第一章质点运动学

合集下载

大学物理第1章质点运动学

大学物理第1章质点运动学

大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。

一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。

质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。

二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。

1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。

匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。

2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。

非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。

三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。

主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。

我们可以通过坐标系建立一个参照系,来描述质点的位置。

2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。

位移的大小可以用位移公式Δr=r2-r1来计算。

3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。

速度的大小可以用速度公式v=Δr/Δt来计算。

4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。

加速度的大小可以用加速度公式a=Δv/Δt来计算。

四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。

曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。

1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。

弧长的大小可以用弧长公式s=rθ来计算。

2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。

曲率半径可以根据曲线的形状计算得出。

3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。

第1章 质点运动学

第1章 质点运动学

100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z

第1章 质点运动学

第1章 质点运动学

由题可知:t = 0时,x = 10
故:c′ = 10
2 3 x = t + 10 3
h
v0
x
o
r
| ∆r |
x
θ ∆x
h
θ′
y
x
解法一
由图可知船的位矢为
r = xi + hj
而 由速度的定义有
x = r −h
2
2
dr dx dh dx v= = i+ j = i + 0 = vx i dt dt vx = r −h = 2 2 dt dt dt r −h
dr = −v0 因绳子变短故 dt
代入上式有
x +h vx = − v0 = − v0 x r 2 − h2 r
2 2

x2 + h2 v =− v0 i x
负号表示
v
的方向与正 x 方向相反。
由加速度定义得
2 2
位置x、位移∆x dx 速度v = dt dv = d 2 x 加速度a = dt
dθ 角速度ω = dt 角加速度β = dω
角位置θ、角位移∆θ
d 2θ =
匀速圆周运动θ = θ 0 + ωt
匀变速圆周运动 1 2 θ = θ 0 + ωt + β t 2 ω = ω0 + β t
2 2
dt
v2 an = = 0.808m / s 2 R
则a = aτ + an = 0.814m / s
2 2
2
an o θ = tg = 82 57′ aτ
−1
直线运动与圆周运动比较
直线运动
圆周运动

第1章_质点运动学

第1章_质点运动学
可见,Munday下落的速度增加得非常快,但他 在下落过程中是感觉不到速度在增加的,因为加速 度是恒定的,而人只对加速度的变化有感觉。当他 落到水面时,他的加速度急剧减小,Munday才会 感到有剧烈的变化。 此外,(a)、(b) 、(c)式分别表示自由落体运动 的位移、速度、时间三者的关系。
17
1-2 质点运动的描述
r
m
求:(1)物体在圆周上运动的距离与时间的关系; (2)要维持物体这样的运动,绳子的拉力应为多少。
21
1-2 质点运动的描述
解:(1)物体在圆周上运动距离为物体经过的圆弧的长度
t

dv at dt

v v0
cdt v
0
0
ct
ds 由 v dt
1 2 得 s s 0 v0 t ct 2
1-1 物理基准 1-2 质点运动的描述 1-3 相对运动 1-4 牛顿运动定律 1-5 动量 1-6 能量
6
1-1 物理基准
一、长度、时间和质量标准 物体运动相关的单位有三个——长度、时间和质量。 1、长度的国际单位是米(m):一米等于光在真空 中传播1/299,792,458秒所走的距离。 2、时间的国际单位是秒(s):一秒是从铯原子中放射 出9,192,631,770次光振动所需要的时间。
质点是研究真实物体运动的一个理想模型,物体在其 大小和形状可以被忽略的情况下,可以视为一个质点。
4
引言
地球绕太阳公转时地球可视一个质点。 一切平动的物体,都可以视为一个质点。
如果物体的大小与形状不能忽略,则把物体上 每一小部分视为一个质点,把整个物体视为有许多 质点所组成的系统,称为质点系。
5
目录

第1章-质点运动学

第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率

大学物理——第1章-质点运动学

大学物理——第1章-质点运动学
沿逆时针方向转动角位移取正, 沿顺时针方向转动角位移取负.
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C

大学物理第一章质点运动学

大学物理第一章质点运动学

∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B

第一章 质点运动学

第一章 质点运动学
16
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学

y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j

第1章质点运动学

第1章质点运动学
2
2.几种典型的坐标系 几种典型的坐标系 (1).直角坐标系 直角坐标系
z P
r 直角坐标系中, 直角坐标系中,任意矢量 A 可表示为 r r r r A= A i + Ay j + A k x z
矢量的大小或模 矢量的大小或模表示为
x
γ
O
A
α
β
y
A = A2 + A2 + A2 x y z
方向余弦满足关系
cos2 α +cos2 β +cos2 γ =1
r dk =0 dt
直角坐标系中,坐标轴的单位矢量是常矢量, 直角坐标系中,坐标轴的单位矢量是常矢量,满足
r di =0 dt
r dj =0 dt
3
(2).自然坐标系 自然坐标系 为坐标原点, 在已知运动轨迹上任取一点O为坐标原点,用质点距离原点的轨 来确定质点任意时刻的位置, 道长度s来确定质点任意时刻的位置,以轨迹切向和法向的单位 矢量( 作为其独立的坐标方向,这样的坐标系,称为自然坐 矢量(τ、n)作为其独立的坐标方向,这样的坐标系,称为自然坐 称为自然坐标 自然坐标。 标系 s 称为自然坐标。
在第6章 狭义相对论中讲授 在第6
10
§1.3.2 描述一般曲线运动的线参量
线参量: 线参量: 位置矢量、位移矢量、 位置矢量、位移矢量、 速度矢量和加速度矢量
z P(x,y,z)
γ α
r
z
β
1.位置矢量与运动方程 1.位置矢量与运动方程
x x
o
y y
(1).位置矢量: 由坐标原点指向质点的有向线段。 (1).位置矢量:时刻t,由坐标原点指向质点的有向线段。 位置矢量
β

第一章 质点 运动学

第一章  质点 运动学

rB
r
思考题 质点作曲线运动,判断下列说法的正误 注: r (或称 r |) 位矢大小的变化量
r r
r r
s r
s r
s r
平均速度: v
r t
单位: m s 1
平均速度的方向与 t 时间内位移的方向一致
质点作变加速圆周运动,切 向加速度和法向加速度的大小方 向
当子弹从枪口射出时,椰子刚好从树上由静止 自由下落. 试说明为什么子弹总可以射中椰子 ?
例 设在地球表面附近有一个可视为质点的抛体,
以初速 v0 在 Oxy 平面内沿与 Ox 正向成 角抛出, 并
略去空气对抛体的作用. (1)求抛体的运动方程和其
y
B
角速度:
lim
t d dt

R
s
A

角加速度:
t 0

O
x
lim
t 0
t

d dt
圆周运动的角量描述
角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
RES 1.5 108 3 RE 6.4 10
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。


研究地球自转
v R
地球上各点的速 度相差很大,因 此,地球自身的 大小和形状不能 忽略,这时不能 作质点处理。

大学物理第一章 质点运动学

大学物理第一章  质点运动学
力学(mechanics)
§1 §2 §3 §4 §5 §6 质点运动学(kinematics) 质点动力学(dynamics) 功和能(work and energy) 动量守恒定律 (momentum conservation) 刚体的定轴转动(rotation) 流体力学(fluid mechanics)
v
t
g b
(1 e bt )
t
x vdt
0
g b
t
g b2
(1 e bt )
例题6、质点在流体中下落,a=-kv2,k=0.4m-1, t=0时,v=v0,求:从原点以上10m处开始下落, 速度减小到v0/10时到原点的距离。
解: d v dv dx a kv2 d t dx dt
r xi h j v0 vx dr dt dx v vx r dr x dt
2 h 2 v0
dx
dt dx dt
2
i r x ( h)
2 2 2 2
dt v vx i dv dt

h x x
v0
a

x
3
i
二、当v或a为已知时,求位置矢量



当v或a为时间函数时,直接根据定义积分,并代入 初始条件,可求出位矢; 当v或a为位置参量函数时,可做变量替换后,用分 离变量法积分,并代入初始条件,再求出位矢; 例如:已知 v=v(x) dx dx
物体定位,必须有参照物,我们称之为参照系。
2、 坐标系 利用坐标系,能在 点与数组之间建立 一个对应,从而在 几何图形与方程之 间建立一个对应的 关系.
三、 位置矢量
1. 位置矢量 质点在任一时刻的 空间位置,用位置 矢量来表示。

大学物理学(上册)第1章 质点运动学

大学物理学(上册)第1章 质点运动学

须在参考系上固连某种坐标系,这样,物体在某时刻的位置
即可用一组坐标表示.可见坐标系不仅在性质上具有参考系
的作用,而且还具有数学抽象作用.最常用的坐标系有:直角
坐标、球坐标、极坐标、柱坐标、自然坐标等.对物体运动
的描述决定于参考系而不是坐标系.
y
A
K
y
O
x
z
z
x 直角坐标系
K
r θ
A
O
x
极坐标系
O
y
o法向 sz
r x22 y22 z22 x12 y12 z12
讨论 (1)位移与位置矢量
位移表示某段时间内质点位置的变 化,是个过程量;位置矢量表示某个时
y
s' s p1 r
p2
刻质点的位置,是个状态量. (2)位移与路程

r(t1) r (t2 )
P1P2 两点间的路程 s是不唯一的,可 O
2)轨道方程表示为 x2 y2 r 2
1.2.2 位移与路程
y

A r B
rA
rB
y

yB A r
r y A A
rB
B
yB yA
o
x
o
xA
xB x
xB xA
1.位移 经过时间间隔 t 后,质点位置矢量发生变化,由始
点A指向终点B 的有向线段AB称为点A到B 的位移矢量 r.位
因为 v(t) v(t dt)
所以 dv 0 dt
而 a a 0 所以
v(t)
O
dv
v(t dt)
a dv dt
例 设质点的运动方程为
r t xti y t j

第一章质点运动学

第一章质点运动学

3v 1.73v, y 轴正向 沿
作业:习题1-7,1-9
练习:习题1-6
提示:1-1题为第一类质点运动学问题,即 运动方程 加速度
速度 加速度
1-2题为第二类质点运动学问题,即
速度 运动方程
§1-3
圆周运动
y
y
平面极坐标 质点在A点的位置由 (r,θ)来确定. 以(r,θ)为坐标的 坐标系称为平面极坐标系
x x(t ) 分量式 y y (t ) z z(t )
—参数方程
2.运动方程
y
y (t )
r (t )
P
x(t )
从上式中消去参数 t ,可 z (t ) z 得质点运动的轨迹方程:
o
x
f ( x, y, z) 0
选择题.已知一质点位置矢量的表达式为 : r 2i 5 j 37k ,则该质点作 (A) 匀速直线运动。 (B) 静止。 (C) 抛物线运动。 (D)一般曲线运动。
物 理 学
第一章
质点运动学
§1-1
质点运动的描述
一 参考系 质点 1.参考系 为描述物体运动而选定的标准物,称 为参考系。 参考系选取的不同,物体运动的描 述不同,即对物体运动的描述具有相 对性。 2.质点 忽略物体的体积与形状,将其抽象为 具有同等质量的点,称为质点. 质点是理想模型.
二 位置矢量
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0, 则有 t x 2 ,带入 y 中可消去参数 t ,
可得轨迹方程为
轨迹图
t 4 s
6
y 0.25x x 3.0
2
y/m

第一章 质点运动学

第一章 质点运动学

六. 单位 本课程采用国际单位制( ), ),其中 本课程采用国际单位制(SI),其中 长度单位 时间单位 速度单位 加速度单位 米(符号 m) ) 秒(符号 s) ) 米每秒( 米每秒(符号 m/s ) 米每二次方秒( 米每二次方秒(符号 m/s2 )
例题1-4 已知质点作匀加速直线运动,加速度 已知质点作匀加速直线运动, 例题 求这质点的运动方程。 为 a ,求这质点的运动方程。 dv = a 常量),积分得 ),积分得 解 由定义 (常量), dt
∆r = r1 − r
即等于质点位矢在∆t O 即等于质点位矢在∆ 时间内的增量。 时间内的增量。且有
r
r ∆t 时间内位移 1
t +∆t 时刻位矢 ∆
x
∆r = x1i + y1 j − xi − yj = ( x1 − x )i + ( y1 − y ) j
时间内质点通过的路程 为标量 路程∆ 为标量, ∆t 时间内质点通过的路程∆s为标量,仅当 ∆t→0时,位移的大小 时 lim ∆r = ∆s
d 2 x dv x ax = 2 = = −ω 2 R cos ω t dt dt d 2 y dv y ay = 2 = = −ω 2 R sin ω t dt dt
由此得加速度的大小
v a = ω R cos ωt + sin ωt = ω R = R
2 2 2 2
2
如果把加速度写成矢量式, 如果把加速度写成矢量式,则有
本课程中只讨论平面内的运动问题, 本课程中只讨论平面内的运动问题,常用坐标 系有平面直角坐标系 极坐标系和自然坐标系。 平面直角坐标系、 系有平面直角坐标系、极坐标系和自然坐标系。
二. 质点 一般情况下, 一般情况下,运动物体的形状和大小都可能变化

第1章-质点运动学

第1章-质点运动学
1 2 θ = θ 0 + ω0 t + α t 2 2 2 ω = ω0 + 2α (θ − θ 0 )
动力学:
以牛顿运动定律为基础,研究物 体运动状态发生变化时所遵循规律的 学科。
§1-1 质点、参考 系、坐标系
1-1-1 质点
质点(particle) :具有一定质量的几何点 两种可以把物体看作质点来处理的情况:
• 作平动的物体,可 以被看作质点。 • 两相互作用着的物 体,如果它们之间的 距 离远大于本身的线度, 可以把这两物体看作质 点。
z
v r1 v r2
v v1 v v2
y
o
v v v ∆v = v2 − v1
x
v v1 v v2
平均加速度
v v ∆v −1 a= m ⋅s ∆t
v ∆v
结论:平均加速度的方向与速度增量的方向一致 结论:
当∆t→0时,平均加速度的极限即为瞬时加速度。
v v ∆v dv d 2 r v = = 2 瞬时加速度: a = lim dt dt ∆t → 0 ∆ t
v v v v v = v x i + v y j + vz k
速度的三个坐标分量:
dx dy dz vx = , vy = , vz = dt dt dt
速度的大小:
v 2 2 2 v = v = vx + v y + vz
• 速率
在∆t时间内,质点所经过路程∆s对时间的变化率
平均速率:
∆s −1 v= m ⋅s ∆t
v ∆θ e t (t )
Q ∆θ =
∆s
ρ
O
∆θ
v et (t + ∆t )

第1章 质点运动学

第1章 质点运动学

第1章 质点运动学
1.1 质点运动的描述
一、几个基本概念
运动是绝对的,对运动的描述是相对的。
1. 参考系 为了描述物体的运动而被选作参考的 物体叫做参考系.
任何实物物体均可被选作参考系;场不能作为参考系。
2. 坐标系 为了定量的描述物体的运动,在选定的参考 系上建立的带有标尺的数学坐标,简称坐标系。 坐标系是固结于参考系上的一个数学抽象。
?
即:
v v lim lim ? t 0 t t 0 t
v
vB
A
v
v v dv dv dt dt
第1章 质点运动学
总结:
描述对象 位置
描述质点运动的基本物理量
物理量 位矢 定义
r , r (t )
中心
位置变化
位移
v v0
a (t )
,如何求解

dv a dt
t dv adt
t0
同理:

r
r0
t dr v dt
t0
积分上、 下限!
第1章 质点运动学 例: 质量为5kg可视为质点的物体从原点开始运动, 其加速度为 a (0.4 1.2t )i 1.6 j (设运动开始记时,t 为运动时间),求任意时刻质点的速度及运动方程。
rB
r
r r
第1章 质点运动学
讨论: 比较位移和路程
r AB
s AB
s
A
B
r
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关 直线(直进)运动 r s 何时取等号? 曲线运动 t 0时, dr ds

大学物理第一章 质点运动学

大学物理第一章 质点运动学
这一类型问题是直线运动中较简单,也是大家 在中学就已熟习的。 •匀速直线运动: a 0, v 常量,x x0 vt
a 常量,v v0 at,
•匀变速直线运动:
1 2 x x0 v0t at 2 2 2 v v0 2a( x x0 )
注意:以上各式仅适用于匀加速情形。
t t
要求 v( y ),可由
dv dv dy dv a v dt dy dt dy

积分得
v
dv kv v dy
2
dv kdy v
y dv v ky v0 v k 0 dy ln v0 ky, v v0e
1-3 曲线运动
一.运动的分解
如图,A、B为在同一高度的两个小球。在同一 时刻,使A球自由落体,B球沿水平方向射出,虽然 两球的轨道不同,但是两球总是在同一时刻落地。 说明,B球的运动可分解为在水平方向作匀速直线运 动,在竖直方向作自由落体运动。
其大小注意a aa a2 x 2 y2 z
dv dv a a dt dt
•描述质点运动的状态参量的特性 状态参量包括
r , v, a
应注意它们的
(1)矢量性。注意矢量和标量的区别。
(2)瞬时性。注意瞬时量和过程量的区别。 (3)相对性。对不同参照系有不同的描述。
1 gx y xtg 2 2 2 v0 cos 19.6 2 50tg 50tg 19.6(1 tg ) 2 cos
两边一起定积分得
dv dv adt kv dt kdt 2 v
2

v
v0
t dv k dt 2 0 v
v0 v(t ) kv0t 1

第1章 质点运动学

第1章 质点运动学
r
dr υ= dt
方向: 方向:切线方向
速度是位置矢量对时间的一阶导数
第一章 质点运动学 9
3) 平均速率和瞬时速率 平均速率
S υ= t
S dS υ = lim = dt 0 t → t
运动路径
P (t1 )
瞬时速率 讨论
υ
r
s
Q(t2 )
速度的矢量性、瞬时性和相对性。 1) 速度的矢量性、瞬时性和相对性。 2) 速度和速率的区别


第一章 质点运动学
18
§1-4 用自然坐标表示平面曲线运 动中的速度和加速度
自然坐标系 (用自然坐标 表示质点位置) 用自然坐标S表示质点位置 表示质点位置)
设质点作曲线运动,且轨迹已知, 设质点作曲线运动,且轨迹已知,则 选参考点和正方向即可建立自然坐标。 选参考点和正方向即可建立自然坐标。运 动方程为: 动方程为: s = s(t) 单位切向量τ : 长度为 ,沿切向指向运动方向 长度为1, 单位法向量 n: 长度为 ,沿法向指向凹的一侧 长度为1,
S = Rωt
第一章 质点运动学 7
§1-2 质点的位移、速度和加速度 质点的位移、
一、位移
描述质点位置变化的物理量 几何描述: 几何描述: PQ 数学描述: 数学描述: r
= r ( t + t ) r ( t )
r( t )
P S Q r
r ( t + t )
r
讨论 (1) 位移是矢量(有大小,有方向) 位移是矢量(有大小,有方向) 位移不同于路程 r ≠ S (2) 位移与坐标选取无关 (3) 由质点的始末位置确定, 由质点的始末位置确定, 与中间运动过程无关 (4) 分清 r 与r 的区别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 质点运动学
班级 ____________ 班内学号 ___________ 姓名 ____________
知识点:
1. 参考系
为了描述物体的运动而选作参考的物体称为参考系。

要作定量描述,还应在参考系上建立坐标系。

2. 位矢与运动方程
位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。

位矢用于确定质点在空间的位置。

位矢与时间t 的函数关系: k t z j t y i t x t r r
)()()()(++==称为运动方程。

位移矢量:是质点在时间Δt 内的位置改变,即位移:)()Δ(Δt r t t r r
-+=
轨道方程:质点运动轨迹的曲线方程。

3. 速度与加速度 平均速度定义为单位时间内的位移,即:t r υΔΔ = 速度,是质点位矢对时间的变化率:
t r υd d = 平均速率定义为单位时间内的路程:
t S υΔΔ= 速率,是质点路程对时间的变化率:t S υd d = 加速度,是质点速度对时间的变化率:
t υa d d = 4. 法向加速度与切向加速度 加速度 τa n a t υa t n +==d d 法向加速度
ρυa n 2
=,方向沿半径指向曲率中心(圆心),反映速度方向的变化。

切向加速度
t υa t d d =
,方向沿轨道切线,反映速度大小的变化。

在圆周运动中,角量定义如下: 角速度t θ
ωd d =
角加速度
t ωβd d = 而 R ωυ=, 22ωR R υa n ==, βR t υa t ==d d 5. 相对运动
对于两个相互作平动的参考系,有 ''kk pk pk
r r r +=,''kk pk pk υυυ +=,''kk pk pk a a a += 重点:
1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的物理量,明确它们的相对性、瞬时性和矢量性。

2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。

3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。

难点:
1. 法向加速度和切向加速度。

2.相对运动问题。

解题要点
(1)径矢、速度和加速度都是针对质点在某一时刻的运动情况定义的,在应用时要注意它们的矢量性和瞬时

(2)运动的描述和所选用的参考系有关,因此应用公式时要明确所用的参考系
(3)具体解答问题时,要根据条件画出简图,途中应包括坐标轴的方向,质点的轨道速度和加速度的方向等。

并且要使图和公式配合以便更清晰地表达解体的过程
一、 选择题
1已知质点的运动学方程为 r =2t i +(4-t 2)j , 在t>0的时间内的情况是()。

A 位置矢量可能和加速度垂直,速度不可能和加速度垂直
B 位置矢量不可能和加速度垂直,速度可能和加速度垂直
C 位置矢量和速度都可能和加速度垂直
D位置矢量和速度都不可能和加速度垂直( 此题为竞赛题)
2 质点以加速度a=-f(t)做直线减速运动经历时间T 后停止,在这段时间质点运动的距离为() A ⎰T
o dt t f )( B ⎰-T dt t f 0)( C ⎰T dt t t f 0
2)(21 D⎰⎰T T t dtdt t f 0'')( 3下列说法中正确的是()
A 加速度恒定不变时,物体的运动方向也不变
B 平均速率等于平均速度的大小
C 物体速度为零时,加速度必定为零
D质点做曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度
4 某物体的运动规律为t kv dt
dv 2-=,且k 为大于零的常数,当t=0时,初速为v0,则运动速度与时间的关系为 ()
A v=0.5kt 2+v 0 Bv= -0.5kt 2+v 0 C 1/v=0.5kt 2+1/v 0 D 1/v= -0.5kt 2+1/v 0
5一质点从静止出发绕半径为R 的圆周做变速圆周运动,角加速度为a,当质点运行一周的时间为:()
A 0.5a 2R
B a π4
C a
π2 D 条件不够不能确定 6下列两种说法:(1)速度等于位移对于时间的一阶导数,(2)加速度等于速度对时间的一阶导数,这两种说法()
A 都正确,
B (1)正确 (2)不正确,
C (1)不正确,(2)正确。

D 都不正确
二、 填空题
1)做直线运动的质点,在t ≥0时,它沿x 轴方向的速度v x =αx, 其中α为一个正的非零常量,已知t=0时,质点位于x 0>0的位置,那么质点一年冬过程中的加速度a x 与位置x 之间的函数关系为a x = , 质点位置x 与时间t 之间的函数关系为x= .
2)一质点沿x 轴做直线运动,其运动方程为x=2+6t 2-2t 3 , 则质点开始运动后4s 内的位移大小为 质点在该段时间内通过的路程为 。

3一个质点在x-y 平面内运动,其运动学方程为x=3cos4t, y=3sin4t, 则t 时刻质点的位失r(t)= , 速度v(t)= , 切向加速度为 质点的轨迹方程为 。

4一个质点在x-y 平面内运动,其运动学方程为r =2t i +(19-2t 2)J (SI), 当t= 秒时,质点的位置矢量和速度恰好垂直,当t= 时,质点离原点最近。

三、 计算题
1地面上垂直竖立一高为20m 的旗杆,已知正午时分太阳在旗杆正上方,求在下午两点时,杆顶在地面的影子速度的大小?在何时杆影子将伸展至20m?
2如图所示,湖中有一小船,岸上有人用绳跨过定滑轮拉船考岸,设滑轮距离水面高度为h, 滑轮道原船位置的绳长为l0, 试求:当人以速度v拉绳子时,求船运动的速度,加速度,以及绳上任一点的速度?
3(清华力学教材1.21题)汽车在半径R=400m的圆弧弯道上减速行驰,设在某一时刻汽车的速度为v=10m/s,切向加速度大小为0.2m/s2, 求汽车的法向加速度和总加速度的大小和方向?
4(清华力学教材1.24题)一电梯以1.2m/s2的加速度下降,其中一名乘客在电梯开始下降后0.5s时用手在离电梯底板1.5m高处释放一小球。

求此小球落到底板上所需的时间和它对地面下落的距离?
5(清华力学教材1.26题)一个人汽车以18km/h的速度自东向西行进时,看见雨点垂直下落,当他的速率增至36km/h时看见雨点与他前进的方向成1200角下落,求雨点对地的速度?
6一质点在xy平面内运动,其运动方程为2
=-+-,求任意时刻质点运动的速
r t i t j
(21)(35)
度,切向加速度、法向加速度的大小和此时质点所在处轨道的曲率半径。

相关文档
最新文档