拟合优度的卡方检验27页PPT

合集下载

卡方拟合优度检验课件

卡方拟合优度检验课件

卡方拟合优度检验与其他方法的结合应用
与贝叶斯方法结合
利用贝叶斯方法对数据进行先验信息的引入,提高卡方拟合优度 检验的准确性。
与主成分分析结合
通过主成分分析对多维数据进行降维处理,简化数据结构,再利用 卡方拟合优度检验进行模型检验。
与聚类分析结合
利用聚类分析将数据划分为不同的簇,再对每个簇进行卡方拟合优 度检验,提高检验的针对性。
实例三:教育程度分布的卡方检验
总结词
教育程度分布的卡方检验用于评估观察 到的教育程度分布与预期分布是否一致 。
VS
详细描述
教育程度分布的卡方检验可以用于比较不 同教育程度的人口比例是否符合预期。例 如,我们可以比较实际观察到的不同教育 程度的比例与理论预期的比例,以了解两 者是否存在显著差异。通过卡方统计量的 大小,可以判断实际教育程度分布与预期 分布的差异程度。
01
计算期望频数的公式:$期望频数 = frac{总频数 times 该类别的频 数}{该类别的观察数}$
02
根据期望频数对实际频数进行比 较,判断是否符合预期。
计算卡方值
卡方值的计算公式:$卡方值 = frac{(实际频数 - 期望频数)^2}{期望 频数}$
将计算出的卡方值与自由度进行比较 ,判断是否显著。
实例一:性别分布的卡方检验
总结词
性别分布的卡方检验用于评估观察到的性别分布与预期分布是否一致。
详细描述
假设我们有一个数据集,其中记录了某个地区的人口性别分布。通过卡方拟合优度检验,我们可以比较实际观察 到的性别分布与预期的均匀分布或某种理论分布是否存在显著差异。如果卡方统计量较小,说明实际分布与预期 分布较为接近;如果卡方统计量较大,则说明两者存在显著差异。

拟合优度检验-PPT

拟合优度检验-PPT

总数 98 (n1 ) 95 (n2 ) 193 (N)
有效率 59.2% 67.4%
22
※二、2 2列联表的精确检验法(Fisher检验法)
前提条件:某一格的理论数小于5。 思 想:用古典概型的方法求出尾区的概率,
然后与给定的显著性水平 相比,大于则接
受 H 0 ,反之拒绝。 需要解决的问题:
1.用古典概型求2 2列联表出现某一组数值的概率
注射 c
d
Tij
(i行和 )(j列 N
和 )
自由度 df = 1
19
四格表资料 2 检验的专用公式:
和前面的结果 一样
2
(adbc)2n
(ab)(cd)(ac)(bd)
2 (|adbc|0.5n)2n
(ab)(cd)(ac)(bd)
20
2. rc列联表
n11 n12 n13 L n1c
n21 n22 n23 L n2c
与理论(期望)频数(Expected frequency )之差 是否由抽样误差所引起。
补充:皮尔逊定理(pearson) 设 (p1,p2,L,pr)为总体的真实概率分布,统计量
2 r (ni npi )2 i1 npi 随n的增加渐近于自由度为r-1的 2 分布。
6
r
X2
(Oi Ti)2 ~X2(r1)
Oi
实际频数
黄花 84
绿花 16
合计 100
12
【补例7.3】( Poisson分布的拟合优度检验)将酵母细
胞的稀释液置于某种计量仪器上,数出每一小方格内的酵
母细胞数,共观察了413个小方格,结果见表7.3第1、2列,
试问该资料是否服从Poisson分布?

拟合优度的卡方检验

拟合优度的卡方检验
2
( fi npi ) npi i 1
2 k
2
为了便于理解,我们对定理作一 点直观的说明.
在理论分布F(x)完全给定的情况下,每个pi 都是确定的常数. 由棣莫佛-拉普拉斯中心极 限定理,当n充分大时,实测频数 fi 渐近正态, 因此
( fi npi ) npi i 1
战争次数 x
实测频数 fi
ˆi p ˆi np
0 1 2 223 142 48 0.58 0.31 0.18 216.7 149.5 51.6
3 15 0.01 12.0
4 4 0.02 2.16

14.16 ( fi npi ) 2 0.183 0.376 0.251 1.623 2.43 npi 将n p ˆ i<5的组予以合并,即将发生3次及4次 战争的组归并为一组.
问题是:得到的数据能否说明“骰子均匀” 的假设是可信的?
解决这类问题的工具是英国统计学家 K.皮尔逊在1900年发表的一篇文章中引进 2 的所谓 检验法.
这是一项很重要的工作,不少人 把它视为近代统计学的开端.
K.皮尔逊
检验法是在总体X 的分布未知时, 根据来自总体的样本,检验关于总体分 布的假设的一种检验方法.
2 2
( k r 1) (估计r 个参数)
2 2
如果根据所给的样本值 X1,X2, …,Xn算得 2 统计量 的实测值落入拒绝域,则拒绝原假 设,否则就认为差异不显著而接受原假设.
皮尔逊定理是在n无限增大时推导出来 的,因而在使用时要注意n要足够大,以及 npi 不太小这两个条件. 根据计算实践,要求n不小于50,以及 npi 都不小于 5. 否则应适当合并区间,使 npi满足这个要求 .

《卡方检验》课件

《卡方检验》课件

制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。

卡方-拟合优度检验PPT

卡方-拟合优度检验PPT
对于某些有序分类变量,可能需要使用其他适合的统计方法来进行分析。
THANKS FOR WATCHING
感谢您的观看
目的
通过比较理论分布与实际数据的差异, 评估模型的拟合程度,从而判断模型 的有效性和可靠性。
理论基础
1 2
概率论
卡方-拟合优度检验基于概率论的基本原理,通 过比较理论概率与实际观测频数之间的差异来评 估模型的拟合程度。
统计学
该检验属于非参数统计方法,不需要假设数据服 从特定的概率分布,因此具有较高的灵活性。
卡方-拟合优度检验
目 录
• 引言 • 卡方-拟合优度检验的基本概念 • 卡方-拟合优度检验的步骤 • 卡方-拟合优度检验的结果解读 • 卡方-拟合优度检验的应用 • 卡方-拟合优度检验的局限性
01 引言
定义与目的
定义
卡方-拟合优度检验是一种统计方法, 用于检验一个理论分布或模型是否与 实际观测数据匹配。
3
卡方-拟合优度检验通过比较观测频数与期望频数, 评估实际数据与理论模型之间的匹配程度。
03 卡方-拟合优度检验的步 骤
计算期望频数
总结词
期望频数是理论频数的计算结果,基于假设的分布情况。
详细描述
在卡方-拟合优度检验中,首先需要计算期望频数。期望频数是根据假设的分布 情况,将每个观察频数按照比例分配到各个理论频数中,从而得到期望频数。
R语言
在R语言中,可以使用相应的统计包(如 chisq.test()函数)来执行卡方-拟合优度检 验,从而实现数据的分析和模型的检验。
06 卡方-拟合优度检验的局 限性
对样本量要求较高
卡方-拟合优度检验要求样本量足够大, 以便能够准确地估计期望频数和实际 频数之间的差异。如果样本量较小, 检验的准确性将受到限制。

[课件]第07章 拟合优度检验PPT

[课件]第07章  拟合优度检验PPT

解:假设3种方法增重不显著。 2lnP服从2自由度的x2分布
判断: x2=13.90 > x26, 0.05=12.592 ,拒绝假设
解:假设两种饲料饲养增重没差异。 因为有一个值为0,所以可以直接计算组合概率。
5 ! 6 ! 4 ! 7 ! P 0 . 015 判断:计算的P=0.015 < P=0.025 11 ! 4 ! 1 ! 0 ! 6 !
拒绝假设。
第七章 拟合优度检验——x2-检验
三、独立性检验——列联表x2检验
(无重复试验x2检验)
例题分析 精确列联表x2检验对于2×2列联表
性别 有 无 小计 例7.6 观测性别对药物的 4 1 5 男 0组合的概率都计入, 反应见右侧表: 之所以将这种组合的概率以及最小值变为 3 6 9 女 问男女对药物反应有无差异? 是因为这样才能构成一个尾区的概率。 7 7 14 解:假设男女对药物反应没差异。 小计
判断:接受假设。
第七章 拟合优度检验——x2-检验
四、x2的可加性
(一) x2的齐性检验
例1 试验绿玉米G对黄玉米Y的理论比为3:1。共收集了11个 谱系,每一个谱系的x2值都不具显著性,即都可能是从3:1 的总体中抽取的,问这11个谱系是否具齐性? 绿x2 +黄x2 解:假设具齐性。 3 1
Ni 4 Ni 4
第七章 拟合优度检验——x2-检验
二、一致性检验 解:假设该试验结果符合自由组合律。
有许多质量性状表型比值为: 9 1:1, 3 32:1, 1 3:1, 9:7, 13:3, Y-R-:Y-rr:yyR-:yyrr= : : :2 15:1, 63:1, 1:2:1, 9:3:3:1 对这些试验进行检验, 16 等。用 16 16x 16 都属适合度检验,它们的共同特点是总体参数概率 φ已知。 根据公式计算理论值 T =NP ,此例中N=556

卡方-拟合优度检验PPT课件

卡方-拟合优度检验PPT课件
求各组内的理论次数不小于5。若某组的理论次数小 于5,则应把它与其相邻的一组或几组合并,直到理 论次数大 于5 为止。
精选ppt课件最新
13
• 统计量:
2 r (Oi Ti )2
i1
Ti
• 使用条件:
– 各理论值均大于5。 – 若自由度为1,则应作连续性矫正:
r
2
(Oi Ti 0.5)2
i1
精选ppt课件最新
27
(二)拟合优度检验按已知的属性分类理论或学说, 计算理论次数。独立性检验在计算理论次数时没有现 成的理论或学说可资利用,理论次数是在两因子相互 独立的假设下进行计算。
(三)在拟合优度检验中确定自由度时,只有一个 约束条件:各理论次数之和等于各实际次数之和,自 由度为属性类别数减1。而在r×c列联表的独立性检 验中,共有rc个理论次数,但受到以下条件的约束:
而另一组实际观察次数为26理论次数为21相差亦为了弥补b这一不足将各差数平方除以相应的理论次数后再相加并记之为也就是说2是度量实际观察次数与理论次数偏离程度的一个统计量2越小表明实际观察次数与理论次数越接近
生物统计学
第七章 拟合优度检验- 2检验
精选ppt课件最新
1
§7.1、拟合优度检验的一般原理
若20.05≤2 (或2c)<20.01, 若2 ( 或2c)≥20.01,
精选ppt课件最新
18
7.2.2 对二项分布的检验(P93)
下面结合实例说明适合性检验方法。
(总体参数已知 )
【例】 在研究牛的毛色和角的有无两对相对性状分离
现象时 ,用黑色无角牛和红色有角牛杂交 ,子二代出 现黑色无角牛192头,黑色有角牛78头,红色无角牛72 头,红色有角牛18头,共360头。试 问这两对性状是否 符合孟德尔遗传规律中9∶3∶3∶1的遗传比例?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档