喀兴林高等量子力学习题EX1.矢量空间
高等量子力学习题
![高等量子力学习题](https://img.taocdn.com/s3/m/53c64dcfa1c7aa00b52acbbc.png)
高等量子力学习题† 量子力学中的对称性1、 试证明:若体系在线性变换Qˆ下保持不变,则必有0]ˆ,ˆ[=Q H 。
这里H ˆ为体系的哈密顿算符,变换Qˆ不显含时间,且存在逆变换1ˆ-Q 。
进一步证明,若Q ˆ为幺正的,则体系可能有相应的守恒量存在。
2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R ze的矩阵表示。
3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n转θd 角,在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψ =。
试导出转动算符),(θd n U的表达式,并由此说明,若体系在转动),(θd n U下保持不变,则体系的轨道角动量为守恒量。
4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋1=S 。
5、 证明宇称算符的厄米性和幺正性,并证明宇称算符为实算符。
6、 试证明幺正算符U 与复数共轭算符K 的乘积为反幺正算符。
7、 试证明自旋不为零的粒子的时间反演算符可表为K e T y S i π-=。
8、 试讨论由时间反演不变性引起的Kramers 简并。
† 角动量理论1、 角动量算符可以从两个方面来定义,一种是按矢量算符三个分量所满足的对易关系定义,另一种是按坐标系转动时,态函数的变换规律来定义,试证明这两种定义是等价的。
2、 试证明任意个相互独立的角动量算符之和仍是角动量算符。
3、 定义角动量升降算符yx J i J J ˆˆˆ±=±,试利用升降算符讨论,对给定的角量子数j ,相应的磁量子数m 的取值范围。
4、 给出角量子数1=j 情况下,角动量平方算符及角动量各分量的矩阵表示。
5、 设总角动量算符21J J J +=,1J 、2J相应的角量子数分别为1j 和2j ,试讨论总角动量量子数j 的取值情况。
6、 利用已知的C-G 系数的对称性关系,证明以下三个关系式:11332222221133111122332233221111212)1(1212)1(1212)1(32313m j m j m j m j m j m j m j m j m j m j m j m j m j m j m j C j j C j j C j j C -+----+++-=++-=++-=7、 已知在3ˆs表象中,⎪⎪⎭⎫ ⎝⎛=01102ˆ1 s ,⎪⎪⎭⎫⎝⎛-=002ˆ2i i s ,问在1ˆs 表象中2ˆs 的矩阵表示是怎样的? 8、 已知∑>>>=113322112211|||m m m j m j m j m j m j Cjm ,其中m m j j jm m j ''|''δδ>=<,1111''1111|''m m j j m j m j δδ>=<,2222''2222|''m m j j m j m j δδ>=<。
喀兴林高等量子力学E
![喀兴林高等量子力学E](https://img.taocdn.com/s3/m/06fc03600975f46527d3e1f3.png)
#
练习3.4 根据完全性和封闭性的定义,分别证明:在n维空间中的一个完全矢量集{ },( 归一化但彼此不一定正交,i=1,2,3…,n),若从其中去掉一个矢量,例如去掉 ,就不再是完全集。(做题者:杨涛 审题人:吴汉成)
证明:假设在n维空间中的一个完全集 去掉一个矢量 后仍是完全集 新的矢量集 是线性无关的,即
(2)
证明:(1) 为厄米算符,则
所以
即
则 是幺正算符
(2)因为 是 的函数,则 与 可以同时对角化。在 表象中, 表现为对角矩阵,对角矩阵元 为 的本征值,则
而 的本征值
即
则
#
练习4.5(吴汉成完成,董延旭核对)
在三维空间中,有矩阵A和B:
,
(1)证明A和B均为厄米矩阵,而且[A,B]=0;
(2)分别求A和B的本征值与本征矢量;
#
练习4 .1在任何表象中,与厄米算符H对应的矩阵( )称为厄米矩阵,与幺正算符对应的矩阵( )称为幺正矩阵。证明它们分别满足下列关系:
(做题:陈捷狮,审查人:刘强。)
解:(1)
(2)利用完全性关系可得:
证毕!
练习4.2在某表象中,算符 的矩阵形式为
(1)求 的本征值及相应的本征矢量;
(2)用 的一组正交归一化本征矢量集表示这一表象的三个基失。
——————[3]
(5)由于U是幺正矩阵,所以 ,并联系[3]式得
所以对角化:
,其对角元为A的本征值,与(2)小题的结果完全一致.
,其对角元为B的本征值,与(2)小题的结果完全一致。
#
练习4.6在一个9维空间中有二矩阵 和 ;
式中空格及圆点均代表零。
喀兴林高等量子力学习题EX12-18
![喀兴林高等量子力学习题EX12-18](https://img.taocdn.com/s3/m/1a581c0890c69ec3d5bb75f6.png)
练习 12.1. 一维谐振子受微扰21X H ε=的问题,使有严格解的,试仿照正文中的方法,在薛定谔绘景中用近似的方法讨论这一问题,并将结果与严格解比较。
(解答人:李泽超 核对人:熊凯) 解:由题意得:受微扰的一维谐振子的哈密顿量是:()1......................................................................10H H H += ()()2.......21212212220⎪⎭⎫ ⎝⎛+=+=+=+++AA A A AA X m P m H ωωω ()()()()⎪⎪⎪⎪⎭⎫ ⎝⎛-=+=-=+=+++A A m i P A A m X iP X m m A iP X m m A 222121 ωωωωωω()()()⎪⎭⎫ ⎝⎛=+++=+==+++++ωεττωεεm AA AA A A A A A A m X H 23.........2221谐振子从0=t 时刻起其状态满足薛定谔方程:()()()4.......................................:,10H H H t H t ti +==∂∂其中ψψ0H 的含时本征矢量的展开为:()()()5...........................................21exp ∑⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=jj t a t j i j t ωψ ()()⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=t m i t mt a m ωψ21exp微扰1H 的矩阵元为j H i ,具体的形式为:j AA AA A A A A i j H i +++=++++ τ利用算符A A 和+对本征矢量函数的;上升和下降的性质,得:()()()()()()6..................2121,2,,2j i j i j i i i i i i j H +-+++++-=δδδτ 采用微扰方法近似解薛定谔方程时,薛定谔方程可一化为下式: ()()()()7......................................exp 1t a j H t E E i t a t i j S jj i i ∑⎪⎭⎫⎝⎛-=∂∂将(6)式带入(7)式可得到在题意条件下的微扰方程的表达形式如下:()()()()()()()()()8..21121exp ,2,,2t a i i i i i t E E i t a t i j jj i j i j i j i i ∑+-+++++-⎪⎭⎫⎝⎛-=∂∂δδδτ经化简得:()()()()()()()()()()()()9...212exp 122exp 122t a i i t i t a i t a t i i i i t a dtdi i i i +-++-++--=⇒ωωτ将()t a i 的已知的低级的近似()()t a n i 代入方程的右边,即可以解出高一级的近似()()t a n i 1+。
高等量子力学练习题及答案解析
![高等量子力学练习题及答案解析](https://img.taocdn.com/s3/m/1ac96c2003768e9951e79b89680203d8cf2f6a46.png)
练习28.1 证明: ()[]()t G t G -=-++00证明: 根据公式(28.4)()()()00H t t ie t t it t G '--±'±='-θ可知()()00tH ie t it G-+-=θ()()()00H t i e t i t G ---+=-θ则()[]()()000tH i tH i e t ie t i t G θθ=⎥⎦⎤⎢⎣⎡-=+-++()()()t G e t i H t i-==---00θ #28.2证明下列二式成立:()()()()⎰∞∞-±±±±--+-=-''dt 't t VG ''t t G 't t G 't t G 00()()()()⎰∞∞-±±±±--+-=-''dt 't ''t VG ''t t G 't t G 't t G 00证明:因为:()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i00又因为:()()()()E VG E G E G E G 00±±±±+=即有()()()()()()[]()()()()()()()()()()()()()''dt t ''t VG ''t t G 't t G dE e E VG E G 21't t G dE e E VG E G 21dE e E G 21dE e E VG E G E G 21dE e E G 21't t G '00't t E i00't t E i 0't t E i 0't t E i00't t E i00--+-=π+-=π+π=+π=π=-±∞+∞-±±∞+∞---±±±∞+∞---±±∞+∞---±∞+∞---±±±∞+∞---±±⎰⎰⎰⎰⎰⎰又因为()()()()()()()E VG E G E G E VG E G E G E G 0000±±±±±±±+=+=同理可证得()()()()''dt t ''t VG ''t t G 't t G 't t G '00--+-=-±+∞∞-±±±⎰综上所述()()()()()()()()''dt t ''t VG ''t t G 't t G 't t G ''dt t ''t VG ''t t G 't t G 't t G '0'00--+-=---+-=-±∞+∞-±±±±+∞∞-±±±⎰⎰两式成立。
高等量子力学试题库
![高等量子力学试题库](https://img.taocdn.com/s3/m/63f166000a4e767f5acfa1c7aa00b52acfc79c82.png)
高等量子力学试题库一、简述题1. (§1.4)试以一维线性谐振子基函数所构成的空间为例,说明一般矢量空间的维数与位形空间维数的区别 2. (§2.4)试述幺正算符的性质 3. (§3.2)试述本征子空间的概念 4. (§3.3)试述厄米算符完备组的概念和建立厄米算符完备组的必要性 5. (§6.2)试述量子力学的基本原理 6. (§11)试述相互作用绘景与薛定谔绘景、海森伯绘景的区别和联系7. (§17.2)设氢原子的定态狄拉克方程为 ψψβαE r e mc P c =-+⋅)ˆ(212 ,为求氢原子哈密顿算符Hˆ 确切的本征矢量,试确定包含Hˆ在内的厄米算符完备组 8. (§19)若系统的哈密顿具有下列对称性(1)空间反演(2)空间平移(3)空间转动(4)SO(4)(5)时间平移,试分别给出这些对称性所带来的守恒量9. (§21.2)对于 Fermi 子,试讨论由时间反演引起的简并。
(提示:参阅曾书335页) 10. (§23)试述角动量耦合与3j ,6j 和9j 符号之间的关系11. (§23.7)对具有两个价电子的原子,设两电子的轨道和自旋角动量分别为21,L L 和21,S S,试在希尔伯特空间中给出两组可能的耦合基矢 12. (§34.4)试给出位置表象中的Hartree-Fock 方程并叙述其物理意义 二、证明题1. (§1.1)利用矢量空间的加法运算法则证明零矢量是唯一的2. (§1.1)利用矢量空间的数乘运算法则证明:若0=a ψ,则0=a 或0=ψ3. (§1.2)对于任意ψ和ϕ,试证:ϕψϕψ+≤+4. (§1.5)试证明:若三个右矢ψ、ϕ和χ满足χϕψ=+,则有χϕψ=+5. (§2.3)证明定理:在复矢量空间中,若算符A 对其定义域中的任意ψ满足0=ψψA ,则必有0=A6. (§2.4)证明定理:算符H 为厄米算符的充要条件是对其定义域中的所有矢量ψ满足=ψψH 实数7. (§2.4)证明:若I U U =+,则对任意ψ和ϕ,U 满足ϕψϕψ=U U ,进而证明,幺正变换不改变矢量的模8. (§2.4)设U 是幺正算符,试证明:在矢量空间中,若{}iν是一组基矢,则{iU ν也是一组基矢9. (§2.5)证明投影算符是厄米算符,并由全空间的投影算符证明基矢的完全性关系 10. (§3.1)证明:复空间中厄米算符的本征值都是实数11. (§3.1)证明:厄米算符属于不同本征值的两个本征矢量互相正交12. (§3.1)证明:若B A ,两算符相似,则二者有相同的本征值谱,且每一本征值都有相同的简并度 13. (§6.6)设i a 是算符A 属于本征值i a 的本征函数,即满足i i i a a a A =,且定义物理量在状态ψ中的平均值为ψψA A =。
高等量子力学-习题及答案 ch01
![高等量子力学-习题及答案 ch01](https://img.taocdn.com/s3/m/2dbc1cb685868762caaedd3383c4bb4cf6ecb752.png)
第一章量子力学基本概念和一般理论
一、量子态矢量的定义是什么。
描述微观粒子状态的态矢量ψ等符号代表一个复矢量,而y+是y的厄密共轭矢量或称“对偶矢量"。
用狄拉克符号记为|ψ>,表示波函数ψ的右矢;<ψ|表示左矢。
右矢和左矢是互相独立的,但存在如下关系:。
二、请简述线性算符的运算规则和性质。
(6)若由方程能够唯一地解出|ψ>,则可定义算符A的逆算符
,于是A'满足
(7)若,则U称为幺正算符。
(8),表示算符A的函数。
三、幺正变换的基本性质有哪些。
幺正变换具有许多非常有意义的性质。
(1)幺正变换下两个态矢量的内积不变。
(2)幺正变换下算符方程的形式不变。
(3)幺正变换下力学量算符对应的平均值保持不变。
(4)幺正变换下算符的行列式不变。
(5)幺正变换下算符的本征值谱不变。
(6)幺正变换下算符的迹不变。
(7)利用上述性质(6)可以给出指数算符函数的一一个有用公式。
(8)可以证明,若算符R是厄米算符,即R=R+,则由它所生成的算符
四、时间演化算符U(t,t0)的基本性质有哪些。
1.初始条件
2.幺正性
3.因子化特性
4.时间反演特性
5.薛定谔绘景中的动力学方程
五、矢量空间中的如下运算规则有哪些。
六、什么叫密度矩阵?
如果采用一个具体表象,例如,F表象(分立情形,),则与量子态|ψ>相应的密度算符可表示成如下矩阵形式,称为密度矩阵。
七、请列举混合态密度算符的性质。
高等量子力学习题1
![高等量子力学习题1](https://img.taocdn.com/s3/m/5c6ba66eeefdc8d376ee32af.png)
个人收集整理-ZQ1 / 1 k ijk j i S i S S ε=],[2322212S S S S ++=>>=+0|)(!1|n b n n ⎰=++-x x x x e e d ****2φφφφπφ高等量子力学第一章习题:两个态矢量>和->形成完全集.在它们所构成地空间中定义如下三个算符:试证明它们满足如下对易和反对易关系: ij j i S S δ2},{2 =+ 并求出两个态矢量 >和->之间地翻转变换算符及算符 地表达式二能级系统地哈密顿算符一般可表达为:=>< >< >< ><其中>和>分别表示二能级地状态,形成正交归一集.问:地厄密性对系数有何限制?求该系统地能量本征值及相应地本征态矢量(表示为>和>地线性叠加).文档收集自网络,仅用于个人学习已知一线性谐振子在其哈密顿表象中地本征态矢量为其中,基态>满足>,并且和与其坐标和动量算符地关系为试求态矢量>转换到坐标表象表达式<>.设某系统地哈密顿算符为: ()()() () -其中() , , 为任意时间地函数, , , -为()群地生成元,其满足下述对易关系: [ , -]- , [ , ±]±±文档收集自网络,仅用于个人学习试证明该系统地时间演化算符可表示为:()[()][()][()-] , 并导出确定()地方程..文档收集自网络,仅用于个人学习 已知算符和地对易关系为[ , ],在 对角表象地本征态矢量为且基态满足>, 引入算符地本征态>> 试求归一化态矢量>在 对角表象地表示式,由基矢量组>构成地表象称作为相干态表象,试求态矢量>在相干态表象地波函数文档收集自网络,仅用于个人学习题地已知条件与题相同,并可利用题地结果,试证明:()相干态表象地基矢量不具有正交性,并说明其原因.() 相干态表象地基矢组是完备地,完备性条件由下式给出式中,积分元由 给出,证明过程中可以利用地公式有:()不存在算符地本征右矢量. )(||||21+><-+-><+= S )(||||23-><--+><+= S )(||||22-><+-+><-= i S ; >>=+0|)(!1|n b n n )(2b b x +=+μω)(2b b i p -=+μω⎰=><1||2z z zd π。
喀兴林高等量子力学习题EX1.矢量空间
![喀兴林高等量子力学习题EX1.矢量空间](https://img.taocdn.com/s3/m/940d5943fad6195f302ba65f.png)
EX1.矢量空间练习 1.1 试只用条件(1)~(8)证明2ψψψ+=,0ψ=O 和1ψψ-=-()。
(完成人:梁立欢 审核人:高思泽) 证明:由条件(5)、(7)得 11112ψψψψψψ+=+=+=()只需证明O =0ψ和ψψ-=-)1(这两式互相等价 根据条件(7)00)00(0ψψψψ+=+= 现在等式两边加上)0(ψ-,得)0()00()0(0ψψψψψ-++=-+ 根据条件(4), 上式左O =-+=)0(0ψψ 根据条件(4)、(2)上式右00)00(0ψψψψψ=O +=-+= O =∴0ψ由O =0ψ,根据条件(4)、(7)得ψψψψψψ-=O =-+=-=)1()11(0 ψψ-=-⇒)1( #练习 1.2 证明在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则必有21ψψ=。
(完成人:谷巍 审核人:肖钰斐)证明 由题意可知,在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则有(1ψ,)ϕ-(2ψ,)ϕ=0(1) 于是有()0,21=-ϕψψ(2)由于在内积空间中()()ϕψϕψ,,21=对任意ϕ成立,则可取21ψψϕ-=,则有()2121,ψψψψ--=0 成立 (3)根据数乘的条件(12)可知,则必有021=-ψψ(4) 即21ψψ=故命题成立,即必有21ψψ=. #练习1.3 矢量空间运算的12个条件是不是独立的?有没有一条或两条是其余各条的逻辑推论?如有,试证明之。
(完成人:赵中亮 审核人:张伟) 解:矢量空间运算的12个条件是独立的。
#练习 1.4 (1)在第二个例子中若将加法的规定改为:和矢量的长度为二矢量长度之和,方向为二矢量所夹角()︒〈180的分角线方向,空间是否仍为内积空间? (2)在第二个例子中若将二矢量B A 和内积的定义改为θ或θ,空间是否仍为内积空间? (3)在第三个例子的空间中,若将内积的定义改为 ()4*43*32*21*1432,m l m l m l m l m l +++=空间是否仍为内积空间?(4)在第四个例子的函数空间中,若将内积的定义改为()()⎰⎰==baba dxx x g x f x g x f xdx x g x f x g x f 2**)()()(),()()()(),(或空间是否仍为内积空间?(完成人:张伟 审核人:赵中亮)解:(1)在第二个例子中若将加法的规定改变之后,空间不是内积空间。
量子力学教程课后习题答案(doc)
![量子力学教程课后习题答案(doc)](https://img.taocdn.com/s3/m/a12529d60408763231126edb6f1aff00bed570fb.png)
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dvλλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThc λ ,则上述方程为x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=h v ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
高等量子力学喀兴林答案
![高等量子力学喀兴林答案](https://img.taocdn.com/s3/m/01e843f649649b6648d74791.png)
高等量子力学喀兴林答案【篇一:量子力学】03 1309050325 吴富贤摘要:给出了不同学者关于量子力学态叠加原理的几种表述,分析比较了关于该原理的有关观点的争议,并对其中的原因进行了讨论,与此同时,也对量子力学在其它方面的应用进行了表述。
关键词:量子态;态叠加原理;量子力学基本问题;量子力学的应用。
一.引言:量子态的叠加原理是量子力学中一个重要的原理.但是在目前量子力学的一些专著和教科书中对这一原理的表述方式却是多种多样的,其中存在不少有争议的问题。
对一些有关的问题进行讨论,并提出一种新的关于这一原理的表述方式的建议。
同时量子力学是现代物理学的两大支柱之一,是20 世纪基础物理学取得的两大成就之一,是反映微观粒子运动规律的理论.量子力学态叠加原理(以下简称态叠加原理)是量子力学的一个基本原理,在量子力学理论体系中占有相当重要的地位.虽然量子力学诞生至今已近80年了,叠加原理也得到了一系列实验的证明,如电子衍射实验、中子干涉实验、电子共振俘获等,但时至今日,人们对态叠加原理的认识却仁者见仁、智者见智.本文对这个问题进行了比较、分析和讨论还对量子力学的应用和发展进行了一些研究。
二.正文:原理的表述在量子力学发展史上,尤其是现行的量子力学专著或教材里,不同的学者对态叠加原理进行了不同的描述.我们选择国内外3种比较典型的说法作一下简单介绍.(1)狄拉克的表述据说,狄拉克1930年在《量子力学原理》一书的初版里,首次系统地论述了量子力学里的态叠加原理.他在此书第一章“态叠加原理”里[4],先是正确地强调了态叠加原理的物理意义:“量子力学的叠加的一般原理,应用于任何一个动力学系统的态.”“把一个态表示成为一些其他态的叠加的结果,那是一种数学运算,总是可以允许的,??然而,这种运算是否有用,取决于所研究问题的特殊物理条件.” 可是,狄拉克接着是这样讲解“叠加过程的非经典本性”的:“我们考虑两个态a和b的叠加,这两个态的性质是??当观察处在态a的系统时,肯定得出一个特定的结果,比方说是a;而当观察处在态b的系统时,则肯定得出一个不同的结果,比方说是b.当观察处在叠加态的系统时??所得到的结果将有时是a,有时是b??而决不会既不是a,又不是b.”然而,狄拉克在这里讲的,不正是对于所有普通统计学都适用的规则吗?例如,一个年级有两个班,a班的年龄分布是集合{a},b班的年龄分布是另一个集合{b}.那么全年级的年龄分布不就是{a}与{b}这两个集合的和集吗?亦即是说,全年级任何一位同学的年龄,都决不会既不属于{a},又不属于{b}.这哪里是什么“非经典本性”呢?由于狄拉克在这里没有把握住量子力学里的态叠加原理的要领,在接下来的一句关于“由叠加而成的态的中间性质”的论断里,就难免出了点毛病[5,6].他自己也不得不为此加了一处脚注,承认他的结论没有普遍性,它的成立是“有一些限制”的.总而言之,在狄拉克书中的第一章里,还没有引入概率幅这个概念,因而不可能讲清楚量子力学里的态叠加原理.可以这样说,在这一章里,还没有进入到量子力学(2)朗道的表述(3)喀兴林的表述态叠加原理对态叠加原理的表述我们还可以列出许多.从这些不同表述中可以看出学者们关于以下几个方面的观点是一致的(1)关于态和态函数的表述基本上大多数人们都认为体系的态(运动状态或状态的简称)是指一个体系的每一种可能的运动方式,即在受到独立的、互不矛盾和完全的条件限制下而确定的每一种运动方式.与宏观体系的运动状态的确定是决定性的相对立,微观体系的运动状态的确定是非决定性的、统计性的,称微观体系的态为量子态.量子态由希尔伯特空间中的矢量表征,称为态矢量.希尔伯特空间又称为态矢量空间或态空间(2)态叠加原理的基本内容(3)量子叠加与经典、数学叠加的区别经典物理中也有叠加原理,例如波的叠加、矢量的叠加等,它们与量子力学里的态叠加原理形式上有相似之处,但实质内容不同.首先经典矢量叠加是物理量的叠加,遵循平行四边形法则;而态矢量无明显的物理意义,且完全由希尔伯特空间中的矢量方向决定,与矢量长度无关.经典波的叠加是两列或多列波的叠加,量子态叠加则是同一体系的两个或多个同时可能的运动状态的叠加.其次,量子态叠加也不同于数学上将体系的一个波函数按一个基函数完备组展开.后者要求基函数完备,但量子叠加不需要相叠加的波函数完备。
高等量子力学喀兴林答案
![高等量子力学喀兴林答案](https://img.taocdn.com/s3/m/01e843f649649b6648d74791.png)
高等量子力学喀兴林答案【篇一:量子力学】03 1309050325 吴富贤摘要:给出了不同学者关于量子力学态叠加原理的几种表述,分析比较了关于该原理的有关观点的争议,并对其中的原因进行了讨论,与此同时,也对量子力学在其它方面的应用进行了表述。
关键词:量子态;态叠加原理;量子力学基本问题;量子力学的应用。
一.引言:量子态的叠加原理是量子力学中一个重要的原理.但是在目前量子力学的一些专著和教科书中对这一原理的表述方式却是多种多样的,其中存在不少有争议的问题。
对一些有关的问题进行讨论,并提出一种新的关于这一原理的表述方式的建议。
同时量子力学是现代物理学的两大支柱之一,是20 世纪基础物理学取得的两大成就之一,是反映微观粒子运动规律的理论.量子力学态叠加原理(以下简称态叠加原理)是量子力学的一个基本原理,在量子力学理论体系中占有相当重要的地位.虽然量子力学诞生至今已近80年了,叠加原理也得到了一系列实验的证明,如电子衍射实验、中子干涉实验、电子共振俘获等,但时至今日,人们对态叠加原理的认识却仁者见仁、智者见智.本文对这个问题进行了比较、分析和讨论还对量子力学的应用和发展进行了一些研究。
二.正文:原理的表述在量子力学发展史上,尤其是现行的量子力学专著或教材里,不同的学者对态叠加原理进行了不同的描述.我们选择国内外3种比较典型的说法作一下简单介绍.(1)狄拉克的表述据说,狄拉克1930年在《量子力学原理》一书的初版里,首次系统地论述了量子力学里的态叠加原理.他在此书第一章“态叠加原理”里[4],先是正确地强调了态叠加原理的物理意义:“量子力学的叠加的一般原理,应用于任何一个动力学系统的态.”“把一个态表示成为一些其他态的叠加的结果,那是一种数学运算,总是可以允许的,??然而,这种运算是否有用,取决于所研究问题的特殊物理条件.” 可是,狄拉克接着是这样讲解“叠加过程的非经典本性”的:“我们考虑两个态a和b的叠加,这两个态的性质是??当观察处在态a的系统时,肯定得出一个特定的结果,比方说是a;而当观察处在态b的系统时,则肯定得出一个不同的结果,比方说是b.当观察处在叠加态的系统时??所得到的结果将有时是a,有时是b??而决不会既不是a,又不是b.”然而,狄拉克在这里讲的,不正是对于所有普通统计学都适用的规则吗?例如,一个年级有两个班,a班的年龄分布是集合{a},b班的年龄分布是另一个集合{b}.那么全年级的年龄分布不就是{a}与{b}这两个集合的和集吗?亦即是说,全年级任何一位同学的年龄,都决不会既不属于{a},又不属于{b}.这哪里是什么“非经典本性”呢?由于狄拉克在这里没有把握住量子力学里的态叠加原理的要领,在接下来的一句关于“由叠加而成的态的中间性质”的论断里,就难免出了点毛病[5,6].他自己也不得不为此加了一处脚注,承认他的结论没有普遍性,它的成立是“有一些限制”的.总而言之,在狄拉克书中的第一章里,还没有引入概率幅这个概念,因而不可能讲清楚量子力学里的态叠加原理.可以这样说,在这一章里,还没有进入到量子力学(2)朗道的表述(3)喀兴林的表述态叠加原理对态叠加原理的表述我们还可以列出许多.从这些不同表述中可以看出学者们关于以下几个方面的观点是一致的(1)关于态和态函数的表述基本上大多数人们都认为体系的态(运动状态或状态的简称)是指一个体系的每一种可能的运动方式,即在受到独立的、互不矛盾和完全的条件限制下而确定的每一种运动方式.与宏观体系的运动状态的确定是决定性的相对立,微观体系的运动状态的确定是非决定性的、统计性的,称微观体系的态为量子态.量子态由希尔伯特空间中的矢量表征,称为态矢量.希尔伯特空间又称为态矢量空间或态空间(2)态叠加原理的基本内容(3)量子叠加与经典、数学叠加的区别经典物理中也有叠加原理,例如波的叠加、矢量的叠加等,它们与量子力学里的态叠加原理形式上有相似之处,但实质内容不同.首先经典矢量叠加是物理量的叠加,遵循平行四边形法则;而态矢量无明显的物理意义,且完全由希尔伯特空间中的矢量方向决定,与矢量长度无关.经典波的叠加是两列或多列波的叠加,量子态叠加则是同一体系的两个或多个同时可能的运动状态的叠加.其次,量子态叠加也不同于数学上将体系的一个波函数按一个基函数完备组展开.后者要求基函数完备,但量子叠加不需要相叠加的波函数完备。
高量1-矢量空间
![高量1-矢量空间](https://img.taocdn.com/s3/m/a40aea60af1ffc4ffe47ac3b.png)
( , ) 0
模方的正平方根称为模,记作| | ,又称作 矢量 的长度。 3. 归一化矢量: 模等于1的矢量称为归一化矢量。
15
二、与模有关的基本关系
1. Schwartz不等式 对于任意矢量 和 ,有 | ( , ) || | | | [证]给定 和 后,构造一个矢量 ( , ) 2 | | 2 作 的模方,则 | | 0
(数乘结合律,单位元)
所以 0 故若 a 0 a 0 或 0
7. (a, ) a* ( , ) 8. ( , ) ( , ) ( ) 9. ( , O) 0 注意数和矢量的写法
10
三、矢量空间举例
1. 有理数域上的矢量空间
每项都在上述空间中。但当 n 时, n e 2.7182818 S 这是一个无理数,不在有理数空间内。 所以,有理数域的空间并非完全的内积空间。
11
2. 位置矢量空间
数学对象为 3D位形空间中由一点引出的不同方向, 不同长短的线段的全体。 规定(1)加法:平行四边形法则 (2)数乘:方向不变,长度乘以a (3)内积:两矢量点乘积 这是一个实数域上的内积空间。
3. 复矩阵
数学对象为 一组有次序的复数。如四个数写成列阵 l1 l2 l l3 l 4
12
定义加法、数乘和内积分别为
l1 m1 l2 m2 lm l3 m2 l m 2 4 l1a l2 a la la 3 l a 4
19
i 1 n
对无穷个矢量集合,若任意有限的子集合都是线 性无关的,则整个集合就是线性无关的。 (2) 完全集 一个矢量空间中的一组完全集,是一个线性无关 的矢量集合,比如
喀兴林高等量子力学习题EX(docX页)
![喀兴林高等量子力学习题EX(docX页)](https://img.taocdn.com/s3/m/915419fe18e8b8f67c1cfad6195f312b3169ebb9.png)
练习31.1 证明)(b a 与)'(b a 的对易关系(31.4)和)(b a 与)'(b a +的对易关系(31.6)式。
0)()'()'()(=-b a b a b a b a ε (31.4)0)()'()'()(=-++b a b a b a b a ε (31.6)(解答:熊凯 ; 校对:李泽超)证明:将)'()(b a b a 和)()'(b a b a 分别作用在n 粒子基左矢νγβαb b b b n ....;上νγβανγβανγβαεbb b b bb n n n b b b bb b n n n b a b a b b b b n ....';2)2)(1(....';2)2)(1()'()(....;+++=+++= (1)νγβανγβαb b b b bb n n n b a b a b b b b n ....';2)2)(1()'()(....;+++= (2)由)2()1(ε-得:0)()'()'()(=-b a b a b a b a ε(2)将)'()(b a b a +与)()'(b a b a +分别作用在右矢νγβαb b b b n ....;上μγβανγαβνγβανγβανγβανγβαδεδεεδδb b b b b n b b b b b b n b b b b b b n b b b b b b n b b b b b b b n b a n b b b b n b a b a v n ....';)(........';)(....';)(....;)'(....';1)(1....;)'()(2-++-+-+-=++=+ (3)μγβανγαβνγβαμγβνβαγνγαβνγβανγβαδεεδδδεδεεδδb b b b b n b b b b b b n b b b b b b n b b b b b n b b b b b n b b b b b n b b b b b n b b nb a b b b b n b a b a v n v n ....';)(........';)(....';)(]....;1)(........;1)(....;1)(....;1)([1)'(....;)()'(112-++-+-=--++--+--+--=--++ (4)由)4()3(ε-得:)'()()'()'()(b b b a b a b a b a -=-++δε □练习31.2 计算下列对易关系:)]()'()'()(),()([b a b a b a b a b a b a +++ )]()'()'()(),'()'([b a b a b a b a b a b a +++(解答:熊凯 ; 校对:李泽超)解:(1)令)()()(b a b a b N +=为处于b 态的占有数算符由(31.10)、(31.11)两式可得:)'()()](),([b b b a b a b N -=++δ (31.10) )'()()](),([b b b a b a b N --=δ (31.11))'()]()'()'()([)'()'()()'()()'()'()]'(),([)]'(),()['()]'()'(),([)]'(),([=--=-+--=+==+++++++b b b a b a b a b a b b b a b a b b b a b a b a b a b N b a b N b a b a b a b N b N b N δδδ从上式可以看出当'b b =时中括号为0,'b b ≠时δ函数为0,所以上式为零 因为:)()]'(),()[()()]'()'(),()()[()()]'()'(1),()(1)[()()]'()'(),()()[()()]()()'()'()'()'()()()[()()()()'()'()()()'()'()()()()]()'()'()(),()([22===++==-=-=++++++++++++++++++++++++b a b N b N b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a εεεε上式中第四步计算用到了(31.6)式∴ 0)]()'()'()(),()([=+++b a b a b a b a b a b a(2))}'()'()()()'()'(){'()}'()'()()'()()'()'()'({)}'()'()'()()()'()'()'({)]}(),'()['()()()'()](),'({[)]}()'(),'()[()()'()](),'({[)]()'()(),'([)]()'()'()(),'([)]()'()'()()(),'([)]()'()'()()()(),'([)]())'()'(1)((),'([)]())'()'()''()((),'([)]()'()'()(),'()'([b a b N b a b a b N b a b b b a b N b a b b b a b N b a b b b b b a b N b a b a b N b b b a b a b N b N b a b a b N b a b N b a b N b N b a b a b N b a b N b a b N b a b N b a b a b a b a b N b a b a b a b a b N b N b a b a b a b a b a b a b N b a b a b a b a b N b a b a b a b b b a b N b a b a b a b a b a b a +++++++++++++++++++++++++--=---=---=+=+===+=+=+=+-=εδδδεδδεεεεεεεεεδ从上式可以看出:当'b b =时括号为0,'b b ≠时δ函数为0,所以上式为0∴0)]()'()'()(),'()'([=+++b a b a b a b a b a b a□练习31.3 讨论全同粒子的自旋态,设自旋为1/2的粒子的单粒子z S 的本征矢量为>>βα||和,相应的本征值为2/2/ -+和;ββααa a a a ,,++和分别是α态和β态的产生和消灭算符。
喀兴林高等量子力学习题
![喀兴林高等量子力学习题](https://img.taocdn.com/s3/m/fc3f4864856a561252d36fa3.png)
练习 在ψ按A 的本征矢量{ia 展开的()式中,证明若ψ是归一化的,则1=∑*iii cc ,即A 取各值的概率也是归一化的。
(杜花伟)证明:若ψ是归一化的,则1=ψψ。
根据式∑=ii ic aψ, ψi i a c =可得1===∑∑*ψψψψi ii i ii a a c c即A 取各值的概率是归一化的。
#练习 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变.(2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美)(1)证明:在定态中i E i H i = , Λ3,2,1=i 则()t E i i i i t η-=ψ所以i A i e i A e A t E i t E i i i ==-ηηψψ.即所有物理量的平均值不随时间变化.(2)两个定态的叠加不一定是定态.例如()()()t E i t E i ex v ex u t x 21,ηη--+=ψ当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. #证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立:)(]),([)()](,[X f X i P X f P f Pi P f X ∂∂=∂∂=ηη(解答:陈玉辉 核对:项朋)证明:(1))()()()()()()()()](,[P f Pi P i P f P i P f P f P i Pi P f P f P i X P f P Xf P f X ∂∂=∂∂-∂∂+∂∂=∂∂-∂∂=-=ηηηηηηψψψψψψψψψ所以 )()](,[P f Pi P f X ∂∂=η(2))()()())(())(()()())(()()(]),([X f Xi X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ∂∂=∂∂--∂∂--∂∂-=∂∂--∂∂-=-=ηηηηηηψψψψψψψψψ所以 )(]),([X f Xi P X f ∂∂=η#练习 下面公式是否正确?(解答:陈玉辉 核对:项朋) ),()],(,[P X f Pi P X f X ∂∂=η 解:不正确。
量子力学作业答案精选全文完整版
![量子力学作业答案精选全文完整版](https://img.taocdn.com/s3/m/2b8505383a3567ec102de2bd960590c69fc3d865.png)
可编辑修改精选全文完整版量子力学课后习题答案2.1证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度: ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r m r k r m r k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rm r k r m r k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
2.3 一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。
解:t x U 与)(无关,是定态问题。
高等量子力学复习题
![高等量子力学复习题](https://img.taocdn.com/s3/m/1bc40e294b73f242336c5fbf.png)
上册1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较.解 粒子能量0V E 小于时为游离态,能量本征值方程为:[]0)(22''=-+ψψx V E m(1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成⎪⎩⎪⎨⎧≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mEψβψψψ 无限远处束缚态波函数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此2,0)('a x Ce x x ≥≈±=-ββψ (6)阱内波函数可由式(3)解出,当0V E ≈解为()()2,s i n ,c o s 00a x x k x x k x ≤⎩⎨⎧==ψψ奇宇称偶宇称 (7)阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ,将这条件用于式(7),即得,5,3,,02cos ,6,4,2,02sin0000ππππππ====a k ak a k ak 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为,3,2,1,0==n n a k π (9)即222202πn a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果22202π< a mV ,只存在一个束缚态,偶宇称(基态)。
如果22202π= a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。
如()222022π= a mV ,阱口将出现第三个能级(偶宇称)。
依此类推,由此可知,对于任何20a V 值,束缚态能级总数为其中符号[A]表示不超过A 的最大整数。
高等量子力学练习题及答案解析十五
![高等量子力学练习题及答案解析十五](https://img.taocdn.com/s3/m/e94ca5603868011ca300a6c30c2259010202f381.png)
15.1 将狄拉克方程(15.11)式左乘以*ψ,再将(15.11)式的左矢形式右乘以ψ,二式相加,从而证明由狄拉克方程可以导出连续方程0=⋅∇+∂∂j ρtψ。
并证明ψc ψψψtψαj j ** ===⋅∇+∂∂ρρ0证明:狄拉克方程:()02=⎥⎦⎤⎢⎣⎡-∇-⋅-∂∂ψmc i c t i β α (15.11) 将(15.11)式左乘以*ψ得到02=-∇⋅+∂∂ψmc ψψψc i ψtψi β***α(1) 将(15.11)式的左矢形式右乘以ψ得到02=+∇⋅+∂∂ψmc ψψψc i ψti βψ***α(2) 将(1)式加上(2)式得到0=∇+∇⋅+∂∂+∂∂)(α)(****ψψψψc i ψtψψt ψi(3) 化简得到0=∇⋅+∂∂)(α**ψψc i ψψti另ψψ*=ρ并且ψc ψαj *=,上式可表述为0=⋅∇+∂∂j ρtψ 即得证。
#15.2 不用具体矩阵形式,证明:(1))A α)(B α(B A )B α)(A α(⋅⋅-⋅=⋅⋅2 (2)011=+⋅+⋅))(B α)()(A α(ββ(3)0000====βαααβααβαβk j i j i i trtr tr tr tr ,,,式中A 和B是位形空间中的矢量算符,互相对易。
证明:(1)α 是自旋空间算符,B ,A 是位形空间算符。
因此,α 与B ,A 是相互对易的。
所以可以利用公式)B A (αB A )B α)(A α(⨯⋅+⋅=⋅⋅i (1) )B A (αB A )A B (αB A )A α)(B α(⨯⋅+⋅=⨯⋅+⋅=⋅⋅i i (2)(1)+(2)得,)A α)(B α(B A )B α)(A α(⋅⋅-⋅=⋅⋅2即得证。
(2)ββββββ)B α()A α()B α()A α()B α)(A α()B α)(A α())(B α)()(A α(⋅⋅+⋅⋅+⋅⋅+⋅⋅=+⋅+⋅11 利用公式αα βββαβαβ-=⇒=+=012i i 且β与B ,A 也是相互对易的。
高等量子力学习题一
![高等量子力学习题一](https://img.taocdn.com/s3/m/bbbf78eb19e8b8f67c1cb93f.png)
1.1证明实直线是一个度量空间。
1.2在实数集合上,能定义一个度量吗? 2(,)()d x y x y =−1.3证明(,)d x y =在实数集合上定义了一个度量。
1.4证明:12{,,,}n x x x ",其中i i x t =,是空间中的线性无关组。
[,]C a b 1.5证明:在维线性空间中,任一n V φ作为给定基矢量,,",的线性组合,起表达式是唯一的。
1e 2e n e 1.6证明:同一个域上的两个线性空间和的卡氏积1V 2V 12=×V V V ,按下述方式定义代数运算12121122(,)(,)(,)φφψψφψφψ+=++1212(,)(,)c c c φφφφ=则它成为一个线性空间。
1.7求的基{的对偶基。
3\(1,0,0),(0,1,0),(0,0,1)}1.8设123{,,}f f f 的对偶基是,其中123{,,}e e e 1(1,1,1)e =,2(1,1,1)e =−,3(1,1,1)e =−−是的一个基。
求3\1()f x ,2()f x ,3()f x ,其中。
(1,0,0)x =1.9证明内积空间上模数||||(,)φφφ≡满足平行四边形等式222||||||||2(||||||||)φψφψφψ++−=+21.10在内积空间中,若对所有的φ都有等式(,)(,)φεφη=,证明εη=。
1.11证明:任一有限维的内积空间都有一个正交归一基n 1{,,}n εε"。
1.12设()i ε是内积空间中的任一正交归一序列。
证明对任意的I φ,ψ∈I ,有1|(,)(,)|||||||||nk k k φεψεφψ=≤⋅∑1.13设和是希尔伯特空间H 到的线性算符。
若对一切1T 2T H φ∈H 都有12(,)(,)φφφ=T T φ,证明12=T T 。
1.14设T :是用22[0,1][0,1]L L →()()()x t tx t =T 定义的算符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EX1.矢量空间练习 1.1 试只用条件(1)~(8)证明2ψψψ+=,0ψ=O 和1ψψ-=-()。
(完成人:梁立欢 审核人:高思泽) 证明:由条件(5)、(7)得 11112ψψψψψψ+=+=+=()只需证明O =0ψ和ψψ-=-)1(这两式互相等价 根据条件(7)00)00(0ψψψψ+=+= 现在等式两边加上)0(ψ-,得)0()00()0(0ψψψψψ-++=-+ 根据条件(4), 上式左O =-+=)0(0ψψ 根据条件(4)、(2)上式右00)00(0ψψψψψ=O +=-+= O =∴0ψ由O =0ψ,根据条件(4)、(7)得ψψψψψψ-=O =-+=-=)1()11(0 ψψ-=-⇒)1( #练习 1.2 证明在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则必有21ψψ=。
(完成人:谷巍 审核人:肖钰斐)证明 由题意可知,在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则有(1ψ,)ϕ-(2ψ,)ϕ=0 (1)于是有()0,21=-ϕψψ (2)由于在内积空间中()()ϕψϕψ,,21=对任意ϕ成立,则可取21ψψϕ-=,则有()2121,ψψψψ--=0 成立 (3)根据数乘的条件(12)可知,则必有021=-ψψ(4) 即21ψψ=故命题成立,即必有21ψψ=. #练习1.3 矢量空间运算的12个条件是不是独立的?有没有一条或两条是其余各条的逻辑推论?如有,试证明之。
(完成人:赵中亮 审核人:张伟) 解:矢量空间运算的12个条件是独立的。
#练习 1.4 (1)在第二个例子中若将加法的规定改为:和矢量的长度为二矢量长度之和,方向为二矢量所夹角()︒〈180的分角线方向,空间是否仍为内积空间? (2)在第二个例子中若将二矢量B A 和内积的定义改为θ⋅或θ,空间是否仍为内积空间? (3)在第三个例子的空间中,若将内积的定义改为 ()4*43*32*21*1432,m l m l m l m l m l +++=空间是否仍为内积空间?(4)在第四个例子的函数空间中,若将内积的定义改为()()⎰⎰==baba dxx x g x f x g x f xdx x g x f x g x f 2**)()()(),()()()(),(或空间是否仍为内积空间?(完成人:张伟 审核人:赵中亮)解:(1)在第二个例子中若将加法的规定改变之后,空间不是内积空间。
因为将规定改之后对于任意的矢量不一定存在逆元,如一个不为零的矢量设为A ,则任意矢量和它相加后,得到的矢量的长度不为零,所以一定不能得到零矢量,即找不到逆元。
所以空间不是内积空间。
(2)在第二个例子中若将内积的定义改之后,空间不是一个内积空间。
证明如下:+≠+,即有() ,=+C BA θ+θθ+≠=()()C A B A ,,+所以内积的定义改变之后不是内积空间。
(3)在第三个例子中若将内积的定义改之后,空间仍然是一个内积空间。
证明如下: i()()m l m l m l m l m l l m l m l m l m l m ,432)432(,4*43*32*21*1*4*43*32*21*1*=+++=+++=ii .()()()n l m l n l n l n l n l m l m l m l m l n m l n m l n m l n m l n m l ,,)432()432()(4)(3)(2)(,4*43*32*21*14*43*32*21*144*433*322*211*1+=+++++++=+++++++=+ iii .()()m l a m l m l m l m l a am l a m l a m l a m l ma l ,)432(432,4*43*32*21*14*43*32*21*1=+++=+++= iv.()0||4||3||2||,24232221≥+++=l l l l l l ,对任意l 成立 若()0,0,0,4321======l l l l l l l 即则必有综上所述,新定义的内积规则符合条件(9)—条件(12),所以仍为内积空间(4)在第四个例子的函数空间中,若将内积的定义改为()⎰=baxdx x g x f x g x f )()()(),(*后,空间不是内积空间。
因为()⎰⎰==babaxdx x f xdx x f x f x f x f 2*)()()()(),(,积分号内的函数是一个奇函数,它不能保证对于任意的()x f 积分出来后都大于零,即不符合条件(12),所以不是内积空间。
在第四个例子的函数空间中,若将内积的定义改为()⎰=badx x x g x f x g x f 2*)()()(),(后,空间是内积空间。
证明如下:i ()()**2*2*)(),()()()()()(),(x f x g dx x x f x g dx x x g x f x g x f b a ba=⎪⎭⎫ ⎝⎛==⎰⎰ii()()()()()x h x f x g x f dx x x h x f dx x x g x f x h x g x f baba),()(),()()()()()(),(2*2*+=+=+⎰⎰ iii ()())(),()()()()()(),(2*2*x g x f a dx x x g x f a dx ax x g x f a x g x f baba===⎰⎰iv ()成立对任意ψ,0)()(),(22≥=⎰ba dx x x f x f x f若()0)()(),(22==⎰badx x x f x f x f ,则必有()0=x f综上所述,新定义的内积规则符合条件(9)—条件(12),所以仍为内积空间。
#练习 1.5若a 为复数,证明若a ψϕ=时,Schwartz 不等式中的等号成立。
(完成人:肖钰斐 审核人:谷巍)证明:当若a ψϕ=时,分别带入Schwartz 不等式的左边和右边。
左边=()2,ψψψa a =右边=2ψψψa a =⋅左边=右边,说明当a ψϕ=时,Schwartz 不等式中的等号成立。
#练习1.6 证明当且仅当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。
并在三维位形空间讨论这一命题的几何意义。
(完成人:赵中亮 审核人:张伟)证明:解:当||||a a ϕψϕψ-=+对一切数a 成立时,有22||||a a ϕψϕψ-=+即 ),(),(a a a a ϕψϕψϕψϕψ--=++得 ),(),(),(),(),(),(),(),(a a a a a a a a ϕϕψϕϕψψψϕϕψϕϕψψψ+--=+++ 即 ),(),(ψϕϕψa a -= **-=),(),(ϕψϕψa a因为a 可以取一切数,所以当a 取纯虚数时,即*-=a a 得 *=),(),(ϕψϕψ由此得),(ϕψ只能是实数 当a 取非零实数时,即*=a a *-=),(),(ϕψϕψ只有0),(=ϕψ时,即ψ与ϕ正交时才成立所以 当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。
当ψ与ϕ正交时,0),(=ϕψ 则 0),(),(==*ϕψϕψ 取a 为任意数则 0),(),(=-=**ϕψϕψa a ),(),(ψϕϕψa a -= ),(2),(2ψϕϕψa a -=),(),(2),(),(),(2),(a a a a a a ϕϕψϕψψϕϕϕψψψ+-=++),(),(),(),(),(),(),(),(a a a a a a a a ϕϕψϕϕψψψϕϕψϕϕψψψ+--=+++ ),(),(a a a a ϕψϕψϕψϕψ--=++ 22||||a a ϕψϕψ-=+ 得 ||||a a ϕψϕψ-=+即 ||||a a ϕψϕψ-=+ 对一切数a 成立综上,当且仅当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。
在三维位形空间中,这一命题的几何意义是:对角线相等的平行四边形是矩形。
#练习1.7 证明:当且仅当ψϕαψ≥-对一切数α成立时,ψ与ϕ正交。
(完成人:班卫华 审核人:何贤文) 证明:因为ψϕαψ≥-,两边平方得22ψϕαψ≥-2222)(ψαϕαψϕϕψψ≥++-**0)(22≥+-**αψϕϕψαϕ则构成以α为变量的二次函数,要使对一切α成立,判别式恒小于等于零,即0)(2≤+**ψϕϕψ只需0=+**ψϕϕψ即0),(),(=+ψϕϕψ得0),(=ϕψ所以当ψϕαψ≥-对一切数α成立时,ψ与ϕ正交。
练习1.8在四维列矩阵空间中,给定四个不正交也不全归一的矢量:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111,0111,0011,00014321λλλλ它们构成一个完全集,试用Schmidt 方法求出一组基矢。
(完成人:肖钰斐 审核人:谷巍) 解:由Schmidt 方法,所求基矢:()()()()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛=''=⎪⎪⎪⎪⎪⎭⎫⎝⎛=⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---='⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=''=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--='⎪⎪⎪⎪⎪⎭⎫⎝⎛=''=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-='⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==100010001010010010100011111,,,0100010010010100010111,,00100010100010011,0001444433422411443333223113322211122111νννλννλννλννλννννλννλννλννννλννλνλλν#练习1.9 在上题中,改变四个λ的次序,取⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0111,0011,1111,00014321λλλλ重新用Schmidt 方法求出一组基矢。
(完成人:何贤文 审核人:班卫华)解:由空间中不满足正交归一条件的完全集{4321,,,λλλλ},求这个空间的一组基矢{4321,,,νννν}.(1)首先取1ν为归一化的1λ:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0001111λλν(2)取12122a νλν-=',选择常数12a 使'2ν与1ν正交,即 122121),(),(0a -='=λννν 得112=a , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='11102ν取2ν为归一化的'2ν:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='=111031222ννν (3)取23213133a a ννλν--=',选择常数13a 和23a 使'3ν与21,νν正交,即 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--='3131320),(),(32231133λννλννλν归一化的3ν为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=''=112061333ννν (4)取34324214144a a a νννλν---=',选择常数342414,,a a a 使'4ν与已选定的321,,ννν正交,即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---='212100),(),(),(43342241144λννλννλννλν归一化的4ν为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=''=110021444ννν 则找到一组基矢为 {4321,,,νννν}. #练习 1.10 在三维位形空间中,i ,j ,k是在互相垂直的x ,y ,z 三个轴上的单位矢量。