些基本部件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章汽车传动系统汽车传动系统的基本功用是将发动机所发出的动力传递到驱动车轮,按能量传递方式的不同分为机械式、液力式、电力式传动系统,均具有减速增矩、变速、倒车、中断动力、轮间差速和轴间差速等功能。
货车采用发动机前置、后轮驱动的传统布置方式,简称FR式,其技术特点是前排车轮负责转向,后排车轮承担整个车辆的驱动工作,它能有效利用载荷重量产生驱动力。
它将发动机纵向放置在汽车前部,通过一线展开的离合器、变速器、万向传动装置(万向节和传动轴)将动力传给后部的驱动桥,经驱动桥内的主减速器、差速器和半轴带动后轮,推着汽车前进。
轮间差速汽车转向时,外侧车轮滚过的路程长,内侧车轮滚过的路程短,要求外侧车轮转速快于内侧车轮。
通过驱动桥中的差速器,可以使两驱动轮能以不同转速转动,实现差速功能。
分时四轮驱动系统有前后两个驱动桥,前置发动机通过离合器、变速器将动力传给分动器,再经传动轴分别传递到前后驱动桥,驾驶员一般通过操纵杆或按钮控制分动器在两驱与四驱之间进行切换。
分动器一般配有H2、H4及L4等档位,H2是高速两轮驱动,H4用于雨雪天和沙石路面,L4适宜于拖曳重物或越野攀坡。
离合器安装在发动机与变速器之间,用来分离或接合前后两者之间动力联系。
汽车离合器有摩擦式离合器、液力偶合器、电磁离合器等几种。
目前在汽车上广泛采用的是用弹簧压紧的摩擦式离合器(简称为摩擦离合器)。
功用:平稳起步,平顺换档,防止过载。
一、摩擦离合器由主动部分从动部分压紧机构操纵机构组成二、螺旋弹簧离合器采用螺旋弹簧作为压紧元件的离合器,称为螺旋弹簧离合器。
将若干个螺旋弹簧沿压盘圆周分布的称为周布弹簧离合器,将一个大螺旋弹簧置于离合器中央的称为中央弹簧离合器。
三、膜片弹簧离合器采用膜片弹簧作为压紧元件的离合器,称为膜片弹簧离合器。
膜片弹簧为碟形,其上开有若干个径向开口,形成若干个弹性杠杠。
弹簧中部两侧有钢丝支承圈,用铆钉将其安装在离合器盖上。
五、离合器操纵机构操纵机构是为驾驶员控制离合器分离与接合程度的一套专设机构。
按照操纵离合器的能源划分,离合器操纵机构分为人力式、助力式和动力式三种。
按传动方式划分,离合器操纵机构有机械、液压和气压三种。
离合器接合时,分离轴承前端与膜片弹簧(或分离杠杠内端)之间有一定的轴向间隙,称为自由间隙。
从踩下离合器踏板到消除自由间隙所对应的踏板行程称为离合器踏板自由行程。
摩擦衬片磨损后膜片弹簧离合器比螺旋弹簧离合器能更可靠地传递转矩。
变速器1.变速器的功用①改变传动比;②改变行驶方向;③中断动力传递。
2.变速器的组成①变速传动机构②变速操纵机构。
3.变速器的分类①按传动比变化方式:有级式、无级式和综合式。
②按换档操纵方式:手动操纵式、自动操纵式和半自动操纵式。
变速传动机构主要由齿轮、轴及变速器壳体等零部件组成,它利用不同齿数的齿轮对相互啮合来改变变速器的传动比,通过增加齿轮传动的对数来实现倒档。
按传动齿轮轴的数目(不包括倒档轴),普通齿轮式变速器有二轴式和三轴式之分。
货车一般采用三轴式变速器,其传动机构由壳体、第一轴(输入轴)、中间轴、第二轴(输出轴)、倒档轴、各轴上齿轮等部分组成。
其中,第一轴和第二轴在同一轴线上,并与中间轴平行。
轿车一般采用两轴变速器,在一般档位只经过一对齿轮就可以将输入轴的动力传至输出轴,所以传动效率要高一些,但最高效率不如三轴变速器直接档的高同步器采用接合套换档时,必须使待啮合的接合套与接合齿圈花键齿的圆周速度一致(同步),才能顺利进入啮合而完成挂档。
而高档换低档和低档换高档实现同步的方法还有所不同。
同步器的功用是使接合套与待啮合的齿圈迅速同步,并阻止二者在同步前进入啮合,从而消除换挡时的冲击,缩短换挡时间,简化换挡过程,使换挡操作简捷轻便,并可延长变速器的使用寿命。
现代汽车上广泛使用的是惯性式同步器,利用摩擦原理实现同步。
如果变速器布置在驾驶员座位附近,则变速杆可以从驾驶室底板伸出,由驾驶员直接操纵,这种操纵机构称为直接操纵机构。
它一般由变速杆、拨块、拨叉、拨叉轴以及安全装置等组成,多集装于变速器上盖或侧盖内,结构简单,操纵方便。
为了保证变速器在任何情况下都能准确、安全、可靠地工作,操纵机构均设有自锁、互锁、倒档锁等安全装置。
自锁装置(自锁钢球和自锁弹簧)的作用是:保证换档到位; 防止自动脱档。
互锁装置(互锁销,互锁钢球)用于防止同时挂入两档。
倒档锁的作用是防止误挂倒档。
有些汽车上,变速器的安装位置离驾驶员座位较远,需要在变速杆与拨叉之间加装一些辅助杠杆或一套传动机构,构成远距离操纵机构。
远距离操纵机构分为变速杆布置在转向盘旁边和变速杆布置在驾驶座椅旁边的地板上两种类型。
分动器的功用就是将变速器输出的动力分配到各驱动桥,并且进一步增大扭矩,是越野车汽车传动系中不可缺少的传动部件,它的前部与汽车变速箱联接,将其输出的动力经适当变速后同时传给汽车的前桥和后桥,此时汽车全轮驱动,可在冰雪、泥沙和无路的地区地面行驶。
当越野车在良好路面上行驶,只需后轮驱动时,可用操纵手柄控制前桥接合套,切断前驱动桥输出轴的动力。
操作时必须注意:(1)先接前桥,后挂低速档;(2)先退出低速档,再摘下前桥。
上述要求也可以通过操纵机构加以保证。
日前汽车使用最普遍的是液力自动变速器(AT),由变矩器、机械式变速器(一般采用行星齿轮)和控制系统三部分组成,按控制方式分为液控液压式和电控液压式两种。
液力变矩器主要由泵轮、涡轮和导轮组成。
泵轮是主动部分,将发动机动力变成油液动能。
涡轮是输出部分,将动力传至机械式变速器的输入轴。
导轮是反作用元件,它对油流起反作用,达到增扭作用。
泵轮与变矩器外壳连为一体,是主动元件;涡轮悬浮在变矩器内,通过花键与输出轴相连,是从动元件。
单向离合器的作用是只允许导轮单向旋转,不允许其逆转。
常用的有滚柱式单向离合器和楔块式单向离合器。
液力变矩器一般均带有锁止离合器(TCC),在汽车变工况行驶时(如起步、经常加减速),锁止离合器分离,相当于普通液力变矩器;当汽车在稳定工况下行驶时,锁止离合器接合,动力不经液力传动,直接通过机械传动传递,变矩器效率为1。
在行星齿轮式自动变速器中,因为所有齿轮均处于常啮合状态,其挡位变换是以对行星机构的基本元件进行约束来实现的。
自动变速器中的约束元件,即换挡执行机构通常有换挡离合器、换挡制动器和单向离合器等,分别具有连接、固定或锁止功能,使变速器获得不同传动比。
机械式自动变速器(AMT)是在普通人工换挡机械式变速器基础上增加电子控制操纵机构,达到替代人工换挡的目的。
AMT保留了原来的机械变速器,因此其传动性能基本上和机械变速器相同。
这种纯机械传动的传动效率高,结构简单,但是换挡过程不可避免地存在动力中断,乘坐舒适性较差。
万向传动装置用于实现一些轴线相交且相对位置经常变化的转轴之间的动力传递,典型应用场合有变速器、分动器、驱动桥之间,以及驱动桥与驱动轮之间的万向传动。
货车万向传动装置一般由万向节和传动轴组成,当变速器与驱动桥之间距离较远时,应将传动轴分成两段甚至多段,并加设中间支承,以降低自振频率,防止共振。
万向节是实现转轴之间变角度传递动力的部件。
按万向节在扭转方向上是否有明显的弹性可分为刚性万向节和挠性万向节。
汽车上一般使用刚性万向节,又分为不等速万向节、准等速万向节和等速万向节三种。
十字轴式刚性万向节为货车上广泛使用的不等速万向节,由一个十字轴、两个万向节叉和四个滚针轴承等组成,允许相邻两轴的最大交角为15゜~20゜。
v使用两个十字轴式刚性万向节,并按下述条件布置时可实现由变速器的输出轴到驱动桥的输入轴的等角速传动:(1)第一万向节两轴间的夹角α1与第二万向节两轴间的夹角α2相等;(2)第一万向节的从动叉与第二万向节的主动叉在同一平面内。
v根据双万向节实现等速传动的原理而设计的万向节称为准等速万向节,最典型的是双联式万向节,其特点是:两个十字轴式万向节相连,中间传动轴长度缩减至最小。
v现代轿车普遍采用发动机前置、前轮驱动,万向传动装置位于变速驱动桥和车轮之间,由二根传动轴和四个万向节组成,分为左、右两组,传动轴为实心轴,工作时差速器与驱动轮之间的距离变化靠伸缩型万向节来完成。
习惯上将差速器与驱动轮之间的传动轴称为半轴。
球笼式万向节属于一种等速万向节,承载能力强,结构紧凑,拆装方便,根据在传递转矩的过程中,主从动件之间能否产生轴向位移,分为RF型(不能移动)和VL型(能移动),其中RF型用于靠近车轮处,VL型用于靠近变速驱动桥处。
驱动桥的主要作用是:①通过主减速器齿轮的传动,降低转速,增大转矩;②部分主减速器采用锥齿轮传动,改变转矩的传递方向;③通过差速器使内外侧车轮以不同转速转动,适应汽车的转向要求;④通过桥壳和车轮,实现承载及传力作用。
货车一般采用整体式驱动桥,也称为非断开式驱动桥,桥壳通过钢板弹簧与车架相连,车轮安装在桥壳两端上,不能在横向平面内作相对运动。
货车驱动桥由驱动桥壳、主减速器、差速器和半轴等组成。
万向传动装置输入驱动桥的转矩,首先传到主减速器,在此降低转速、增大转矩后,经差速器分给左右两半轴,最后通过半轴外端凸缘盘传至驱动轮的轮毂。
主减速器的主要功用减速增矩,当发动机纵置时还能改变转矩的方向。
按参加减速传动的齿轮副数目分,有单级主减速器和双级主减速器之分。
单级主减速器由一对齿轮完成主减速传动,具有结构简单、体积小、重量轻和传动效率高等优点。
要求主减速器有较大传动比时,由一对锥齿轮传动将会导致尺寸过大,不能保证最小离地间隙的要求,这时多采用两对齿轮传动,即双级主减速器。
差速器的功用是既能向两侧驱动轮传递转矩,又能使两侧驱动轮以不同转速转动,以满足转向等情况下内外驱动轮要以不同转速转动的需要。
目前汽车上广泛应用的是对称式锥齿轮差速器,它由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成。
差速器壳作为差速器中的主动件,与主减速器的从动齿轮和行星齿轮轴连成一体。
半轴齿轮为差速器中的从动件。
行星齿轮即可随行星齿轮轴一起绕差速器旋转轴线公转,又可以绕行星齿轮轴轴线自转。
半轴是在差速器与驱动轮之间传递动力的实心轴,它的支承形式主要有全浮式和半浮式两种。
全浮式支承对地面反力N和F以及由F形成的弯矩均通过桥壳传至车身,故半轴只承受转矩,不承受任何反力和弯矩作用,受力状态简单,广泛用于各种载货汽车。
驱动桥壳分为整体式和分段式两类。
整体式桥壳因强度和刚度性能好,便于主减速器的安装、调整和维修,而得到广泛应用。
整体式桥壳因制造方法不同,可分为整体铸造式、中段铸造压入钢管式和钢板冲压焊接式等。
在全浮式支承结构中,轮毂通过两个跨距较大的圆锥滚子轴承支承在半轴套管上,半轴套管与空心梁压配在一起形成桥壳。
半轴外端凸缘借助螺栓与轮毂相连,内端通过花键与半轴齿轮相连。