电力变压器的结构及工作原理
变压器的结构及工作原理
变压器的结构及工作原理
变压器是一种通过电磁感应来改变交流电压的电气设备。
其主要由铁芯、一组初级和次级线圈组成。
铁芯是变压器中的核心部分,通常由铁合金材料制成,具有良好的导磁性能。
初级线圈位于铁芯的一侧,由一定数量的绕组组成,通常称为主线圈。
次级线圈位于铁芯的另一侧,同样由一定数量的绕组组成,通常称为副线圈。
当交流电通过主线圈时,产生的磁场会穿过铁芯并感应到副线圈中。
由于铁芯的导磁性能,磁场能够有效地传导到副线圈中,使得副线圈中也产生电磁感应。
根据法拉第电磁感应定律,当磁场的变化导致导线中的磁通量发生变化时,就会在导线中产生感应电动势。
通过变压器的设计,使得主线圈和副线圈的绕组比例不同,可以实现将输入电压转变为输出电压的目的。
当输入电压施加在主线圈上时,根据变压器的工作原理,输出电压将会与输入电压成正比例关系。
具体的比例关系由绕组的匝数比决定,即输出电压与输入电压之间的比值等于次级线圈的匝数与主线圈的匝数之比。
由于变压器的基本原理是基于电磁感应,因此其工作效率较高。
另外,变压器还具有隔离输入和输出电路、阻碍电流流入负载的能力等特点,使其在电力系统、电子设备和能源传输等领域中得到广泛应用。
变压器的结构及工作原理
变压器的结构及工作原理变压器是一种通过电磁感应原理将交流电能从一组线圈传递到另一组线圈的传输设备,通常用于调节电压、改变电流大小等。
它的结构简单,主要由铁芯、一组或多组绕组、绝缘材料等部件组成。
一、变压器性能参数(一)变比变比是变压器一个最基本的性能参数,指输入和输出绕组匝数之间的比值,用公式K = V2/V1表示。
(二)额定容量变压器的额定容量是指变压器所能承受的最大负荷功率。
常用的容量单位是千伏安(kVA)。
(三)额定电压额定电压是指变压器在额定容量和当前工作状态下的电压。
通常有一组或多组额定电压。
(四)铁损与漏损变压器的损耗包括铁损和漏损。
铁损是指由铁芯磁化导致的能量损失,主要与铁芯材料和变压器磁通密度相关。
漏损是指由于电磁感应原理,当磁通穿过绕组时,部分电能损失在空气中而不被转化为传输能量。
二、变压器的工作原理变压器的工作原理基于电磁感应原理。
在一个变压器中,两组线圈,即一个输入和一个输出绕组,通过铁核连接在一起。
当输入绕组中有交流电流通过时,它会产生一个交变磁场,这个磁场是通过铁芯传导的。
这个磁场切割了输出绕组中的导线,导致感应电势在输出绕组中产生。
这个感应电势的大小取决于输入和输出绕组之间的比例,即一个变比K。
输出电流大小取决于输入电流、变比K 以及输出绕组的匝数。
三、变压器的类型(一)依据用途分为电力变压器和电子变压器。
电力变压器用于输送和分配电力;而电子变压器用于电子系统和设备中。
两种变压器的主要区别在于它们的额定容量和电气参数。
(二)依据结构分为壳式变压器和开式变压器。
壳式变压器是将包覆绕组的镀铁钢壳密封,开式变压器没有钢壳覆盖;它的绕组以及引出线圈在空气中。
壳式变压器广泛应用于需要进行大功率变换的场合,例如电力输配电子系统;而开式变压器则被广泛用于电力设备,例如显示器、计算机等。
变压器是一种基于电磁感应原理工作的装置,主要将交流电能从一组线圈传递到另一组线圈。
它们的设计使得它们可以在不改变电气能源特性的前提下改变电压和电流大小。
变压器的基本原理和结构
8 油箱
油箱用于存放绝缘油,起 到绝缘和冷却的作用。
9 绝缘材料
绝缘材料用于隔离和保护 绕组和其他元素。
变压器的分类
按用途分类
电力变压器、工业变 压器
按环境分类
户内变压器、户外变 压器
按冷却方式分类
干式变压器、油浸变 压器
按频率分类
低频变压器、高频变 压器
变压器的特点
1 低损耗
变压器具有较低的电能转换损耗,高能量利 用效率。
变压器的基本原理和结构
变压器是一种电力设备,基于电磁感应定律和互感现象工作。它由磁芯、一 次线圈、二次线圈等组件构成,具有高效率、安全可靠和低成本等特点。
变压器的基本原理
1 电磁感应定律
2 互感现象
根据法拉第电磁感应定律, 当磁通量发生变化时,会 在相邻的线圈中引发感应 电动势。
互感现象是指一次线圈中 的变化电流引起二次线圈 中感应电压的现象。
2 一次线圈
3 二次线圈
一次线圈是输入侧的线圈, 通过电流的变化产生磁场。
二次线圈是输出侧的线圈, 通过磁感应产生感应电动 势。
4 绕组
绕组是指一次线圈和二次 线圈的线圈绕制。
5 端子
端子用于连接变压器的输 入和输出电路。
6 冷却系统
冷却系统可以有效散热, 保证变压器正常工作。
7 外部壳体
外部壳体保护内部元件, 并提供绝缘和安全性能。
2 绝缘材料耐用
选用耐高温、耐电压波动的绝缘材料,保证 变压器长期稳定工作。
3 效率高
变压器的能量转换效率高,能够大幅减பைடு நூலகம்能 源浪费。
4 维护方便
变压器结构简单,易于检修和维护。
5 安全可靠
变压器具备过流、过压等保护措施,减少事 故的发生。
变压器的工作原理
变压器的工作原理一、引言变压器是电力系统中常见的电气设备,用于改变交流电的电压和电流。
本文将详细介绍变压器的工作原理,包括基本原理、结构和工作过程。
二、基本原理1. 电磁感应定律根据法拉第电磁感应定律,当一个导体在磁场中运动或者磁场变化时,会在导体中产生感应电动势。
变压器利用这一原理实现电压的转换。
2. 互感现象互感现象是指两个或者多个线圈通过磁场相互耦合时,其中一个线圈中的电流变化会在其他线圈中产生感应电动势。
变压器中的两个线圈分别称为主线圈和副线圈。
三、变压器的结构1. 铁心变压器的铁心是由硅钢片叠压而成,主要作用是提高磁通的传导性能,并减少铁损耗。
2. 主线圈主线圈是变压器的输入线圈,通常由较粗的导线绕制而成。
当主线圈中通过交流电流时,会在铁心中产生磁场。
3. 副线圈副线圈是变压器的输出线圈,通常由较细的导线绕制而成。
副线圈通过互感现象与主线圈相连,将主线圈中的磁场转换为感应电动势。
四、变压器的工作过程1. 变压器的工作原理可以分为两个阶段:磁场建立和磁场消失。
2. 磁场建立阶段当交流电通过主线圈时,产生的交变电流会在主线圈中产生交变磁场。
由于主线圈和副线圈之间的互感作用,副线圈中也会产生交变电动势。
3. 磁场消失阶段当交流电的方向改变时,主线圈中的交变磁场也会改变方向。
这个变化的磁场会在副线圈中产生感应电动势,导致副线圈中的电流方向发生变化。
4. 变压器的电压转换根据互感现象,变压器中主线圈和副线圈的匝数比可以决定输出电压与输入电压的比例关系。
当主线圈匝数较大时,输出电压相对较低;当主线圈匝数较小时,输出电压相对较高。
五、总结变压器是一种基于电磁感应和互感现象的电气设备,用于改变交流电的电压和电流。
它由铁心、主线圈和副线圈组成。
变压器的工作过程包括磁场建立和磁场消失两个阶段,通过互感现象实现电压的转换。
变压器在电力系统中起到了重要的作用,广泛应用于输电、配电和电子设备中。
电力变压器的结构及工作原理
电力变压器的结构及工作原理一、电力变压器的结构1.铁芯铁芯是电力变压器的主要结构部分,通常由高导磁性材料制成,比如硅钢片。
铁芯主要有两个作用,首先是提供一个磁路,以便能够尽可能地束缚并引导磁力线。
其次,铁芯也可以减少由于磁感应强度快速变化而引起的涡流损耗。
2.线圈线圈是电力变压器中的另一个重要部分,主要分为两种类型:主线圈和辅助线圈(也称为副线圈)。
(1)主线圈(也称为高压线圈)由许多匝绕的导线组成。
当主线圈中通过交流电信号时,它产生一个强磁场。
(2)辅助线圈(也称为低压线圈)也由许多匝绕的导线组成。
辅助线圈中的导线被连接到负载电路,当主线圈中的磁场经过辅助线圈时,它会诱导出电流,从而传递相应的电能。
二、电力变压器的工作原理1.交流电的供应2.磁场的产生当高压交流电进入主线圈时,它会产生一个强磁场。
强磁场是由主线圈中的电流引起的,这个电流是通过电流源供应的。
3.磁感应的传递通过铁芯的高导磁性材料,磁场可以有效地传递到辅助线圈中。
铁芯的作用是减少磁感应的散失,并将磁场引导到辅助线圈中。
4.磁场的诱导当磁场经过辅助线圈时,根据法拉第电磁感应定律,线圈中将会诱导出电流。
这个诱导电流的大小取决于主线圈中的电流和磁感应的变化速率。
5.电能传输辅助线圈中诱导出的电流被馈送到负载电路中,从而传递相应的电能。
通过调整主线圈和辅助线圈的匝数比(即变压器的变比),可以有效地改变电压的大小。
6.能量效率虽然电力变压器可以有效地改变电压,但在变压过程中会产生一些能量损耗。
其中包括导线的电阻损耗,铁芯的涡流损耗和磁滞损耗。
为了提高能量效率,变压器通常采用高导磁性的材料和设计。
综上所述,电力变压器的结构和工作原理是通过主线圈和辅助线圈之间的电磁感应来实现的。
通过改变匝数比,变压器能够有效地转换和传输交流电的电能。
电力变压器在能源传输和分配中起着至关重要的作用,是现代电力系统的重要组成部分之一。
变压器的结构及工作原理
变压器的结构及工作原理变压器是一种用于将电能从一种电压转换为另一种电压的电气设备。
它是电力系统中非常常见的设备之一,被广泛应用于发电厂、变电站、工业生产和民用电力系统中。
变压器的结构和工作原理十分重要,下面详细介绍。
一、变压器的结构变压器由两个或更多的线圈通过铁芯相互连接而成。
主要包括以下部分:1.铁芯:变压器的铁芯由硅钢片组成,可有效减小磁滞和涡流损耗。
铁芯的形状包括E型、I型和C型等,用于支撑和保护线圈。
2.一次线圈(主绕组):也称为原线圈或输入线圈,接收电源端的输入电能。
一次线圈一般由较粗的导线绕制而成。
3.二次线圈(副绕组):也称为输出线圈,输出变压器转换后的电能。
二次线圈一般由较细的导线绕制而成。
4.绝缘材料:用于在不同线圈之间提供电气绝缘,避免相互之间的短路。
5.冷却装置:用于散热,以保证变压器的工作温度不超过允许范围。
常见的冷却方式包括自然冷却(静风冷却)和强制冷却(风扇冷却、冷水冷却等)。
二、变压器的工作原理变压器基于电磁感应的原理工作,其主要过程是通过变化的磁场引起线圈中的电压变化。
1.变流原理:根据法拉第电磁感应定律,当一次线圈中的电流变化时,会在铁芯中产生一个变化的磁场。
这个磁场穿过二次线圈,并在其中引起电动势的产生。
根据电磁感应定律,产生的电动势与变化的磁场强度成正比。
2.变压原理:根据楞次定律,一次线圈和二次线圈中的电流方向是相互反的。
当一次线圈接通电源时,通过它的电流会在铁芯中产生一个磁场。
这个磁场会在二次线圈中引起电动势的产生,并使得二次线圈中的电流流动。
变压器的输入电压和输出电压之比等于输入线圈的匝数和输出线圈的匝数之比。
即:输入电压/输出电压=输入线圈匝数/输出线圈匝数3.近似理想性:在实际的变压器中,我们可以近似认为主线圈和副线圈之间没有电阻,也没有电感。
这样,变压器的损耗可以忽略不计,输出电压会完全等于输入电压。
4.变压器的效率:实际的变压器会有一定的损耗,主要包括铁损耗和铜损耗。
第三章 变压器
Zk
Uk Ik
Rk
pk
I
2 k
Xk
Z
2 k
Rk2
绕组的电阻时随温度而变的,故经过计算的到的短路参数应 根据国家标准规定折算到参考温度。
三 、相量图
根据T形等效电 路,可以画出相应 的相量图。
四 、近似等效电路图
RK、XK和ZK分别称为短路电阻、短路电抗和短路阻抗。
单相变压器基本方法总结
分析计算变压器运行的方法:
基本方程式:变压器电磁关系的数学表达式。 等效电路:基本方程式的模拟电路。 相量图:基本方程式的图示表示。
三者是统一的,一般定量计算用等效电路,讨论各 物理量之间的相位关系用相量图。
E2 KE2
E2 KE2
U 2 KU 2
(二)电流的归算 电流归算的原则:归算前后二次侧磁动势保持不变。
N2'I2' N2I2
(三)阻抗的归算
I 2
I2 K
阻抗归算的原则:归算前后电阻铜耗及漏感中无功功率不变。
I 22 R2
I
2 2
R2
I22 X 2
I
2 2
X
2
R2
I
2 2
I22
R2
K 2R2
S7-315/10 三相(S)铜芯10KV变压器,容量315KVA,设计序号7为节 能型.
SJL-1000/10 三相油浸自冷式铝线、双线圈电力变压器,额定容量为 1000千伏安、高压侧额定电压为10千伏。
我国生产的各种变压器主要系列产品有:S7、SL7、S9、 SC8等。其中SC8型为环氧树脂浇注干式变压器。
同心式绕组 1—铁心柱 2—铁轭 3—高压线圈 4—低压线圈
交叠式绕组 1—低压绕组 2—高压绕组
变压器的基本结构与工作原理
变压器的基本结构与工作原理变压器,这个名字一听就有点高大上,但其实它的工作原理就像我们日常生活中的很多事情,简单而又神奇。
你想啊,就像你把一杯热水倒入另一杯冷水,温度就会慢慢平衡一样,变压器也在电流的世界里做着类似的事情。
那今天就来聊聊这个小家伙的基本结构和它是怎么工作的吧!1. 变压器的基本结构1.1 铁心首先,变压器的核心部分就是铁心。
这玩意儿可不简单,想象一下,它就像是变压器的脊梁骨,得承受一切。
一般来说,铁心是由很多层薄铁片叠成的,目的是为了减少能量的损耗。
你知道的,越薄越轻,热量就不容易散发,节省电力也省心。
它的工作方式就像一个优雅的舞者,轻轻地在电流中舞动,把能量传递得流畅无比。
1.2 绕组接下来,绕组就是变压器的“心脏”了。
它们一般分为高压绕组和低压绕组,就像是两个兄弟,一个负责“高大上”,一个负责“接地气”。
电流在高压绕组里走得飞快,像个风一样呼啸而过;而在低压绕组里,它则慢慢变得温和,适合我们日常使用。
这个过程就像一个调皮的小孩子,时而奔放,时而安静,总是给我们带来惊喜。
2. 变压器的工作原理2.1 电磁感应好了,讲到这里,很多人可能会问,这变压器到底是怎么工作的呢?其实,变压器的工作原理主要是依靠电磁感应。
简单来说,就是一个线圈里有电流流动时,周围就会产生磁场。
这个磁场就像是魔法一样,能影响到另一个线圈。
你想啊,如果你在火锅店里,锅里煮的火锅冒着热气,旁边的食材也会被吸引过来一样。
电流通过高压绕组产生的磁场,就能让低压绕组里的电流悄悄跑出来。
2.2 电压转换当我们把电流传递给低压绕组的时候,电压就会发生变化。
就像我们常说的“换个地方看看”,有时候会让事情变得更好。
在变压器中,电压的高低取决于绕组的圈数比。
如果高压绕组的圈数多,那么电压就高;反之,如果低压绕组的圈数少,电压就低。
这个过程就像打麻将,手里的牌决定了你能出的招数,变压器的“牌”也是这样定的。
3. 变压器的应用3.1 生活中的变压器变压器的应用可谓无处不在。
电力变压器手册
电力变压器手册1. 简介电力变压器是一种用来改变交流电电压的装置,广泛应用于电力系统中。
本手册将详细介绍电力变压器的原理、结构、分类、选型、使用和维护等相关内容。
2. 原理电力变压器的工作原理是基于电磁感应。
通过在一侧绕制主线圈(或称原线圈),在另一侧绕制副线圈,通过电磁感应作用实现电压的升降。
2.1 电压变换原理当主线圈中通有交流电时,由于交变电流的变化,产生的磁场也会随之变化。
这个变化的磁场通过变压器的铁芯传递给副线圈,从而在副线圈中诱导出交变电动势。
根据电磁感应的原理,如果主线圈中的匝数比副线圈中的匝数多,则副线圈中产生的电压将高于主线圈中的电压;反之,如果主线圈中的匝数比副线圈中的匝数少,则副线圈中产生的电压将低于主线圈中的电压。
2.2 能量传递原理电力变压器将能量从一侧传递到另一侧,实现电压和电流的变换。
原线圈中的电能通过磁场传递到铁芯中,再由铁芯传递到副线圈,最终转化为副线圈中的电能。
3. 结构与分类电力变压器通常由铁芯、线圈和冷却系统等部分组成。
根据用途和结构的不同,电力变压器可分为多种类型,主要包括:3.1 功率变压器功率变压器是用来调节电力系统中电压的变压器。
它能够将高压电变成低压电,或将低压电变成高压电。
3.2 隔离变压器隔离变压器用于电源隔离和信号隔离等场合。
它的主要功能是保护电气设备,防止电压的突变对设备造成损害。
3.3 自耦变压器自耦变压器是一种将电压降低或升高一个固定值的变压器。
它的特点是主线圈和副线圈共享一部分匝数,从而实现电压的变换。
4. 选型与使用在选取电力变压器时,需要考虑多个因素,包括功率要求、电流负载、温升要求等。
以下是选型与使用电力变压器时需要注意的几个要点:4.1 负载能力电力变压器的负载能力是指变压器在一定时间内可以承受的最大负荷。
根据实际需要确定变压器的负载能力,以保证正常运行。
4.2 效率电力变压器的效率是指变压器输入功率和输出功率的比值。
高效率的变压器可以减少能源浪费,提高电力系统的运行效率。
第五章 第一节变压器原理
(2)绕组 一般用绝缘扁铜线或圆铜线在绕线模上绕 制而成。 绕组套装在变压器铁心柱上,一般低压绕 组在内层,高压绕组套装在低压绕组外层, 以便于提高绝缘性能。
(3)油、油箱、冷却及安全装置 器身装在油箱内,油箱内充满变压器油。 变压器油是一种矿物油,具有很好的绝缘性能。 变压器油起两个作用:①在变压器绕组与绕组、 绕组与铁心及油箱之间起绝缘作用。②变压器油 受热后产生对流,对变压器铁心和绕组起散热作 用。 油箱有许多散热油管,以增大散热面积。 为了加快散热,有的大型变压器采用内部油泵强 迫油循环,外部用变压器风扇吹风或用自来水冲 淋变压器油箱。这些都是变压器的冷却装置。
二、变压器的基本工作原理
图5.1 双绕组变压器的工作原理示意图 (1)原理图 一个铁心:提供磁通的闭合路径。 两个绕组:一次侧绕组(原边)N1,二次侧绕组(副边)N2。 (2)工作原理 当一次绕组接交流电压后,就有激磁电流i存在,该电流在铁心中可产生一个 交变的主磁通Φ。 Ф在两个绕组中分别产生感应电势e1和e2
I 0 I m I 0 I 0a
图5.9给出了对应主磁路的相量图和等效电路。
(5-12)
图5.9 变压器主磁路的相量图和等效电路
由图5.9b得:
E1 (rm jxm )I m zm I m
2
(5-13)
r 式中,m 为激磁电阻,它反映了铁心内部的损耗即: pFe I m rm ;xm Lm 为激磁电 抗,它表征了主磁路铁心的磁化性能,其中,激磁电感 Lm 可由下式给出:
,称 S U1 I1 U 2 I 2 为视在容量。
由此可见,变压器在实现变压的同时也实现了变流。此外,变压器还可以实现阻抗变 换的功能。可以看出,若固定U1,只要改变匝数比即可达到改变电压的目的了,即: 若使 N2>N1,则为升压变压器(step-up transformer); 若使 N2<N1,则为降压变压器(step-down transformer)。 图5.1中,二次侧的负载阻抗为:
变压器结构与工作原理
§1-2 变压器的结构
奇数层
1 2 3 4
偶数层
5
6
奇数层
偶数层
§1-2 变压器的结构
三、主要附件 (1)储油柜:油枕,与油箱相连。隔绝空气、便于油的 体积改变,缩小所有油与空气的接触面。 (2)气体继电器:位于油枕与油箱之间。故障时产生动 作、及时发出信号或切断变压器。
(7)测温装置:温度计。监测油温及绕组的温度。
问题:为什么一般电力变压器都从高压侧抽分头? 答案:
(1)高压绕组套装在低压绕组的外面,抽头引出和连接方便。 (2)高压侧比低压侧电流小,引线和分接开关的载流面积小。
§1-2 变压器的结构
分类:
圆筒式:小容量变压器 线段式:小容量高压绕组 连续式:大容量高压绕组 螺旋式:大容量低压绕组 2.交叠绕组 交叠绕组的结构:将高、低压绕 组绕成饼式,沿铁芯轴向交叠放 置。两边靠近铁轭处为低压绕组, 中间为高压绕组。 交叠绕组的用途:大多用于壳式、干式变压器。
§1-2 变压器的结构
第一章 变压器的结构与工作原理
§1-2 变压器的结构
变压器主要部件是绕组和铁芯(器身)。绕组是 变压器的电路部分,铁芯是变压器的磁路部分。二 者构成变压器的核心即电磁部分。 除了电磁部分,还有油箱、绝缘套管、储油柜、压 力释放阀、安全气道、温度计和气体继电器等附件。 一、绕组:变压器的电路部分 绕组的材料:一般用绝缘扁铜线或圆铜线在绕线模上 绕制而成,也有用铝线、铝箔或铜箔的。
二、铁芯:变压器的磁路部分 铁芯柱:铁芯中缠绕组的部分。 铁轭:铁芯的连接(铁芯柱)部分。 1.铁芯的材料 硅钢片叠加而成——减少磁阻和铁损。 热轧:分为厚度0.35mm、0.5mm两种,中 间涂绝缘漆,多用于小型变压器。 硅钢片 冷轧:分为厚度0.35mm、0.30mm、0.27mm 等多种,磁导性能高、损耗小、导磁有方 向性,多用于中大型变压器。
变压器的主要结构和工作原理
变压器的主要结构和工作原理引言概述:变压器是电力系统中常见的电力设备之一,它在电能传输和分配中起着重要的作用。
本文将详细介绍变压器的主要结构和工作原理,以帮助读者更好地理解和应用变压器。
正文内容:一、变压器的主要结构1.1 主要结构组成- 主要由铁芯、一次绕组和二次绕组组成。
- 铁芯是变压器的主要磁路部分,通常由硅钢片叠压而成,以减小磁导率和磁阻。
- 一次绕组是输入侧的绕组,通常由导电材料绕制而成。
- 二次绕组是输出侧的绕组,也由导电材料绕制而成。
1.2 绝缘和冷却系统- 变压器的绝缘系统是保证安全运行的关键,通常使用绝缘材料将绕组和铁芯分隔开。
- 冷却系统对于变压器的正常运行至关重要,常见的冷却方式有自然冷却和强制冷却。
1.3 外壳和配电设备- 变压器通常有一个外壳,用于保护内部部件免受外界环境的影响。
- 配电设备包括开关、熔断器和保护装置等,用于控制和保护变压器的正常运行。
二、变压器的工作原理2.1 电磁感应原理- 变压器的工作基于电磁感应原理,当一次绕组通入交流电时,会在铁芯中产生交变磁场。
- 交变磁场会感应二次绕组中的电动势,从而使电能从一次绕组传递到二次绕组。
2.2 变压器的变压比- 变压器的变压比是指输入电压与输出电压之间的比值,可以通过绕组的匝数比来确定。
- 变压器可以实现电压的升高或降低,根据需要选择合适的变压比。
2.3 损耗和效率- 变压器在工作过程中会产生一定的损耗,包括铁损耗和铜损耗。
- 效率是衡量变压器性能的重要指标,可以通过输出功率与输入功率的比值来计算。
三、变压器的应用领域3.1 电力系统- 变压器在电力系统中用于电能传输和分配,将发电厂产生的高压电能转换为适用于用户的低压电能。
- 在输电过程中,变压器可以实现电压的升高,减少输电损耗。
3.2 工业领域- 变压器在工业领域中广泛应用于电力设备、机械设备和照明系统等。
- 它可以为各种设备提供合适的电压和电流,满足工业生产的需求。
变压器的结构及工作原理
变压器的结构及工作原理
1. 变压器的结构
变压器是一种用于升降电压的电器设备,由变压器铁芯、绕组、油箱、散热系统、绝
缘系统等部分组成。
(1) 变压器铁芯
变压器铁芯是由硅钢片按照一定的规则叠压而成的,主要作用是集中磁通并将其导入
绕组,同时减少磁通漏损和铁损。
变压器铁芯的构造形式有C、I、U、EI等。
(2) 绕组
变压器绕组是由铜或铝线缠绕在铁芯上的导线。
绕组包括高压绕组、低压绕组和中性
点绕组。
绕组的质量和结构影响变压器的电性能和使用寿命。
(3) 油箱
变压器油箱是装在变压器铁芯和绕组周围的容器,主要作用是冷却和绝缘,同时也用
于存储变压器油。
(4) 散热系统
变压器的散热系统通常包括风扇、散热片等,用于降低变压器的温度,保证变压器运
行的稳定性和可靠性。
变压器的绝缘系统包括绝缘材料、绝缘结构和绝缘电气测试等,用于保证变压器的安
全可靠性和使用寿命。
变压器的工作原理是基于电磁感应的原理。
当电压在变压器的高压绕组中产生变化时,导致高压绕组中的磁通量随之变化,磁通量的变化产生电磁感应力,导致低压绕组中的电
压也产生变化,从而达到升压或降压的作用。
在变压器中,电压的变化与磁通量的变化成正比。
由此可知,当发生输入电压变化时,变压器的磁通量也会随之变化,影响到输出电压,导致电压的升降。
变压器工作的效率很高,而且体积小,因此广泛应用于各个领域,如电力系统、工厂、家庭等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.吸湿器 吸湿器又名呼吸器,常用 吸湿器为吊式吸湿器结构。 吸湿器内装有吸附剂硅胶, 油枕内的绝缘油通过吸湿 器与大气连通。 当储油柜油面下降时,外 部空气因为大气压的作用, 先通过呼吸器底部变压器 油,滤去杂质,再通过干 燥剂吸去水分,最后进入 储油柜,保证了变压器油 的绝缘强度。
8.净油器 变压器的净油器也是一个充有吸收剂的 容器。当变压器油流经吸收剂时,油中 所带的水分、游离酸和加速绝缘老化的 氧化物等皆被吸收,借此使变压器油得 到连续再生。 根据油在净油器内的循环流通的方式不 同,净油器可分为温差环流法和强制环 流法两类。变压器运行时,由于上下层 油存在温差,于是变压器油从上至下经 过净油器,这种方式称为温差环流法, 常用于油浸自冷或油浸风冷变压器。强 制环流法净油器需有强迫油循环的机械 力(如油泵)作为油流动的动力,适用 于强迫油循环冷却的变压器。
5.油枕 (1)使变压器油箱在任何气温及运行状况下均充满油。 (2)为了使变压器器身和套管下部能可靠地浸入油中,保证了安全运行, 且可减小套管的设计尺寸。 (3)变压器油仅在油枕内与空气接触 (有些还装有胶囊呼吸器),与空气接触 面减少,使变压器油的受潮和氧化机会减少,油枕内的油温较油箱内油温低, 也使氧化速度变慢,有利于减缓油的老化。 (4)油枕和油箱的连管中间可安装气体继电器。 (5)变压器油从空气中吸收的水分将沉积在油枕底部集污器内以便定期放 出,使水分不会迸人油箱。
强迫油循环风冷变压器:
冷却器全停后,油温达75度,持续20分钟跳闸; 冷却器全停后,持续60分钟,不经油温控制跳闸; 冷却器全停后,温度达95度,直接跳闸。
3.型号(了解)
特殊使用环境代号 额定电压 额定容量 特殊用途和特殊结构代号 设计序号 调压方式 导线材料 绕组数 油循环方式 冷却方式 相数 产品类别
“高往高调:低压侧电压高,分接头就往高档位调。”(1档为高档) “低往低调:低压侧电压高,分接头就往低档位调。” 某220kV变压器,1档高压侧额定电压250kV,中压侧110kV,变比为 25/11;2档高压侧额定电压220kV,中压侧110kV,变比为22/11。假 设系统电压为220kV,1档中压侧为220/25*11=96.8kV,2档中压侧电 压为220/22*11=110kV。 不能用有载调压的情况: 过负荷、调压装置异常、调压装置油位低、调压装置瓦斯发信、调压 装置油温低于-40度。
11.温度计 大型变压器都装有测量上层油温的测温装置,它装在变压器油箱外,便于 运行人员监视变压器油温情况。 绕组温度是通过采集上层油温和负荷电流后,通过相应的热反应得到,也 即其不是真实的绕组温度。
12.套管 变压器套管是变压器箱外的主要绝缘装置,变压器绕组的引出线必须穿过 绝缘套管,使引出线之间及引出线与变压器外壳之间绝缘,同时起固定引 出线的作用。因电压等级不同,绝缘套管有纯瓷套管、充油套管和电容套 管等形式。纯瓷套管多用于10kV及以下变压器,它是在瓷套管中穿一根导 电铜杆,瓷套内为空气绝缘。充油套管多用在35kV级变压器,它是在瓷套 管充油,在瓷套管内穿一根导电铜杆,铜杆外包绝缘纸。电容式套管由主 绝缘电容芯子,外绝缘上下瓷件,连接套筒,油枕,弹簧装配,底座,均 压球,测量端子,接线端子,橡皮垫圈,绝缘油等组成。它用于100kV以 上的高电压变压器上。
电力变压器的结构及工作原理
一、电力变压器的用途和分类
二、电力变压器的结构 三、电力变压器的电气特性
一、电力变压器的用途和分类
1.升压变和降压变 升压变低压侧额定电压=发电机额定电压 升压变高压侧额定电压比线路额定电压高10% 降压变高压侧额定电压=线路额定电压 降压变低压侧额定电压比线路额定电压高10% 多的10%一般是用于补偿线路电压损失和变压器 阻抗压降。
6.气体继电器 A、罩 B、项针 C、气塞 D、磁铁 E、开口杯 F、重锤 G、探针 H、支架 K、弹簧 L、挡板 M、磁铁 N、螺杆 P、干簧接点(跳闸用) Q、调节杆 R、干簧节点(信号用) S、套管 T、嘴子
6.气体继电器 气体继电器又称瓦斯继电器,是利用变压器内故障时产生的热油流 和热气流推动继电器动作的元件,是变压器的保护元件; 瓦斯继电器装在变压器的油枕和油箱之间的管道内; 轻瓦斯主要反映在运行或者轻微故障时由油分解的气体上升入瓦斯 继电器,气压使油面下降,继电器的开口杯随油面落下,轻瓦斯干 簧触点接通发出信号,当轻瓦斯内气体过多时,可以由瓦斯继电器 的气嘴将气体放出。规程规定,轻瓦斯报警必须检查主变。 重瓦斯主要反映在变压器严重内部故障(特别是匝间短路等其他变 压器保护不能快速动作的故障)产生的强烈气体推动油流冲击挡板, 挡板上的磁铁吸引重瓦斯干簧触点,使触点接通而跳闸。规程规定, 重瓦斯动作不可试送主变。
为什么高压绕组都在外侧? 一是绝缘考虑,电压等级低一些的绕组靠近铁芯,从绝缘角度容易做 到;二变压器调档是改变高压侧匝数实现,因为高压侧电流小一些, 分接开关体积小,接触器引线和接头容易解决。 升压变功率是从低压侧流向高压侧,低压侧在中间,其自感被抵消, 等值电抗较小,它与高压侧的短路电压变小,也即高压侧达到额定电 流时,低压侧所需施加的电压较小,利于升压。
在结构上,它是构成变压器的骨架。在它的铁芯柱上套上带有绝缘的线 圈,并且牢固地对它们支撑和压紧。
铁芯的结构
接地片 上夹件 铁轭螺杆 拉螺杆 芯柱绑扎
铁芯磁导线
下夹件
变压器铁损:当成块的金属放在变 化的磁场中.或者在磁场中运动时, 金属内将产生感应电流。这种电流 在金属内自成闭合回路,犹如水的 旋涡故称涡流,由于成块金属的电 阻很小,所以涡流很强,使成块金 属大量发热,同时电能遭到大量的 浪费。 此外还存在磁滞损耗 。
高压套管、低压套管
出线装置
1.高压套管 2.分接开关 3.低压套管 4.瓦斯继电器 5.防爆管 6.油枕 7.油位表 8.吸湿器 9.散热器 10.铭牌
11.接地螺栓 12.油样活门 13.放油阀门 14.活门 15.绕组
16.温度计 17.铁芯
18.净油器 19.油箱 20.变压器油
1 . 铁芯 铁芯在电力变压器中是重要的组成部件之一。它由高导磁的硅钢片叠积 和钢夹件夹紧而成,铁芯具有两个方面的功能: 在原理上,铁芯是构成变压器的磁路。它把一次电路的电能转化为磁能, 又把该磁能转化为二次电路的电能,因此,铁芯是能量传递的媒介体。
为了减少铁芯的磁滞和涡流损耗,铁芯用厚度为0.3~0.5mm的硅钢片冲 剪成几种不同尺寸,并在表面涂厚为0.01~0.13mm的绝缘漆,烘干后按 一定规则叠装而成。 由于硅钢片比普通钢的电阻串大,因此利用硅钢片制成的铁芯可以进一 步减小涡流损耗。
为什么铁芯要一点接地?
因为运行中变压器的铁芯与其他附件都处于绕组周围很强的电磁场内, 如果不接地,必然因为电磁场作用,铁芯与其附件必然产生一定的电 位差。容易造成放电现象,使绝缘油分解或损坏其他固体绝缘介质。 如果是几点接地,通过接地点形成涡流通路,将造成铁芯发热,所以 只允许一点接地。 铁芯多点接地的故障特征: 铁芯局部过热,使铁芯损耗增加,甚至烧坏; 过热造成的温升,使变压器油分解,产生的气体溶解于油中,引起变 压器油性能下降,油中总烃大大超标; 油中气体不断增加并析出(电弧放电故障时,气体析出量较之更高、更 快),可能导致气体继电器动作发信号,甚至使变压器跳闸。
负 载 损 耗
符合GB/T 6451
8
比GB/T 6451平均 下降10%
6、10
≥35
比GB/T 6451组Ⅰ平均下降30%
比GB/T 6451平均下降40%
比GB/T 6451平均 下降15%
ቤተ መጻሕፍቲ ባይዱ
(9)特殊用途或特殊结构代号 Z――低噪声用; L――电缆引出 X――现场组装式; J――中性点为全绝缘; CY――发电厂自用变压器 (10)变压器的额定容量 变压器的额定容量,单位为kVA。 (11)变压器的额定电压 变压器的额定电压,单位为kV。
9.防爆管 防爆管又名安全气道,装在油箱的上盖上,由一个喇叭形管子与 大气相通,管口用薄膜玻璃板或酚醛纸板封住。为防止正常情况 下防爆管内油面升高使管内气压上升而造成防爆薄膜松动或破损 及引起气体继电器误动作,在防爆管与储油柜之间连接一小管, 已使两处压力相等。
10.压力释放阀 压力释放阀是变压器的一种压力保护装置,当主变内部严重故障 时,大量油分解,压力急剧上升,压力释放阀及时打开放出油气, 避免损坏变压器,当压力降低时,压力释放阀自动闭合。
二、油浸式电力变压器的结构
油 浸 式 电 力 变 压 器
器身
油箱
铁芯、绕组、绝缘结构、引线、分接开关 油箱本体(箱盖、箱壁、箱底)和附件(放油阀门、 油样活门、接地螺栓、铭牌
散热器和冷却器
冷却装置
保护装置
储油柜(油枕)、油位表、防爆管(安全气道)、吸 湿器(呼吸器)、温度计、净油器、气体继电器(瓦斯 继电器)
(8)性能水平代号(设计序号)
性能水 平代号 7 电压等 级 kV 6、10 ≥35 6、10 ≥35 6、10 9 6、10 ≥35 10 11 6、10 ≥35 性 能 参 数
空 载 损 耗
符合GB/T 6451组Ⅱ 符合GB/T 6451 符合GB/T 6451组Ⅰ 比GB/T 6451平均下降10% 配电变压器符合表A2 电力变压器比GB/T 6451组Ⅰ平均下降 10% 比GB/T 6451平均下降20% 比GB/T 6451组Ⅰ平均下降20% 比GB/T 6451平均下降30%
(1)产品类别代号 O-自耦变压器,通用电力变压器不标 H-电弧炉变压器 C-感应电炉变压器 Z-整流变压器 K-矿用变压器 Y-试验变压器
(2)相数 D-单相变压器 S-三相变压器 (3)冷却方式 F-风冷式 W-水冷式 注:油浸自冷式和空气自冷式不标注
(4)油循环方式 N―自然循环 O―强迫导向循环 P―强迫循环 (5)绕组数 S―三绕组 注:双绕组不标注 (6)导线材料 L―铝绕组 注:铜绕组不标注 (7)调压方式 Z―有载调压 注:无载调压不标注