血清分离胶介绍技术特征详解 [兼容模式]

血清分离胶技术特征详解解清分离胶技术特征详

成都众睿达科技有限公司王德永

血清分离胶

血清分离胶应用于真空采血管中,是用于临床血清或血浆检验样本制备时隔离血凝块与血清,或者隔离血细胞与血浆,使离心分离后的样本保持稳定,便于样本保存并确保检查结果的准确性。

?

血清分离胶应具有的特点血清样本表面无油珠,无析出物。长期使用不会堵塞吸样针;无爬杆(蹿胶)。分离胶加胶完成,静止小时(或℃烘烤小时)后无爬杆现象;

惰性。最大程度地减小对检测结果的干扰。性能稳定。老化和实时实验均应表明,年内存放稳定,不会影响分离效果。优良的耐辐照灭菌性。可以耐受的辐照灭菌。分离效果好,离心力适中,易于离心。最小离心力不大于,离心时间只需要分钟,无需二次离心。

运输储存过程中低于℃时不会发生倒流。高性价比。进口分离胶的效果,接近国产分离胶的价格。血清分离胶

l

l l

l

l

l l

l 724524225kGy 1300g 555

血清分离胶

技术特征详解密度离心力与离心时间分隔效果堵针与油珠爬杆(蹿胶)稳定性耐辐射性检测结果可靠性高温储运时防倒流?

l

l

l

l

l

l

l

l

l

血清分离胶

技术特征详解

密度

±℃

介于血清和血凝块之间。

、积水和众睿达的血清分离

胶密度均在该范围内。

。?l 1.05 0.005 25 1.02 1.08BD

血清分离胶

技术特征详解离心力与离心时间

≥,离心时间;

推荐离心力:,离心时间不少于。市场上的离心力稍大,大概要—,。众睿达和积水的一般在—离心中即可。

注意:当选择小的离心力时,应选用较长的离心时间。

?

l 1300g 5min 1300g-2000g 5min BD 15001800g 10min 13001500g 5min

血清分离胶

技术特征详解分隔效果

分隔层≥时,分离胶与采血管壁四周结合良好,防止血清与血凝块互混在一起。

积水和众睿达分离胶在临床使用中未发现隔离失败的情况。

?

l 4mm

血清分离胶

技术特征详解堵针与油珠

应用分离胶的采血管,分离后的血清样本表面无油珠,长期使用不易发生因分离胶析出物导致的堵塞吸样针。

()众睿达和积水临床使用少见因分离胶导致的堵针现象;()众睿达分离胶在加速老化实验中也未见油珠现象。

?

l 12

血清分离胶

技术特征详解堵针与油珠

注意:油珠的鉴别方法:加胶后采血、凝血并离心,对着灯管或自然光,观察血清凹陷表面中心处是否有圆形油状物质,该油状物质始终会保持在凹陷表面中心处,再次离心后也不会消除(胶粒再次离心后可以消除)。另外的快速方法包括在℃的热水中拉丝,观察有无油膜析出。

?

l 1. 37

血清分离胶

技术特征详解堵针与油珠

分离胶油珠观察示意图?

l

血清分离胶

技术特征详解爬杆(蹿胶)

无爬杆现象:应用分离胶的采血管,在以下离心时,分离后分离胶与血清交界处应无分离胶爬杆现象,以进一步降低了分离胶堵针的可能性。

()测试应在分离胶加胶后小时或℃老化小时后,确保胶体性能稳定;

)建议与其他分离胶加入对比试验确保方法正确可靠。

?

l 2400g 17245242

血清分离胶

技术特征详解爬杆(蹿胶)

与国产()分离胶爬杆爬杆现象对比

(左只为众睿达分离胶,右两只为某国产分离胶)

?

l TB-KS 2

血清分离胶

技术特征详解稳定性

老化和实时实验(年月研发产品)均表明,年内存放

性能稳定:离心力稳定,无油珠析出。?

l 2010102

血清分离胶

技术特征详解耐辐射性

分离胶应可耐受的射线辐照灭菌,而对其分离性能没有影响。众睿达和积水分离胶均可耐辐照灭菌。

?

l 25kgy

血清分离胶

技术特征详解检测结果准确性

未灭菌的和灭菌后的分离胶采血管在临床试验中可分别与美国品牌、日本品牌采血管进行对比。其检测结果的准确性应与他们同类采血管相当。

?

l

血清分离胶

技术特征详解

检测图片

与日本分离胶对比(加胶后离心对比)?l

血清分离胶

技术特征详解

检测图片

与日本分胶对比(加速周)?l 2

血清分离胶

技术特征详解

检测图片

广州某国产分离胶(加速周)?l 2

血清分离胶

技术特征详解

检测图片

众睿达分离胶冷冻个月试验(为冷冻样品)?l 1D

血清分离胶

技术特征详解

检测图片

广州某国产品牌分离胶冷冻和加速个月试验?l 1

精馏分离的特点

精馏是在汽液两相(或汽液液)逐级(或连续)流动和接触时进行穿越界面的质量和热量传递,并实现混合物分离纯化的化工单元操作过程。精馏技术已经过100多年的发展,并成为目前应用最广泛的一种分离技术,它具有如下特点: (1)通过精馏分离可以直接获得所需要的产品,而其它一些分离方法,如吸收、萃取等,由于有外加的溶剂,需进一步使所提取的组分与外加组分再行分离,因而精馏操作流程通常较为简单。 (2)精馏分离的适用范围广,它不仅可以分离液体混合物,而且可用于气态或固态混合物的分离。例如,可将空气加压液化,再用精馏方法获得氧、氮等产品;再如,脂肪酸的混合物,可用加热使其熔化,并在减压下建立汽液两相系统,用精馏方法进行分离。 (3)精馏过程适用于各种浓度混合物的分离,而像吸收、萃取、结晶、膜分离等操作,只有当被提取组分浓度较低时才比较经济。 (4)精馏操作是通过对混合液加热建立汽液两相体系的,所得到的汽相还需要再冷凝液化。因此,精馏操作耗能较大。 (5)精馏技术经过多年的发展及广泛的使用,目前已具有相当成熟的工程设计经验与一定的基础理论研究,并发展出了以精馏为基础的许多新型复合传质分离技术。 (6)精馏过程操作简单,易于工程化。即可连续操作,也可间歇操作,可应用于各种批量的操作中。 因而在直到现在,在考虑混分物分离和产品精制时,精馏仍为首选方案,特别是在精细化学品的生产时更为明显。 精细化学品的生产历来受到国内外的重视,在许多欧美发达国家,均将精细化工作为重要、优先的发展方向。我国长期以来,也将精细化工作为重点发展的产业之一。精细化工是现代化学工业的重要组成部分,也是衡量一个国家化工水平高低的重要依据。目前发达国家的精细化工率已超过60%,有的甚至超过80%,而我国只有40%左右。造成我国精细化工相对落后的原因很多,这其中技术的落后是重要原因之一。 精馏技术广泛应用于各类精细化学品的生产中,它不仅用于最终产品的精制,还用于原料的提纯、所用溶媒(剂)和废料的回收等各方面,而且在某些精细化学品的生产中,还直接应参与反应过程。一般而言,精馏作为常用的分离方法,占整个化工生产能耗的大部分,有的比例超过了80%以上,因而提高精馏水平,对于降低化工过程的能耗,提高生产效率有重要意义。同时先进的精馏技术,还可大幅度提高产品的质量,减少生产过程中的废品率,提高原料的利用率,并可极大促进绿色精细化工的发展。 我国精馏技术的研究水平已接近或达到国际先进水平,许多先进技术也在大型化工中得到了应用,但在精细化工生产中,所使用的精馏技术大都很原始,技术含量低。这一方面是因为精细化工生产的多样性与复杂性造成的,但更重要的是因为精馏作为分离手段,还没有引起足够的重视,往往只是作为一个附属过程,而且由于精细化工的生产特点,企业也不重

《电子技术》课程标准

电子技术》课程标准 课程代码:适用专业:电气自动化制订 系部:机电工程系制订时间: 2018 年 2 月

《电子技术》课程标准 一、课程概述 (一)课程定位 本课程标准依据机电一体化技术专业标准中的人才培养目标和培养规格以及对《电子技术》课程教学目标要求而制订,用于指导《电子技术》课程教学 与课程建设。 本课程是电气自动化专业的一门公共学习领域专业基础课程,是一门基于职业能力分析,以模拟电子电路为载体,将典型模拟电路设计、调试与应用有机融合的理论性、实践性都较强的课程。 本课程的任务是使学生掌握电子技术方面的基本理论和基本知识,为学习后 续专业课准备必要的知识,并为从事有关实际工作奠定必要的基础。通过项目训练,使学生具备识别与选用元器件的能力;电路识图与绘图的能力;对电子电路进行基本分析、计算的能力;对典型电路进行设计、调试、检测与维修的职业能力和职业素养。通过逻辑思维能力训练,培养学生独立分析问题和解决问题的能力,自主学习能力,训练学生的创新能力。 (二)先修后续课程 本课程的前导课程为:高等数学、电工技术,使学生具备基本的电子元器件检测能力、电路识图绘图能力、电路设计和分析能力。本课程为后续专业课程电气控制技术、PLC 技术、电气设备故障与维护的学习提供知识储备和技能储备,同时培养学生解决问题的方法能力和社会能力,为今后的工作打下良好的基础。 二、课程目标 本课程的目标是使学生具备本专业的高素质的劳动者和高级技术应用性人才所必须的电子设计的基本知识和灵活应用电子元器件的基本技能;为学生全面 掌握电子电路设计技术和技能,提高综合素质,增强适应职业变化的能力和学习的能力,为以后就业和继续学习打下一定的基础;通过项目的解决,培养学生的团结协作、吃苦耐劳的品德和良好的职业道德。 (一)知识目标 1、初步掌握常用电子器件 2、掌握放大电路基础,频率特性与多级放大器,功率放大器 3、掌握运算放大器及其应用 4、掌握稳压电源的工作原理 5、掌握组合逻辑电路、时序逻辑电路的设计分析。 (二)能力目标 1、学会常用电子元器件的识别和选用; 2、学会设计小信号功率放大器电路; 3、学会集成运放的应用和集成稳压电源的设计; 4、学会组合逻辑电路和时序逻辑电路的设计和分析方法。 (三)素质目标 1、提高学生分析问题和解决问题的能力 2、培养学生的科学思维能力、创新能力,能够独立完成规定的实验,具有一定的分 析解决实际问题的能力,以满足学生毕业后从事本专业领域工作岗位的需要 3、培养学生的团队合作精神、语言表达能力、决策能力、自学能力、客观评价能力、竞争意识、可持续发展能力等职业综合素质,为以后从事专业工作奠定基础。 三、课程内容 《电子技术》课程以培养职业能力为目标,将工作任务和工作过程进行整合、序化,按照职业成长规律与认知学习规律,精心设计了六个学习主情境,分别是: 常用仪表的使用和常用电子器件的测试与辨别、功率放大器的设计、集成运放的 应用电路设计、直流稳压电源的设计、三人表决电路设计、计数器电路设计。每个学习情境包含多个学习性工作任务。 表1课程内容与学时分配

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

————————————————————————————————作者:————————————————————————————————日期:

聚丙烯酰胺凝胶电泳法分离血清蛋白质 【目的】 1 .掌握圆盘电泳分离血清蛋白的操作技术。 2 .熟悉聚丙烯酰胺凝胶电泳的原理。 【原理】 带电粒子在电场中向着与其自身电荷方向相反的电极移动,称为电泳。聚丙烯酰胺凝胶电泳( PAGE )就是以聚丙烯酰胺凝胶作为电泳介质的电泳。在电泳时,蛋白质在介质中的移动速率与其分子的大小,形状和所带的电荷量有关。 聚丙烯酰胺凝胶是一种人工合成的凝胶,是由丙烯酰胺( Acr )单体和少量交联剂 N,N- 亚甲基双丙烯酰胺( Bis )在催化剂过硫酸铵( Ap )和加速剂四甲基乙二胺( TEMED )的作用下发生聚合反应而制得的(其化学结构式见第 2 篇第 1 章)。 聚丙烯酰胺凝胶具有网状结构,其网眼的孔径大小可用改变凝胶液中单体的浓度或单体与交联剂的比例来加以控制。根据血清蛋白分子量的大小,学生实验一般选用 7 %聚丙烯酰胺凝胶分离血清蛋白质。 不连续聚丙烯酰胺凝胶电泳利用浓缩效应、分子筛效应和电荷效应的三重作用分离物质(见第 2 篇第 1 章),使样品分离效果好,分辨率较高。一般醋酸纤维薄膜电泳只能把血清蛋白质分离出 5 ~ 7 条带,而聚丙烯酰胺凝胶电泳却能分离出十几条到几十条来(图 3-4 ),是目前较好的支持介质,应用十分广泛。

图 3-4 血清蛋白聚丙烯酰胺凝胶电泳图谱 根据凝胶支持物的形状不同,分为垂直板电泳和盘状电泳两种,二者原理相同。本实验采用的盘状电泳是在直立的玻璃管中,以孔径大小不同的聚丙烯酰胺凝胶作为支持物,采用电泳基质的不连续体系,使样品在不连续的两相间积聚浓缩(浓缩效应)成厚度为 10 -2 cm 的起始区带,然后再利用分子筛效应和电荷效应的双重作用在分离胶中进行电泳分离。 【器材】 1 .电泳仪 直流稳压电源,电压 400 ~ 500V ,电流 50mA 。 2 .垂直管型圆盘电泳装置 目前这类装置的种类很多,可根据不同的实验要求选择其中的一种。这类装置均由两个基本的部分组成,一部分为载胶玻璃管,须选用内径均匀( 5 ~ 6mm ) , 外径 7 ~ 8mm ,长 80 ~ 100mm 的玻璃管作为材料,也可以使用更细的玻璃管。另一部分为电泳液槽,可分为上下两槽。电泳时,上下两槽通过凝胶柱沟通电流(图 3-5 )。 图 3-5 聚丙烯酰胺凝胶圆盘电泳示意图 (A 为正面, B 为剖面 ) 3 .大号试管和中号试管 4 .微量移液器 5 . 5ml 注射器和 9 号注射针头 6 .洗耳球、滤纸条、封口膜等

血清蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯于鉴定 一、实验目的: 1、掌握盐析法分离蛋白质的原理和基本方法 2、掌握凝胶层析法分离蛋白质的原理和基本方法 3、掌握离子交换层析法分离蛋白质的原理和基本方法 4、掌握醋酸纤维素薄膜电泳法的原理和基本方法 5、了解柱层析技术 二、实验原理: 蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。对于不同的蛋白质,其分子量、溶解度及等电点等都有所不同。利用不同蛋白质在这些性质上的差别,利用相应的物理方法可分离纯化不同蛋白质。 A.盐析法:在蛋白质溶液中加入大量中性无机盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。同时,加盐后由于离子强度发生改变,蛋白质表面的电荷大量被中和,从而破坏了蛋白质的胶体性质,导致蛋白质溶解度降低,蛋白质分子之间易于聚集沉淀,进而使蛋白质从水溶液中沉淀析出。 B.凝胶层析:利用蛋白质与无机盐类之间分子量的差异。当溶液通过SephadeG-25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒网孔,而分子量小的无机盐能进入凝胶颗粒的网孔中,因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而达到去盐的目的。 C.离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。 D.纯度鉴定(醋酸纤维素薄膜电泳):血清中各种蛋白质的等电点不同,一般都低

于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。因此电泳时可将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 三、材料与方法 A材料 样品:人混合血清 试剂:葡聚糖凝胶(G-25)层析柱、DEAE纤维离子交换层析柱、饱和硫酸铵溶液、醋酸铵缓冲溶液、20%磺基水杨酸、1%BaCl 溶液、氨基黑染色液、漂洗液、pH8.6巴比妥缓 2 冲溶液、电泳仪、电泳槽 B实验步骤 盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定) 具体操作流程示意:

血清分离胶介绍技术特征详解 [兼容模式]

血清分离胶技术特征详解解清分离胶技术特征详 成都众睿达科技有限公司王德永

血清分离胶 血清分离胶应用于真空采血管中,是用于临床血清或血浆检验样本制备时隔离血凝块与血清,或者隔离血细胞与血浆,使离心分离后的样本保持稳定,便于样本保存并确保检查结果的准确性。

? 血清分离胶应具有的特点血清样本表面无油珠,无析出物。长期使用不会堵塞吸样针;无爬杆(蹿胶)。分离胶加胶完成,静止小时(或℃烘烤小时)后无爬杆现象; 惰性。最大程度地减小对检测结果的干扰。性能稳定。老化和实时实验均应表明,年内存放稳定,不会影响分离效果。优良的耐辐照灭菌性。可以耐受的辐照灭菌。分离效果好,离心力适中,易于离心。最小离心力不大于,离心时间只需要分钟,无需二次离心。 运输储存过程中低于℃时不会发生倒流。高性价比。进口分离胶的效果,接近国产分离胶的价格。血清分离胶 l l l l l l l l 724524225kGy 1300g 555

血清分离胶 技术特征详解密度离心力与离心时间分隔效果堵针与油珠爬杆(蹿胶)稳定性耐辐射性检测结果可靠性高温储运时防倒流? l l l l l l l l l

血清分离胶 技术特征详解 密度 ±℃ 介于血清和血凝块之间。 、积水和众睿达的血清分离 胶密度均在该范围内。 。?l 1.05 0.005 25 1.02 1.08BD

血清分离胶 技术特征详解离心力与离心时间 ≥,离心时间; 推荐离心力:,离心时间不少于。市场上的离心力稍大,大概要—,。众睿达和积水的一般在—离心中即可。 注意:当选择小的离心力时,应选用较长的离心时间。 ? l 1300g 5min 1300g-2000g 5min BD 15001800g 10min 13001500g 5min

_管办分离_模式引发争议

中国医药报/2004年/06月/29日/ 苏州医改探索变通新路 管办分离 模式引发争议 李秡 江苏将组建内地首家医院管理中心,试行公立医院管办分离!!!6月中旬,江苏卫生系统传来的这则消息,打破了梅雨天的沉闷。 6月14日,江苏省卫生厅宣布,江苏将通过组建或向社会公开招标选择非盈利医院管理机构,将医院管理权交予医院管理法人,实行政府监管下的医院自主管理,由政府购买公共服务。首家非盈利医院管理中心将于9月份在苏州成立。这意味着江苏决心彻底打破公立医院管理中的 大锅饭 、 铁饭碗 ,建立起权责明确、富有生机的医院管理新体制。 拟议中的医院管理中心并不是江苏省自上而下的改革任务;相反,它是苏州市政府作为苏州医改的方案向省里提出的。2004年春节前,苏州市委、市政府基本形成了统一意见,要对市属公立医院这类大型公益性事业单位 动刀子 。4月底,市里出台了全市卫生系统上下皆知的 第70号文件 !!!?关于市属医院实行管办分离改革的试行意见#,对改革的各主要环节予以具体规定。据悉,苏州市属公立医院改革很快将全面展开。 ?叫好:医院人事分配权力落到实处 据介绍,这次苏州医改将采取 管办分离 的模式,在市属医院现有固定资产的所有权保持国有性质不变的前提下,由市卫生行政主管部门与医院管理中心签订授让管理权合同,由管理中心按合同要求对医院进行管理,合同年限暂定35年。合同期内,管理中心如违约、违规运作,政府有权中止合同、收回管理权;合同期满后,管理运作良好的中心则可以优先受让管理权。 根据拟议中的改革方案,医院管理中心成立后,各医院的日常运转资金由中心自行解决。医院的用人权、分配权,限额以下项目建设和设备采购决定权将归医院管理中心。这样一来,政府就退出 游戏 而成为纯粹的监管者,其监管考核的主要内容是:合同期内医院发展的目标;公共卫生突发事件的应急处理、医疗急救、重大活动医疗保障等政府指令性任务完成情况;平均每门诊人次收费水平、平均每出院人次收费水平、单病种医疗费用等诊疗收费和药品价格水平和药品收入占业务收入的比例、平均住院天数、质量控制综合评定、社会综合满意度等医疗服务质量指标等。 改革把医院的用人、分配权给了院长和医院管理中心,这让也在进行大改革的南京市卫生系统同行羡慕不已, 有了这些实在的权力,管理者能做不少事情。 苏州市第三人民医院院长高志昕对此也毫不讳言,他在接受苏州当地媒体采访时就表示, 以前我常跟上级讲,只要能放权给我每年1%的职工淘汰率,也就是700名员工中7名员工的人事任免权,我就敢打包票,能把三院管好,但上级无此政策。改革以后就好了,实行岗位聘用制,谁也别想捧%铁饭碗&。 这次改革的力度由此可见一斑。 此外,由管理中心统一掌管医院的运行、人事的任免以及相关的采购、分配事宜,对于整合现有资源、提高效率的好处也是不言而喻的。 ?质疑:社团法人如何管理公共部门

电子技术发展史概述首次

电子技术发展史概述 电子技术是十九世纪末、二十世纪初发展起来的新兴技术。由于物理学的重大突破,电子技术在二十世纪发展最为迅速,应用最为广泛,成为近代科学技术发展的一个重要标志。 从20世纪60年代开始,电子器件出现了飞速的发展,而且随着微电子和半导体制造工艺的进步,集成度不断提高。CPLD/FPGA、ARM、DSP、A/D、D/A、RAM和ROM等器件之间的物理和功能界限正日趋模糊,嵌入式系统和片上系统(SOC)得已实现。以大规模可编程集成电路为物质基础的EDA技术打破了软硬件之间的设计界限,使硬件系统软件化。这已成为现代电子设计的发展趋势。 现在,人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着。这些知识是人们长期劳动的结晶。 我国很早就已经发现电和磁的现象,在古籍中曾有“磁石召铁”和“琥珀拾芥”的记载。磁石首先应用于指示方向和校正时间,在《韩非子》和东汉王充著《论衡》两书中提到的“司南”就是指此。以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所著的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。 在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展的很快。库仑在 1785 年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。

1820 年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用及磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在 1826 年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在1831 年发现的电磁感应现象是以后电子技术的重要理论基础。在电磁现象的理论及使用问题的研究上,楞次发挥了巨大的作用,他在1833 年建立确定感应电流方向的定则(楞次定则)。其后,他致力于电机理论的研究,并阐明了电机可逆性的原理。楞次在 1844 年还及英国物理学家焦耳分别独立的确定了电流热效应定律(焦耳 - 楞次定律)。及楞次一道从事电磁现象研究工作的雅可比在 1834 年制造出世界上第一台电动机,从而证明了实际应用电能的可能性。电机工程得以飞跃的发展是及多里沃 - 多勃罗沃尔斯基的工作分不开的。这位杰出的俄罗斯工程师是三相系统的创始者,他发明和制造出三相异步电机和三相变压器,并首先采用了三相输电线。在法拉第的研究工作基础上,麦克斯韦在 1864 年至 1873 年提出了电磁波理论。他从理论上推测到电磁波的存在,为无线电技术的发展奠定了理论基础。1888 年,赫兹通过实验获得电磁波,证实了麦克斯韦的理论。但实际利用电磁波为人类服务的还应归功于马克尼和波波夫。大约在赫兹实验成功七年之后,他们彼此独立的分别在意大利和俄国进行通信试验,为无线电技术的发展开辟了道路。 人类在自然界斗争的过程中,不断总结和丰富着自己的知识。电子科学技术就是在生产斗争和科学实验中发展起来的。 1883 年美国

采血管系统

谈真空采血管的相关知识 字体大小:大| 中| 小2010-12-29 07:47 阅读(474) 评论(0)分类:真空采血管在国内外的历史发展以及现状: 本世纪40年代初,真空采血技术被发明,它省略了抽拉针管和推血入试管等不必要的步骤,利用真空管中预先制造的真空自动吸血入管,很大程度上减少了溶血的可能。40年代美国BD公司率先推出商品真空型采血系统,其它医疗器械公司也先后推出自己的真空采血产品,至80年代,一种称为安全管盖(HEMOGARDTM)的全新管盖问世。安全管盖由套在真空管外的特殊塑料罩和新设计的橡胶管塞组成。二者结合在一起,减少了医疗工作者与管中内容物接触的可能,也减少了管盖拔出后内容物外溅的机会。塑料罩形成一个双井形凹陷结构,防止手指与管塞顶端及尾端残留血液的接触。这种带有安全管盖的真空采血管极大地减少了医疗工作者从采血到血样处理的全过程中沾染血样的可能,当年安全管盖荣获全美最佳工业设计大奖。真空采血系统由于其干净安全、简单可靠的特点已在世界范围内被广泛采用,并被NCCLS推荐,成为采血的标准器械。 真空采血管90年代中期开始在我国部分医院使用。目前,大多数大中城市中型以上的医院已普遍接受了真空采血方式。作为临床血液采集和检测的新方式,真空采血器是对传统采血、储血方式的一场革命。 真空采血系统主要由三部分构成:(1)双向无菌针头:一端连接真空管,另一端进行皮肤穿刺。由于双向无菌针头专为采血特别设计而成,与注射用针头不同,针尖斜面成15度,表面特殊润滑,更锋利、进针方便。一次静脉穿刺后,可以抽取单个或多个血样。(2)持针器:持针器内径13 mm。配合规格统一的采血管使用,一端连接双向针头,另一端接真空管。持针器可以重复使用. (3)真空管:真空采血管标准直径13 mm,长75 mm或100 mm,由高质量玻璃或塑料制成。虽然大小恒定,但由于管内真空度不同,可以抽取不同体积。管内含各种添加剂(抗凝剂和促凝剂等),无需自己配制、添加,减少了工序,方便、快捷;避免了自行配备添加剂的不准确,并且可以满足各种检验对血样的要求;新型PET材质的真空采血管避免了玻璃试管破损后血液外溢的不安全。 真空采血管分类和制作原理 目前医院使用的真空采血管主要有以下几个类别: 1.无添加剂的干燥空管(白头管):采血管内壁均匀涂有防止挂壁的药剂(硅酮),避免血细胞附壁,防止离心时细胞破碎,释放细胞内物质至细胞外,影响试验结果。它利用血液自然凝固的原理使血液凝固,等血清自然析出后,离心使用。主要用于血清生化(肝功、肾功、心肌酶、淀粉酶等)、电解质(血清钾、钠、氯、钙、

生化血清蛋白分离提纯实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称血清清蛋白、γ蛋白分离提纯与纯度鉴定 实验日期2018-12-27实验地点 合作者指导老师 评分教师签名批改日期 格式要求:正文请统一用:小四号,宋体,1.5倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出现多行、多页空白现象。 一、实验目的 1.掌握盐析法分离蛋白质的原理和基本方法 2.掌握凝胶层析法分离蛋白质的原理和基本方法 3.掌握离子交换层析法分离蛋白质的原理和基本方法 4.掌握醋酸纤维素薄膜电泳法的原理和基本方法 5.了解柱层析技术 二、实验原理 蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。 不同蛋白质的分子量、溶解度及等电点等都有所不同。利用这些性质的差别,可分离纯化各种蛋白质。 三、材料与方法:以流程图示意 材料:人混合血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)、纤维素离子交换层析柱、饱和硫酸铵溶液、各不同浓度的醋酸铵缓冲溶液、20%磺基水杨酸溶液、1%BaCl2溶液 器材:层析柱、电泳仪、电泳槽等

操作方法:

取浓度最高的一管做纯度鉴定。 2管均作纯度鉴定 最后DEAE-纤维柱先用6ml 1.5mol/L NaCl-0.3mol/LNH4AC溶液流洗,再用10ml 0.02mol/L NH4AC 缓冲液流洗再生平衡。 醋酸纤维素薄膜电泳:

点样(粗面)→电泳→染色和漂洗 注意: ①点样线尽量点得细窄而均匀 ②电泳时薄膜粗面朝下、点样端置阴极端、两端紧贴在滤纸盐桥上,膜应轻轻拉平,切勿使点样处与电泳槽接触 ③电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。取出膜,尽量沥净染色液,移入漂洗液中浸洗脱色(一般更换2次),至背景颜色脱净为止。取出膜,用滤纸吸干即可。 四、结果与讨论:①结果:实验数据、现象、图谱;②讨论:以结果为基础的逻辑推论,并得出结论。 从上到下分别为血清、清蛋白一、清蛋白二、球蛋白。 从上图可以看出,此次实验结果不太理想,血清电泳结果只有两条带,推测原因有 ①血清点样时量不足 ②点样时手法不恰当

纳滤特性及分离过程

纳滤膜分离特性及使用和维护 一,纳滤膜分离技术的特点 20世纪80年代末期,随着新的制膜方法(如界面聚合法)的出现和制膜工艺的不断改进,一批新型复合膜(如疏松型反渗透膜和致密型超滤膜)得以问世,并受到人们的极大关注,现在人们习惯上将该类膜称为纳滤膜。纳滤膜分离过程无任何化学反应,无需加热,无相转变,不会破坏生物活性,不会改变风味,香味,因而被越来越广泛地应用于超纯水的制备,食品,医药等行业中的各种分离和浓缩过程。 作为一种新型分离技术,纳滤膜在其分离应用中表现出下列两个显著特征:一个是其截留分子量介于反渗透和超滤膜之间,为200~2000。故推测表面分离层可能拥有1nm左右的微孔结构,所以称之为“纳滤”;另一个是纳滤膜对无机盐有一定的截留率,因为它的表面分离层由聚电解质所构成,对离子有静电相互作用。从结构上来看纳滤膜大多是复合型膜,由表面分离层和它的支撑层组成,两者的化学组分不同。 二.纳滤膜的分离机理 纳滤膜对无机离子的去除介于反渗透膜和超滤膜之间,它对不同的无机离子有不同的分离特性,分离规律:1)对于以下阴离子,截留率依次升高:NO3- ,CL-,OH-,SO42-,CO32-2)对于以下阳离子,截留率依次升高:H+, Na+, K+, Ca2+, Mg2+, Cu2+ 3) 1价离子渗透,多价离子截留. 纳滤膜对无机盐的截留可以用Donnan平衡模来解释:将纳滤膜置于含盐溶剂中时,溶液中反离子(所带电荷与膜内固定电荷相反的离子)在膜内浓度大于其在主体溶液中的浓度,而同名离子在膜内的浓度则低于其在主体溶液中的浓度.由此阻止了同名离子从主体溶液向膜内的扩散,为了保持电中性,反离子也被膜截留.纳滤膜中荷电基团大多为带负电的磺酸根及羧酸根。 纳滤膜的分离溶质的机理与反渗透膜是一样的,通过反渗透的方式进行分离:如图所示以一选择性透过溶剂水的膜将两溶液隔开,左边为纯溶剂水(A),右边为含溶质的稀溶液(B),开始时两边液面等高,即两边等压,等温。则纯水将透过膜向含溶质的稀溶液侧移动,则B溶液的液面将不断升高,这一现象称为渗透。待纯水的渗透过程达到定态后,溶液B的液位升高h不再变动,ρgh即表示B溶液的渗透压∏,渗透压也可表示为∏= C B RT ( C B为溶质在溶液中的摩尔浓度)从这可以看出渗透压与溶质的浓度是成正比关系的。若在右边加一个大于渗透压的静压力△P,使△P > ∏则纯水从右边向左边渗透,此称为反渗透。这样就可利用反渗透现象截留溶质而获得纯水,从而达到混合物分离的目的。因此进行反渗透的二个必要条件是:1,选择性透过溶剂的膜。2,膜两边的静压差必须大于其渗透压差。在实际反渗透过程中膜两边静压差还必须克服膜的阻力。 渗透平衡反渗透浓缩 三.影响纳滤膜速率主要因素 (1)膜的性能主要表现为溶剂透过系数A和溶质透过系数B的大小。显然,对膜分

血清分离胶

血清分离胶 血清分离胶是一种粘性流体,其结构中含有大量氢键,由于氢键的缔合作用形成网状结构。在离心力的作用下,网状结构被破坏,变成粘度低的流体。当离心力消失之后又重新形成网状结构.恢复成粘度高的流体.这种性质被称为触变性(thixotropy).利用这一特性可制成一种血清分离胶。当分离胶与凝固后的血液在同一试管中离心时,分离胶便在血清和血块之间形成胶状的隔离层将血清和血块隔开。从而提高了血清的收得率,并在原状态下保存血清,简化了临床检验过程,提高了工作效率。现今医学检验技术已步入全自动化,微机管理的新时代.在临床检验领域内,不论临床化学.血清学,免疫学等检测中。所甩标本大都需要分离血清。如何船快速、足量地分离血清、并能简化操作,就是一个医学检验界迫切需要解决的课题。血清分离胶的应用为这一问题的解决提到希望日程。血清分离胶是一种疏水性的有机化合物,其作用原理是:一般血清比重约1.02、血块比重约1.08、分离胶比重维持在1.05。在离心力的作用下,分离胶在血清和血块间形成隔离层.早期的分离胶是往硅油中加入硅石粉.再调整比重而制成.1973年美国PECTON公司以硅油和硅石为原料树成凝胶并装入玻璃试管中投放市场.1982年日本积水化学工业及其同行用塑料试管代替玻璃试管实现商品化。1991年中国科学院大连化学物理研究所和大连临床检验中心遁力协作,在国内首次研制出国产的血清分离胶。并受到卫生部临床检验中心的重视,投入临床应用后,证明完全达到分离胶标准要求。现今的分离胶采血管其原料为聚酯或聚丙烯。分离胶原料为聚烯烃、聚酯和丙烯。促凝剂为硅石粉、硅石炭素及蛇毒等喷徐于管壁.分离胶置于试管底部,注入血样待血液凝固后置离心机中离心,分离胶即在血清、血块之间形成隔离层。并使血清保持原状,无改变。此隔离层紧密地粘附在试管璧上,可在原状态下由自动分析仪直接吸取血清,或冷藏保存,远途运输均不影响检测结果,也避免了纤维蛋白和溶血的影响。此外,自血样注入采血管、血清分离、分析仪直取血清、血样保存,废弃物处理的全过程都在同一支管中进行,避免血样沾沾污操作者,防止血液中病毒的感染,减少了医疗废物,提高了工作效率。所以,血液分离胶的应用是医学检验的一项重要发展。

(推荐)血清清蛋白、γ-球蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯与鉴定 一、实验目的 1.掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法; 2.掌握醋酸纤维素薄膜电泳法的原理和基本方法; 3.了解柱层析技术。 二、实验原理 血清蛋白主要由清蛋白和球蛋白组成,各行使其重要的功能。 本实验利用盐析方法将血清中的清蛋白和球蛋白分离,并用电泳技术观察蛋白质分离教果。 1.盐析 蛋白质分子能稳定存在于水溶液中是因为有两个稳定因素:表面的电荷和水化膜。当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出,蛋白质分子沉淀析出的方法很多,根据对蛋白质稳定因素破坏的不同有中性盐析法、有机溶溶剂法、重 金属盐法以及生物碱试剂法等。盐析法的原理是:中性盐如硫酸铵((NH 4) 2 SO 4 )等对蛋白 质作用破坏了蛋白质表面水化膜,并且中和了部分电荷,从而使蛋白质相互聚集而析出。由于血清中各种蛋白质分子的颗粒大小、所带电荷的多少和亲水程度不同,故盐析所需的盐浓度也不同,因此调节盐的浓度可使不同的蛋白质沉淀从而达到分离的目的。血清球蛋白在半饱和状态下发生沉淀,而血清清蛋白在完全饱和状态下沉淀,利用此特性可把蛋白质分段沉淀下来,即在半饱和的中,血清蛋白不沉淀,而血球蛋白沉淀,离心后清蛋白主要在上清液中,沉淀蛋白加少量蒸馏水即可溶解,由此达到分离清蛋白和白蛋白的目的。 2.脱盐

盐析得到的蛋白质含有高浓度中性盐,需要有脱盐过程去除蛋白质遗留的中性盐,常用方法有:透析法脱盐和凝胶层析法脱盐。本实验采用凝胶层析法脱盐,在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。 3.纯化(离子交换层析) 离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。 本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的点正电荷的离子则不能,这样便可达到分离纯化的目的。 脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们的等电点的不同可进行分离。血清中各种蛋白质的pI各不相同,因此,在同一醋酸铵缓冲液中,各蛋白质所带的电荷不同,可以通过DEAE离子交换层析将血清清蛋白和伽马球蛋白分离出来。 4.纯度鉴定(电泳) 血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 三、材料与方法:以流程图示意 1.实验材料 人血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)纤维素离子

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

血清分离胶促凝采血管的理论基础及临床应用

血清分离胶促凝采血管的理论基础及临床应用 当今分析仪器的自动系列集约化或条型码的运用,增加了系列化项目直接上机检测量。但就是由于过去采血后血液自然凝固,血液从离心到测定放置时间长,影响了分析仪的多种功能的充分发挥。为了迅速推进检测技术的快速化,往采血管中添加分离胶、促凝剂缩短了血液凝固时间。分离胶促凝采血管的应用,就是采血初级阶段重要质量控制,同时也制备了高品质的血清标本。从保护室内外环境角度考虑,血清分离胶采血管的应用,减少血清杯及塑料试管的用量。目前国内许多公司提供的真空系列采血试管,规范了检验科采血技术,减少了多种多样交叉感染。但就是,分离胶促凝采血管的临床实践应用中,出现了涉及到分离胶、促凝剂的基础理论及值得注意的有关问题。必须从基础理论上去理解才能解决实践中出现的问题。本文就血清分离胶促凝管基础理论及临床应用讨论如下。 1 分离胶分离血清、血块的机理 血清分离胶就是由疏水有机化合物与硅石粉组成,具有触变性的粘液胶体,其结构中含有大量氢键,由于氢键的缔合作用形成网状结构,在离心力的作用下用网状结构被破坏变为粘度低的流体,当离心力消失之后又重新形成网状结构这种性质被称为触变性(thizotropy)。即在温度不变的情况下,对这种粘液胶体施加一定的机械力,可从高粘度的凝胶状态变为低粘度的溶胶状态,如果机械力消失又恢复原来高粘度的凝胶状态。由机械力作用产生的凝胶与溶胶的互变现象首先由Freundlich 与Petrifi 命名。为什么由机械力的作用会产生凝胶与溶胶的互变现象呢?触变性就是因为分离胶的结构内部含有大量氢键网状结构之故。在常温下氢键比较容易被切断引起再结合。硅石表面具有硅羟基(SiOH),形成SiO 分子凝聚体(初级粒子),在这种初级粒子间以氢键连结成链状结合粒子。这种链状硅石粒子与构成分离胶的疏水有机化合物的粒子间更进一步形成氢键而产生网状结构,构成具有触变性的凝胶状分子。分离胶比重维持在1、05,血清比重约1、02,血块比重约1、08,当分离胶与凝固后的血液在同一试管中离心时,由于对分离胶施加离心力而引起硅石凝聚体中的氢键网状结构被破坏变成链状结构,分离胶就成为粘度低的物质,比分离胶重的血块就移到管的底部,分离胶发生返转现象,形成管底部血块/分离胶/血清三层。当离心机停止转动失去离心力后,分离胶中硅石凝聚体的链状粒子间再次由氢键构成网状结构,恢复初始高粘度凝胶状态,在血清与血块间形成隔离层。另外,检验医学实验室广泛采用了一次性疏水性塑料试管,延长了凝血时间。其塑料试管在与Ⅺ、Ⅻ凝血因子接触时,被激活能力非常弱,采血后2~4h血液还没有完全凝固,为此要在塑料试管内壁喷涂促凝剂加速血液凝固,能得到高品质的血清标本。 2 血清分离胶促凝管、血浆分离胶抗凝管 血液促凝剂就是为了临床检验中快速分离血清标本而研制的促凝剂,一般常用硅石粉、玻璃粉、炭素粉末及蛇毒等促凝成分,特殊加工成粉剂与球型。粉剂制成无水乙醇悬浮液,喷涂在血清分离胶真空试管内壁上,放鼓风干燥箱中(35℃)使无水乙醇蒸发干。如果血清分离胶返转性不好,会出现分离胶隔层与血清、血块之间分离不完全,其原因往往就是离心前血液没有完全凝固所致,因为血液凝固不完全可使纤维蛋白混杂在隔离层。要使血液完全凝固,必须按说明书正确使用血清分离胶促凝管,才能制备高品质的血清标本。血浆分离胶抗凝管就是为了快速血浆生化急诊检验所需,即在分离胶采血管内壁喷涂肝素锂。

血清分离胶试管在临床检验中的应用

血清分离胶试管在临床检验中的应用 新疆和静县人民医院,陈巍,841300 【摘要】:血液标本的采取用真空采血管系列已成为主流,由于过去采血后血液自然凝固,血液从离心到测定时间长,影响分析结果和速度。为了迅速推进检测技术的快速化,往采血管中添加分离胶、促凝剂缩短了血液凝固时间,血清(血浆)分离胶抗凝采血管的应用,为急诊干化学分析提供了更快速的检测标本并在最短时间报告结果。同时减少了交叉感染等生物安全隐患,规范了检验科采血技术,提高了检测标本的质量,方便了就诊患者。但是,随着分离胶促凝采血管等在临床实践应用不断增加,出现许多误区及使用中值得注意的有关问题,有必要作一介绍。 【关键词】:血清分离胶试管血清使用注意问题 Blood serum separation rubber test tube,s in clinical examination application 【Abstract】:Blood preparation,s adopting picks the blood vessel series with the vacuum to become the mainstream,because after the past picked the blood,the blood natural coagulation,the blood was long from the offcenter to the survey time,the impact analysis result and the speed.To advance the examination technology fast rapidly,toward picked in the blood vessel to increase the separation rubber,the ulant agent to reduce the blood coagulation time,the blood serum (blood plasma)has separated the rubber antifreeze to pick blood vessel’s application,analyzed for the emergency medical treatment desiccation school grades has provided the faster examination specimen and in the shortest time report result.Simultaneously reduced biological safe hidden dangers and so on cross infection,the standard inspection department has picked the blood technology,improved the examination specimen quality,has facilitated the seeing a doctor patient.But,presses along with the separation rubber to congeal picks the blood vessel and so on to increase unceasingly in the clinical practice application,has related problem which in many erroneous zones and the use are noteworthy,it is necessary to make an introduction. 【Keywords】:The blood serum separation rubber test tube Blood serum Use Pays attention to the question

膜分离技术概述

膜分离技术概述 天然色素应用技术推广实验室 膜分离(Membrane Separating)是利用天然或人工制备的具有选择透过性膜,以外界能量或化学位差为推动力对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的方法。膜分离法可以用于液相和气相,对液相分离,可以用于水溶液体系、非水溶液体系以及水溶胶体系。膜分离技术由于省能、高效、简单、造价低、易于操作,可代替传统的分离技术(如精馏、蒸发、萃取、结晶等过程),所以是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高技术之一。 膜分离过程的发展概况 膜分离技术研究应用虽有上百年时间,但是由于制膜的技术所限,在工业中应用还仅一、二十年的时间。目前膜法除大规模用于各种水处理外,还在食品工业、医药工业、生物工程、石油、化学工业、核工业等领域得到应用。全球已有30多个国家和地区的2000多个科研机构从事膜技术研究和应用开发,已形成了一个较为完整的边缘学科和新兴产业,并正逐步地有针对地代替目前的一些传统分离净化工艺,而且朝反应-分离耦合、集成分离技术等方面发展。据报道,1998世界膜产品市场销售额已超过440亿美元,且以14%~30%的年增长速度在发展。膜产业将是21世纪新型十大高科技产业之一。 在膜分离技术中,微滤、超滤、反渗透和电渗析分离过程已较为成熟。这些膜过程的应用比大概为:微滤35.71%;反渗透13.04%;超滤19.10%;电渗析3.42%;气体分离9.32%;血液透析17.70%;其他1.71%。 膜分离技术特点 膜分离与传统的分离技术(蒸馏、吸收、吸附、萃取、深冷分离等)相比,具有以下特点: <1>膜分离过程不发生相变化,耗能少,可以保持物质的原态、特别适合热敏性物质,如酶、果汁、某些药品的分离浓缩、精制等。 <2>膜分离技术不耗化学试剂和添加剂,不会因此而污染产品; <3>膜分离通常是一个高效的分离过程,目前已广泛的应用与盐水与海水淡化、工业用水和生活用水的净化、溶质的浓缩与分离过程。 <4>膜分离设备本身没有运动部件,工作温度在室温附近。它的操作十分简单,从开动到得到产品的时间很短,可以在高频的启、停下工作。 <5>膜分离设备的体积比较小,占地较少,通常可以直接插入已有的生产工艺流程,不需要对生产线进行大的改变。 膜分离过程的原理及分类 在膜分离过程中,由于膜具有选择透过性,当膜两侧存在某种推动力(如压力差,浓度差,电位差等),原料侧组分选择性地透过膜以达到分离提纯的目的。实际中物质通过膜的传递极为复杂,不同的膜过程使用的膜不同,推动力不同,其传递机理也不同。 膜分离过程按其分离对象可分为气体(蒸汽)分离和液体分离。按其分离方法可分为反渗透法(RO)、纳滤(NF)、超滤(UF)、微滤(MF)、电渗析(ED)、气体分离(GS)和渗透蒸发(PV)以及与其它过程相结合的分离过程,例如:,膜蒸馏、膜吸收、膜萃取等。由于本论文中用超滤膜对红花提取液进行了分离、纯化的初步探讨,下面就超滤过程做简单介绍。超滤 超滤膜技术的发展现状 超滤膜过程是根据体系中相对分子质量的大小和形状,通过膜孔的筛分、吸附等作用,

相关文档
最新文档