水热法制备纳米材料3

合集下载

水热法制备纳米材料

水热法制备纳米材料

实验名称:水热法制备纳米TiO2水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。

在水热条件下可以使反应得以实现。

在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。

水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。

一.实验目的1.了解水热法的基本概念及特点。

2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。

3.熟悉XRD操作及纳米材料表征。

4.通过实验方案设计,提高分析问题和解决问题的能力。

二.实验原理水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。

为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。

水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。

反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。

三.实验器材实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。

实验试剂:无水TiCl4;蒸馏水;无水乙醇。

四.实验过程1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。

2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

3.用量筒量取2mL的无水TiCl,缓慢滴加到冰水混合物中。

水热法制备纳米材料3

水热法制备纳米材料3

水热法制备纳米材料3水热法制备纳米材料3水热法是一种常用的制备纳米材料的方法,其原理是在高温高压的水热条件下,利用水分子的特性,通过化学反应在溶液中制备纳米颗粒或纳米结构材料。

水热法的优点在于其操作简单,反应条件温和,可制备出高纯度、均匀分散的纳米材料。

此外,水热法还具有选择性、晶型可控、易于扩展等特点,因此在纳米材料研究领域得到广泛应用。

水热法制备纳米材料的过程可以分为两步:前处理和水热反应。

前处理包括各种表面活性剂处理、溶解剂选择、PH值调节等。

水热反应的条件包括温度、压力、反应时间等。

下面以制备纳米氧化物为例,介绍水热法的具体操作步骤。

首先,准备所需的原料,例如钛酸四丁酯和乙二醇,同时在实验器具上进行清洗和干燥处理。

随后,将所需的乙二醇加入容器中,并加热至80℃左右,将钛酸四丁酯缓慢地滴加到乙二醇中,同时通过磁力搅拌使其混合均匀。

接下来,调整溶液的PH值,一般采用氨水或盐酸进行调节。

通过控制PH值,可以调节溶液中金属离子的浓度和颗粒的尺寸。

然后,将反应容器密封,加热至所需的温度,并保持一定的压力。

水热反应一般需要较高的温度和压力,因此需要采用特殊的反应器具进行操作。

在反应过程中,要注意保持溶液的温度和压力稳定,并定时采样进行分析。

最后,将反应产物进行分离和洗涤处理。

一般通过离心和洗涤的方法,将纳米颗粒或纳米结构材料从溶液中分离出来,并利用特殊仪器对其进行表征和分析,例如透射电镜、扫描电镜和X射线衍射等。

综上所述,水热法是一种常用的制备纳米材料的方法,其操作简单、条件温和,可以制备出高纯度、均匀分散的纳米材料。

随着纳米材料研究的不断深入,水热法的应用也会越来越广泛,对于制备各种功能性纳米材料具有重要的意义。

[讲解]水热法制备纳米材料

[讲解]水热法制备纳米材料

实验名称:水热法制备纳米TiO2水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。

在水热条件下可以使反应得以实现。

在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。

水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。

一.实验目的1.了解水热法的基本概念及特点。

2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。

3.熟悉XRD操作及纳米材料表征。

4.通过实验方案设计,提高分析问题和解决问题的能力。

二.实验原理水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。

为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。

水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。

反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。

三.实验器材实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。

实验试剂:无水TiCl4;蒸馏水;无水乙醇。

四.实验过程1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。

2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

3.用量筒量取2mL的无水TiCl4,缓慢滴加到冰水混合物中。

水热法制备batio3纳米粉体原理

水热法制备batio3纳米粉体原理

水热法制备batio3纳米粉体原理
水热法制备BaTiO3纳米粉体的原理是通过在高温高压的水热条件下,利用水分子和溶剂分子的高度活跃性,使得反应物中的离子在水热反应的过程中重新排列和结合,最终形成目标产物。

具体原理如下:
1. 水热环境:水热反应一般在高温高压下进行,典型的反应条件是温度在100-200摄氏度之间,压力在1-3 MPa左右。

这样的环境使得反应物能够在水分子的催化下更快地进行反应。

2. 溶解反应物:将所需的反应物,如钛酸铅和钡盐溶解在适当的溶剂中,形成反应物溶液。

溶剂通常选择对反应物具有较好的溶解性,如酸、碱或氢氧化钠等。

3. 反应:将制备好的反应物溶液加入到高压釜中,加热至设定的温度并保持一定的时间。

在高温高压的条件下,溶液中的离子发生迁移和重排,形成新的晶体。

4. 沉淀:经过一定时间的反应后,将高压釜冷却至室温,产物会经历一个从溶液中析出的过程。

这是因为溶解度随温度的下降而降低,导致产物退火结晶生成固态的BaTiO3纳米粉体。

通过水热法制备的BaTiO3纳米粉体具有高度纯净性、均匀性好、粒径小等优点,适用于丰富光电、催化及传感等领域的应用。

实验3 葡萄糖水热法制备纳米碳球(包括两个)

实验3 葡萄糖水热法制备纳米碳球(包括两个)

实验2-1 葡萄糖水热法制备纳米碳球一、目的要求(1)熟悉葡萄糖水热法制备纳米碳球的方法,熟练掌握高温高压反应釜的组装与应用。

(2)熟悉并理解水热法的基本原理、特性,熟练使用反应釜,关注反应釜使用的注意事项。

二、实验原理炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。

碳微球的形状和大小显著影响着其电学性能。

葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer模型(见图4-2),当0.5 molL-1的葡萄糖溶液在低于140 C或反应时间小于1h时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。

当反应条件为0.5molL-1、160℃、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。

从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500nm。

由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。

图4-2 水热法形成炭球的结构变化示意图三、实验预备葡萄糖,去离子水,95%乙醇;5mL高压反应釜,鼓风干燥箱,电子天平,抽滤装置。

四、实验过程1.材料制备用电子天平称取6g葡萄糖放入5mL反应釜内衬中,用移液管准确移取4mL去离子水(葡萄糖溶液的浓度为0.78molL-1)加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。

水热法合成一维纳米材料的研究进展

水热法合成一维纳米材料的研究进展

参考内容
一维无机纳米材料因其独特的结构和优异的性能而受到广泛。制备族一维无 机纳米材料的方法有很多,其中水热法和溶剂热合成法是两种常用的方法。本次 演示将详细介绍这两种方法制备族一维无机纳米材料的过程和原理。
水热法制备族一维无机纳米材料
水热法是一种在密封高压反应釜中,以水为溶剂,在高温高压的条件下进行 化学反应的方法。以下是水热法制备族一维无机纳米材料的步骤:
此外,可以深入研究二氧化锆纳米材料在催化剂、传感器、光学器件等领域 的潜在应用,为其广泛应用提供理论支撑和实践依据。
谢谢观看
3、表征方法
通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 能量散射光谱(EDS)和Brunauer-Emmett-Teller(BET)等方法对合成的二氧 化锆纳米材料进行表征。
实验结果与分析
1、颗粒大小与分布
通过TEM图像(图1a),可以观察到合成的二氧化锆纳米材料呈球形或椭球 形,粒径分布较为均匀,平均粒径约为15 nm。
所需材料和设备的前期准备:需要准备反应釜、高温炉、测量仪器等设备和 二氧化硅、金属盐等原料。
水热法制备族一维无机纳米材料的基本原理:在高温高压的条件下,金属阳 离子会水合,形成水合离子。随着温度的升高,水合离子会逐渐分解,最终形成 金属氧化物纳米材料。
制备过程和实验条件的选择:首先,将原料溶解在水中,形成均匀的溶液。 然后,将溶液放入反应釜中,密封后放入高温炉中加热。加热过程中要控制温度 和压力,以获得高质量的纳米材料。
引言
二氧化锆(ZrO2)是一种具有优异物理化学性质的陶瓷材料,在高温下具有 良好的稳定性,且具有较高的硬度、韧性和抗腐蚀性。随着纳米技术的快速发展, 二氧化锆纳米材料在众多领域展现出广阔的应用前景,如催化剂、传感器、光学 器件等。本次演示采用水热溶剂热法控制合成二氧化锆纳米材料,并对其性质进 行表征,旨在探讨其制备优化和潜在应用。

水热法实验报告

水热法实验报告

一、实验目的1. 熟悉水热法的基本原理和操作步骤。

2. 掌握水热法制备氧化锌纳米颗粒的方法。

3. 了解氧化锌纳米颗粒的表征方法。

二、实验原理水热法是一种在密封反应容器中,利用高温、高压条件,使前驱物在溶液中发生化学反应,从而制备纳米材料的一种方法。

水热法具有反应条件温和、产物纯度高、粒径分布均匀等优点。

本实验采用水热法合成氧化锌纳米颗粒,主要利用氢氧化锌作为前驱物,通过水热反应生成氧化锌纳米颗粒。

三、实验材料与仪器1. 实验材料:- 氢氧化锌(Zn(OH)2)- 乙二醇(C2H6O2)- 去离子水2. 实验仪器:- 高压反应釜- 电子天平- 磁力搅拌器- 超声波清洗器- 真空干燥箱- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- 透射电子显微镜(TEM)四、实验步骤1. 配制溶液:称取0.1g氢氧化锌,加入10mL去离子水,超声分散30min,得到氢氧化锌悬浮液。

2. 混合溶液:将氢氧化锌悬浮液转移至50mL高压反应釜中,加入10mL乙二醇,搅拌均匀。

3. 加热:将混合溶液密封后,置于磁力搅拌器上,以200r/min的转速搅拌。

将反应釜加热至160℃,保持4h。

4. 冷却:关闭加热源,自然冷却至室温。

5. 离心分离:将反应后的溶液离心分离,弃去上层清液,得到沉淀物。

6. 洗涤:将沉淀物用去离子水洗涤3次,去除杂质。

7. 干燥:将洗涤后的沉淀物置于真空干燥箱中,60℃干燥12h。

8. 表征:采用SEM、XRD、TEM对制备的氧化锌纳米颗粒进行表征。

五、实验结果与分析1. SEM分析:SEM照片显示,制备的氧化锌纳米颗粒呈球形,粒径约为100nm,分布均匀。

2. XRD分析:XRD图谱表明,制备的氧化锌纳米颗粒具有六方晶系结构,与标准卡片(JCPDS No. 36-1451)一致。

3. TEM分析:TEM照片显示,制备的氧化锌纳米颗粒呈球形,粒径约为100nm,形貌与SEM分析结果一致。

六、实验讨论1. 水热法合成氧化锌纳米颗粒的原理:氢氧化锌在乙二醇溶液中加热,发生水解反应,生成氢氧化锌纳米颗粒。

实验三-水热法制备纳米银立方体及光谱分析

实验三-水热法制备纳米银立方体及光谱分析

水热法制备银纳米立方体及紫外光谱性能研究一、 实验目的1掌握水热法合成单分散银纳米立方体的制备方法2熟悉纳米银立方体的表征方法二、实验原理纳米银(Nano Silver )就是将粒径做到纳米级的金属银单质。

由于颗粒尺寸微细化,使得纳米银表现出体相材料不具备的表面效应、小尺寸效应、量子效应和宏观量子效应等性质。

纳米银形貌和大小会影响其性质,所以可控形貌合成纳米银引起了广泛关注。

纳米银对大肠杆菌、淋球菌、沙眼衣原体等数十种致病微生物都有强烈的抑制和杀灭作用,而且不会产生耐药性,广泛应用于环境保护、纺织服饰、水果保鲜、食品卫生等领域。

本实验首先以[Ag(NH 3)2]OH 、葡萄糖、十六烷基三甲基溴化铵(CTAB )为原料,采用人们熟知的银镜反应,水热条件下合成银纳米立方体。

反应方程式如下:[Ag(NH 3)2]+ (aq)+ Br - (aq)错误!未找到引用源。

AgBr(s) +2NH 3 (aq)(1)[Ag(NH 3)2]+ (aq) +RCHO (glucose) (aq)错误!未找到引用源。

Ag (NPs)+ RCOO - (aq) +2NH 4 +(aq) (2)反应流程如下:三、仪器与试剂试剂:硝酸银、氨水、去离子水、葡萄糖、十六烷基三甲基溴化铵、抗坏血酸。

仪器:烧杯、容量瓶、电子天平、搅拌器、反应釜(25 mL )、紫外可见分光光度计、X 射线衍射仪、扫描电镜、离心机、离心管。

四、实验步骤1、溶液配制配制[Ag(NH3)2]OH 30ml :将0.51g ,0.003mol 硝酸银溶解于50ml 的蒸馏水中,向所配置的硝酸银溶液中低价1mol/L 的氨水溶液并剧烈搅拌,直至澄清,想所[Ag(NH 3)2]OH 葡萄糖、HTAB Silver Nanocubes反应 离心 收集配置的溶液转移到容量瓶中,定容100ml实验现象:滴加氨水过程中,溶液先变浑浊,然后逐渐变澄清配制葡萄糖溶液20ml: 将0.36g, 0.002mol的葡萄糖溶解于50ml的蒸馏水中,搅拌溶解,100ml定容。

水热合成法制备纳米材料

水热合成法制备纳米材料

水热合成法制备纳米材料随着现代科技的不断发展,纳米材料越来越受到关注,因为纳米材料的特殊性质可以引起一系列的物理、化学和生物学的变化。

而水热合成法(Hydrothermal Synthesis)是制备纳米材料的一种有效方法。

在本文中,我们将介绍水热合成法的基本原理、优点和在制备纳米材料方面的应用。

1.基本原理水热合成法是一种通过水热反应来合成纳米材料的方法,一般使用三个关键因素:反应温度、反应时间和反应压力。

该方法通过将前驱体物质与水混合并加热,使其在高压下反应生成目标纳米材料。

因为水的介电常数在高温高压下降低,水中的离子活性增强,所以反应速度大大加快,因此水热合成法是制备纳米材料的一种快速有效的方法。

2.优点与其他制备方法相比,水热合成法具有如下优点:(1)简单、安全、易操作,不需要昂贵的仪器设备。

(2)反应条件可调,反应温度、压力和时间均为可控因素,可以用来制备各种不同大小和形状的纳米颗粒。

(3)产物纯度高,因为反应过程中没有外界杂质,可以获得高纯度的产物。

(4)可以制备复杂的二维和三维纳米结构,结构精度高,稳定性好。

(5)环保,只需用水作为溶剂,没有毒性气体排放。

3.应用水热合成法在制备纳米材料方面具有广泛的应用,例如:(1)金属氧化物纳米粒子:金属氧化物是一类重要的半导体材料,它们广泛用于固体氧化物燃料电池、太阳能电池和传感器等领域。

通过水热合成法可以制备出各种尺寸和形状的金属氧化物纳米粒子,并且这些纳米粒子具有很好的催化性能和光催化性能。

(2)纳米金属材料:纳米金属材料具有优异的光学、电学、磁学和催化性能,已广泛应用于催化、光催化、传感和生物医学等领域。

通过水热合成法可以制备出各种形状和大小的纳米金属材料,如球形、棒状、片状等,并且这些纳米金属材料表面可以改性化,提高其稳定性和催化性能。

(3)纳米碳材料:纳米碳材料具有良好的光学、电学和力学性能,广泛应用于电子器件、储能系统和传感器等领域。

水热法制备BaTO3纳米粉体

水热法制备BaTO3纳米粉体

汤黎辉,张群飞,马金明,肖长江,栗正新(河南工业大学材料科学与工程学院,郑州450001)BaTiO 3纳米粉体的合成方式及合成粉末的样本表征,采取水热法合成方法,合成得到钛酸钡。

通过X 射线衍射、扫描电子显微镜表征手段以及JADE 、Origin 等软件的分析,得出其物相、晶体结构、颗粒大小以及外观形貌。

经过实验,使用水热法合成方式,能够制备出高品质的钛酸钡纳米粉末。

结果表明:用水热法得到了纯的钛酸钡粉体,粉体的晶粒大小较均匀,晶粒尺寸约为39.51nm,粉体的晶体结构为四方结构,形貌为类球形。

;纳米粉体;水热法;晶体结构;晶粒尺寸由于具有出色的介电性能,钛酸钡(BaTiO 3)已经成功地发展出了各种电子器件,如多层陶瓷电容器、正温度系数热敏电阻、动态随机存储器、声呐传感器、压电换能器以及各种光电子元件,从而在电子领域发挥着重要的作用,并且已经成为电子陶瓷领域的主要原材料[1,2]。

目前制备钛酸钡粉体最常用的方法主要有固相法、共沉淀法、微乳液合成方法、水解溶胶-凝胶法等。

固相法作为一种传统的合成工艺,具有制备产率高,操作简单等优点,但是,这种合成方法在制备过程中存在合成温度高、合成的粉体颗粒粗大、较高的杂质含量以及组分均匀度不高等缺点,一般作为低端产品合成时的首选工艺。

共沉淀法制备钛酸钡粉体难以形成均匀的沉淀物,而且颗粒容易团聚,粒径分布宽,产品质量不稳定[3]。

微乳液合成方法制备产物需要大量助剂、改性剂和有机剂,导致成本较高,而且还易引入杂质且产能有限,所以该合成方法目前还没有被广泛的使用,仅仅处于实验室研究中[4]。

凝胶法虽然可行,但由于技术复杂、时间较久,使得它的水解效果不易掌握。

相比之下,水热法更加经济实惠,可以在较短的时间内完成钛酸钡的生产,同时也能够保证产品的质量,能够满足更严格的质量标准[5]。

水热法合成粉体,能够在低温水溶液中得到分散性好的BaTiO 3超细粉体,合成的粉体晶粒发育比较完整,并且在水热法实验过程中,不需要经历高温的煅烧以及后期的球磨过程,进而可以避免了杂质的引入和球磨对粉体结构的破坏,从而有效地消除了杂质及其他形态问题,故文章实验采用水热法制备BaTiO 3纳米粉体,并对其进行深入研究。

纳米材料的水热法制备与表征

纳米材料的水热法制备与表征

纳米材料的水热法制备与表征一、本文概述纳米材料,由于其独特的物理、化学和生物特性,已经在能源、医学、环保、电子等多个领域展现出巨大的应用潜力。

水热法作为一种绿色、环保的纳米材料制备方法,近年来受到了广泛关注。

本文旨在全面介绍纳米材料的水热法制备技术,包括基本原理、制备方法、影响因素等,并对制备出的纳米材料进行表征,包括形貌、结构、性能等方面的分析。

通过本文的阐述,读者可以对纳米材料的水热法制备与表征有更为深入的了解,为相关领域的研究和应用提供有益的参考。

我们将简要介绍纳米材料和水热法的基本概念,以及水热法在纳米材料制备中的优势和适用范围。

接着,我们将详细介绍水热法制备纳米材料的具体步骤,包括原料选择、反应条件控制、反应机理等方面。

我们还将探讨影响水热法制备纳米材料的主要因素,如温度、压力、反应时间、溶液浓度等,并分析这些因素对纳米材料性能的影响。

在纳米材料的表征方面,我们将介绍常用的表征手段,如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、射线衍射(RD)、傅里叶变换红外光谱(FTIR)等,并详细阐述这些表征手段在纳米材料形貌、结构、性能分析中的应用。

通过对比分析不同表征手段的结果,我们可以对制备出的纳米材料进行全面、深入的了解。

我们将对纳米材料水热法制备与表征的研究进展进行展望,分析当前存在的挑战和未来的发展趋势,为相关领域的研究和应用提供有益的思路和方向。

二、纳米材料的水热法制备水热法是一种在特定的高温高压水环境中,通过溶解再结晶的过程制备纳米材料的重要方法。

其原理主要基于在水热条件下,反应物在水溶液中的溶解度和化学反应活性都会发生变化,从而促使反应进行。

水热法制备纳米材料的过程通常包括以下几个步骤:选择适当的反应物和溶剂,将反应物溶解在溶剂中,形成均一的溶液;然后,将此溶液转移到特制的高压反应釜中,在一定的温度和压力下进行反应;反应结束后,通过离心、洗涤、干燥等步骤,得到所需的纳米材料。

水热法制备纳米材料3

水热法制备纳米材料3

水热法制备ZnO纳米棒10092629 朱晓清10092632 蒋桢一、实验目的:1、掌握水热合成方法。

2、掌握晶体分析方法。

二、实验原理:压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。

根据公式(1)P1V=nRT (1)P 2=P(2)P=P1+P2=nRT/V+P(3)式中:P1——T温度时高压釜内空气的压强;P2——T温度时高压釜内水的压强;P——T温度时高压釜内的总压强;P——T温度时水的饱和蒸汽压;V——高压釜内气体体积。

可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。

反应釜内的压强随填充度增大而升高。

ZnO纳米棒的形成过程可以分为两个阶段:第一阶段是成核阶段,第二阶段是生长阶段。

具体的形成过程可以用下列反应式表示:Zn2++2OH-→Zn(OH)2(4)(CH2)6N4+10H2O → 6HCHO + 4NH3·H2O (5)NH3·H2O ↔NH4++OH- (6)Zn2++4NH3→Zn(NH3)42+ (7)Zn(OH)2→ZnO+H2O (8)Zn(OH)42-→ZnO+ H2O+2OH- (9)当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH)2白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH3)42+(见反应式7),而溶液中生成的Zn(OH)42-为这个过程提供了条件,在这种溶液环境下,一部分的Zn(OH)2胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。

方法一(首选)三、实验仪器和试剂:1、仪器:超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。

水热法制备纳米材料

水热法制备纳米材料

水热法制备纳米材料水热法是一种常用的制备纳米材料的方法,其原理是在高温高压的水热条件下,在溶液中进行物质的溶解和再结晶过程,从而制备出纳米级的材料。

这种方法具有简单、廉价、易于控制成分和结构等优点,因而在纳米材料的制备中得到了广泛应用。

在水热法制备纳米材料的过程中,一般需要考虑以下几个方面的因素:溶液的成分、溶剂、反应温度和时间等。

首先,选择适合的溶剂对纳米材料的制备至关重要。

一般来说,水是一种常用溶剂,但也可以使用其他有机溶剂,如乙醇、甲醇等。

其次,溶液的成分决定了所制备纳米材料的成分和组成。

通过调节反应溶液中物质的浓度和摩尔配比,可以得到不同成分和比例的纳米材料。

在水热法制备纳米材料的过程中,温度是一个非常重要的因素。

一般来说,高温有利于物质的溶解和扩散,有助于形成纳米材料的晶种。

同时,较高的温度也可以促进纳米颗粒的生长和聚合,从而影响纳米材料的粒径和形貌。

因此,在选择合适的温度时,需要考虑所制备纳米材料的要求和预期的性质。

此外,反应的时间也是决定纳米材料制备效果的一个重要因素。

一般来说,较长的反应时间有利于纳米颗粒的生长和形成。

然而,反应时间过长可能会导致纳米颗粒的聚集和团聚,从而影响纳米材料的分散性和表面性质。

因此,在选择反应时间时,需要通过实验确定一个合适的范围。

总的来说,水热法制备纳米材料具有较高的灵活性和可控性。

通过调节溶液的成分、溶剂、温度和时间等参数,可以制备出具有不同成分、形貌和性质的纳米材料。

此外,水热法还可以结合其他技术手段,如表面修饰、掺杂和功能化等,进一步调控纳米材料的性能和应用。

水热法制备纳米材料的应用非常广泛。

例如,金属氧化物纳米材料在能源储存和转换、催化剂和传感器等领域有着重要的应用价值。

通过水热法制备的金属氧化物纳米材料具有高比表面积、优良的催化活性和可调控的性质等特点,因此可以用于提高能源转换效率和催化反应的效果。

另外,水热法还可以制备出纳米颗粒结构的药物载体,用于药物的控释和靶向递送,具有较好的生物相容性和药效增强效果。

实验三_水热法制备纳米二氧化钛

实验三_水热法制备纳米二氧化钛

水热法制备纳米二氧化钛一、实验目的1、了解水热法制备纳米二氧化钛的原理、方法和操作2、掌握根据实验原理选择实验装置的一般方法。

选择理由:优势:直接制备结晶良好且纯度高的粉体,需作高温灼烧处理,避免形成粉体硬团聚,粒径分布均匀。

缺点:反应时间长、杂质离子难以除去、纯度不高。

二、实验原理TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳,两种晶型结构如图1.1所示。

OTi图1 二氧化钛的晶体结构二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。

纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。

纳米二氧化钛制备原理如下:Ti(OC4H9)4+2H2O TiO2+4C4H9OH可分为两个独立的反应,即:Ti(OC4H9)4+xH2O Ti(OC4H9)4-x OH x+xC4H9OHTi(OC4H9)4-x OH x+Ti(OC4H9)4(OC4H9)4-x TiO x Ti(OC4H9)4-x+xC4H9OHa = 4.593Åc = 2.959ÅEg=3.1eVρ= 4.250 g/cm30212.6fG∆=-a = 3.784 Åc = 9.515ÅEg=3.3eVρ= 3.894 g/cm30211.4/fG kcal mol∆=-当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。

三、主要仪器与药品1.仪器磁力加热反应器,水热反应釜(60ml),250ml烧杯,100ml量筒,电子分析天平, pH试纸。

2.试剂钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30%)、无水乙醇(分析纯),去离子水。

四、操作步骤在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。

水热法制备moo3纳米棒

水热法制备moo3纳米棒

水热法制备moo3纳米棒
一、引言
随着科技的不断发展,纳米材料的制备技术也在不断地更新换代。

其中,水热法作为一种绿色、环保的制备方法,受到了越来越多的关注。

本文将介绍水热法制备moo3纳米棒的过程及其应用。

二、水热法的基本原理
水热法是一种利用高温高压水溶液中的化学反应来制备纳米材料的方法。

在水热条件下,水分子的活性增强,溶液中的离子和分子之间的
反应速率也会加快。

因此,水热法可以在较短的时间内制备出高质量
的纳米材料。

三、制备moo3纳米棒的过程
1. 实验材料
本实验所需材料包括:铵钼酸铵、氢氧化钠、去离子水。

2. 实验步骤
(1)将铵钼酸铵和氢氧化钠按一定比例混合,加入去离子水中,搅拌
均匀。

(2)将混合溶液转移到高压釜中,加热至一定温度,保持一定时间。

(3)冷却后,将制备好的moo3纳米棒进行离心、洗涤、干燥等处理,得到最终产物。

四、moo3纳米棒的应用
moo3纳米棒具有良好的光电性能和催化性能,可以应用于太阳能电池、传感器、催化剂等领域。

例如,在太阳能电池中,moo3纳米棒可以作
为电子传输层,提高电池的光电转换效率;在传感器中,moo3纳米棒
可以作为敏感元件,提高传感器的灵敏度和响应速度;在催化剂中,moo3纳米棒可以作为催化剂载体,提高催化剂的催化活性和稳定性。

五、结论
水热法是一种简单、环保的制备纳米材料的方法,可以制备出高质量
的moo3纳米棒。

moo3纳米棒具有广泛的应用前景,在太阳能电池、
传感器、催化剂等领域都有着重要的应用价值。

实验3 葡萄糖水热法制备纳米碳球(包括两个)

实验3 葡萄糖水热法制备纳米碳球(包括两个)

实验2-1 葡萄糖水热法制备纳米碳球一、目的要求(1)熟悉葡萄糖水热法制备纳米碳球的方法,熟练掌握高温高压反应釜的组装与应用。

(2)熟悉并理解水热法的基本原理、特性,熟练使用反应釜,关注反应釜使用的注意事项。

二、实验原理炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。

碳微球的形状和大小显著影响着其电学性能。

葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer模型(见图4-2),当0.5 molL-1的葡萄糖溶液在低于140 C或反应时间小于1h时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。

当反应条件为0.5molL-1、160℃、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。

从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500nm。

由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。

图4-2 水热法形成炭球的结构变化示意图三、实验预备葡萄糖,去离子水,95%乙醇;5mL高压反应釜,鼓风干燥箱,电子天平,抽滤装置。

四、实验过程1.材料制备用电子天平称取6g葡萄糖放入5mL反应釜内衬中,用移液管准确移取4mL去离子水(葡萄糖溶液的浓度为0.78molL-1)加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。

钨酸钠水热法合成晶态WO_3纳米棒及其表征

钨酸钠水热法合成晶态WO_3纳米棒及其表征

钨酸钠水热法合成晶态WO_3纳米棒及其表征第z1卷第3期2011年6月章扩末冶金工业POWDERMETALLURGYINDUSTRYV ol_Z1No.3钨酸钠水热法合成晶态WO3纳米棒及其表征傅小明,杨在志.刘照文(宿迁学院三系,江苏宿迁223800)摘要:以钨酸钠为原料,硫酸钾为辅助盐,在强酸性反应体系通过水热法合成了wo.纳米棒.利用XRD,SEM,TEM和SAED对试样进行分析,研究结果表明:在水热法体系中合成WO.纳米棒时,随着pH值的增加和反应温度的升高,二者都有利于WO.纳米棒的合成.在pH值为1.5和反应温度为210℃下合成直径小于100nm的晶态Wo.纳米棒,其直径分布较均匀.对不同条件下水热法合成的wo.进行紫外可见光的吸收光谱分析可得,随着反应体系中pH值的增加和反应温度的升高,获得的wo.的紫外光吸收能力逐渐增强.特别是wO.纳米棒具有良好的紫外光吸收能力.关键词:钨酸钠;水热法;三氧化钨;晶态纳米棒中图分类号:TG135.5文献标识码:A文章编号:1006—6543(2011)03—0011一O5 PREPARATIONANDCHARACTERIZA TIoNOFCRYSTALWo3NANoRODSSYNTHESIZEDWITHSODIUMTUNGSTATEBYTHEHYDR0THERMALMETHODFUXiao-ming,Y ANGZai—zhi,LIUZhao-wen(The3DepartmentofSuqianCollege,SuqianJiangsu223800,China)Abstract:WO3nanorodsaresynthesizedwithsodiumtungstateandpotassiumsulphateinaci dbythehydrotherma1method.ThesamplesarecharacterizedbyXRD,SEM,TEMand SAED.WiththeincrementofthepHvalueandthereactiontemperature,Wo3nanorodsare obtainedeasilybythehydrothermalmethod.CrystalWO3nanorodsoflessthan100nminthe diameterat210~CwithpH一1.5bythehydrothermalmethod.ThecrystalWO3nanorodsare homogeneousinthediameter.WhenitislessthanthesamplesarecharacterizedbyUV—VIS, withtheincrementofthepHvalueandthereactiontemperature,theabsorbentpoweroful—travioletlightofWo3synthesizedbythehydrothermalmethodenhancegradually.Especially,SinglecrystalWO3nanorodstakeonthegoodabsorbentpoweroful- travioletlight.Keywords:Sodiumtungstate;Hydrothermalmethod;Wo3;Crystalnanorod三氧化钨(WO.)是一种具有六方,立方等多种对称型结构的n型半导体材料,由于具有优异的电致变色,气致变色和光致变色等性能而备受关注Ⅲ.特别是自1973年s.K.Deb发现WO.具有光致变色现象以来,wo.在信息显示器件,高敏度光存储材料及变色玻璃等方面显示出巨大的应用前景,收稿日期:2Ol1一O1~O4基金项目:宿迁学院高级人才启动基金(SQCGJ2010002),江苏省大学生实践创新训练计划项目(2010SSJ02).作者简介:傅小明(1974一),男(汉),四川广元人,博士,讲师,主要从事粉末冶金的研究.12粉末冶金工业第21卷使其制备,结构及光致变色性能等成为国内外的研究热点之一l3].特别是纳米WO.因具有巨大的比表面积,其体积效应,表面效应,量子尺寸效应和宏观量子隧道效应显着,使得它的应用领域继续扩大, 可作为太阳能吸收材料,隐形材料,催化剂材料以及No,HS,NH.,H等的气敏感材料等【].目前,制备纳米WO.的方法主要有物理和化学方法,如活性溅射法_7],脉冲激光沉积法_8j,气体沉积法[,阳极电镀法l_j,高真空热蒸镀法,溶胶一凝胶法口和水热法口等.虽然通过这些制备方法对纳米Wo.的研究取得了不少进展,但是都还处于实验室研究阶段.具有应用前景的制备纳米wo.的方法是溶胶一凝胶法和水热法.对于溶胶一凝胶法,由于反应原料所用的金属醇盐比较昂贵, 且影响因素也较多,工艺稳定,在烘干过程巾容易出现团聚现象,因此,溶胶一凝胶法的应用受到_r一定的限制.而水热法具有简便,经济和参数易控制等优点,但是利用此方法合成WO.纳米棒的研究甚少.本文以钨酸钠为原料,硫酸钾为辅助盐,对利用水热法合成WO.纳米棒进行了研究.然后通过XRD,SEM,TEM和UV—VIS对试样分别进行了物相,形貌,晶态和光敏性分析.1实验方法1.1实验材料(1)分析纯钨酸钠;(2)分析纯硫酸钾;(3)分析纯草酸;(4)分析纯浓盐酸;(5)蒸馏水(自制).1.2实验设备(1)PHS一3C型精密酸度计(精度为0.1);(2)DF一101S型磁力搅拌器;(3)80—1型电动离心机;(4)DHGT一9101—1S型电热干燥箱(精度为1.0oC);(5)2(72-S型电热恒温箱(精度为1.0~C);(6)BS-224一S型电子天平(精度为0.1rag);(7)25mL移液管;(8>水热反应釜(内胆容量为20mL).1.3实验步骤(1)用电子天平称取适量的钨酸钠,硫酸钾和草酸同时溶解于一定量的蒸馏水中.(2)在磁力搅拌下,将浓盐酸按照一定速率滴加到(1)的混合溶液中,通过精密酸度计控制混合溶液的pH值,当混合溶液的pH值达到所需要的值时,停止浓盐酸的滴加,继续在磁力搅拌作用下的搅拌. 当混合溶液均匀时停止搅拌.(3)用移液管取一定量(2)的混合溶液滴加到水热反应釜中,使水热反应釜的填充量达到80,盖好水热反应釜的内盖和外盖.(4)将(3)的水热反应釜置于电热恒温箱中,加热到所需的温度,然后保温48.0h后停止加热,冷却. (5)将(4)制备出的混合溶液倒入离心管中,将此离心管放置到电动离心机中脱水,脱水后倒掉离心管的水,再往离心管中加人蒸馏水,然后再进行离心,反复进行3~4次.(6)将(5)中的离心管的试样放入电热恒温箱中,在80℃下干燥96.0h.然后重复(1)~(6)的步骤配置其他条件下的试样.(7)利用全自动粉末x射线衍射仪,热场发射扫描电子显微镜,紫外可见分光光度计分别对于燥后所得的样品进行物相,形貌,晶态和光敏性分析.1.4检测设备(1)D/max2500PC型全自动粉末x射线衍射仪;(2)JSM一7001F型热场发射扫描电子显微镜;(3)JEM一2100型高分辨透射电子显微镜;(4)UV一2450型紫外可见分光光度计.2实验结果与讨论2.1XRD分析不同反应温度和pH值下合成样品的XRD如图1.从图1可以看出,在反应体系pH值与反应温度不同的情况下所得到产物的XRD相同,与标准的X衍射粉末衍射卡片(JCPDS:33—1387)相对应,分别对应了wO.的(100),(001),(110),(1.0.)(1lo)i.,.1(202)(4o1)(a)j..4LL一一~..1㈣(d)10203040506070802o/(.)图1不同条件下48.0h水热法合成WO3的XRD(a)pH=10,150℃i(b)pH=1.5.150℃:(c)pH=15,180℃;(d)pH=15.210℃第3期傅小明等:钨酸钠水热法合成晶态WO.纳米棒及其表征?13? (200),(1l1),(201),(220),(202),(40O)和(401)晶面,是六方晶系的WO.,晶胞参数为口一7.298,c一3.899,所属空间群为P6/mm.2.2SEM分析在150~C和不同反应体系pH值条件下合成WO3的SEM如图2.图2(a)表明,当pH值为1.0时,通过水热法合成了短棒状的WO..图2(b)表明,随着pH值的增加,当pH值为1.5时,获得的棒状WO.变细.因此,在反应温度相同时,随着pH值的增加,有利于合成细棒状的WO..图2不同pH值150℃下水热法合成WO3的SEM(a)pH=10;(b)pH=1.5在反应体系pH值为1.5和不同反应温度条件下合成WO.的SEM如图3.图2(b)与图3(a)相比较可知,在反应体系pH值为1.5时,随着反应温度的升高,易合成较长的棒状WO..图3(a)与图3(b)相比较可得出,随着反应温度的进一步升高,更有利于合成较细长的棒状WO..所以,在反应体系pH值相同时,反应温度的升高,更有利于获得细长的棒状wO..图3pH值为15不同温度下水热法合成wo.的SEM(a)180℃;(b)210~C在反应体系pH值为1.5和反应温度为210~C下合成WO.的TEM和SAED如图4.图4的14?粉末冶金工业第21卷TEM表明,该条件下制备出了直径小于100Ylm的wO.纳米棒,此时的wo.纳米棒直径分布较均匀.图4的SAED显示该Wo.纳米棒为晶态纳米棒.其原因是:一方面,包酸钠在酸性环境中被酸化后,它形成了钨酸或者钨酸酐,然后在高温和高压的作用下钨酸或者钨酸酐被分解为w0..另一方面,w0.是一种各向异性的材料,更容易沿一维方向生长_1,因此,在高温和高压的作用下钨酸或者钨酸酐被分解为WO.更加容易生长成纳米棒.图4图3(bJ中WO的TEM和SAED2.3UV—VIS分析不同条件下合成WO.的紫外可见光的吸收光谱如图5.图5(a)与图5(b)相比较,在相同反应温度下,随着反应体系pH值的增大,合成WO.的吸收光向紫外光区域偏移,这表明在相同反应温度下, 随着反应体系pH值的增大,获得的WO.具有较好的紫外光吸收能力.图5(b)至图5(d)相比较,在反应体系的pH值相同的情况下,随着反应温度的升高,合成wO.的吸收光也向紫外光区域偏移,这说明在反应体系的pH值相同时,水热法合成的WO. 纳米棒具有良好的紫外光吸收能力.这是由于在紫外光的照射下,价带的电子被激发至导带,同时产生大量的空穴,新生成的电子与空穴在运动过程中若再次相遇便会以光或者热的形式释放能量,从而实现对紫外光的吸收所致¨1.因此,水热反应体系中合成纳米wo.棒时,不同pH值和温度影响了纳米w0.棒内部电子的排列,空穴和缺陷等的形成,从而使得不同条件下合成WO.的紫外吸收特性不同.图5不同条件下水热法48.0h合成wos的紫外可见光的吸收光谱图(a)pH=1.0,150℃;(b)pH=1.5.150℃;(C)pH=1.5,180℃;(d)pH=1.5,210℃3结论(1)在水热法体系中合成WO.纳米棒时,随着pH值的增加和反应温度的升高,pH值和反应温度都有利于WO.纳米棒的合成.在pH值为1.5和反应温度为210℃下合成直径小于]00nm的晶态wO.纳米棒,此WO.纳米棒直径分布较均匀.(2)对不同条件下水热法合成的WO.进行紫外可见光的吸收光谱分析可得,随着反应体系中pH值的增加和反应温度的升高,获得的WO.的紫外光吸收能力是逐渐增强的.特别是wO.纳米棒具有良好的紫外光吸收能力.参考文献[1]UlfTritthart,WolfgangGey,AlexanderGavrily—uk.NatureoftheopticalabsorptionhandinamorphousHWO3thinfilms[J].ElectrochimicaActa,1999,44(18):3039—3049.EelDebSK.Opticalandphotoelectricpropertiesandcol—ourcentresinthinfilmsoftungstenoxide[J].Phi一1OS.Mag.1973,27:801—822.[3]XuN,SunM,CaoYW,eta1.InfluenceofpHon structureandphotochromicbehaviorofnanocrystallinew()3films[J].AppliedSurfacesScience,2000,157(】一2):8184.E4]SunM,XuN,CaoYW,eta1.Preparation,microstruc—tureandphotochromismofanewnan0crystal1ineWO3film[J].Mater.Sci.Lett.,2000,19(16):1407—1409.[5]GrilliMI,BartolomeoEDi,TraversaE.NOsensors第3期傅小明等:钨酸钠水热法合成品态WO.纳米棒及其表征?15?行业动态?中国机械通用零部件协会粉末冶金分会发布2010年度创新优秀新产品奖和粉末冶金机械零件产量及应用领域统计中图分类号:TF12文献标识码:D根据"中国机械通用零部件行业创新优秀新产品的申报及评选办法"粉末冶金行业2010年创新优秀新产品经企业申报,专家评审并报中国机械通用零部件协会审批,现将获奖企业及项目公告如下:(1)东睦新材料集团股份有限公司获特等奖3项:VVT链轮F347729—0131,粉末冶金滚套,曲轴正时链轮.(2)扬州保来得科技实业有限公司获特等奖3项:粉末冶金汽车ABS速度检知盘,粉末冶金汽车转向器面凸轮,粉末冶金烧结焊偏心斜齿轮.(3)上海汽车粉末冶金有限公司获特等奖1项:BPSILON2转向管柱系列粉末冶金零件.(4)东睦(天津)粉末冶金有限公司获特等奖1项:变速箱换挡块.(5)杭州前进齿轮箱集团股份有限公司粉冶厂获优秀奖1项:某航空飞机制动器摩擦片研制.(6)黄石赛福摩擦材料有限公司获优秀奖1项:工程车辆湿式驱动桥用摩擦片.(7)海安县鹰球集团有限公司获优秀奖1项:粉末冶金高耐磨球铰.(8)湖南顶立科技有限公司获优秀1项:超细粉体材料专用无舟皿带式炉.(9)南通富士液压机床有限公司获优秀奖1项:FS79Z系列干粉自动成型液压机及模架.根据中国机械通用零部件协会粉末分会34家会员单位统计,2O10年粉末冶金机械零件生产应用情况为:产品产量铁基类:128185t,铜基类:8961t,总计:137146t..应用领域比例:运输机械(汽车,摩托车):62,工业机械(农机):1,电工机械(家电,电动工具):29,其他机械(工程机械等):8.中国机协粉末冶金分会秘书处basedoninterfacingyttriastabilizedzirconiawithPandn—typesemiconductingoxides[J].KeyEngineeringMa—terials,2002,206—213:12431246.[6]Xiaolanwei,PeikangShen.Electrochromicsofsinglecrys—tallinew.H2Onanorods[J]mun., 2006,8(2):293—298.[7]丁进月,钟良,张淑媛.溶胶一凝胶法制备纳米WO.气致变色材料EJ].化学进展,2009,21(6):1t71—1178. [8]BasergaA,RussoV,FonzoFDi,eta1.Nanostructured tungstenoxidewithcontrolledproperties:Synthesisand Ramancharacterization[J].ThinSolidFilms,2007,515 (16):6465—6469.[9]BlackmanS,ParkinIP.Atmosphericpressurechemical vapordepositionofcrystallinemonoclinicWO3andW()hthinfilmsfromreactionofWC16withO—contai—ningsolventsandtheirphotochromicandelectrochromic properties[J].Chem.Mater.,2005,17(6):1583—1590. DongJinKim,Su11Pyun.Hydrogentransport throughanodicw03films[J].ElectorchimActa,1998,43(16-17):2341-2347.CantaliniC,PelinoM,SunHT,eta1.Crosss'ensitivitv andstabilityofN02sensorsfromWO3thinfilm[J]. SensorsandActutorsB,1996,35(13):112-118.WuLZ,BharathiS,eta1.Sol—gelmaterialsinelectro—chemistry[J].Chem.Mater.,1997,11(9):2354—2375.陈亚琦.三氧化钨一维纳米结构气敏性能研究[D].长沙:湖南师范大学,2009.蔡万玲,宿新泰,王吉德.表面活性剂辅助超声合成纳米氧化钨粉体[J].中国钨业,2008,23(6):2628.王泽敏,刘勇,戢明,等.y-FeO.纳米粉末的光谱吸收特性研究[J].功能材料,2006,2(37):284286. 胡口l二I二J口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水热法制备ZnO纳米棒
10092629 朱晓清
10092632 蒋桢
一、实验目的:
1、掌握水热合成方法。

2、掌握晶体分析方法。

二、实验原理:
压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。

根据公式(1)
P
1
V=nRT (1)
P 2=P
(2)
P=P
1+P
2
=nRT/V+P
(3)
式中:P
1
——T温度时高压釜内空气的压强;
P
2
——T温度时高压釜内水的压强;
P——T温度时高压釜内的总压强;
P
——T温度时水的饱和蒸汽压;
V——高压釜内气体体积。

可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。

反应釜内的压强随填充度增大而升高。

ZnO纳米棒的形成过程可以分为两个阶段:第一阶段是成核阶段,第二阶段是生长阶段。

具体的形成过程可以用下列反应式表示:
Zn2++2OH-→Zn(OH)
2
(4)
(CH
2)
6
N
4
+10H
2
O → 6HCHO + 4NH
3
·H
2
O (5)
NH
3·H
2
O ↔NH4++OH- (6)
Zn2++4NH
3→Zn(NH
3
)
4
2+ (7)
Zn(OH)
2→ZnO+H
2
O (8)
Zn(OH)
42-→ZnO+ H
2
O+2OH- (9)
当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH)
2
白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水
(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH
3)
4
2+(见反应式
7),而溶液中生成的Zn(OH)
4
2-为这个过程提供了条件,在这种溶液环境下,一
部分的Zn(OH)
2
胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。

方法一(首选)
三、实验仪器和试剂:
1、仪器:超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。

2、试剂:铜衬底,丙酮,无水乙醇(C
2H
5
OH,分析纯),去离子水,硫酸锌(ZnSO
4
·7H
2
O,
分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C
6H
12
N
4
,分
析纯)。

四、实验步骤:
1、铜衬底的清洗
清洗的目的是为了去掉衬底表面的油渍、脏物和表面杂质等,使其表面光亮平滑,避免杂质及缺陷在纳米棒生长过程中对纳米棒的形貌产生影响。

具体的清洗过程如下:
(1)将大小约为1cm×1cm 的铜衬底放入盛有乙醇的烧杯中,在超声仪中超声
10 分钟。

(2)取出衬底片,放入丙酮中超声10 分钟。

(3)取出衬底片,放入乙醇中超声10 分钟。

(4)最后再用去离子水超声一次,并经流动的去离子水反复冲洗后,用洗耳球
小气流吹干。

2、在铜衬底上制备ZnO纳米棒步骤:
将0.0056 mol硫酸锌溶于35 mL 去离子水中配制成溶液,同时按Zn2 +与OH-摩尔比值1:8将0.056 mol氢氧化钠溶于35 mL去离子水中;在磁力搅拌条件下,将氢氧化钠溶液逐滴滴加到硫酸锌的溶液中; 持续搅拌10 min 后,将0.50 g六次甲基四胺加入到上述溶液中并持续磁力搅拌10 min; 然后将混合溶液转移到内衬为聚四氟乙烯的反应釜中,将第一步中清洗的铜衬底垂直放置(如图1所示)。

在90 ℃下保温9 h 后让炉子自然冷却至室温; 将得到的白色沉淀用去离子水和无水乙醇离心洗涤5 次; 最后,在真空干燥箱中于60 ℃下干燥6 h(或置于鼓风干燥箱中干燥),得到ZnO 样品。

图1 铜衬底垂直放置
3、样品的表征:
射线(36kV,20mA, (1)采用X射线衍射仪(XRD)对样品进行物相分析,铜靶K
α
λ=0.15418nm),扫描速率4°/min,扫描范围10°~90°;
(2)采用扫描电子显微镜(SEM)【无】观察样品的形貌,加速电压为20kV;
(3)利用紫外可见分光光度计测试亚甲基蓝的吸光度。

【该实验暂时不做】
点评:方案可行,成绩A-;实验室无铜衬底。

方法二(备选)
三、实验仪器和试剂:
1、实验仪器:超声清洗机,烧杯,电子天平,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。

2、试剂:铜衬底,丙酮,无水乙醇(C
2H
5
OH,分析纯),去离子水,二水合乙酸
锌(Zn(Ac)
2.2H
2
O,分析纯),氨水(NH
3
.H
2
O,分析纯)。

四、实验步骤:
1、衬底的清洗(方法同一)。

2、在铜衬底上制备ZnO纳米棒步骤:
配置浓度为0.027mol/L的二水合醋酸锌(Zn(Ac)
2.2H
2
O分析纯)的去离子水溶
液,后滴入氨水,边滴入氨水边用玻璃棒搅拌,将溶液的pH值调至10左右,使其呈弱碱性,得到反应用的水热溶液。

将水热溶液倒入反应用高压釜中,将前面1中清洗好的Cu衬底面朝上完全浸入上述水热溶液当中,然后将高压釜放入烘箱中,在温度95℃下反应6小时,然后将高压釜取出。

等高压釜自然冷却后将样品取出,用去离子水反复冲洗表面去掉多余的离子和胺盐,在空气中自然晾干。

3、样品的表征(方法同一)。

五、实验方案讨论:
方法一中的是直接加入氢氧化钠,提供OH-离子,再通过六次甲基四胺水解
提供NH4+离子,继而形成Zn(NH
3)
4
2+;而方法二是通过氨水的水解同时提供OH-和
NH4+两种离子,在实验过程中还要调节pH 。

文献查得大多是采用氨水与锌盐反应,而与NaOH反应的方法相对比较新,而且考虑到不用时时观察pH值等因素,我们将第一种方法作为首选的方法,而将第二种作为备选方案。

六、参考文献
[1].王娜.GaN/Al
2
O3衬底上ZnO纳米棒的水热法生长[D].湖北:华中科技大学,2009:1-62.
[2].卢红霞,於秀君,韩艳丽,范冰冰.水热法可控合成ZnO 纳米棒及其光催化
性能研究[J].郑州大学学报,2012,33(2):55-58.
[3].刘志明.材料化学专业实验教程[M].黑龙江:东北林业大学出版社,
2007:1-181.。

相关文档
最新文档