水热法制备二氧化锡纳米材料实验的改进
水热合成法对纳米氧化锡粉体粒径和形貌的控制研究
摘要: 利用氯化锡和氨水作为反应试剂, 通过水热合成技术制备了近球形, 棒状, 椭球形, 六角形等粉体形貌和粒径范围从 4 nm 至 120 nm 的纳米氧化锡粉体, 并对水热合成条件对粉体的粒径和形貌的影响进行了研究。所制备的粉体的 XRD 分析结果显 示, 合成温度在 160 ℃以上并且合成时间在 3 h 以上, 粉体全部具有氧化锡晶体结构。利用透射电镜对粉体的粒径和形貌观察 发现, 二氧化锡粉体的形貌和粒径可通过改变溶液的浓度, 合成温度与合成时间进行有效的控制, 其中合成温度与溶液浓度不 仅可以控制合成粉体的粒径, 而且可以控制粉体的形貌。
(3East China University of Science and Technology, Shanghai 200237)
Abstr act: Tin oxide nanoparticles with different particle sizes and morphologies were synthesised by varying the concentration, heating temperature and duration time by hydrothermal method. The particles were characterised by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The TEM micrographs show that spherical, rod- like, oval and Hexagonal shaped nanoparticles with particle sizes from 4 nm to 120 nm are synthesised when the parameters of synthesis are changed. XRD patterns indicate that all of nanoparticles synthesised are with the structure of tin oxide.
水热法制备纳米二氧化锡微粉
专业:应用化学08届1班;姓名:第1组;同组人员:;课程名称:无机合成化学实验实验名称:水热法制备纳米SnO2微粉实验日期:2011年4月19日一.实验目的纳米SnO2微粉的制备和表征。
二.实验原理纳米SnO2具有很大的比表面积,是一种很好的气皿和湿皿材料。
水热法制备纳米氧化物微粉有很多优点,如产物直接为晶体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同时粒度比较均匀,形态比较规则。
因此,水热法是制备纳米氧化物微粉的好方法之一。
水热法是指在温度不超过100℃和相应压力(高于常压)条件下利用水溶液(广义地说,溶剂介质不一定是水)中物质间的化学反应合成化合物的方法。
水热合成方法的主要特点有:(1)水热条件下,由于反应物和溶剂活性的提高,有利于某些特殊中间态及特殊物相的形成,因此可能合成具有某些特殊结构的新化合物;(2)水热条件下有利于某些晶体的生长,获得纯度高、取向规则、形态完美、非平衡态缺陷尽可能少的晶体材料;(3)产物粒度较易于控制,分布集中,采用适当措施尽可能减少团聚;(4)通过改变水热反应条件,可能形成具有不同晶体结构和晶体形态的产物,也有利于低价、中间价态与特殊价态化合物的生成。
基于以上特点,水热合成在材料领域已有广泛应用。
水热合成化学也日益受到化学与材料科学界的重视。
本实验以水热法制备纳米SnO2微粉为例,介绍水热反应的基本原理,研究不同水热反应条件对产物微晶形成、晶粒大小及形态的影响。
水热反应制备纳米晶体SnO2的反应机理如下:第一步是SnCl4的水解SnCl4+4H2O Sn(OH)4↓+4HCl形成无定形的Sn(OH)4沉淀,紧接着发生Sn(OH)4的脱水缩合和晶化作用,形成SnO2纳米微晶。
n Sn(OH)4→n SnO2+2n H2O(1)反应温度:反应温度低时SnCl4水解、脱水缩合和晶化作用慢。
温度升高将促进SnCl4的水解和Sn(OH)4脱水缩合,同时重结晶作用增强,使产物晶体结构更完整,但也导致SnO2微晶长大。
纳米二氧化锡的多种方法制备、表征及其对比
学
工
程
师
C e i l ni e hm c E g er a n
2 1 年第 O 期 02 7
科
研i 与:
:
文章编 号 :0 2 2 ( 0 2 0 — 0 5 0 10 —1 4 2 1 )7 0 0 — 3 1
开;
发
纳米二氧化锡 的 多种方法制备 、 表征及其对 比
纳米 S O 材料是一种重要的功能半导体材料 , n: 具有 比表面积大 , 活性高 , 发光性 , 导热性能好等优 良特点 , 其作 为一种新型功能材料 , 在气敏 、 压敏和 湿敏元件…、 1 电极材料 、 光学玻璃 、 催化剂载体 , 太 阳能 电池 , 功能 陶瓷等 领 域 展示 出广 阔 的应 用前 景, 而所有的应用都建立在制备 出粒径小并分布均 匀, 分散性好的 S O 材料上 。 n: 制备纳米 SO 的物理 n
如锥形 , 棒状, 纳米线等 。本实验制得的颗粒是 近似 球状的晶体 ,这是由于 S O 晶体属于四方晶系 , n: 金 红石结构 , P 2 n 属 4/ m空间群 , 4 m D h点群 , 晶胞参数 分别为 a . 3n C . 8n c = . 3 每个 =0 7 7m,=0 15m,/ O 7 , 4 3 a 6 晶胞 内含 有两个 SO 分子 , 以 , n n 所 S O 晶胞具 有 对 称性较好 的非极性结构 , 其本身不具备各 向异性生 长 的习性 。要改变 晶体的形状 , 要通过掺杂不 同杂 离子物质。而本实验是用蒸馏水水热制得类似球状
高效制备纳米 SO 的方法。 n:
1 实验 部 分
1 试剂 、 . 1 材料 与仪器
S C4N 3H2 AR )无 水 乙 醇 ( R)正 丁 n 1 H ・ O( ..; ; A_.;
《二硫化锡基纳米材料制备及其光催化性能研究》范文
《二硫化锡基纳米材料制备及其光催化性能研究》篇一一、引言随着环境保护和可持续发展的需求日益增强,光催化技术作为一种新型的绿色环保技术,其应用范围逐渐扩大。
其中,二硫化锡基纳米材料因其独特的物理和化学性质,在光催化领域展现出巨大的应用潜力。
本文旨在研究二硫化锡基纳米材料的制备方法及其光催化性能,以期为光催化技术的进一步应用提供理论基础和实验依据。
二、二硫化锡基纳米材料的制备二硫化锡基纳米材料的制备方法主要采用化学法,包括溶液法、气相法等。
本文采用溶液法中的水热法进行制备。
水热法是一种常用的制备纳米材料的方法,其基本原理是在高温高压的水溶液中,通过控制反应条件,使原料发生化学反应并生成目标产物。
具体步骤如下:1. 准备原料:将锡盐和硫源按照一定比例混合,加入适量的去离子水,形成均匀的溶液。
2. 水热反应:将溶液转移至反应釜中,加热至一定温度并保持一定时间,使原料发生水热反应。
3. 分离与洗涤:反应结束后,将产物进行离心分离,并用去离子水和乙醇洗涤数次,以去除杂质。
4. 干燥与煅烧:将洗涤后的产物在烘箱中干燥,然后进行煅烧处理,以提高产物的结晶度和纯度。
三、二硫化锡基纳米材料的光催化性能研究二硫化锡基纳米材料具有优异的光催化性能,可以用于降解有机污染物、分解水制氢等环保领域。
本文将研究其光催化性能及影响因素。
1. 光催化性能测试:采用典型的有机污染物(如甲基橙、罗丹明B等)作为目标降解物,在可见光照射下进行光催化实验。
通过测定降解过程中目标降解物的浓度变化,评价二硫化锡基纳米材料的光催化性能。
2. 影响因素分析:研究反应条件(如温度、光照强度、pH值等)、催化剂用量、催化剂种类等因素对光催化性能的影响。
通过实验数据对比分析,找出最佳的反应条件和催化剂用量。
3. 催化剂稳定性测试:通过多次循环实验,评价二硫化锡基纳米材料的稳定性。
通过对比前后光催化性能的差异,判断催化剂的耐久性和可重复使用性。
四、实验结果与讨论1. 制备结果:通过水热法制备得到的二硫化锡基纳米材料具有较高的纯度和良好的结晶度。
水热法制备纳米氧化物的研究进展_郑兴芳
水热法制备纳米氧化物的研究进展郑兴芳(临沂师范学院化学化工学院,山东临沂276005)摘要:简述了水热法的原理和特点。
介绍了水热晶化法、水热氧化法、水热还原法、水热沉淀法、水热分解法、水热合成法制备纳米氧化物的特点和现状,并介绍了水热法与其他方法的联合应用,如:微波-水热法、微乳液-水热法、溶胶(凝胶)-水热法等制备纳米氧化物的研究进展。
最后对水热法制备纳米氧化物进行了展望。
关键词:水热法;纳米氧化物;研究进展中图分类号:TQ123.4文献标识码:A文章编号:1006-4990(2009)08-0009-03R esearch progress in preparation of nano-oxides by hydrot her m alm et hodZheng X i n g fang(Schoo l of Che m istry and Che m ical Eng i neering,Liny iN or m al University,L i ny i276005,China)Abstract:P rinc i p l e and character i stics o f hydrother m a lm ethod w ere br i e fly introduced.Character i sti cs and present sit u-a ti on o f hydrothe r ma l me t hods,i nclud i ng hydro t her m a l-cry sta llizati on,ox i dati on,reduc tion,precipitation,decompositi on,and syn t hesis-m ethods,of nano-ox i des w ere rev i ewed.R esearch progress i n comb i nati on o f hydrother m al m ethod w it h o t her syn-t hetic m e t hods,such as m icrow ave-hydrother m a,l m icroemu l s i on-hydro therma,l and so l(ge l)-hydro t her m a,l w hich w ere app lied in prepara ti on o f nano-ox i des were also discussed.A t last,prepara ti on o f nano-ox i des by hydro t her m a lm ethod w as a-l so prospected.K ey word s:hydrother m al me t hod;nano-ox i des;research progress纳米氧化物的合成方法有气相法、液相法和固相法。
二氧化锡的制备及研究
4、复合掺杂二氧化锡纳米晶材料的制备方法。本发明采用机械化学反应法,采用分析纯SnCl2·5H2O、掺杂金属氯化物、Na2CO3为原料,NaCl为稀释剂,通过高能球磨,焙烧制得含掺杂金属氧化物的半成品,半成品经真空抽滤、洗涤,低温烘干即得SnO2基复合掺杂氧化物纳米晶材料。本发明操作方便,合成工艺简单,且粒度可控,污染少,同时又可以避免或减少液相合成中易出现的硬团聚现象,可以简化实验过程;利用本发明的方法所得产品粒径小、分布均匀、生产成本低、材料设计灵活,可得到平均晶粒尺寸为13~20nm的复合掺杂氧化物纳米晶。本发明中的掺杂金属可以是Zn、Cd、Fe、Sb、Cu、V、Pt、Pd。
水热法制备的纳米粒子具有晶粒发育完整粒度小分布均匀颗粒团聚较少分散性好和成分纯净等特点而且制备过程污染小成本低工艺简单尤其是无需后期的高温处理避免了高温处理过程中晶粒的长大缺陷的形成和杂质的引入制得的粉体具有较高的烧结活电弧气化合成法
水热法制备SnO2纳米颗粒及其在气体传感器中的应用(DOC)
水热法制备SnO2纳米颗粒及其在气体传感器中的应用摘要纳米SnO2颗粒的化学稳定性好,灵敏度高,气体选择性好,因此在气体传感器方面具有潜在的价值.纳米SnO2颗粒的制作方法多种多样,本文重点就水热法加入制备纳米SnO2颗粒及其气敏性进行研究,并对进一步提高其气体传感性进行了展望.关键词:SnO2纳米颗粒、水热法、气敏性Hydrothermal prepared SnO2 nanoparticles and their applications in gas sensorsAbstractSnO2 Nano-particles in the gas sensor has potential value because of its good che mical stability, high sensitivity, good gas selectivity. Nano SnO2 particles has a wide variety of production methods, the focus of this paper is the hydrothermal method of preparation of nanometer SnO2 particles and gas sensing research, in addition how to further improve its gas sensing prospect.Key Words: SnO2 nanoparticles;hydrothermal method ;gas sensing引言SnO2是一种重要的无机化工原料,具有优良的气敏特性以及阻燃性、光电性能,同时还具有活性大、性能易于控制、制备方法灵活多样等特点,被广泛应用于气敏元件、湿敏元件、液晶显示、催化剂、光探测器、半导体元件、电极材料、保护涂层及太阳能电池等技术领域[1].多晶纳米材料具有表面效应、体积效应和量子尺寸效应,其物理和化学性质明显优于普通材料,近些年来围绕SnO2为基体的气敏材料制备及元件制作技术的研究十分活跃.1水热法制备SnO2纳米颗粒水热法又称热液法[2],是在特制的密闭反应容器高压釜里,采用水溶液或其它流体为反应介质,在高温大于100℃、高压大于0.981MPa的条件下进行有关化学反应的总称.水热法制备的纳米粒子具有晶粒发育完整、粒度小、分布均匀、颗粒团聚较少、分散性好和成分纯净等优点,而且制备过程污染小、成本低、工艺简单,尤其是无需后期的高温处理,避免了高温处理过程中晶粒的长大、缺陷的形成和杂质的引入,制得的粉体并且具有较高的烧结活性.水热法制备SnO2纳米颗粒的影响因素有很多,在反应过程中反应物浓度、时间、温度、酸度、有机溶剂、压强、表面活性剂等对SnO2纳米颗粒的形成都有一定的影响.陈祖耀[3]等利用水热法将一定摩尔比的SnCl4溶液和浓硝酸溶液混合,于150℃的温度下加热12小时,水洗后干燥得5nm的四方相SnO2纳米粉体.李燕[4]利用醇和水溶液法得到平均粒径为10nm的纳米粉体.与单纯用水作溶剂相比,发现醇作溶剂时制得的粉体分散性好、粒径小,团聚状况减轻.Chen等[5]以氯化锡为锡源,氢氧化钠为沉淀剂,在不同的反应介质中,结合水热法合成了维数可调的金红石型氧化锡纳米棒,通过分析发现,在乙醇反应介质中,可以得到约4.5-39.1nm的纳米棒;在水/醇(体积比为1比1)的反应介质中,得到了约42-197nm的氧化锡纳米棒;等体积水醇混合溶液中加入十六烷基苯磺酸钠后,得到了5.5-19.3nm的纳米棒.李振昊等[6],用超重力与水热法相结合,以SnCl4·5H2O和氨水为原料,用旋转填充床制备出均一、细小的SnO2前驱体,为水热后处理提供一个良好的溶液粉环境,并研究了水热温度、反应物浓度和水热时间等实验条件对的纳米SnO2体的晶体结构、粒度及分散性的影响.结果表明,在SnO2溶液浓度为0.05 mol/ L、水热温度240~280℃以及陈化时间3~8h得到的粉体结晶性良好、比表面积大(90~170m2/g)、粉体的颗粒大小在2~6nm左右,并具有良好的分散性.王东新等[7]利用氯化锡和氨水作为反应试剂,通过水热合成技术制备了近球形,棒状,椭球形,六角形等粉体形貌和粒径范围从4nm至120nm的纳米氧化锡粉体,并对水热合成条件对粉体的粒径和形貌的影响进行了研究.所制备的粉体的XRD分析结果显示,合成温度在160℃以上并且合成时间在3h以上,粉体全部具有氧化锡晶体结构.魏妙丹[8]等人发现,以SnCl4·5H2O为主要原料,与NH3.H2O反应制备出颗粒粒径为10-30nm分散性较好的近似球形的纳米SnO2颗粒,探求出用乙醇为溶剂,样品的分散性较好;以十六烷基铵作为分散剂与Sn4+的比例为10:1时分散效果最佳.当SnCl4溶液的浓度0.2mol/L时,分散性较好,粒径较小,30-90℃作为反应温度较为适宜.不同的水热处理时间所合成的SnO2粉体具有不同粒径的棒状形貌.近来,有学者对水热法进行了改进,张等[9]用水热法制备出颗粒的粒径7.9nm 近似球状的的SnO2纳米晶体,但发现其分散性不好,同时,他们利用共沸蒸馏法得到颗粒疏松,最小尺寸为4.6nm平均粒径约为20nm的SnO2纳米晶体.用正丁醇代替水分子时,消除了颗粒间Sn-O-Sn化学键的形成.利用溶胶-凝胶法制备最小尺寸为8.2nm,平均粒径约为70nm左右的三角锥形颗粒,使用超声波技术防止团聚使粒径分布更均匀.国外也有一些新的方法取得了新进展.Masayoshi Yuasa等[10]将500mL浓度为1.0mol/L的NH4HCO3溶液滴入100mL浓度为1.0mol/L的SnCl4·5H2O溶液中,利用水热处理得到锡酸悬浮液,通过离心机洗涤并且去离子水数次然后15g的锡酸溶液在压强为10MPa温度为200°C,PH为4.5,体积为300mL的氨溶液中处理3个小时,得到SnO2稳定悬浮液.利用光化学沉积法制备经水热处理Pd改性的二氧化锡稳定悬浮液,通过改变PH值利用旋转涂膜法得到Pd改性的SnO2纳米薄膜式气敏传感器.同时还有美国的Kistler利用渗透膜水解SnC14制胶合成了SnO2粉体,日本的八木秀明用Sn(OC4H9)4水解成胶后焙烧得到SnO2纳米晶体,芬兰H.Tor vela的SnSO4热解法得到SnO2纳米晶体等.综上所述,控制反应物浓度、温度、时间、压强等初始条件可改变晶体的粒径.在合成体系中加入表面活性剂和水溶性多聚物,会在沉淀颗粒表面形成可阻止纳米粒子团聚的保护层,也可使纳米粉体的粒径分布较窄、分散性能更好.添加乙醇、正丁醇等有机溶剂可改变晶体团聚现象.2纳米SnO2颗粒的气敏性及其在传感器方面的应用SnO2属于立方晶系,具有金红石结构.呈N型半导体特性,结构上禁带宽度较宽(3.7eV).因此,SnO2材料具有物理、化学稳定性好,耐腐蚀性强,对气体检测可逆,吸脱时间短;可靠性较高,机械性能良好;电阻随气体浓度的变化呈抛物线变化趋势等特点,由于纳米SnO2本身的结构和特点,使其具有较大的比表面及较高的活性,对其气敏、电导、光敏吸收产生巨大影响,适用于微量、低浓度气体检测等性能,可应用于气敏材料湿敏材料.经研究发现,纳米化气敏材料的气敏特性可以从比表面大小的控制机理和晶界势垒控制机理两方面提高:随着纳米粒子粒径的减小,会产生更多的晶界,晶界势垒也相应的增加,由于吸附气体而产生的势垒变化也更为明显;同时,粒径的减小使得材料的比表面积增大,表面原子数大量增加,表面原子数的增多及表面原子配位的不饱和性导致更多不饱和键,使表面吸附气体的能力大大增强,因此表面电荷层厚度受气体吸附的影响更大.目前SnO作为应用最广泛的气敏材料[11],可对H2、CO、NO2、C2H2、H2S、2NH3、CH4、天然气等还原性、可燃性和有毒气体进行全面检测.近年来利用纳米技术制成了超细SnO2粉体,并开发出性能优良的薄膜型[12-13]、厚膜性、体型气敏元件.应用中发现SnO2粉体颗粒的大小、形状及均匀性等都直接影响到元件的灵敏度、选择性和稳定性,要得到灵敏度高的气敏元件,必须先合成粒度分布均匀、单分散性好的超细SnO2粉体[14-15],粉体颗粒越小,比表面积越大,活性越高,对气体的吸附就越多,响应恢复时间会更短,气敏元件灵敏度也就越高.ChaonanXu[16]等发现SnO2粉末粒径低于5nm时,气敏元件灵敏度急剧增大.一般认为,半导体氧化物传感器的传感机理是吸附气体分子对半导体表面电子传导性能的调控作用.也就是:半导体氧化物的表面导电特性在气体分子吸附前后会发生显著变化(灵敏度);吸附不同的气体分子,导电性能的改变程度不同(选择性).由于SnO2纳米的气敏机理是表面电导模型,即当空气中的氧化气体吸附在半导体的表面,电子由半导体的表面形成电荷耗尽层,结果使半导体的电子浓度下降,电导率下降,SnO2纳米材料制备的气敏元器件的工作机制如下:当器件在洁净的空气(氧化性气氛)中加热到一定温度时,将对氧进行表面吸附,在膜表面覆盖氧负离子,这种氧负离子由于温度的不同,可以是O2,O2-,和O-.由于从材料中抽取了电子,吸附的氧在膜的表面形成空间电荷层,呈现出高电阻状态;而在还原性被测气氛中,被测气体与氧负离子发生反应,电子重新回到金属氧化物中,使晶体的吸附氧脱附,致使表面势垒降低,从而使器件的电阻降低,以此来检测气体.其中气体的机制可以分为耗尽型吸附和积累型吸附.耗尽型吸附即当气体分子接触到SnO2表面时,若气体分子(原子)的电子亲和力大于SnO2的功函数时,为了使二者的费米能级相同,吸附的气体分子会从SnO2表面俘获电子,直至平衡为止.增强型吸附即若气体分子的电子亲和力小于半导体的功函数时,电子将由吸附的气体分子处漂移到半导体表面.半导体表面将聚集多余的电子,造成半导体表面的导电性增加.导致半导体表面电荷耗尽层的消失或减少,半导体电子浓度增加,电导率上升,因此可以根据传导器电导的变化来检测环境中的各种气体.对气体传感器的研究表明,金属氧化物半导体材料SnO2已趋于成熟化,特别是在CO2,C2H5OH,CO等气体检测方面,为了进一步提高其性能,这方面的工作主要是利用化学修饰改性方法,对现有气敏感膜材料进行掺杂、改性和表面修饰等处理,并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性.在影响气敏性方面有多种因素方面上,掺杂效应的影响最为显著.研究发现制成的气敏元件的灵敏度、稳定性和选择性,可尝试掺杂为了更好的提高SnO2过渡金属阳离子(Fe3+、Cu2+、Ni2+等)[17-20]和贵金属(Pt、Pd、Ag、Sb、In、V 等)[21].耿丽娜等[22]采用水热法、苯胺原位聚合法制备了聚苯胺/二氧化锡(PAn/SnO2)杂化材料,结果表明苯胺单体在SnO的表面发生原位聚合,得到壳型PAn/SnO22杂化材料.气敏性试验发现,当测试温度升高到90℃时,PAn/SnO2杂化材料对乙醇气体表现出较好的选择性,并且响应、恢复时间短,可逆性好,适于在较宽浓度范围内对乙醇气体进行检测.邓等[23]发现在SnO2中掺入V2O5可改变元件的电阻,提高稳定性.V2O5含量为0.56wt%时电阻最小.掺碱土金属氧化物的SnO2薄膜元件提高了对乙醇的灵敏度,而对苯、丁烷、液化气、氨气、煤气几乎不敏感,对元件的增敏顺序与碱土金属氧化物的活性顺序一致:MgO>CaO>SrO>BaO.贾维国[24]等通过控制SbCl3的掺杂量来改变SnO2薄膜的电阻率,当Sb的含量达到10%时,电阻率达到极小值.Liu等[25]硅片为基片,分别得到了钯、锑、铂铟掺杂的氧化锡薄膜.结果表明,少量掺入这些金属并没有改变SnO2的粒径,但是少量锑的掺入,增加了氧化锡的费米能级,铟和钯的掺杂降低了SnO2的费米能级,而铂的掺入对SnO2的费米能级值没有影响;氢气吸附到薄膜上,不仅改变了锑和钯的化学价态,而且还改变了SnO2的电子结构.方等[26]发现Fe3+的加入对样品晶型的影响,即水热法可以直接制备Fe3+改性的金红石SnO2纳米颗粒,Fe3+进入SnO2的晶格之中形成固溶体.纳米颗粒为单分散状态,具有较大的比表面积,粒径分布均匀,粒径小于10nm;随着Fe3+添加量的增大,样品的粒径减小,样品的比表面积增大,当Fe3+添加量为15%时,样品的比表面积达到259.8m2·g-1.进一步证明,Fe3+的加入有效地抑制了颗粒的长大.添加Fe3+所提高的比表面积对于SnO2的Fe3+气敏性能是非常有利的.Masayoshi Yuasa等[27]通过光化学沉积法将PdCl42-将钯负载在SnO2表面改变其气敏性.研究发现当钯浓度为0.12%mol时SnO2的气敏性最强.和等[28]采用超声波喷雾技术,以SnCl4·5H2O和CO(NH2)2为前驱原料制备了氧化锡以及Ce稀土离子掺杂纳米粉体.结果表明,制备的SnO2粒子呈球状,尺寸在10~20nm,纳米颗粒均匀,分散性好.以该粉体为基础制备的相应气敏元件测试表明,纳米SnO2半导体气敏元件对NO气体有着良好的响应-恢复特2性,并且具有较高的灵敏度和较低的工作温度.稀土元素的掺杂一方面可以起到稳定剂的作用,另一方面起活化中心的作用,从而进一步增强元件的气敏特性,掺杂少量稀土元素铈能明显提高纳米SnO2粉体的气敏性能.除掺杂效应对气体传感器单一的影响外,我们还可通过改变掺杂物的量,空气的质量改善气体传感器方面的气敏性.Hae-Ryong Kim等[29]通过在SnO2中掺杂NiO后的他们发现如下图图1取自[29]图1为纯的SnO2,0.64NiO- SnO2的和1.27NiO- SnO2的分层球在干燥气氛(空心符号)和25%相对湿度(rh)(实心符号)的气敏性,(气体:50ppm的CO).a1-a4分别为纯SnO2的分层传感器:气体响应(Ra/Rg中)(a1)中,90%的响应时间(τres)(a2)中,90%的恢复时间(τrecov)(a3)中,在空气中的电阻(Ra)(a4).b1〜b4分别为0.64NiO-的SnO2分层传感器:Ra / Rg中(b1)中,τres(b2)中,τrecov(b3)中,和Ra(b4).C1-C4分别为1.27NiO-的SnO2分层传感器:Ra/Rg(c1)中,τres(c2)中,τrecov(c3)中,和Ra(c4)中.图2取自[29]图2为50ppm下的CO暴露在干燥的空气中(a)和4%的湿空气(b)的1小时的期间的吸收光谱.其中非特异性吸光的较大改变仅对纯物质可见.在传感器的应用方面,叶晨圣等[30]发现利用热处理过的二氧化锡纳米粒子对甲醇、乙醇和丙醇有很好的探测灵敏度,最低的探测浓度能达到1.7ppm.另外对不同碳链的醇类和探测讯号间有很好的关联性.图3取自[30]图3为合成的二氧化锡(a)和热处理过的的二氧化锡(b)在220˚C下对乙醇的灵敏度进行测试.(A)对25ppm的乙醇进行再现性实验;(B)不同乙醇浓度(1.7-500ppm)的灵敏度变化.表1取自[30]表1为热处理过的二氧化锡纳米粒子在220˚C下测试甲醇、乙醇和丙醇在不同浓度(1.7ppm到500ppm)的灵敏度,*NA表示未探测.综上可知,今后就水热法制备金属离子或贵金属改性的SnO2纳米颗粒的气敏性能以及光电性能等方面进行研究将是一个新的方向.直接制备有金属或金属氧化物负载的SnO2纳米颗粒对改善晶体气敏性方面有显著的影响.3展望在晶体制备方面,可以通过改变反应条件,添加不同的有机溶剂来制备颗粒较小、更加稳定、比表面积较大的SnO2晶体,如添加其他醇类,或醇类衍生物来改变晶体团聚的方法将是改变粒径的一个新方向.我们还可以通过多种方法结合制作更为需要的晶体,如De liang Chen[31]等则利用微乳液法与水热法相结合的方法在SnCl4·5H2O中加入戊醇、正己烷、CTAB、尿素以及乙醇,在较温和的条件下制备了晶粒尺寸为几纳米的SnO:粉体,其晶粒分布范围只有3nm.从半导体气敏传感器的发展情况看,气敏材料的选择性问题,传感器的稳定性问题,与纳米SnO2性能不稳定和粒径较大有关,因此改善SnO2的粒径和稳定性还是当今研究方向的重要内容,同时气敏材料向多功能、薄膜化、集成化、小型化和智能化发展,也要从SnO2性能方面入手.因此,以后的研究开发中纳米技术和薄膜技术将成为主要方向,如果解决了稳定性问题,那成本低、响应时间短、灵敏度高的SnO2薄膜材料将有很大的发展前景.在纳米SnO2合成、制备中我们可以更多采用表面修饰技术,掺杂技术以改善气敏元件的性能.完善机械化学法制备SnO2纳米晶的装备和工艺,进一步提高纳米晶材料纯度和粒径的稳定性,提高产率.如在增大比表面积来改善气敏性方面可将单层SnO纳米片转换成多层SnO2纳米片[32],这种方法简单,容易制作,使其在制造高灵敏度的SnO2占巨大优势.参考文献:[1]Hell egouarch F,Arefi-Khonsari F,et al.Sensors and Actuators B,2001,73:27[2]Laudise RA,KolbED,Key PL,In:Somiya S.edat.the first inter.Symp.Proc.onHydrothermal Reactions[C].Japan,1982:527-530.[3]陈祖耀,胡俊宝等.低温等离子体化学法制备SnO2超微粒子粉末[J].硅酸盐学报,1986,14(3):326-331.[4]李燕.醇水溶液加热法制备SnO2纳米粉[J].安徽建筑工业学院学报(自然科学版),2000,8(2):66-68[5]Chen D L,Gao L Facile synthesis is of single-crystal tin oxide nanorodswith tuable dimensions via hydrothermalprocess[J].Chen.Phys.Lett,2004,398(1-3):201-206.[6] 李振昊,乐园,郭奋,等.纳米二氧化锡粉体的超重力-水热制备与表征[J].北京化工大学学报,2007,34(4):354-357.[7]王东新,钟景明,孙本双等.水热合成法对纳米氧化锡粉体粒径和形貌的控制研究[J].无机化学学报,2008,24(6):892-896[8]魏妙丹,庞雪蕾,王磊,等.纳米氧化锡粉体的制备及性能表征[J].河北工业科技,2011,28(6):351-354.[9]张倩瑶,苑媛,刘金鑫,等.纳米二氧化锡的多种方法制备、表征及其对比[J].化学工程师,2012,07:5-7.[10]Masayoshi Yuasa,*Tetsuya Kida,and Kengo Shimanoe.2012 American ChemicalSociety.2012, 4, 4231−4236.[11] Edwin A,et al.Mater Res Bull,2001,36:837.[12] Hellegouarch F,Arefi-Khonsari F,et al.Sensors and Actuators B,2001,73:27.[13] Nam S B,et al.Sensors and Actuators B,2000,65:97.[14] Song K C,Kang Y.Materials Letters,2000,42:283.[15] Sager W,Eicke H F,Sun W.Colloids Surfaces A:Physichem EngAspects,1993,79:199.[16]高艳阳,崔子文,高建峰.华北工学院学报,1996,(2):124.[17]Kurihara,L.A.;Fujiwara,S.T.;Alfaya,R.V.S.;Gushikem,V.;Alfaya,A.A.S.;Ca stro,S.C.J.Colloid and Interface Science,2004,274:579.[18] Tana,O.K.;Caoa,W.;Zhua,W.;Chaib,J.W.;Pan,J.S.Sensors and ActuatorsB,2003, 93:396.[19] Kotsikau,D.;Ivanovskaya,M.;Orlik,D.;Falasconi,M.Sensors And Actuators B,2004, 101:199.[20] Tan,O.;Zhu,W.;Yan,Q.Sensors and Actuators B,2000, 65:361.[21] Weber,I.T.;Valentini,A.;Probst,L.F.D.;Longoa,E.;Leite,E.R.Sensors and Actuators B,2004, 97:31.[22]耿丽娜,吴世华. 聚苯胺/二氧化锡杂化材料的制备、表征及气敏性测试[J].无机化学学报.2011,27(1):47-52.[23]邓希敏.材料研究学报[J],1995,(5):438.[24]贾维国,宋晓琴等.内蒙古大学学报(自然科学版)[J].1999,(6):697.[25]Liu W,Cao X P,Zhu Y F,et al The effect of dopants on the electron ic structure of SnO2 thin film [J].Sens.Ac2 tuators B,2000,66(1-3):219-221.[26]方丽梅,李志杰,刘春明等.物理化学学报(自然科学版)[J].2006,22(10):1212~1216.[27] Masayoshi Yuasa,*Tetsuya Kida,and Kengo Shimanoe.2012 American Chemical Society.2012, 4, 4231−4236[28]和宁宁,夏海平,王冬杰.超声喷雾共沉淀法制备纳米氧化锡粉体及其气敏性研究[J].中国稀土学报,2011,29(1):88-94.[29]Hae-Ryong Kim , Alexander Haensch , Il-Doo Kim , Nicolae Barsan , * Udo Weimar ,and Jong-Heun Lee* The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO 2-Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic StudiesAdv. Funct. Mater. 2011, 21, 4456–4463[30]葉晨聖*、邱惠琪.水熱法合成二氧化錫奈米粒子並應用在醇類氣體的感測器上[J].Phys.Chem.C.2007,111,7256-7259.[31]CHENDL,GAOL.Novel synthesis of wel·dispersed crystallineSnO2 nanoparticles by water—in—oil microemulsion-assisted hydrother-mal process.Journal ofColloid and Interface Science,2004,(279):137—142.[32]Kun-Mu Li; Yi-Jing Li; Ming-Yen Lu;Chung-I Kuo;and Lih-JuannChen*;Adv.Funct.Mater.2009,19,2453–2456.。
二氧化锡纳米材料的制备与扩展
二氧化锡纳米材料的制备与扩展二氧化锡纳米材料是一种具有广泛应用前景的过渡金属氧化物,因其独特的物理化学性质而受到广泛。
本文将详细介绍二氧化锡纳米材料的制备方法以及扩展方法,旨在为相关领域的研究提供参考。
在制备二氧化锡纳米材料方面,本文介绍了一种简单易行的溶液法。
将锡粉溶解在适量的盐酸盐酸中,得到锡的乙二醇溶液。
然后,将一定量的硝酸加入到上述溶液中,并在一定温度下剧烈搅拌,使锡离子与硝酸根离子反应生成二氧化锡纳米粒子。
通过离心分离和洗涤干燥得到纯度较高的二氧化锡纳米材料。
该方法具有操作简便、成本低廉等优点。
在扩展方法方面,本文着重介绍了两种方法。
通过添加不同种类的纳米粒子,可以有效地改善二氧化锡纳米材料的性能。
例如,将二氧化硅纳米粒子添加到二氧化锡纳米材料中,可以显著提高其光学性能,使其在光催化领域具有更广泛的应用。
改变制备条件也是一种有效的扩展方式。
例如,通过调控制备过程中的温度、pH值等参数,可以调节二氧化锡纳米材料的形貌和尺寸,从而获得具有优异性能的二氧化锡纳米材料。
尽管二氧化锡纳米材料具有许多优点,但仍存在一些不足之处。
例如,其制备过程有时可能涉及较为复杂的化学反应,导致成本较高。
关于二氧化锡纳米材料的应用领域仍需进一步拓展。
未来研究方向可以包括优化制备工艺、发掘新的应用领域以及探究其潜在的物理化学性质等。
二氧化锡纳米材料作为一种具有广泛应用前景的过渡金属氧化物,其制备与扩展方法具有重要的研究价值。
通过不断地优化制备工艺、发掘新的应用领域以及探究其潜在的物理化学性质,有望为相关领域的发展做出重要贡献。
纳米二氧化铈是一种具有重要应用价值的无机纳米材料,因其独特的物理化学性质而受到广泛。
本文将概述纳米二氧化铈的制备方法及其优缺点,并探讨其在不同领域的应用研究进展,同时展望未来的发展方向。
纳米二氧化铈的制备方法主要包括化学沉淀法、还原法、气相法等。
化学沉淀法是一种常用的制备纳米二氧化铈的方法。
该方法通过控制反应条件,如溶液的pH值、温度和反应时间等,合成不同形貌和尺寸的纳米二氧化铈粒子。
二氧化锡溶胶的制备
二氧化锡溶胶的制备近年来,随着纳米材料的应用越来越广泛,二氧化锡溶胶也逐渐成为了研究的热点之一。
二氧化锡溶胶具有极高的比表面积和优异的光学、电学、磁学等性质,因此在催化、传感、储能等领域有着广泛的应用前景。
本文将介绍二氧化锡溶胶的制备方法及其相关研究进展。
一、制备方法1. 水热法水热法是制备二氧化锡溶胶的常用方法之一。
其具体步骤为:将适量的锡盐和氢氧化钠加入到蒸馏水中,搅拌均匀后,将混合溶液转移到高压釜中,在一定的温度和压力下进行水热处理。
处理完成后,将产物经过洗涤、离心等处理,即可得到纳米级的二氧化锡溶胶。
2. 溶胶-凝胶法溶胶-凝胶法是一种将溶胶转化为凝胶的方法。
具体步骤为:将适量的锡盐加入到有机溶剂中,然后加入一定量的表面活性剂,经过搅拌均匀后,加入一定量的水,使得锡盐形成溶胶。
然后将溶胶在恒温、恒湿的条件下凝胶化,再通过烘干等处理,即可获得纳米级的二氧化锡溶胶。
3. 气相法气相法是一种将气态前驱体转化为固态产物的方法。
具体步骤为:将适量的锡有机化合物蒸发到高温反应管中,在一定的温度和气压下,锡有机化合物分解并沉积在反应管内壁上,形成纳米级的二氧化锡溶胶。
常用的气相前驱体有SnCl4、SnCl2等。
二、相关研究进展1. 光催化应用二氧化锡溶胶具有优异的光催化性能,可用于光催化分解有机污染物、光催化产氢等方面。
研究表明,制备方法对二氧化锡溶胶的光催化性能有着重要影响。
例如,采用水热法制备的二氧化锡溶胶具有较高的光催化活性和稳定性。
2. 传感应用二氧化锡溶胶具有极高的比表面积和优异的电学性能,可用于制备高灵敏度的气敏传感器、光学传感器等。
研究表明,溶胶-凝胶法制备的二氧化锡溶胶具有优异的气敏性能和选择性。
3. 储能应用二氧化锡溶胶具有优异的电化学性能,可用于制备高性能的锂离子电池、超级电容器等。
研究表明,气相法制备的二氧化锡溶胶具有较高的电化学性能和循环稳定性。
三、结论二氧化锡溶胶具有广泛的应用前景,在催化、传感、储能等领域都有着重要的作用。
改进的水热法在无机非金属材料制备中的应用研究
改进的水热法在无机非金属材料制备中的应用研究水热法是一种非常有效的无机非金属材料制备方法,也是制备氧化物材料的关键方法之一。
为了提高该方法的效率和可靠性,并适应更广泛的应用领域,需要进行改进。
在本文中,我们将介绍一些改进方法的研究进展与结果,并探讨这些改进对材料制备的影响。
一、改进的水热法概述改进的水热法是一种水热法制备非金属氧化物材料的发展,它是传统水热法的深化和改良。
改进的水热法在传统水热法的基础上增加了一些新的因素,如利用微波技术和表面活性剂等,可以使材料的成分、结构和形貌得到更好地控制和调控。
改进的水热法主要应用于无机非金属材料的制备,如超细氧化物、纳米晶体、多相氧化物、层状化合物等。
它在材料制备过程中具有一定的优势,可以实现低温而高效的制备,避免了氧化物材料在高温下出现晶格不稳定性的问题。
二、改进的水热法的类别与特点1.微波水热法微波水热法是一种改良的水热法,它使用微波技术作为加热源,可以在短时间内实现材料的制备。
它的主要特点是反应时间短、反应温度低、可控性好、杂质少。
2.表面活性剂辅助水热法表面活性剂辅助水热法是一种利用表面活性剂调节分散稳定性的改进方法。
该方法主要使用表面活性剂作为稳定剂,控制材料的成核、晶核生长及聚集形态等。
改进的水热法在无机非金属材料制备中被广泛应用。
下面我们将从具体研究案例中探讨改进的水热法的应用及其效果。
1.应用微波水热法制备ZnO纳米晶体李真等(2018)利用微波水热法制备了纯ZnO纳米晶体。
通过调节反应条件(温度、保持时间等),优化了材料的晶体结构、晶粒尺寸、形貌等。
结果表明,微波水热法制备的ZnO具有良好的光催化活性和稳定性。
王力等(2015)利用表面活性剂辅助水热法制备了LaMnO3氧化物。
通过描绘反应过程,探究了表面活性剂对材料的影响,优化了反应条件,使产物具有良好的晶体品质和电学性能。
3.应用改进的水热法制备层状MoS2化合物Chun-Jen Su等(2016)利用改进的水热法制备了层状MoS2化合物。
高纯二氧化硒的纳米化处理及其性能改善
高纯二氧化硒的纳米化处理及其性能改善近年来,纳米材料在诸多领域展现出了广阔的应用前景。
作为一种重要的纳米材料,高纯二氧化硒具有优异的光电性能和光致化学反应活性。
为了进一步提高二氧化硒在光电器件中的应用性能,研究人员开始采用纳米化处理的方法。
首先,高纯二氧化硒的纳米化处理包括制备纳米二氧化硒颗粒的方法。
现阶段,常见的制备方法有溶剂热法、水热法、微乳液法等。
其中,溶剂热法是一种常用的方法,通过在高温高压下将反应溶剂和反应物进行反应,得到纳米二氧化硒颗粒。
水热法则是在高温高压下,将溶液或胶体通过水热处理得到纳米颗粒。
微乳液法则是将水和油的微乳液作为反应介质,在特定的条件下通过相互转化进行反应,得到纳米颗粒。
其次,纳米化处理能够显著改善高纯二氧化硒的性能。
纳米化处理可以增加二氧化硒的比表面积,使得光吸收能力提高,进而增强光电器件的光电转换效率。
同时,纳米化处理还能够改善二氧化硒的导电性能,提高其在光电器件中的传输效率。
此外,纳米颗粒的小尺寸和特殊的表面效应也使得二氧化硒在催化反应中表现出更高的催化活性。
高纯二氧化硒的纳米化处理不仅可以提高其性能,还可以拓宽其应用领域。
例如,在光敏感材料中,纳米二氧化硒表现出优异的光致热效应,可以应用于光热治疗、光敏抗菌等方面。
此外,纳米二氧化硒还可以应用于染料敏化太阳能电池、光电催化、纳米药物传递系统等领域。
虽然高纯二氧化硒的纳米化处理在提升性能方面取得了显著进展,但仍然存在一些挑战。
首先,纳米化处理的方法仍然需要进一步改进,以提高处理的效率和控制产物的尺寸分布。
其次,纳米化处理对二氧化硒的物理和化学性质可能会产生一定的变化,这可能会对应用性能产生影响,因此需要进行充分的研究和测试。
综上所述,高纯二氧化硒的纳米化处理是提高其性能和拓宽应用领域的重要途径。
通过选择合适的制备方法和优化处理条件,可以获得具有优异性能的纳米二氧化硒颗粒。
未来的研究将继续致力于改进纳米化处理的方法和深入理解纳米处理对二氧化硒性能的影响,以实现更广泛的应用。
二氧化锡量子点的制备、表征及缺陷研究
二氧化锡量子点的制备、表征及缺陷研究徐珊;谢长生【摘要】以SnCl4·5H2O为原料、三重蒸馏水为溶剂,结合溶胶凝胶法与水热法合成了9种不同粒径的SnO2量子点胶体及其对应的粉末颗粒.分析了不同合成条件对量子点的影响,用XRD和TEM对其粉末结构和形貌进行了表征,对SnO2纳米粒子的UV-Vis光谱以及光致发光光谱进行了分析,计算了量子点粒径大小以及禁带宽度,并对其荧光发光机理进行了探讨.结果表明,合成的SnO2量子点的粒径为3.2~4.6 nm,粒径分布均匀,分散性较好.SnO2纳米粒子光致发光在430 nm、530 nm和600 nm处有发光峰,分别是由锡间隙、单电子氧缺陷以及表面态引起的深能级跃迁所致.【期刊名称】《化学与生物工程》【年(卷),期】2013(030)005【总页数】4页(P27-30)【关键词】二氧化锡;量子点;缺陷【作者】徐珊;谢长生【作者单位】华中科技大学材料科学与工程学院纳米材料与智能传感实验室,湖北武汉430074;华中科技大学材料科学与工程学院纳米材料与智能传感实验室,湖北武汉430074【正文语种】中文【中图分类】TQ134.32;O472.3Dingle于20世纪70年代初在Ⅲ~V族量子阱中发现了半导体的量子化效应[1],当载流子在一维方向、二维方向和三维方向上受到限制时,可分别称之为量子阱、量子线和量子点(Quantum dots,QDs)[2]。
当半导体材料微粒的大小和激子玻尔半径或电子的德布罗意波长相当(<100 nm)时,载流子的运动规律将受量子力学所支配,能量发生量子化,电子结构由连续能带转化为分立能级,能量状态密度呈现出类似原子的分立“量化”能级结构,可以通过控制其尺寸大小来调节量子点的各种性质。
量子点的相关研究主要集中在Ⅲ~V族化合物(如Ga As、InP等)以及Ⅱ~Ⅵ族化合物(如CdSe、CdS等)[3]。
近年来,对宽禁带半导体量子点如二氧化锡(Sn O2)的研究引起了广泛的关注。
水热法制备Fe3+改性的SnO 2纳米颗粒
摘要 采用水热法制备了 Fe3+改性的 SnO2 纳米颗粒, 通过 XRD、BET、TEM、FT鄄IR 和紫外鄄可见漫反射光谱 (DRS)对其结构和光学性质进行研究. 结果表明, 水热过程实现了氧化锡的直接晶化, 产物为金红石结构, Fe3+进入 SnO2 的晶格之中形成固溶体. 这种方法制备的 Fe3+改性的 SnO2 纳米颗粒为单分散状态, 粒径分布均匀, 纯的 SnO2 未焙烧前平均粒径为 6.0 nm, 随着 Fe3+添加量的增大, 样品的粒径减小. BET 显示纯的 SnO2 样品比表面积 为 206.1 m2·g-1, 随着 Fe3+添加量增大, 产物的比表面积增大, 同时样品的紫外鄄可见吸收发生红移.
本 文 以 SnCl4·5H2O、FeCl3·6H2O 和 氨 水 为 原 料, 利用水热法制备了 Fe3+改性的 SnO2 纳米颗粒, 并研究了 Fe3+的添加量及焙烧温度对其结构和光学 性质的影响.
1 实验部分
1.1 样品合成 向 80 mL 蒸馏水中加入柠檬酸至溶液 pH越1耀2,
搅拌 10 min, 加蒸馏水至溶液体积为 96 mL, 然后加 入 17.529 g SnCl4·5H2O , 搅拌溶解. 加热至 50 益并 恒温. 然后加入 FeCl3·6H2O, 为了提高胶体的稳定 性能, 同时加入 渍=10%的聚乙二醇水溶液 10 mL, 搅拌加热至溶液澄清透明, 形成溶胶. 然后逐滴加入 氨水 30 mL, 溶胶变浑浊. 继续搅拌 30 min. 将上述 悬浊液转移到水热釜中, 150 益下反应 12 h. 过滤、 110 益烘干、研磨, 即得样品. 样品中加入 Fe 的摩尔 分数分别为 0、1.0豫、5.0豫、10.0%、15.0豫、20.0豫. 为 考察样品的热稳定性, 空气中, 将水热法制备的纯的 SnO2 样品和 10豫的 Fe3+改性的 SnO2 纳米粉体分别 在 350、600、800 益下焙烧 1 h. 1.2 样品表征
水热法制备纳米SnO2及其气敏性能
支持计划$"$#"1(-2-.)$$@%资助项目& 第一作者!张战营$#NA@)%!男!博士!教授&
<&’&/B&443(&""$#!II$GII$@8
<&B/)&443(&""$#!II$@II##8
C/,)(3;(.*,"h.*)fhSQEKCET$#NA@F%!<Q7:!JS898!J>6\:DD6>8
>9)(,3’(!2E&" EQE6WQ>UC;7:DX:>:W>:WQ>:R=KQSKR>6US:><Q7<:US6RXCUS2E07!(A."&QERQkV:6VDQ<<6ECQQD>QX <QU:>CI Q7D%QERUS:<C_:RD67VUC6E6\XQU:>QER:USQE67QDQD67Y:EU8-S:QDIW>:WQ>:RDQ<W7:DX:>:;SQ>Q;U:>C^:R=KZI>QKRC\\>Q;UC6E% U>QED<CDDC6E:7:;U>6E<C;>6D;6WKQER’5IYCDQRD6>WUC6EDW:;U>6D;6WK%>:DW:;UCY:7K8-S:>:DV7UDCERC;QU:USQUUS:QDIW>:WQ>:R 2E&"CDQU:U>QT6EQ7>VUC7:DU>V;UV>:%US:WQ>UC;7:D6\\CEQ7DQ<W7:CDX:77IRCDW:>DCY:%US:;>KDUQ7DC^:DQ>:CEUS:>QET:6\"?HIIA?M E<QERUS:QY:>QT:;>KDUQ7DC^:CDM?AE<81EQRRCUC6E%US:QDIW>:WQ>:R2E&" EQE6WQ>UC;7:DQDQD:ED6>SQY:US:DVW:>C6>TQDI D:EDCETW>6W:>UC:D%&B9B%SCTS>:DW6ED:%DS6>U>:DW6ED:I>:;6Y:>KUC<:QERT66RD:7:;UCYCUKU6:USQE67YQW6>QDX:778
二氧化锡纳米材料的光电性能探讨
二氧化锡纳米材料的光电性能探讨随着纳米技术的发展,纳米材料的光电性质一直是研究的热点。
二氧化锡是一种很有潜力的光电材料,在太阳能电池、传感器、储能等领域有广泛应用。
本文将详细介绍二氧化锡纳米材料的光电性能探讨。
一、二氧化锡纳米材料的制备在纳米材料的制备过程中,常用的方法有物理方法、化学方法和生物法等。
二氧化锡的物理制备方法包括溅射法、蒸发法、离子束法等。
化学制备方法包括水热法、沉淀法、微波法等。
而生物法则利用生物体系中的生物成分作为反应体系或模板,制备出纳米材料。
其中,水热法是较为简单有效的方法之一,制备出的二氧化锡纳米材料质量较高。
二、二氧化锡纳米材料的光电性能1. 光催化性能许多报道表明,二氧化锡纳米材料具有优异的光催化性能。
光催化剂是指在光照条件下,利用光子能量激发催化剂表面电子,使得催化剂表面具有氧化、还原能力,从而催化某些反应的发生。
二氧化锡纳米材料具有较宽的光吸收范围和高的电导率,能够将光子转化为电子。
通过调节制备过程中的温度、反应时间等参数,可以得到具有不同形态和结构的二氧化锡纳米材料,从而实现对光催化反应的调控。
二氧化锡纳米材料的光催化性能主要应用在环境治理、有机合成等领域。
2. 光电化学性能光电化学性能是指光子能激发材料表面产生的电子和空穴的行为。
二氧化锡纳米材料具有较高的光电转换效率和稳定性,主要是由于其具有较好的光吸收能力和良好的电荷传输性能。
太阳能电池是利用光生电子和空穴的行为将光能转化为电能的设备,而二氧化锡纳米材料是太阳能电池中的重要组成材料之一。
通过改变二氧化锡纳米材料的粒径、形态、微结构等参数,可以实现对其光电化学性能的调控,从而提升其在光电器件中的应用性能。
3. 光学性能光学性能是指纳米材料对光的吸收、散射和透射等光学行为。
二氧化锡纳米材料通过改变其形态和尺寸,可以实现对其光学性能的调控。
一般而言,较小的纳米粒子会表现出较强的光学吸收性能,而较大的纳米粒子则表现出较高的透射性和反射性。
水热法合成二氧化锡纳米晶粉实验报告
水热法合成二氧化锡纳米晶粉实验报告S n O 2纳米微晶的溶胶—水热法合成2007级化学系应用化学专业颜廷国刘峰一、前言二氧化锡(2SnO )纳米晶粉是一种半导体氧化物,具有很大的比表面积和表面吸附特性,因而被广泛应用于各种有害、有毒及可燃易爆气体报警的气敏材料和湿敏材料。
目前,制备超细二氧化锡(2SnO )微粉的方法很多,包括溶胶—凝胶法、化学沉降法、激光分解法和水热合成法等,其中用水热法制备二氧化锡微晶有许多优点,如:a) 由于反应是在相对较高的温度和压力下进行,因此有可能实现在常规条件下不能进行的反应。
b) 产物直接为晶态,使得晶粉粒度分布窄,晶体较完整;无须经过焙烧晶化过程,因此团聚较少,粒度均匀,形态比较规则。
c) 改变反应条件(温度、酸碱度、原料配比、矿化剂等)可能得到具有不同晶体结构、组成、形貌和颗粒尺寸的产物。
本文初步探讨了反应温度、介质酸度和反应物浓度对纳米二氧化锡的形成、形貌和粒状尺寸的影响。
二、实验部分1)水热法制备纳米晶粉2SnO 的反应机理:首先是4SnCl 水解:HCl OH Sn O H SnCl S 4)(4)(424+?+形成无定形的4)(OH Sn 沉淀,接着发生4)(OH Sn 的脱水缩合和晶化作用:O nH SnO OH nSn 2242n )(+→?在一定温度下形成2SnO 纳米微晶。
2)试剂:实验中所用的四氯化锡、醋酸铵、乙醇(95%)、冰醋酸、氢氧化钾均为分析纯(AR )试剂。
3)实验仪器:烧杯、容量瓶(50ml )、玻璃棒、酸度计(pHS-3C 型)、聚四氟乙稀衬里不锈钢压力釜、台式烘箱、离心机(附带离心管)、表面皿、电子天平、研钵、真空泵、抽滤装臵、PH 试纸。
4)实验试剂的准备:反应液的配制:分别配制浓度分别为0.5mol/L 、1.0mol/L 、2.0mol/L 的4SnCl 溶液。
缓冲液的配制:取77.08克醋酸铵固体与59ml 冰醋酸充分混合配制成PH 约为4.5的缓冲液。
水热法制备纳米材料研究进展
水热法制备纳米材料研究进展水热法是一种常用的制备纳米材料的方法。
它是利用高温高压下,水或其他溶液作为反应介质,通过化学反应在合成温度下产生的高压使反应物呈现出独特的性质和结构。
水热法制备的纳米材料具有独特的形貌和结构,同时具有优异的光电性能、化学稳定性和生物相容性等特点。
以下是水热法制备纳米材料研究的一些进展。
首先,水热法制备金属氧化物纳米材料是最常见的研究方向之一、通过水热反应可以合成各种金属氧化物纳米材料,如二氧化钛、氧化锌和氧化铁等。
这些纳米材料具有优异的光电性能,并广泛应用于太阳能电池、催化剂和传感器等领域。
其次,水热法制备二维纳米材料也是一个研究热点。
二维纳米材料具有独特的结构和性质,如高比表面积和优异的光电性能。
水热法制备的石墨烯、二硫化钼和氧化石墨烯等二维纳米材料已被广泛研究并应用于电子器件和能源存储等领域。
另外,水热法还可以制备金属纳米颗粒和合金纳米材料。
通过控制反应条件,如温度和反应时间等,可以合成各种形貌和大小的金属纳米颗粒,如金纳米颗粒、银纳米颗粒和铜纳米颗粒等。
此外,通过调节反应介质中金属离子的浓度和种类,还可以制备金属合金纳米材料,如银镉合金纳米材料和铂钯合金纳米材料等。
这些纳米材料在催化、传感和生物医学等领域具有重要的应用价值。
最后,水热法制备纳米材料的研究还涉及到添加剂的引入和反应条件的优化等方面。
通过在水热反应体系中引入添加剂,如表面活性剂、聚合物和小有机分子等,可以调控纳米材料的形貌和结构,并改善其性能。
同时,通过优化反应条件,如温度、压力和反应时间等,也可以实现纳米材料的粒度控制和单分散性的提高。
总之,水热法制备纳米材料是一种简单、有效且多样化的方法,具有广泛的应用潜力。
随着研究的深入,水热法制备纳米材料的工艺和条件将进一步优化,同时也将开发出更多新颖的纳米材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I r v me tf r t e e p rme t- y r t e ma mp o e n o h x e i n — d oh r l h s n h ss o n n n ma e il y t e i fS O2 a o t ra
C NY n HE u ,WA GXi — ag Dn h n l g WU Qn —h n N a gn , igC u —i , ig se g o n
5 系统 测 试
为 了检 验 系 统 的工 作 性 能并 分 析 误 差 , 系 统 对 的两种 功 能 分 别 进 行 了测 试 。 系 统 “自动 水 平 ” 功 能 的测 试 方 法 是 在 系 统 底 座 的一 端 垫 上 不 同小 木
;
1
2
参考文献 ( e r cs : R f e e) en
纳米 材 料 是 近 二 三 十 年 来 研 究 得 非 常 多 的材 料 , 生 听来 相 当神 奇 : 很 多 特 异 的性 能 , 度 在 学 有 尺 纳米 范 围 , 且就 在 纳 米 尺 度 范 围还 可 以通 过 某 些 而 手段 进行 调控 , 长 出许 多 有 趣 的形 貌 。而 在 众 生
( 目编 号 :30 0 0 5 。 项 18 115 )
洗 涤完 毕实 验就 结 束 了 , 生 对 自 己合 成 出来 的产 学
品到底 是什 么 、 长什 么样 子没 有一 点概 念 , 学生 觉 得
该 实验操 作 枯燥 乏 味 , 习 的兴趣 降低 , 极性 也 随 学 积
实 验 室 科 学
f n a n a tc ia a ii u d me tl e hn c l b lt c e tv e ns i t ne s nd h c mp e e sv p a tc l blt . Th y, r a ie o eol s a t e o r h n ie r c ia a ii s y e
功能 。
[ ] 孙秋野 , 6 柳昂 , 王云爽. aV E 8 5快速入 门与提高 [ . Lb I W . M] 西
安 : 安 交 通 大 学 出 版 社 ,0 9 西 20.
[ ] 阮奇桢. 7 我和 Lb I W[ . 京 : 京航 空航天大学 出版社 , aV E M]北 北
具有 高 的灵敏 度 , 以二 氧 化 锡 纳 米 材 料通 常用 于 所
料液 至某 一指 定 的值 , 后将 原 料 液 转 移 至 水 热 反 然
应釜中, 指定 温度 下 反 应 2小 时 , 行 样 品后 处 理 。 进
在 多年 的实验 教学 中我们 发现 该实 验存 在着 一 些弊
块 , 系统 呈 一定角 度倾 斜 , 使 当步 进 电机转 动 使杠 杆 实现“ 自动 水平 ” 停稳 后 , 用 角 度测 量 仪 测 量 杠 并 利
杆 水平 角 度 。 而 “ 定 角 度 控 制 ” 既 的测 试 方 法 是 通
[ 3] f ecl. r sa MMA 2 0 T Da he[ . n o g f ecl, e e 7 6 Q t Set R] HogK n :r sa a e e
2 o . o 8
[ 4] 刘鸣. 电子线路综合 设计实 验教程 [ . 津 : M] 天 天津 大学 出版
社 ,0 8 20.
过 用 户界 面 的角度 输 入 口直 接 输 入 不 同 的 角 度值 ,
然 后测 量 相应 的杠 杆角 度 。
[ ] 范红刚 , 5 魏学海 , 任思璩.5 l单片机 自学 笔记 [ . M] 北京 : 北京
ta hi fe t r m p o e e c ng ef cs a e i r v d.
Ke r s: S y wo d nO2na o tra ;h d o h r le pe i n mpr v me t e c n fe t n ma e il y r t e ma x rme ti o e n ;ta hig ef c
20 0 9.
[ ] 王磊 , 8 陶梅. 精通 L b IW . M] 北 京 : aV E 8 0[ . 电子 工业 出版社 ,
2 0 o 7.
6 结 束 语
本文 介绍 的 自动 平 衡 控 制 系统 , 妙 地将 L b 巧 a—
[ ] 戴佳 , 9 戴卫恒.5 l单 片机 C语言应用程序设计实例 精讲 [ . M] 北京 : 电子工业出版社 ,0 6 20 . [ 0 张克彦. V 1] A R单 片机实用 程序设计 [ . M] 北京 : 北京 航空航天 大学 出版社 ,0 4 20 .
制作有 毒 、 可燃 性气 体 的敏感 元件 j 。
“ 水热 法制 备 二 氧 化锡 纳 米 材 料 ” 验 已在 本 实
校 面对本 科生 开设 的无 机合 成化 学课 程 中开设 了近 1 时间 ] 而 该 实 验 传 统 的 做 法 是 : 师 介 绍 实 0年 , 教 验原 理及 要 点 , 验过 程 中 , 生利 用 p 实 学 H计 调 节 原
!=
CNl —1 5 / 2 3 2 N
实
验
室
科
学
第1 5卷
第 3期
21 0 2年 6月
Jn2 2 u . 01
LAB 0RAT 0RY
S I C ENCE
Vo . 5 No 3 11 .
水热法制 备二氧化锡纳米材料实验 的改进
陈 云 ,王晓 岗,丁春玲 ,吴庆生
v w、 i 单片机 、 e 传感器和步进 电机整合起来 , 其结构 丰富 , 成本 低 廉 , 味性 强 , 合综 合 设 计 型实 验 的 趣 适
开发 与应 用 。控 制 系统并 具有 很好 的可操 作性 和功
能扩 展性 。系统 充分 利 用 了 L b i ave w友 好 的人 机 交 互界面 , 用户 可 以非 常 简 单 的控 制 步进 电 机 实现 各
( 接 6 页) 上 0
参 考文 献 ( eee cs : R f n e ) r
C e i h nMe ,W u Bn h i ig u ,Ya gJn e. 1 S l a sr ae si— n ig,ta. mal d ob t—ass
s n h ss a d c a a t r a in o i o e n p l s ae c t y t e i n h r ce i t ftn d p d Z O oy c l  ̄sMs s o
[ ] 马潮. V 1 A R单 片机 嵌 入 式 系 统 原 理 与 应 用 实 践 [ . 京 : M] 北 北 京航 空航 天 大 学 出 版社 。0 7 20 .
[ ] 周俊杰. 2 嵌入式 C编程与 Ate A m l VR[ . M] 北京 : 清华大学出版
社 .0 3 20 .
mo p o o y a d p a e ma e su e t k o r b u a h y f b iae n lo i c e s d t er r h lg n h s d t d n s n w mo e a o twh tt e a rc td a d a s n r a e h i
wt eya n d iv J .M t asR sac n oao s i hxl ea dt e[ ] ae l eerh Invt n , h mi i i f i
端, 表现 如下 。
() 1 实验 条 件 都 是 教 师 摸 索 好 的 , 生 不 需 要 学
做 什么 准备 , 验 时 是 一 种 被 动 的 状 态 ;( )样 品 实 2
基 金 项 目:国 家 自 然 科 学 青 年 基 金 ( 目 编 号 : 项 2 1 11 ) 同济大学实验教学改革专 项基金 10 18 ;
种功 能 。
收 稿 日期 :0 2 0 - 1 2 1- 3 0
修 改 日期 :0 2 0 — 1 2 1— 4 0
作者简介 : 亚飞 ( 99 ) 男 , 北人 , 冯 18 一 , 河 天津 大学 精仪 学 院 电子科学与技 术 ( 电子 ) 光 专业 0 8级 本科 生 , 已
保 送浙江大学读研究生 。
t e s n h ss e p rme t t i r v h e p rme t lt a h n o ” h d oh r l y t e i o nO2 h y t e i x e i n o mp o e t e x e i n a e c i g f y r t e ma s n h ss f S na o tra ”.Th a allr a t n n t me a e p a e o h r dto a u o l v k n e ci n n ma e il e p r le e ci si sr o u nttk l c ft e ta i n la t ca e ma i g r a to i c n iin la n o tolb e.T e e f in y i mp o e swe1 Ch r ce iain o h r d c s o d t s c e ra d c n r la l o h fi e c si r v d a l. c a a trz to ft e p o u t ’
航 空 航 天 大 学 出 版 社 ,0 0 2 1.
经过 多 次 测 试 , 出 系 统 的 角 度 误 差 范 围 得 为± 。 1 。系统 的误 差 有 多 种 , 括 传 感 器 和步 进 电 包 机 的精度 、 杆 转 动 机 构 等 , 是 作 为 实 验 教 学 系 杠 但 统 , 系统 在误 差 范 围允 许 内能够 很 好 地 实 现 预 期 该
( 同济 大 学 化 学 系,上 海
摘
20 9 ) 00 2