二次函数综合问题之抛物线与直线交点个数问题
二次函数交点问题,解析式,应用
二次函数的交点问题巧解方法:1、二次函数与x 轴、y 轴的交点:分别令y=0,x=0;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程.例1、如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.例2、已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点,并求出这两个交点的坐标。
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积例3、.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
例4、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.例5、已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.例6.已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.训练题1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为 .3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是 .5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m= .7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 .8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围 .9.抛物线y=x 2-2x +a 2的顶点在直线y=2上,则a 的值是 .10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则的值是()A .-3B .3C .D .-12.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-<1B .0<-<2C .1<-<2D .-=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?a b a ca cbc b a +++++2121a b 2a b 2a b 2a b2函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
专题二 二次函数的综合——2023届中考数学热点题型突破(含答案)
专题二二次函数的综合——2023届中考数学热点题型突破题型1 二次函数与线段最值问题1.在平面直角坐标系中, 点B 的坐标为, 将抛物线向左平移 2 个单位长度后的顶点记为A. 若点P是x 轴上一动点, 则的最小值是( )A. 8B.C. 9D.2.如图, 抛物线与x轴正半轴交于点A, 与y 轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)点P为第四象限内且在对称轴右侧抛物线上一动点, 过点 P作轴, 垂足为C,PC交AB于点D, 求的最大值, 并求出此时点P的坐标;(3)将抛物线向左平移n个单位长度得到抛物线, 若抛物线与直线AB 只有一个交点, 求n的值.3.已知:如图,二次函数与x轴交于点A,B,点A在点B左侧,交y 轴于点C,.(1)求抛物线的解析式;(2)在第一象限的抛物线上有一点D,连接AD,若,求点D坐标;(3)点P在第一象限的抛物线上,于点Q,求PQ的最大值?题型2 二次函数与图形面积问题4.如图,抛物线与x轴的两个交点坐标为、.(1)求抛物线的函数表达式;(2)矩形的顶点P,Q在x轴上(P,Q不与A,B重合),另两个顶点M,N在抛物线上(如图).①当点P在什么位置时,矩形周长最大?求这个最大值并写出点P的坐标;②判断命题“当矩形周长最大时,其面积最大”的真假,并说明理由.5.在平面直角坐标系xOy 中, 已知抛物线经过,两点. P是抛物线上一点, 且在直线AB的上方.(1)请直接写出抛物线的解析式.(2)若面积是面积的 2 倍, 求点P的坐标.(3)如图, OP交AB于点C,交AB于点D. 记,,的面积分别为,,. 判断是否存在最大值. 若存在, 求出最大值; 若不存在, 请说明理由.6.已知抛物线与x轴相交于A、B两点,与y轴交于C点,且,.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,连结PB、PC.①如图1,过点P作轴交BC于点D,交x轴于点E,连结OD.设的面积为,的面积为,若,求S的最大值;②如图2,已知,Q为平面内一点,若以点A、C、P、Q为顶点的四边形是以CP为边的平行四边形,求点Q的坐标.题型3 二次函数与图形判定问题7.如图,已知二次函数(b,c为常数)的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m()个单位,使平移后得到的二次函数图象的顶点落在的内部(不包括的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).8.如图, 已知点, 以点D为顶点的抛物线经过点A, 且与直线交于点B,.(1)求抛物线的表达式和点D的坐标.(2)在对称轴上存在一点M, 使得, 求出点M 的坐标.(3)已知点P 为抛物线对称轴上一点, 点Q 为平面内一点, 是否存在以P,B,C,Q为顶点的四边形是菱形的情形? 若存在, 直接写出点P 的坐标; 若不存在, 请说明理由.9.如图,已知抛物线与x轴交于点,,与y轴交于点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为,过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与相似?若存在,求出点Q的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:,平移后抛物线的解析式为,点A的坐标为.如图, 作点A关于 x轴对称的点连接交x轴于点P则此时有最小值,最小值为的长,易知,,的最小值是.2.答案: (1)(2)(3)解析: (1)对于,令, 则, 解得,,.令, 则,.设直线AB的解析式为,则解得直线AB的解析式为.抛物线顶点坐标为.(2)如图, 过点D作轴于点E, 则.,,.设点P的坐标为,则点D的坐标为,.,又,当时, 的值最大, 最大值为,此时,此时点P 的坐标为.(3)设抛物线的解析式为. 令,整理, 得,3.答案:(1)(2)(3)解析:(1)当时,,解得,,,.,,,抛物线的解析式为;(2)如图,作于E,,,设,则,,,解得,,,;(3)如图,作轴,交BC于F,则,,,,,由,可知,直线BC的解析式为,设,则,,,时,PF的最大值为,的最大值为.4.答案:(1)(2)①Р在时,矩形的周长最大,最大值为10;②命题是假命题解析:(1)解:将、代入中得,解得,抛物线的函数表达式为,(2)解:抛物线的对称轴为,设点,则,①P,Q关于对称,,则,矩形的周长为,当时,l的值最大,最大值为10,即Р在时,矩形的周长最大,最大值为10.②假命题.由①可知,当矩形周长最大时,长为3,宽为2,面积为6,当为正方形时,,解得,点Р的坐标为,点Q的坐标为,,正方形的面积;故命题是假命题.5.答案: (1)(2) 或(3) 存在,解析:(1)将,分别代入, 得解得所以抛物线的解析式为.(2)设直线AB的解析式为,将,分别代入, 得解得所以直线AB的解析式为.如图 (1), 过点P 作轴, 垂足为M,PM交AB于点N, 过点B 作, 垂足为E,所以因为,,所以.因为的面积是面积的 2 倍,所以, 所以.设,则,所以, 即,解得,,所以点P的坐标为或.(3) 存在.因为, 所以,, 所以,所以.因为,,所以.设直线AB交y轴于点F, 则.如图 (2), 过点P作轴, 垂足为H,PH交 AB于点G.因为, 所以.因为, 所以,所以,所以.设.由 (2) 可得,所以.又,所以当时, 的值最大, 最大值为.6.答案:(1)(2)见解析①6②或解析:(1)由题意,得,,此抛物线的解析式为:.(2)①由可得:设直线BC的解析式为:,则,,直线BC的解析式为:,设,则,,,当时,S的最大值为6.②在OB上截取,则,,又,,,,,运用待定系数法法可求:直线CF的解析式为:,直线BP的解析式为:,,解得或4,,,轴,ACPQ是以CP为边构成平行四边形,,点Q在x轴上,或.7.答案:(1)二次函数解析式为;点M的坐标为(2)(3),,,解析:(1)把点,点代入二次函数得,,解得,二次函数解析式为,配方得,点M的坐标为;(2)设直线AC解析式为,把点,代入得,,解得,直线AC的解析式为,如图所示,对称轴直线与两边分别交于点E、点F.把代入直线AC解析式解得,则点E坐标为,点F坐标为,,解得;(3)连接MC,作轴并延长交AC于点N,则点G坐标为,,,,把代入解得,则点N坐标为,,,,,由此可知,若点P在AC上,则,则点D与点C必为相似三角形对应点①若有,则有,,,,,,若点P在y轴右侧,作轴,,,,把代入,解得,;同理可得,若点P在y轴左侧,则把代入,解得,;②若有,则有,,,若点P在y轴右侧,把代入,解得;若点P在y轴左侧,把代入,解得;;.所有符合题意得点P坐标有4个,分别为,,,.8.答案: (1)(2)(3)存在, 点P的坐标为,, ,或解析: (1) 将代入, 得,将,分别代入, 得解得故抛物线的表达式为.抛物线的顶点D的坐标为.(2)易知抛物线的对称轴为直线, 且点A,C 关于对称轴对称.作直线AB, 交直线于点M, 则点M即为所求.令,解得,,故.设直线AB 的表达式为,将,分别代入, 得解得故直线AB 的表达式为,当时, , 故.(3)设,易得,①当时,该四边形是以BC为对角线的菱形, 则, 即, 解得,点P 的坐标为.②当时,该四边形是以PC 为对角线的菱形, 则, 即,解得, 故点P的坐标为或.③当时,该四边形是以PB为对角线的菱形, 则, 即, 解得,故点P 的坐标为或.综上可知, 点P的坐标为,,,或9.答案:(1)(2)当时,四边形CQMD是平行四边形(3)点Q的坐标为或解析:(1)设抛物线的解析式为,把点的坐标代入,得,解得抛物线的解析式为,即.(2)点D与点C关于x轴对称,点,,设直线BD的表达式为,把,代入得,,解得,直线BD的关系表达式为,设,,,,当时,四边形CQMD为平行四边形,,解得,(不合舍去),故当时,四边形CQMD是平行四边形;(3)在中,,,,当以点B、M为顶点的三角形与相似时,分三种情况:①若时,,如图1所示,当时,,即,,,,,,解得,,(不合舍去),,,,,点Q的坐标为;②若时,如图2所示,此时点P、Q与点A重合,,③由于点M在直线BD上,因此,这种情况不存在,综上所述,点Q的坐标为或.。
二次函数压轴题交点个数问题(习题及答案)
交点个数问题(习题)
1.在平面直角坐标系中,点A(10,0),以OA为直径在第一象
限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O,E,A三点.
(1)∠OBA=_______;
(2)求抛物线的函数表达式;
(3)若P为抛物线上位于第一象限内的一个动点,以P,O,A,E为顶点的四边形面积记为S,则S取何值时,相应的点P有且只有3个?
2.如图,直线y =kx 与抛物线2422273
y x =-
+交于点A (3,6).(1)求直线y =kx 的解析式和线段OA 的长.(2)若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(点E 与点O ,A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE =∠BED =∠AOD .则当m 在什么范围时,符合条件的点E 的个数分别是1个、2个?
3.如图,在平面直角坐标系中,抛物线y=x2+(k-1)x-k(k>0)与
直线y=kx+1交于点A,与x轴交于B,C两点(点B在点C 的左侧).则在直线y=kx+1上是否存在唯一的点Q,使得∠OQB=90°?若存在,请求出此时k的值;若不存在,请说明理由.
【参考答案】
1.(1)90°;(2)21584
y x x =-+;(3)当S =16时,点P 有且只有3个
2.
(1)235;y x OA ==.(2)当94m =
时,符合条件的点E 有1个;当904m <<
时,符合条件的点E 有2个. 3.当255
k =或1时,存在唯一的点Q ,使得∠OQB =90°.。
二次函数小综合-二次函数与交点问题
二次函数小综合-二次函数与交点问题例1(2018四调题改)抛物线y =x 2-kx -k ,A (1,-2),B (4,10),抛物线与线段AB (包含A 、B 两点)有两个交点,那么k 的取值范围为_______.解:线段AB 的解析式是_______(1≤x ≤4),联立抛物线与直线解析式方程得x 2-4x +6=kx +k ,该方程在1≤x ≤4时有两根,此方程可以看作定抛物线_______(1≤x ≤4),与过定点C (-1,0)的动直线_____.(填写解析式,上同),有两个交点,画出图像如图. 根据图像回答问题:M 点的坐标为______,N 坐标为______; l 1的k 值为________;l 2的k 值为________.所以,仅有两个交点时,k 的取值范围为_____________.41l 1l 2NMC Oxyy =4x -6,y =x 2-4x +6,y =kx +k , (1,3),(4,6),k =±211-6,k =65,-6+211<k ≤65. 例2.直线y =2x ﹣5m 与抛物线y =x 2﹣mx ﹣3在0≤x ≤4范围内只有一个公共点,则m 的取值范围为 ﹣5<m ≤或m =8﹣2.解:联立可得:x 2﹣(m +2)x +5m ﹣3=0,令y =x 2﹣(m +2)x +5m ﹣3,∴直线y =2x ﹣5m 与抛物线y =x 2﹣mx ﹣3在0≤x ≤4范围内只有一个公共点, 即y =x 2﹣(m +2)x +5m ﹣3的图象在0≤x <4上只有一个交点, 当△=0时,即△=(m +2)2﹣4(5m ﹣3)=0解得:m =8±4,当m =8+4时,x ==5+2>4当m=8﹣4时,x==5﹣2,满足题意,当△>0,∴令x=0,y=5m﹣3,令x=4,y=m+5,∴(m+5)(5m﹣3)<0,∴﹣5<m<令x=0代入x2﹣(m+2)x+5m﹣3=0,解得:m=,此该方程的另外一个根为:,故m=也满足题意,故m的取值范围为:﹣5<m≤或m=8﹣2例3.在平面直角坐标系中,A(﹣2,0),B(1,﹣6),若抛物线y=ax2+(a+2)x+2与线段AB有且仅有一个公共点,则a的取值范围是﹣5<a≤1且a≠0或a=8+4.解:当抛物线过A点,B点为临界,代入A(﹣2,0)则4a﹣2(a+2)+2=0,解得:a=1,代入B(1,﹣6),则a+(a+2)+2=﹣6,解得:a=﹣5,又a≠0,当a=﹣5时,抛物线与线段AB有两个交点,所以a的取值范围是﹣5<a≤1且a≠0.∵直线AB的解析式为y=﹣2x﹣4,由,消去y得到:ax2+(a+4)x+6=0,当△=0时,直线AB与抛物线只有一个交点,∴(a+4)2﹣24a=0,解得a=8+4或8﹣4,经检验:当a=8+4时,切点在线段AB上,符合题意,当a=8﹣4时,切点不在线段AB上,不符合题意,故答案为﹣5<a≤1且a≠0或a=8+4.例4.已知二次函数y=(m﹣2)x2﹣4mx+2m﹣6的图象与x轴负半轴至少有一个交点,则m的取值范围为()A.1<m<3B.1≤m<2或2<m<3C.m<1D.m>3【解答】解:∵二次函数y=(m﹣2)x2﹣4mx+2m﹣6,∴m﹣2≠0,∴m≠2,当①图象与x轴的交点有两个,原点的两侧各有一个,则,解得2<m<3;②图象与x轴的交点都在x轴的负半轴,则,解得:1≤m<2.综上可得m的取值范围是:1≤m<2或2<m<3 故选:B.例5.已知a、b为y关于x的二次函数y=(x﹣c)(x﹣c﹣1)﹣3的图象与x轴两个交点的横坐标,则|a﹣c|+|c﹣b|的值为解:当y=0时,(x﹣c)(x﹣c﹣1)﹣3=0,(设a<b),整理得x2﹣(2c+1)x+c2+c﹣3=0,△=(2c+1)2﹣4(c2+c﹣3)=13,x=,所以a=c+,b=c+,所以|a﹣c|+|c﹣b|=c﹣a+b﹣c=b﹣a=c+﹣(c+)=.故答案为.练习1已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数y =x 2+(a ﹣3)x +3的图象与线段AB 只有一个交点,则a 的取值范围是 ﹣1≤a <﹣或a =3﹣2 .解:依题意,应分为两种情况讨论, ①当二次函数顶点在x 轴下方, 若y x =1<0且y x =2≥0,即,解得此不等式组无解;若y x =2<0且y x =1≥0,即,解得﹣1≤a <﹣;②当二次函数的顶点在x 轴上时, △=0,即(a ﹣3)2﹣12=0,解得a =3±2,而对称轴为x =﹣,可知1≤﹣≤2,故a =3﹣2.故答案为:﹣1≤a <﹣或a =3﹣2.2.(2018预测)已知抛物线y =x 2-2mx +9m -1,当-3≤x ≤3时,使y =m 成立的x 的值恰好只有一个,则m 的取值范围是_________________.447m -≤<-或415m =-3.(2018新观察四调模拟卷)已知A (-1,6)、B (4,1)抛物线y =x 2+b 与线段AB 只有唯一公共点,则b 的取值范围是_________________. -15≤b <5或214b =4.已知二次函数y =x 2+x +c (b ,c 为常数),且当﹣1<x <1时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; ∵对称轴x =﹣=﹣,∴当﹣1<x <1时,抛物线与x 轴有且只有一个公共点,则①此公共点一定是顶点,∴△=1﹣4c =0,即c =,②一个交点的横坐标小于等于﹣1,另一交点的横坐标小于1而大于﹣1, ∴1﹣1+c ≤0,1+1+c >0,解得﹣2<c ≤0. 综上所述,c 的取值范围是:c =或﹣2<c ≤0;5.已知a、b为抛物线y=(x﹣c)(x﹣c﹣d)﹣2与x轴交点的横坐标,a<b,则|a﹣c|+|c ﹣b|的值为b﹣a.解:当x=c时,y=﹣2<0,由图可知,a<c<b,则|a﹣c|+|c﹣b|=c﹣a+b﹣c=b﹣a.故答案为b﹣a.6.二次函数y=x2﹣4mx+1﹣2m,当﹣1<x<1时,抛物线与x轴有一个公共点,求m的取值范围.解:∵当﹣1<x<1时,抛物线与x轴有一个公共点,∴可得以下几种情况:①,解得m=.②,解得m>.③,解得m<﹣1.∴综上,m>,m<﹣1或m=时当﹣1<x<1时,抛物线与x轴有一个公共点.。
二次函数线段及交点问题
专题八:二次函数之线段及交点问题 求线段长度例题1 :在平面直角坐标系中,抛物线y=−12x2+52x−2与x轴交于A、B(A点在B点的左侧)与y轴交于点C。
(1)如图1,连接AC、BC,求△ABC的面积。
(2)如图2:①过点C作CR∥x轴交抛物线于点R,求点R的坐标;②点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P坐标。
(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF= −4√2a,连接KB并延长交抛物线于点Q,求PQ的长。
练习1 . 如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x 轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.x2+bx+c与x轴交于A(﹣练习2 . 如图,在平面直角坐标系中,已知抛物线y= 321,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为5.求点H到OM'的距离d的值.3求线段之间关系例题1 :已知直线y=k x+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,说明线段DE和CO的数量关系。
二次函数压轴题交点个数问题(讲义及答案)
交点个数问题(讲义)知识点睛交点个数问题是确定函数与几何图形是否存在交点及个数的问题,常见问法有交点个数情况、交点是否唯一、存在唯一位置等.处理此类问题的考虑:①交点唯一的情形考虑切点(直线与圆相切)、端点(经过线段端点)、交点(取值范围内唯一).②多交点问题常建立方程,转化为方程解个数问题.精讲精练1.如图,菱形ABCD的边长为2cm,∠BAD=60°.点P从点A出发,以3cm/s的速度,沿AC向点C作匀速运动;与此同时,点Q也从点A出发,以1cm/s的速度,沿射线AB作匀速运动,当点P运动到点C时,P,Q两点都停止运动.设点P的运动时间为t(s).(1)当点P异于A,C时,请说明PQ∥BC;(2)以点P为圆心、PQ的长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?2.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作□CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)点D在整个运动过程中,若存在唯一的位置,使得□CDEF 为矩形,请求出所有满足条件的m的值.3.在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,作线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹).(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上.①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴、y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.图14.已知二次函数y=ax2-2ax+c(a<0)的最大值为4,且抛物线过点79()24-,,点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式及顶点D的坐标;(2)求|PC-PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数22y a x a x c=-+的图象只有一个公共点,请直接写出t的取值.【参考答案】1.(1)证明略;(2)当4361332≤,,t t t =-<-=时有一个交点;当4361t -<≤时,有两个交点.2.(1)CE =3(8)5m -;(2)满足条件的m 的值为699607213,,或--.3.(1)作图略;(2)①21122y x =+,抛物线;②P 1(3,5),P 2(-3,5);③3333k -<<4.(1)223y x x =-++,D (1,4);(2)2,P (-3,0);(3)332t <≤,72t =或3t -≤。
2023年中考数学压轴题专题17 二次函数与公共点及交点综合问题【含答案】
专题17二次函数与公共点及交点综合问题【例1】.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y =x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【例2】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【例3】.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【例4】.(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF 的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.一.解答题(共20小题)1.(2022•钟楼区校级模拟)如图,已知二次函数y=x2+mx+m+的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣),P是抛物线在直线AC上方图象上一动点.(1)求二次函数的表达式;(2)求△PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个公共点,请直接写出图象M的顶点横坐标n的取值范围.2.(2022•保定一模)如图,关于x的二次函数y=x2﹣2x+t2+2t﹣5的图象记为L,点P是L 上对称轴右侧的一点,作PQ⊥y轴,与L在对称轴左侧交于点Q;点A,B的坐标分别为(1,0),(1,1),连接AB.(1)若t=1,设点P,Q的横坐标分别为m,n,求n关于m的关系式;(2)若L与线段AB有公共点,求t的取值范围;(3)当2t﹣3<x<2t﹣1时,y的最小值为﹣,直接写出t的值.3.(2022•广陵区校级二模)在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.4.(2022•金华模拟)在平面直角坐标系中,二次函数y=x2﹣2mx+6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.(1)当m=1,求图象G的最低点坐标;(2)平面内有点C(﹣2,2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.①若矩形ABCD为正方形时,求点A坐标;②图象G与矩形ABCD的边有两个公共点时,求m的取值范围.5.(2022•清镇市模拟)在平面直角坐标系中,抛物线y=ax2﹣2a2x+1(a≠0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)抛物线的对称轴为直线x=;(用含字母a的代数式表示)(2)若AB=2,求二次函数的表达式;(3)已知点P(a+4,1),Q(0,2),如果抛物线与线段PQ恰有一个公共点,求a的取值范围.6.(2022•五华区三模)已知抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4).(1)求a的值;(2)若抛物线与y轴的公共点为(0,﹣1),抛物线与x轴是否有公共点,若有,求出公共点的坐标;若没有,请说明理由;(3)当2≤x≤4时,设二次函数y=ax2﹣mx+2m﹣3的最大值为M,最小值为N,若=,求m的值.7.(2022•秦淮区二模)在平面直角坐标系中,一个二次函数的图象的顶点坐标是(2,1),与y轴的交点坐标是(0,5).(1)求该二次函数的表达式;(2)在同一平面直角坐标系中,若该二次函数的图象与一次函数y=x+n(n为常数)的图象有2个公共点,求n的取值范围.8.(2022•盐城二模)若二次函数y=ax2+bx+a+2的图象经过点A(1,0),其中a、b为常数.(1)用含有字母a的代数式表示抛物线顶点的横坐标;(2)点B(﹣,1)、C(2,1)为坐标平面内的两点,连接B、C两点.①若抛物线的顶点在线段BC上,求a的值;②若抛物线与线段BC有且只有一个公共点,求a的取值范围.9.(2022•滑县模拟)如图,已知二次函数y=x2+2x+c与x轴正半轴交于点B(另一个交点为A),与y轴负半轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)设直线AC的解析式为y=kx+b,求点A的坐标,并结合图象写出不等式x2+2x+c≥kx+b的解集;(3)已知点P(﹣3,1),Q(2,2t+1),且线段PQ与抛物线y=x2+2x+c有且只有一个公共点,直接写出t的取值范围.10.(2022春•龙凤区期中)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x 的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a,动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.11.(2022春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.12.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.13.(2022•南京一模)已知二次函数y=a(x﹣1)(x﹣1﹣a)(a为常数,且a≠0).(1)求证:该函数的图象与x轴总有两个公共点;(2)若点(0,y1),(3,y2)在函数图象上,比较y1与y2的大小;(3)当0<x<3时,y<2,直接写出a的取值范围.14.(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.15.(2022•花溪区模拟)已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣2,1),B(2,﹣3)两点(1)求分别以A(﹣2,1),B(2,﹣3)两点为顶点的二次函数表达式;(2)求b的值,判断此二次函数图象与x轴的交点情况,并说明理由;(3)设(m,0)是该函数图象与x轴的一个公共点.当﹣3<m<﹣1时,结合函数图象,写出a的取值范围.16.(2022•无锡模拟)在平面直角坐标系中,A,B两点的坐标分别是(0,﹣3),(0,4),点P(m,0)(m≠0)是x轴上一个动点,过点A作直线AC⊥BP于点D,直线AC与x轴交于点C,过点P作PE∥y轴,交AC于点E.(1)当点P在x轴的正半轴上运动时,是否存在点P,使△OCD与△OBD相似?若存在,请求出m的值;若不存在,请说明理由.(2)小明通过研究发现:当点P在x轴上运动时,点E(x,y)也相应的在二次函数y=ax2+bx+c (a≠0)的图象上运动,为了确定函数解析式小明选取了一些点P的特殊的位置,计算了点E(x,y)的坐标,列表如下:xy请填写表中空格,并根据表中数据求出二次函数的函数解析式;(3)把(2)中所求的抛物线向左平移n个单位长度,把直线y=﹣2x﹣4向下平移n个单位长度,如果平移后的抛物线对称轴右边部分与平移后的直线有公共点,那么请直接写出n 的取值范围.17.(2022•朝阳区校级一模)在平面直角坐标系中,二次函数y=﹣x2+2mx﹣6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.平面内有点C(﹣2,﹣2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.(1)当m=﹣2,求图象G的最高点坐标;(2)若图象G过点(3,﹣9),求出m的取值范围;(3)若矩形ABCD为正方形时,求点A坐标;(4)图象G与矩形ABCD的边有两个公共点时,直接写出m的取值范围.18.(2022•如东县一模)定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=﹣x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.19.(2022•南京模拟)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离”,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,在△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0,直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤2,则b的取值范围是.20.(2022•南京模拟)若一个函数图象上存在横纵坐标互为相反数的点,我们将其称之为“反值点”,例如直线y=x+2的图象上的(﹣1,1)即为反值点.(1)判断反比例函数的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(2)判断关于x的函数(a是常数)的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(3)将二次函数y=x2﹣2x﹣3的图象向上平移m(m为常数,且m>0)个单位后,若在其图象上存在两个反值点,求m的取值范围.【例1】(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y =x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【分析】(1)由二次函数的对称轴直接可求b的值;(2)①求出M(2﹣,0),N(2+,0),再求出MN=2,MN的中点坐标为(2,0),利用直角三角形斜边的中线等于斜边的一半,列出方程即可求解;②求出抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),再求出y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0)当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),结合图像可得﹣1≤x<2﹣或0≤x≤1或3≤x<2+时,﹣4≤y<0;(3)通过画函数的图象,分类讨论求解即可.【解析】(1)∵已知二次函数y=x2+bx+m图象的对称轴为直线x=2,∴b=﹣4;(2)如图1:①令x2+bx+m=0,解得x=2﹣或x=2+,∵M在N的左侧,∴M(2﹣,0),N(2+,0),∴MN=2,MN的中点坐标为(2,0),∵△MNP为直角三角形,∴=,解得m=0(舍)或m=﹣1;②∵m=﹣1,∴y=x2﹣4x﹣1(x≥0),令x2﹣4x﹣1=﹣4,解得x=1或x=3,∴抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),∵y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0),当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,∴抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),∴﹣1≤x<2﹣或0≤x≤1或3≤x<2+时,﹣4≤y<0;(3)y=x2﹣4x+m关于x轴对称的抛物线解析式为y=﹣x2+4x﹣m(x<0),如图2,当y=﹣x2+4x﹣m(x<0)经过点A时,﹣1﹣4﹣m=﹣1,解得m=﹣4,∴y=x2﹣4x﹣4(x≥0),当x=5时,y=1,∴y=x2﹣4x﹣4(x≥0)与线段AB有一个交点,∴m=﹣4时,当线段AB与图象C恰有两个公共点;如图3,当y=x2﹣4x+m(x≥0)经过点(0,﹣1)时,m=﹣1,此时图象C与线段AB有三个公共点,∴﹣4≤m<﹣1时,线段AB与图象C恰有两个公共点;如图4,当y=﹣x2+4x﹣m(x<0)经过点(0,﹣1)时,m=1,此时图象C与线段AB有两个公共点,当y=x2﹣4x+m(x≥0)的顶点在线段AB上时,m﹣4=﹣1,解得m=3,此时图象C与线段AB有一个公共点,∴1≤m<3时,线段AB与图象C恰有两个公共点;综上所述:﹣4≤m<﹣1或1≤m<3时,线段AB与图象C恰有两个公共点.【例2】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【分析】(1)求出A、B、C三点坐标,再用待定系数法求直线AC的解析式即可;(2)分四种情况讨论:①当m>1时,p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,p﹣q=m2﹣2m﹣3+4=2,解得m=+1(舍)或m=﹣+1;(3)分两种情况讨论:①当抛物线向左平移h个单位,则向上平移h个单位,平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,求出直线BA的解析式为y=x﹣5,联立方程组,由Δ=0时,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②当抛物线向右平移k个单位,则向下平移k 个单位,平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点;当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,由此可求解.【解析】(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点A(1,﹣4),令x=0,则y=﹣3,∴C(0,﹣3),∵CB∥x轴,∴B(2,﹣3),设直线AC解析式为y=kx+b,,解得,∴y=﹣x﹣3;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=1,①当m>1时,x=m时,q=m2﹣2m﹣3,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,x=m时,p=m2﹣2m﹣3,x=m+2时,q=(m+2)2﹣2(m+2)﹣3,∴p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,x=1时,q=﹣4,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,x=1时,q=﹣4,x=m时,p=m2﹣2m﹣3,∴p﹣q=m2﹣2m﹣3+4=2,解得m=1+(舍)或m=1﹣,综上所述:m的值﹣1或1﹣;(3)设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,①如图1,当抛物线向左平移h个单位,则向上平移h个单位,∴平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,设直线BA的解析式为y=k'x+b',∴,解得,∴y=x﹣5,联立方程组,整理得x2﹣(3﹣2h)x+h2﹣h+2=0,当Δ=0时,(3﹣2h)2﹣4(h2﹣h+2)=0,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②如图2,当抛物线向右平移k个单位,则向下平移k个单位,∴平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,(2﹣1﹣k)2﹣4﹣k=﹣3,解得k=0(舍)或k=3,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点,当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,∴综上所述:1<n≤4或n=.【例3】(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【分析】(1)二次函数表达式可设为:y=ax2+bx+3,将A(1,0)、B(4,0)代入y=ax2+bx+3,解方程可得a和b的值,再利用顶点坐标公式可得点D的坐标;(2)根据t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.分两种情形,当△EMN∽△OBC时,得,解得t=;当△EMN∽△OCB时,得,解得t=;(3)首先利用中点坐标公式可得点G的坐标,利用待定系数法求出直线AG和BG的解析式,再根据直线l:y=kx+m与抛物线只有一个公共点,联立两函数解析式,可得Δ=0,再求出点H和k的横坐标,从而解决问题.【解析】(1)设二次函数表达式为:y=ax2+bx+3,将A(1,0)、B(4,0)代入y=ax2+bx+3得:,解得,∴抛物线的函数表达式为:,又∵=,==,∴顶点为D;(2)依题意,t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.①当△EMN∽△OBC时,∴,解得t=;②当△EMN∽△OCB时,∴,解得t=;综上所述,当或时,以M、E、N为顶点的三角形与△BOC相似;(3)∵点关于点D的对称点为点G,∴,∵直线l:y=kx+m与抛物线只有一个公共点,∴只有一个实数解,∴Δ=0,即:,解得:,利用待定系数法可得直线GA的解析式为:,直线GB的解析式为:,联立,结合已知,解得:x H=,同理可得:x K=,则:GH==,GK==×,∴GH+GK=+×=,∴GH+GK的值为.【例4】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF 的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.【分析】(1)运用待定系数法即可求得抛物线解析式和直线AD的解析式;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,根据三角形面积关系可得=,由EM∥FN,可得△BFN∽△BEM,得出===,可求得F(2+t,t2﹣t﹣2),代入直线AD的解析式即可求得点E的坐标;(3)根据题意可得:点C′(0,3),G′(2,4),向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,利用待定系数法可得:直线BC的解析式为y=x﹣3,直线C′G′的解析式为y=x+3,由四边形C′G′QP是平行四边形,分类讨论即可.【解析】(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);(3)∵y=x2﹣x﹣3=(x﹣2)2﹣4,∴顶点坐标为G(2,﹣4),当x=0时,y=3,即点C(0,﹣3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,∴向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,设直线BC的解析式为y=k′x+d′(k′≠0),把点B(6,0),C(0,﹣3)代入得:,解得:,∴直线BC的解析式为y=x﹣3,同理直线C′G′的解析式为y=x+3,∴BC∥C′G′,设点P的坐标为(s,s﹣3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP是平行四边形,∴点Q(s+2,s﹣2),当点P,Q均在向上翻折部分平移后的图象上时,则,解得:(不符合题意,舍去),当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,则,解得:或(不合题意,舍去),当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,则,解得:或(不合题意,舍去),综上所述,点P的坐标为(1+,)或(1﹣,).一.解答题(共20小题)1.(2022•钟楼区校级模拟)如图,已知二次函数y=x2+mx+m+的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣),P是抛物线在直线AC上方图象上一动点.(1)求二次函数的表达式;(2)求△PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个公共点,请直接写出图象M的顶点横坐标n的取值范围.【分析】(1)利用待定系数法即可求得答案;(2)令y=0,可求得:A(﹣5,0),B(﹣1,0),再运用待定系数法求得直线AC的解析式为y=﹣x﹣,如图1,设P(t,﹣t2﹣3t﹣),过点P作PH∥y轴交直线AC于点H,则PH=﹣t2﹣t,利用S△P AC=S△P AH+S△PCH=﹣(t+)2+,即可运用二次函数求最值的方法求得答案;(3)运用翻折变换的性质可得图象G的函数解析式为:y=(x+3)2﹣2,顶点坐标为(﹣3,﹣2),进而根据平移规律可得:图象M的函数解析式为:y=(x﹣n)2﹣n﹣,顶点坐标为(n,﹣n﹣),当图象M经过点C(0,﹣)时,可求得:n=﹣1或n=2,当图象M的端点B在PC上时,可求得:n=﹣或n=(舍去),就看得出:图象M的顶点横坐标n的取值范围为:﹣≤n≤﹣1或n=2.【解析】(1)∵抛物线y=﹣x2+mx+m+与y轴交于点C(0,﹣),∴m+=﹣,解得:m=﹣3,∴该抛物线的解析式为:y=﹣x2﹣3x﹣;(2)在y=﹣x2﹣3x﹣中,令y=0,得:﹣x2﹣3x﹣=0,解得:x1=﹣5,x2=﹣1,∴A(﹣5,0),B(﹣1,0),设直线AC的解析式为y=kx+b,∵A(﹣5,0),C(0,﹣),∴,解得:,∴直线AC的解析式为y=﹣x﹣,如图1,设P(t,﹣t2﹣3t﹣),过点P作PH∥y轴交直线AC于点H,则H(t,﹣t﹣),∴PH=﹣t2﹣3t﹣﹣(﹣t﹣)=﹣t2﹣t,=S△P AH+S△PCH∴S△P AC=•PH•(x P﹣x A)+•PH•(x C﹣x P)=•PH•(x C﹣x A)=×(﹣t2﹣t)×[0﹣(﹣5)]=t2﹣t=﹣(t+)2+,取得最大值,∴当t=﹣时,S△P AC此时,点P的坐标为(﹣,);(3)如图2,抛物线y=﹣x2﹣3x﹣在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G,∵y=﹣x2﹣3x﹣=(x+3)2+2,顶点为(﹣3,2),∴图象G的函数解析式为:y=(x+3)2﹣2,顶点坐标为(﹣3,﹣2),∵图象G沿直线AC平移,得到新的图象M,顶点运动的路径为直线y=﹣x﹣,∴图象M的顶点坐标为(n,﹣n﹣),∴图象M的函数解析式为:y=(x﹣n)2﹣n﹣,当图象M经过点C(0,﹣)时,则:﹣=(0﹣n)2﹣n﹣,解得:n=﹣1或n=2,当图象M的端点B在PC上时,∵线段PC的解析式为:y=﹣x﹣(﹣≤x≤0),点B(﹣1,0)运动的路径为直线y =﹣x﹣,∴联立可得:,解得:,将代入y=(x﹣n)2﹣n﹣,可得:(﹣﹣n)2﹣n﹣=,解得:n=﹣或n=(舍去),∴图象M的顶点横坐标n的取值范围为:﹣≤n≤﹣1或n=2.2.(2022•保定一模)如图,关于x的二次函数y=x2﹣2x+t2+2t﹣5的图象记为L,点P是L 上对称轴右侧的一点,作PQ⊥y轴,与L在对称轴左侧交于点Q;点A,B的坐标分别为(1,0),(1,1),连接AB.(1)若t=1,设点P,Q的横坐标分别为m,n,求n关于m的关系式;(2)若L与线段AB有公共点,求t的取值范围;(3)当2t﹣3<x<2t﹣1时,y的最小值为﹣,直接写出t的值.【分析】(1)当t=1时,抛物线为y=x2﹣2x﹣2,可求得它的对称轴为直线x=1,由点P 与点Q关于直线x=1对称得m+n=2,即可求得n关于m的关系式;(2)将y=x2﹣2x+t2+2t﹣5配成顶点式y=(x﹣1)2+t2+2t﹣6,则抛物线的对称轴为直线x=1,顶点坐标为(1,t2+2t﹣6),再说明线段AB在直线x=1上,由L与线段AB有公共点可列不等式组得0≤t2+2t﹣6≤1,解不等式组求出它的解集即可;(3)分三种情况,一是直线x=2t﹣1在抛物线的对称轴的左侧,在2t﹣3<x<2t﹣1范围内图象不存在最低点,因此不存在y的最小值;二是直线x=1在直线x=2t﹣3与直线x=2t﹣1之间时,抛物线的顶点为最低点,可列方程t2+2t﹣6=﹣,解方程求出符合题意的t值;三是直线x=2t﹣3在抛物线的对称轴的右侧,在2t﹣3<x<2t﹣1范围内图象不存在最低点,因此不存在y的最小值.【解析】(1)如图1,当t=1时,L为抛物线y=x2﹣2x﹣2,∵y=x2﹣2x﹣2=(x﹣1)2﹣3,∴该抛物线的对称轴为直线x=1,∵点P、Q分别是对称轴右侧、左侧L上的点,且PQ⊥y轴,∴m+n=2,∴n=﹣m+2(m>1).(2)如图2,L为抛物线y=x2﹣2x+t2+2t﹣5=(x﹣1)2+t2+2t﹣6,∴L的对称轴为直线x=1,顶点坐标为(1,t2+2t﹣6),∵A(1,0),B(1,1),∴线段AB在直线x=1上,∵L与线段AB有公共点,∴0≤t2+2t﹣6≤1,解得﹣1﹣2≤t≤﹣1﹣或﹣1+≤t≤﹣1+2,∴t的取值范围是﹣1﹣2≤t≤﹣1﹣或﹣1+≤t≤﹣1+2.(3)当2t﹣1<1,即t<1时,如图3,∵在2t﹣3<x<2t﹣1范围内图象不存在最低点,∴此时不存在y的最小值;当2t﹣1≥1且2t﹣3≤1,即1≤t≤2时,如图4,∵L的顶点为最低点,∴t2+2t﹣6=﹣,解得t1=,t2=,∵<1,∴t2=不符合题意,舍去;当2t﹣3>1,即t>2时,如图5,∵在2t﹣3<x<2t﹣1范围内图象不存在最低点,∴此时不存在y的最小值,综上所述,t的值为.3.(2022•广陵区校级二模)在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.【分析】(1)联立两函数解析式求出交点坐标,然后根据一次函数的增减性解答;(2)根据一次函数的增减性判断出x≥2,再根据二次函数解析式求出对称轴,然后根据二次函数的增减性可得x<4,从而得解;(3)①若函数y=x2﹣8x+c与y0=﹣x+6只有一个交点,联立两函数解析式整理得到关于x的一元二次方程,利用根的判别式Δ=0求出c的值,然后求出x的值,若在x的取值范围内,则符合;②若函数y=x2﹣8x+c与y0=﹣x+6有两个交点,先利用根的判别式求出c 的取值范围,先求出x=2与x=4时的函数值,然后利用一个解在x的范围内,另一个解不在x的范围内列出不等式组求解即可.【解析】(1)∵,∴,∴函数y1和y2图象交点坐标(2,4);y0关于x的函数关系式为y0=;(2)∵对于函数y0,y0随x的增大而减小,∴y0=﹣x+6(x≥2),又∵函数y=x2﹣8x+c的对称轴为直线x=4,且a=1>0,∴当x<4时,y随x的增大而减小,∴2≤x<4;(3)①若函数y=x2﹣8x+c与y0=﹣x+6只有一个交点,且交点在2<x<4范围内,则x2﹣8x+c=﹣x+6,即x2﹣7x+(c﹣6)=0,∴Δ=(﹣7)2﹣4(c﹣6)=73﹣4c=0,解得c=,此时x1=x2=,符合2<x<4,∴c=;②若函数y=x2﹣8x+c与y0=﹣x+6有两个交点,其中一个在2<x<4范围内,另一个在2<x<4范围外,∴Δ=73﹣4c>0,解得c<,∵对于函数y0,当x=2时,y0=4;当x=4时y0=2,又∵当2<x<4时,y随x的增大而减小,若y=x2﹣8x+c与y0=﹣x+6在2<x<4内有一个交点,则当x=2时y>y0;当x=4时y<y0,即当x=2时,y≥4;当x=4时,y≤2,∴,解得16<c<18,又c<,∴16<c<18,综上所述,c的取值范围是:c=或16<c<18.4.(2022•金华模拟)在平面直角坐标系中,二次函数y=x2﹣2mx+6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.(1)当m=1,求图象G的最低点坐标;(2)平面内有点C(﹣2,2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.①若矩形ABCD为正方形时,求点A坐标;②图象G与矩形ABCD的边有两个公共点时,求m的取值范围.【分析】(1)由m=1代入抛物线解析式,将二次函数解析式化为顶点式求解;(2)①将x=2m代入抛物线解析式求出点A坐标,由正方形的性质即可求解;②分类讨论,数形结合解题,根据A点在图象G上,再在图象G上找一个点可以满足条件,然后根据m的取值范围进行分类讨论进行解题即可.【解析】(1)m=1时,y=x2﹣2x+6=(x﹣1)2+5,∴顶点为(1,5),∵x≤2,∴图象G的最低点坐标为(1,5);(2)①当x=2m时,y=6m,∴A(2m,6m),∵C(﹣2,2),∵正方形ABCD中,AB与x轴平行,BC与y轴平行,∴B(﹣2,6m),同理得D(2m,2),∵AD=CD,∴|6m﹣2|=|2m+2|,∴2m+2=﹣6m+2或2m+2=﹣2+6m,解得m=0或m=1,∴点A的坐标为(0,0)或(2,6);②∵点A在图象G上,∴图象G与矩形ABCD已经有一个公共点A,∵图象G与矩形ABCD的边有两个公共点,∴只需图象G与矩形ABCD的边再由一个公共点即可;。
二次函数综合问题之抛物线与直线交点个数问题
二次函数综合问题之抛物线与直线交点个数1.(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线得表达式及对称轴;(2)设点B关于原点得对称点为C,点D就是抛物线对称轴上一动点,记抛物线在A,B之间得部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t得取值范围.考点: 待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数得最值.专题: 计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n得值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数得最小值,确定出D纵坐标得最小值,求出直线BC解析式,令x=1求出y得值,即可确定出t得范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2得最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t得范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数得最值,熟练掌握待定系数法就是解本题得关键.2.(2011•石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4).(1)求抛物线顶点D得坐标;(2)设直线CD交x轴于点E,过点B作x轴得垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数得性质;待定系数法求二次函数解析式.专题: 探究型.分析:(1)先设出过A(﹣2,0)、B(4,0)两点得抛物线得解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴得交点坐标即可求出a得值,进而得出此抛物线得解析式;(2)先用待定系数法求出直线CD解析式,再根据抛物线平移得法则得到(1)中抛物线向下平移m各单位所得抛物线得解析式,再将此解析式与直线CD得解析式联立,根据两函数图象有交点即可求出m得取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4),∵C点坐标为(0,4),∴a=﹣,(1分)∴解析式为y=﹣x2+x+4,顶点D坐标为(1,);(2分)(2)直线CD解析式为y=kx+b.则,,∴,∴直线CD解析式为y=x+4,(3分)∴E(﹣8,0),F(4,6),若抛物线向下移m个单位,其解析式y=﹣x2+x+4﹣m(m>0),由消去y,得﹣x2+x﹣m=0,∵△=﹣2m≥0,∴0<m≤,∴向下最多可平移个单位.(5分)若抛物线向上移m个单位,其解析式y=﹣x2+x+4+m(m>0),方法一:当x=﹣8时,y=﹣36+m,当x=4时,y=m,要使抛物线与EF有公共点,则﹣36+m≤0或m≤6,∴0<m≤36;(7分)方法二:当平移后得抛物线过点E(﹣8,0)时,解得m=36,当平移后得抛物线过点F(4,6)时,m=6,由题意知:抛物线向上最多可以平移36个单位长度,(7分)综上,要使抛物线与EF有公共点,向上最多可平移36个单位,向下最多可平移个单位.点评:本题考查得就是二次函数得图象与几何变换,涉及到用待定系数法求一次函数与二次函数得解析式、二次函数与一次函数得交点问题,有一定得难度.3.(2013•丰台区一模)二次函数y=x2+bx+c得图象如图所示,其顶点坐标为M(1,﹣4).(1)求二次函数得解析式;(2)将二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象,请您结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n得取值范围.考点:待定系数法求二次函数解析式;二次函数图象与几何变换.分析:(1)确定二次函数得顶点式,即可得出二次函数得解析式.(2)求出两个边界点,继而可得出n得取值范围.解答:解:(1)因为M(1,﹣4)就是二次函数y=(x+m)2+k得顶点坐标,所以y=(x﹣1)2﹣4=x2﹣2x﹣3,(2)令x2﹣2x﹣3=0,解之得:x1=﹣1,x2=3,故A,B两点得坐标分别为A(﹣1,0),B(3,0).如图,当直线y=x+n(n<1),经过A点时,可得n=1,当直线y=x+n经过B点时,可得n=﹣3,∴n得取值范围为﹣3<n<1,翻折后得二次函数解析式为二次函数y=﹣x2+2x+3当直线y=x+n与二次函数y=﹣x2+2x+3得图象只有一个交点时,x+n=﹣x2+2x+3,整理得:x2﹣x+n﹣3=0,△=b2﹣4ac=1﹣4(n﹣3)=13﹣4n=0,解得:n=,∴n得取值范围为:n>,由图可知,符合题意得n得取值范围为:n>或﹣3<n<1.点评:本题考查了待定系数法求二次函数解析式得知识,难点在第二问,关键就是求出边界点时n得值.4.(2009•北京)已知关于x得一元二次方程2x2+4x+k﹣1=0有实数根,k为正整数.(1)求k得值;(2)当此方程有两个非零得整数根时,将关于x得二次函数y=2x2+4x+k﹣1得图象向下平移8个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=x+b(b<k)与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.专题:综合题.分析:(1)综合根得判别式及k得要求求出k得取值;(2)对k得取值进行一一验证,求出符合要求得k值,再结合抛物线平移得规律写出其平移后得解析式;(3)求出新抛物线与x轴得交点坐标,再分别求出直线y=x+b经过点A、B时得b得取值,进而求出其取值范围.本题第二问就是难点,主要就是不会借助计算淘汰不合题意得k值.解答:解:(1)由题意得,△=16﹣8(k﹣1)≥0.∴k≤3.∵k为正整数,∴k=1,2,3;(2)设方程2x2+4x+k﹣1=0得两根为x1,x2,则x1+x2=﹣2,x1•x2=.当k=1时,方程2x2+4x+k﹣1=0有一个根为零;当k=2时,x1•x2=,方程2x2+4x+k﹣1=0没有两个不同得非零整数根;当k=3时,方程2x2+4x+k﹣1=0有两个相同得非零实数根﹣1.综上所述,k=1与k=2不合题意,舍去,k=3符合题意.当k=3时,二次函数为y=2x2+4x+2,把它得图象向下平移8个单位得到得图象得解析式为y=2x2+4x﹣6;(3)设二次函数y=2x2+4x﹣6得图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后得图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意得b(b<3)得取值范围为<b<.(3)依图象得,要图象y=x+b(b小于k)与二次函数图象有两个公共点时,显然有两段.而因式分解得y=2x2+4x﹣6=2(x﹣1)(x+3),第一段,当y=x+b过(1,0)时,有一个交点,此时b=﹣.当y=x+b过(﹣3,0)时,有三个交点,此时b=.而在此中间即为两个交点,此时﹣<b<.第二段,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折后,开口向下得部分得函数解析式为y=﹣2(x﹣1)(x+3).显然,当y=x+b与y=﹣2(x﹣1)(x+3)(﹣3<x<1)相切时,y=x+b与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点.因为b<3,而y=x+b(b小于k,k=3),所以当b=3时,将y=x+3代入二次函数y=﹣2(x﹣1)(x+3)整理得, 4x2+9x﹣6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合得二次函数图象相交只有两个公共点.这种情况故舍去.综上,﹣<b<.点评:考查知识点:一元二次方程根得判别式、二次函数及函数图象得平移与翻折,最后还考到了与一次函数得结合等问题.不错得题目,难度不大,综合性强,考查面广,似乎就是一个趋势或热点.5.(2012•东城区二模)已知关于x得方程(1﹣m)x2+(4﹣m)x+3=0.(1)若方程有两个不相等得实数根,求m得取值范围;(2)若正整数m满足8﹣2m>2,设二次函数y=(1﹣m)x2+(4﹣m)x+3得图象与x轴交于A、B两点,将此图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=k x+3与此图象恰好有三个公共点时,求出k得值(只需要求出两个满足题意得k值即可).考点:二次函数综合题.分析:(1)根据方程有两个不相等得实数根,由一元二次方程得定义与根得判别式可求m得取值范围;(2)先求出正整数m得值,从而确定二次函数得解析式,得到解析式与x轴交点得坐标,由图象可知符合题意得直线y=kx+3经过点A、B.从而求出k得值.解答:解:(1)△=(4﹣m)2﹣12(1﹣m)=(m+2)2,由题意得,(m+2)2>0且1﹣m≠0.故符合题意得m得取值范围就是m≠﹣2且m≠1得一切实数.(2)∵正整数m满足8﹣2m>2,∴m可取得值为1与2.又∵二次函数y=(1﹣m)x2+(4﹣m)x+3,∴m=2.…(4分)∴二次函数为y=﹣x2+2x+3.∴A点、B点得坐标分别为(﹣1,0)、(3,0).依题意翻折后得图象如图所示.由图象可知符合题意得直线y=kx+3经过点A、B.可求出此时k得值分别为3或﹣1.…(7分)注:若学生利用直线与抛物线相切求出k=2也就是符合题意得答案.点评:本题考查了二次函数综合题.(1)考查了一元二次方程根得情况与判别式△得关系:△>0⇔方程有两个不相等得实数根.(2)得到符合题意得直线y=kx+3经过点A、B就是解题得关键.6.在平面直角坐标系中,抛物线y=﹣x2+mx+m2﹣3m+2与x轴得交点分别为原点O与点A,点B(4,n)在这条抛物线上.(1)求B点得坐标;(2)将此抛物线得图象向上平移个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=x+b与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.专题:压轴题.分析:(1)把原点坐标代入抛物线,解关于m得一元二次方程得到m得值,再根据二次项系数不等于0确定出函数解析式,再把点B坐标代入函数解析式求出n得值,即可得解;(2)根据向上平移纵坐标加解答即可;(3)把直线解析式与抛物线解析式联立,消掉y得到关于x得一元二次方程,根据△=0求出b得值,然后令y=0求出抛物线与x轴得交点坐标,再求出直线经过抛物线与x轴左边交点得b值,然后根据图形写出b得取值范围即可.解答:解:(1)∵抛物线经过原点O,∴m2﹣3m+2=0,解得m1=1,m2=2,当m=1时,﹣=﹣=0,∴m=2,∴抛物线得解析式为y=﹣x2+3x,∵点B(4,n)在这条抛物线上,∴n=﹣×42+3×4=﹣8+12=4,∴点B(4,4);(2)∵抛物线得图象向上平移个单位,∴平移后得图象得解析式y=﹣x2+3x+;(3)联立,消掉y得,﹣x2+3x+=x+b,整理得,x2﹣5x+2b﹣7=0,△=(﹣5)2﹣4×1×(2b﹣7)=0,解得b=,令y=0,则﹣x2+3x+=0,整理得,x2﹣6x﹣7=0,解得x1=﹣1,x2=7,∴抛物线与x轴左边得交点为(﹣1,0),当直线y=x+b经过点(﹣1,0)时,×(﹣1)+b=0,解得b=,∴当直线y=x+b与此图象有两个公共点时,b得取值范围为b>或b<.点评:本题就是二次函数综合题,主要利用了解一元二次方程,二次函数图象上点得坐标特征,二次函数图象与几何变换,难点在于(3)求出直线与抛物线有三个交点时得b值,作出图形更形象直观.7.关于x得二次函数y=x2+2x+k﹣1得图象与x轴有交点,k为正整数.(1)求k得值;(2)当关于x得二次函数y=x2+2x+k﹣1与x轴得交点得横坐标均就是负整数时,将关于x得二次函数y=x2+2x+k﹣1得图象向下平移4个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=(b<3)与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.分析:(1)综合根得判别式及k得要求,求出k得取值;(2)对k得取值进行一一验证,求出符合要求得k值,再结合抛物线平移得规律写出其平移后得解析式;(3)求出新抛物线与x轴得交点坐标,再分别求出直线y=x+b经过点A、B时得b得取值,进而求出其取值范围. 解答:解:(1)由题意得,△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0得两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1.当k=1时,图象y=x2+2x+k﹣1与x轴有一个交点为(0,0),不合题意;当k=2时,图象y=x2+2x+k﹣1与x轴有一个交点为(﹣1,0),符合题意;综上所述,k=2符合题意.当k=2时,二次函数为y=x2+2x+1,把它得图象向下平移4个单位得到得图象得解析式为:y=x2+2x﹣3;(3)设二次函数y=x2+2x﹣3得图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后得图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意得b(b<3)得取值范围为:﹣<b<.点评:此题主要考查了一元二次方程根得判别式、二次函数及函数图象得平移与翻折,最后还考到了与一次函数得结合等问题.不错得题目,难度不大,综合性强.8.(2014•东城区一模)已知:关于x得一元二次方程mx2﹣(4m+1)x+3m+3=0(m>1).(1)求证:方程有两个不相等得实数根;(2)设方程得两个实数根分别为x1,x2(其中x1>x2),若y就是关于m得函数,且y=x1﹣3x2,求这个函数得解析式; (3)将(2)中所得得函数得图象在直线m=2得左侧部分沿直线m=2翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当关于m得函数y=2m+b得图象与此图象有两个公共点时,b得取值范围.考点: 一次函数综合题.专题:压轴题.分析:(1)列式表示出根得判别式△,再根据△>0,方程有两个不相等得实数根证明;(2)利用求根公式法求出x1、x2,然后代入关系式整理即可得解;(3)作出函数图象,然后求出m=2时得函数值与以及m=1时得翻折图象得对应点得坐标,再代入直线解析式求出b值,然后结合图形写出b得取值范围即可.解答:(1)证明:△=(4m+1)2﹣4m(3m+3)=4m2﹣4m+1=(2m﹣1)2,∵m>1,∴(2m﹣1)2>0,∴方程有两个不等实根;(2)解:x=,∴两根分别为=3,=1+,∵m>1,∴0<<1,∴1<1+<2,∵x1>x2,∴x1=3,x2=1+,∴y=x1﹣3x2,=3﹣3(1+),=﹣,所以,这个函数解析式为y=﹣(m>1);(3)解:作出函数y=﹣(m>1)得图象,并将图象在直线m=2左侧部分沿此直线翻折,所得新图形如图所示,m=2时,y=﹣,m=1时,y=﹣=﹣3,∴函数图象直线m=2左侧部分翻折后得两端点坐标为(3,﹣3),(2,﹣),当m=3时,2×3+b=﹣3,解得b=﹣9,当m=2时,2×2+b=﹣,解得b=﹣,所以,此图象有两个公共点时,b得取值范围﹣9<b<﹣.点评:本题就是一次函数综合题型,主要利用了根得判别式,求根公式法解一元二次方程,一次函数与反比例函数交点问题,难点在于(3)确定出翻折部分得两个端点得坐标以及有两个交点时得b得取值范围,作出图形更形象直观.9.(2013•门头沟区一模)已知关于x得一元二次方程.(1)求证:无论m取任何实数,方程都有两个实数根;(2)当m<3时,关于x得二次函数得图象与x轴交于A、B两点(点A在点B得左侧),与y轴交于点C,且2AB=3OC,求m得值;(3)在(2)得条件下,过点C作直线l∥x轴,将二次函数图象在y轴左侧得部分沿直线l翻折,二次函数图象得其余部分保持不变,得到一个新得图象,记为G.请您结合图象回答:当直线与图象G只有一个公共点时,b得取值范围.考点: 二次函数综合题.分析:(1)运用根得判别式就可以求出△得值就可以得出结论;(2)先当x=0或y=0就是分别表示出抛物线与x轴与y轴得交点坐标,表示出AB、OC得值,由2AB=3OC建立方程即可求出m得值;(3)把(2)m得值代入抛物线得解析式就可以求出抛物线得解析式与C点得坐标,当直线经过点C时就可以求出b得值,由直线与抛物线只有一个公共点建立方程,根据△=0就可以求出b得值,再根据图象就可以得出结论.解答:解:(1)根据题意,得△=(m﹣2)2﹣4××(2m﹣6)=(m﹣4)2,∵无论m为任何数时,都有(m﹣4)2≥0,即△≥0.∴无论m取任何实数,方程都有两个实数根;(2)由题意,得当y=0时,则,解得:x1=6﹣2m,x2=﹣2,∵m<3,点A在点B得左侧,∴A(﹣2,0),B(﹣2m+6,0),∴OA=2,OB=﹣2m+6.当x=0时,y=2m﹣6,∴C(0,2m﹣6),∴OC=﹣(2m﹣6)=﹣2m+6.∵2AB=3OC,∴2(2﹣2m+6)=3(﹣2m+6),解得:m=1;(3)如图,当m=1时,抛物线得解析式为y=x2﹣x﹣4,点C得坐标为(0,﹣4).当直线y=x+b经过点C时,可得b=﹣4,当直线y=x+b(b<﹣4)与函数y=x2﹣x﹣4(x>0)得图象只有一个公共点时,得x+b═x2﹣x﹣4.整理得:3x2﹣8x﹣6b﹣24=0,∴△=(﹣8)2﹣4×3×(﹣6b﹣24)=0,解得:b=﹣.结合图象可知,符合题意得b得取值范围为b>﹣4或b<﹣.点评:本题就是一道一次函数与二次函数得综合试题,考查了一元二次方程根得判别式得运用,二次函数与坐标轴得交点坐标得运用,轴对称得性质得运用,解答时根据函数之间得关系建立方程灵活运用根得判别式就是解答本题得关键.。
2020年中考数学压轴题突破专题5 二次函数与线段和角的数量关系问题
2020年中考数学大题狂练之压轴大题突破培优练专题05 二次函数与线段和角的数量关系问题【真题再现】1.(2019年宿迁28题)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2.(2019年盐城27题)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.3.(2018年常州28题)如图,二次函数y bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.4.(2019年苏州28题)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.5.(2018年无锡28题)已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(,0),求这条抛物线的函数表达式.6.(2017年苏州28题)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【专项突破】【题组一】1.(2020•无锡模拟)如图,已知二次函数y=ax2﹣2ax+c(a<0)的图象交x轴于A、B两点,交y轴于点C.过点A的直线y=kx+2k(k≠0)与这个二次函数的图象的另一个交点为F,与该图象的对称轴交于点E,与y轴交于点D,且DE=EF.(1)求点A的坐标;(2)若△BDF的面积为12,求这个二次函数的关系式;(3)设二次函数的顶点为P,连接PF,PC,若∠CPF=2∠DAB,求此时二次函数的表达式.2.(2020•镇江模拟)如图,在平面直角坐标系中,一次函数y x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.3.(2020•滨湖区模拟)已知二次函数y=ax2+4amx(m>0)的对称轴与x轴交于点B,与直线l:y交于点C,点A是该二次函数图象与直线l在第二象限的交点,点D是抛物线的顶点,已知AC:CO=1:2,∠DOB=45°,△ACD的面积为2.(1)求抛物线的函数关系式;(2)若点P为抛物线对称轴上的一个点,且∠POC=45°,求点P坐标.4.(2020•营口模拟)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y 轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【题组二】5.(2019•梁溪区校级二模)已知,在平面直角坐标系中,直线l与y轴相交于点A(0,m),其中m<0,与x轴相交于点B(4,0).抛物线y=ax2+bx(a≠0)经过点B,它与直线l相交于另一点C.(1)若AC:BC=1:3,求a的值(用含m的代数式表示);(2)在(1)的条件下,若抛物线的顶点为F,其对称轴与直线l和x轴分别相交于点D、E,当以F、C、D为顶点的三角形与△BED相似时,求抛物线的函数表达式.6.(2019•邗江区校级二模)如图,抛物线y=ax2+3x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=4.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC 于点F,当S△COF:S△CDF=4:3时,求点D的坐标.(3)如图2,点E的坐标为(0,﹣2),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.7.(2019•靖江市校级一模)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B 两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点.①求m的值;②此时对于该抛物线上任意一点P(x0,y0)总有n4my1250成立,求实数n的最小值.8.(2019•姑苏区校级二模)已知抛物线经过点A(﹣1,0)、点B(3,0)、点C(0,3),点D为抛物线在第一象限内图象上一动点,连接AD,交y轴于点E,将点C关于线段AD作轴对称,对称点为C',连接AC'.(1)求抛物线的解析式;(2)如图1如果点C'落在x轴,求点E坐标;(3)如图2,连接AC、BC,BC与AD交于点F,拖动点D,点C'落在第四象限,作FG∥AC,交x轴于点M,交AC'于点G,若∠AGF=90°,求点M的横坐标.【题组三】9.(2019•宿豫区模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,且抛物线经过点D(2,3).(1)求这条抛物线的表达式;(2)将该抛物线向下平移,使得新抛物线的顶点G在x轴上.原抛物线上一点M平移后的对应点为点N,如果△AMN是以MN为底边的等腰三角形,求点N的坐标;(3)若点P为抛物线上第一象限内的动点,过点B作BE⊥OP,垂足为E,点Q为y轴上的一个动点,连接QE、QD,试求QE+QD的最小值.10.(2019•灌南县二模)如图,在平面直角坐标系中,二次函数y=ax2+bx的图象经过点A(﹣1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.11.(2019•润州区二模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与直线AB相交,与x轴、y轴交于A(2,0)、B.(1)求点O关于AB的对称点P的坐标;(2)若点P在二次函数y=ax2+bx+c(a≠0)的图象上,求二次函数y=ax2+bx+c(a≠0)的关系式.(3)在(2)的条件下,在△ABP内存在点M,使得MA+MB+MP的值最小,则相应点M的坐标为.12.(2019•洪泽区二模)如图,抛物线y=ax2+bx+5经过A(1,0)和B(5,0),与y轴交于点C点为点D,连接BC,BD.点P是抛物线对称轴上的一个动点(1)a=,b;(2)若∠CPB=90°,求点P的坐标;(3)是否存在点P,使得以P、D、B为顶点的三角形中有两个内角的和等于∠ABC?若存在,求出点P的坐标;若不存在,说明理由.(4)如图②,抛物线对称轴交x轴于点E,设∠BDE的度数为a,点M是线段BC上动点,作射线AM,将AM绕A点逆时针旋转2a度,旋转后的射线交直线BC与点N,请直接写出MN的最小值.(直接写出结果)【题组四】13.(2019•高港区三模)定义:两条长度相等,且它们所在的直线互相垂直,我们称这两条线段互为等垂线段.如图①,直线y=2x+4与x轴交于点A,与y轴交于点B.(1)若线段AB与线段BC互为等垂线段.求A、B、C的坐标.(2)如图②,点D是反比例函数y的图象上任意一点,点E(m,1),线段DE与线段AB互为等垂线段,求m的值;(3)抛物线y=ax2+bx+c(a≠0)经过A、B两点.①用含a的代数式表示b.②点P为平面直角坐标系内的一点,在抛物线上存在点Q,使得线段PQ与线段AB互为等垂线段,且它们互相平分,请直接写出满足上述条件的a值.14.(2019•丹阳市一模)如图(1),二次函数y=ax2﹣bx(a≠0)的图象与x轴、直线y=x的交点分别为点A(4,0)、B(5,5).(1)a=,b=,∠AOB=°;(2)连接AB,点P是抛物线上一点(异于点A),且∠PBO=∠OBA,求点P的坐标;(3)如图(2),点C、D是线段OB上的动点,且CD=2.设点C的横坐标为m.①过点C、D分别作x轴的垂线,与抛物线相交于点F、E,连接EF.当CF+DE取得最大值时,求m的值并判断四边形CDEF的形状;②连接AC、AD,求m为何值时,AC+AD取得最小值,并求出这个最小值.15.(2019•建湖县二模)如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y 轴交于点C直线y=﹣x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线交抛物线于点M,交直线BC于点N.①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点M的坐标;若不存在,请说明理由.②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的横坐标.16.(2019•无锡二模)已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x 轴交于A、B两点(点A在点B左侧),点C、B关于过点A的直线l:y=kx对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l 上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【题组五】17.(2019•兴化市二模)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x 轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.18.(2019•清江浦区一模)如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B(﹣3,0)和C(4,0)与y轴交于点A.(1)a=,b=;(2)点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B 出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t 为何值时,以B、M、N为顶点的三角形是等腰三角形?(3)点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.19.(2019•常州一模)如图,在平面直角坐标系xOy中,直线l:y=kx+m交y轴于点C,与抛物线y=ax2+bx交于点A(4,0)、B(,).(1)直线l的表达式为:,抛物线的表达式为:;(2)若点P是二次函数y=ax2+bx在第四象限内的图象上的一点,且2S△APB=S△AOB,求△AOP的面积;(3)若点Q是二次函数图象上一点,设点Q到直线l的距离为d,到抛物线的对称轴的距离为d1,当|d﹣d1|=2时,请直接写出点Q的坐标.20.(2019•东台市模拟)如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线l:y x﹣1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.【题组六】21.(2019•昆山市二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于点A(2,0),B(﹣3,0),交y轴于点C,且经过点D(﹣6,﹣6),连接AD,BD.(1)求该抛物线的函数关系式;(2)若点M为X轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;(3)若点P是直线AD上方的抛物线上一动点(不与A,D重合),过点P作PQ∥y轴交直线AD于点Q,以PQ为直径作⊙E,则⊙E在直线AD上所截得的线段长度的最大值等于.(直接写出答案)22.(2019•泰兴市一模)如图1,抛物线l1::y1=a(x﹣2)2与直线l2:y2=﹣am(x﹣2)+b(a,m,b为常数,a≠0,m<0)交于A,B两点,直线l2交x轴交于点C.点A的坐标为(m+2,n).(1)若a=﹣1,m=﹣3,则A的坐标为,b=,点B的坐标为;(2)已知点M(0,﹣4),N(3,﹣4),抛物线l1与线段MN有两个公共点,求a的取值范围;(3)①如图1,求证:AB=3AC;②如图2,设抛物线顶点为F,直线l2交抛物线的对称轴于点D,直线l3:y3=2am(x﹣2)+d(d为常数,d≠0)经过点A,并交抛物线的对称轴于点E,若∠BFD=p∠AED (p为常数),则p的值是否发生变化?若不变,请求出p的值;若变化,请说明理由.23.(2019•铜山区二模)已知,如图,二次函数y=ax2+bx+c图象交x轴于A(﹣1,0),交y轴于点C(0,3),D是抛物线的顶点,对称轴DF经过x轴上的点F(1,0).(1)求二次函数关系式;(2)对称轴DF与BC交于点M,点P为对称轴DF上一动点.①求AP PD的最小值及取得最小值时点P的坐标;②在①的条件下,把△APF沿着x轴向右平移t个单位长度(0≤t≤4)时,设△APF与△MBF重叠部分面积记为S,求S与t之间的函数表达式,并求出S的最大值.24.(2019•靖江市一模)如图1,将抛物线y=ax2(a<0平移到顶点M恰好落在直线y=x+3上,且抛物线过直线与y轴的交点A,设此时抛物线顶点的横坐标为m(m>0).(1)用含m的代数式表示a;(2)如图2,Rt△CBT与抛物线交于C、D、T三点,∠B=90°,BC∥x轴,CD=2.BD =t.BT=2t,△TDC的面积为4.①求抛物线方程;②如图3,P为抛物线AM段上任一点,Q(0,4),连结QP并延长交线段AM于N,求的最大值.参考答案【真题再现】1.(2019年宿迁28题)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【分析】(1)把点A、C坐标代入抛物线解析式即求得b、c的值.(2)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠P AB=2∠BAG=2∠ACO,利用∠ACO 的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H 关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.(3)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=﹣1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.【解析】(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴解得:∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC,AB=4∴Rt△AOC中,sin∠ACO,cos∠ACO∵AB=AH,G为BH中点∴AG⊥BH,BG=GH∴∠BAG=∠HAG,即∠P AB=2∠BAG∵∠P AB=2∠ACO∴∠BAG=∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG∴BG AB∴BH=2BG∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI,cos∠HBI ∴HI BH,BI BH∴x H=﹣3,y H,即H(,)设直线AH解析式为y=kx+a∴解得:∴直线AH:y x∵解得:(即点A),∴P(,)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(,)设直线AH'解析式为y=k'x+a'∴解得:∴直线AH':y x∵解得:(即点A),∴P(,)综上所述,点P的坐标为(,)或(,).(3)DM+DN为定值∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1∴D(﹣1,0),x M=x N=﹣1设Q(t,t2+2t﹣3)(﹣3<t<1)设直线AQ解析式为y=dx+e∴解得:∴直线AQ:y=(t+3)x﹣t﹣3当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6∴DM=0﹣(﹣2t﹣6)=2t+6设直线BQ解析式为y=mx+n∴解得:∴直线BQ:y=(t﹣1)x+3t﹣3当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2∴DN=0﹣(2t﹣2)=﹣2t+2∴DM+DN=2t+6+(﹣2t+2)=8,为定值.点睛:本题考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.第(2)题由于不确定点P位置需分类讨论;(2)(3)计算量较大,应认真理清线段之间的关系再进行计算.2.(2019年盐城27题)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.【分析】(1)将二次函数与一次函数联立得:k(x﹣1)2+2=kx﹣k+2,即可求解;(2)分OA=AB、OA=OB两种情况,求解即可;(3)求出m=﹣k2﹣k,在△AHM中,tanαk tan∠BEC k+2,即可求解.【解析】(1)将二次函数与一次函数联立得:k(x﹣1)2+2=kx﹣k+2,解得:x=1和2,故点A、B的坐标横坐标分别为1和2;(2)OA,①当OA=AB时,即:1+k2=5,解得:k=±2(舍去2);②当OA=OB时,4+(k+2)2=5,解得:k=﹣1或﹣3;故k的值为:﹣1或﹣2或﹣3;(3)存在,理由:①当点B在x轴上方时,过点B作BH⊥AE于点H,将△AHB的图形放大见右侧图形,过点A作∠HAB的角平分线交BH于点M,过点M作MN⊥AB于点N,过点B作BK⊥x轴于点K,图中:点A(1,2)、点B(2,k+2),则AH=﹣k,HB=1,设:HM=m=MN,则BM=1﹣m,则AN=AH=﹣k,AB,NB=AB﹣AN,由勾股定理得:MB2=NB2+MN2,即:(1﹣m)2=m2+(k)2,解得:m=﹣k2﹣k,在△AHM中,tanαk tan∠BEC k+2,解得:k,此时k+2>0,则﹣2<k<0,故:舍去正值,故k;②当点B在x轴下方时,同理可得:tanαk tan∠BEC(k+2),解得:k或,此时k+2<0,k<﹣2,故舍去,故k的值为:或.点睛:本题为二次函数综合应用题,涉及到一次函数、解直角三角形的知识,其中(3),通过tan2α求出tanα,是此类题目求解的一般方法.3.(2018年常州28题)如图,二次函数y bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是(,0);(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y =0求出x值,进而可得出点B的坐标;(2)(解法一)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,假设存在,设点M的坐标为(m,m+2),分B、P 在直线AC的同侧和异侧两种情况考虑,由点B、M的坐标结合PM:MB=1:2即可得出点P的坐标,再利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之即可得出结论;(解法二)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,过点B作BB′∥y轴交直线AC于点B′,过点P作PP′∥y轴交直线AC于点P′,由点B的坐标可得出BB′的值,结合相似三角形的性质可得出PP′的值,设点P的坐标为(x,x2x+2),则点P′的坐标为(x,x+2),结合PP′的值可得出关于x的含绝对值符号的一元二次方程,解之即可得出结论;(3)(解法一)作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,设OE =n,则CE=2﹣n,EF=n,利用面积法可求出n值,进而可得出,结合∠AOC=90°=∠BOE可证出△AOC∽△BOE,根据相似三角形的性质可得出∠CAO=∠EBO,再根据角平分线的性质可得出∠CBA=2∠EBO=2∠CAB,此题得解;(解法二)将BC沿y轴对折,交x轴于点B′,根据点A、B、C的坐标可得出点B′的坐标,进而可得出AB′=B′C=BC,根据等腰三角形的性质结合三角形的外角性质,可得出∠CBA=2∠CAB.【解析】(1)∵点A(﹣4,0)在二次函数y bx+2的图象上,∴4b+2=0,∴b.当y=0时,有x2x+2=0,解得:x1=﹣4,x2,∴点B的坐标为(,0).故答案为:;(,0).(2)(方法一)当x=0时,y x2x+2=2,∴点C的坐标为(0,2).设直线AC的解析式为y=kx+c(k≠0),将A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直线AC的解析式为y x+2.假设存在,设点M的坐标为(m,m+2).①当点P、B在直线AC的异侧时,点P的坐标为(m,m+3),∵点P在抛物线y x2x+2上,∴m+3(m)2(m)+2,整理,得:12m2+20m+9=0.∵△=202﹣4×12×9=﹣32<0,∴方程无解,即不存在符合题意得点P;②当点P、B在直线AC的同侧时,点P的坐标为(m,m+1),∵点P在抛物线y x2x+2上,∴m+1(m)2(m)+2,整理,得:4m2+44m﹣9=0,解得:m1,m2,∴点P的横坐标为﹣2或﹣2.综上所述:存在点P,使得PM:MB=1:2,点P的横坐标为﹣2或﹣2.(方法二)当x=0时,y x2x+2=2,∴点C的坐标为(0,2).设直线AC的解析式为y=kx+c(k≠0),将A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直线AC的解析式为y x+2.过点B作BB′∥y轴交直线AC于点B′,过点P作PP′∥y轴交直线AC于点P′,如图1﹣1所示.∵点B的坐标为(,0),∴点B′的坐标为(,),∴BB′.∵BB′∥PP′,∴△PP′M∽△BB′M,∴,∴PP′.设点P的坐标为(x,x2x+2),则点P′的坐标为(x,x+2),∴PP′=|x2x+2﹣(x+2)|=|x2x|,解得:x1=﹣2,x2=﹣2,∴存在点P,使得PM:MB=1:2,点P的横坐标为﹣2或﹣2.(3)(解法一)∠CBA=2∠CAB,理由如下:作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,如图2所示.∵点B(,0),点C(0,2),∴OB,OC=2,BC.设OE=n,则CE=2﹣n,EF=n,由面积法,可知:OB•CE BC•EF,即(2﹣n)n,解得:n.∵,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.(解法二)∠CBA=2∠CAB,理由如下:将BC沿y轴对折,交x轴于点B′,如图3所示.∵点B(,0),点C(0,2),点A(﹣4,0),∴点B′(,0),∴AB′(﹣4),B′C,∴AB′=B′C=BC,∴∠CAB=∠ACB′,∠CBA=∠CB′B.∵∠AB′B=∠CAB+∠ACB′,∴∠CBA=2∠CAB.点睛:题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积、勾股定理、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)由点A的坐标,利用二次函数图象上点的坐标特征求出b的值;(2)(解法一)分B、P在直线AC的同侧和异侧两种情况找出点P的坐标;(解法二)利用相似三角形的性质找出PP′;(3)(解法一)构造相似三角形找出两角的数量关系;(解法二)根据等腰三角形的性质结合三角形的外角性质找出∠CBA=2∠CAB.4.(2019年苏州28题)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.【分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B 坐标结合三角形的面积,解出a=﹣3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则S△BAP AB•PM4d由S△PQB=S△P AB可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.【解析】(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵S△ABC=6∴解得:a=﹣3,(a=4舍去)(2)∵A(﹣3,0),C(0,3),∴OA=OC,∴线段AC的垂直平分线过原点,∴线段AC的垂直平分线解析式为:y=﹣x,∵由A(﹣3,0),B(1,0),∴线段AB的垂直平分线为x=﹣1将x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴交x轴于M,则S△BAP AB•PM4d∵S△PQB=S△P AB∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB,∴∠BP A=∠PBQ,∴AP=QB,在△PBQ与△BP A中,,∴△PBQ≌△ABP(SAS),∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)点睛:本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.5.(2018年无锡28题)已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(,0),求这条抛物线的函数表达式.【分析】(1)利用三角形相似和勾股定理构造方程,求AC和m(2)由∠APQ=90°,构造△PQD∽△APE构造方程求点P坐标可求二次函数解析式.【解析】(1)过点A作AF⊥x轴,过点B作BF⊥CD于H,交AF于点F,过点C作CE ⊥AF于点E设AC=n,则CD=n∵点B坐标为(0,﹣1)∴CH=n+1,AF=m+1∵CH∥AF,BC=2AC∴即:整理得:nRt△AEC中,CE2+AE2=AC2∴5+(m﹣n)2=n2把n代入5+(m)2=()2解得m1=5,m2=﹣3(舍去)∴n=3∴把A(3,5)代入y=kx﹣1得k∴y x﹣1(2)如图,过点A作AE⊥CD于点E设点P坐标为(2,n),由已知n>0由已知,PD⊥x轴∴△PQD∽△APE∴∴解得n1=7,n2=﹣2(舍去)设抛物线解析式为y=a(x﹣h)2+k∴y=a(x﹣2)2+7把A(3,5)代入y=a(x﹣2)2+7解得a∴抛物线解析式为:y【点评】本题综合考查二次函数和一次函数性质.在解答过程中,应注意利用三角形相似和勾股定理构造方程,求出未知量.2.(2017年苏州28题)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出P A、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解析】(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则P A=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.【专项突破】【题组一】1.(2020•无锡模拟)如图,已知二次函数y=ax2﹣2ax+c(a<0)的图象交x轴于A、B两点,交y轴于点C.过点A的直线y=kx+2k(k≠0)与这个二次函数的图象的另一个交点为F,与该图象的对称轴交于点E,与y轴交于点D,且DE=EF.(1)求点A的坐标;(2)若△BDF的面积为12,求这个二次函数的关系式;(3)设二次函数的顶点为P,连接PF,PC,若∠CPF=2∠DAB,求此时二次函数的表达式.。
二次函数最值与交点问题
3、已知抛物线 、直线 ,若对于任意的x的值, 恒成立,则m的值为。
知识点三:图形存在性问题
【例题精讲】
1、在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N。若一个点的横坐标与纵坐标均为整数,则该点称为整点,则M与N所围成封闭图形内(包括边界)整点的个数为()
A.- B. 或- C.2或- D.2或 或-
2、二次函数y=x2﹣2x﹣3,当m﹣2≤x≤m时的最大值为5,则m的值可能为( )
A.0或6B.4或﹣2C.0或4D.6或﹣2
3、已知抛物线y=(x-m)2-(x-m),其中m是常数,抛物线与x轴交于A、B两点(点A在点B的左侧),若0<x< 时,恒有y<0,则m的取值范围是.
2、二次函数 ,点A(0,3),点B在直线y=2上运动,A、B、C顺时针排列,AB=BC,AB⊥BC,点C在抛物线内部,记点B的横坐标为t,则t的取值范围是。
1、已知a<b,函数y=-x2+x(a≤x≤b)的最大值、最小值为2b和2a,则a+b=
2、已知P(0,1)和Q(1,0),若二次函数 的图象与线段PQ有交点,则a的取值范围为。
3、已知二次函数y=x2-(m+1)x-5m(m为常数),在-3≤x≤1的范围内至少有一个x的值使y≥2,则m的取值范围是__________
4、已知二次函数y=x2-2hx+h,当自变量x的取值在-1≤x≤1的范围中时,函数有最小值n,则n的最大值是__________。
(完整版)二次函数交点问题,解析式,应用
二次函数的交点问题巧解方法:1、二次函数与x 轴、y 轴的交点:分别令y=0,x=0;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程.例1、如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.例2、已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点,并求出这两个交点的坐标。
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积例3、.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
例4、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.例5、已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.例6.已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.训练题1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为 .3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是 .5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m= .7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 .8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围 .9.抛物线y=x 2-2x +a 2的顶点在直线y=2上,则a 的值是 .10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则的值是()A .-3B .3C .D .-12.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-<1B .0<-<2C .1<-<2D .-=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?a b a ca cbc b a +++++2121a b 2a b 2a b 2a b2函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
直线与抛物线的交点问题
(2)联立yy= =2xx2--x2-,6,解得xy11==46,,xy22==--14,. ∴点E,F的坐标分别为(-1,-4),(4,6). (3)由图象可知,当-1<x<4时,一次函数值大于二次函数值.
(1)求直线与抛物线的交点坐标,只需联立直线与抛物线的表达 式,解关于x,y的方程组,即可求得交点坐标;
解:(1)证明:联立yy==kx2x-+41x,. 化简,得 x2-(4+k)x-1=0.∵Δ =(4+k)2+4>0.
故直线 l 与该抛物线总有两个交点.
(2)当 k=-2 时,y=-2x+1.过点 A 作 AF⊥x 轴于点 F,过点 B 作 BE⊥x 轴于点 E.
联立yy= =-x2-2x4+x,1. 解得xy= =-1+1-22,2或xy= =12-2-2, 1. ∴A(1- 2,2 2-1),B(1+ 2,-1-2 2).
(2)利用一次函数y=kx+t和二次函数y=ax2+bx+c的图象比较两 函数值的大小,即确定不等式kx+t>ax2+bx+c或kx+t<ax2+bx+c的解 集,运用数形结合进行分析判断,其中函数值较大,表现在图象上即图象 在上方;函数值较小,表现在图象上即图象在下方.
1.如图,二次函数的图象与x轴相交于A,B两点,与y轴相交于点C, 点C,D是二次函数图象上关于对称轴对称的一对对称点,一次函数的图象 经过点B,D.
∴AF=2 2-1,BE=1+2 2. ∵直线 y=-2x+1 与 x 轴的交点 C 的坐标为(12,0),∴OC=21. ∴S△AOB=S△AOC+S△BOC =21OC·AF+21OC·BE =21OC·(AF+BE) =21×12×(2 2-1+1+2 2) = 2.
Байду номын сангаас
二次函数与线段交点问题探究
二次函数与线段交点问题探究一、引言二次函数与线段交点问题是高中数学中一个重要的应用题型,也是数学竞赛中常见的考点。
本文将探究二次函数与线段交点问题,通过具体的例子和图示进行分析和解答。
二、二次函数二次函数是指形如y=ax^2+bx+c的函数,其中a,b,c为常数。
二次函数的图像为开口向上或向下的抛物线。
在解决二次函数与线段交点问题时,我们需要了解以下几个概念:1. 零点:指函数图像与x轴相交的点,即满足f(x)=0的x值。
2. 对称轴:指抛物线的对称轴,它垂直于x轴,在抛物线上方过一个顶点V。
3. 顶点:指抛物线上最高或最低的点V。
三、线段在平面直角坐标系中,一条有限长的直线段称为线段。
在解决二次函数与线段交点问题时,我们需要了解以下几个概念:1. 端点:指一条线段两端的两个点。
2. 中点:指一条线段上距离两端相等且在中心位置上的那个点。
四、求解过程当我们已知一个二次函数y=ax^2+bx+c和一个线段AB时,我们需要求出它们的交点。
具体的求解过程如下:1. 首先,我们需要将二次函数化为标准式y=a(x-h)^2+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。
2. 然后,我们需要求出线段AB的斜率k_AB和截距b_AB。
3. 接着,我们将二次函数与直线y=k_ABx+b_AB相交,解出交点坐标(x,y)。
4. 最后,我们需要判断交点是否在线段AB上。
五、实例分析下面通过一个具体的例子进行分析和解答。
已知二次函数y=2x^2+4x+1和线段AB,其中A(-3,5)、B(1,7),求二次函数与线段AB的交点坐标。
1. 首先,将二次函数化为标准式。
由于a>0,则抛物线开口向上。
顶点坐标为(h,k),其中h=-b/2a=-4/4=-1,k=f(-1)=2(-1)^2+4(-1)+1=-1。
因此,二次函数化为y=2(x+1)^2-1。
2. 求出线段AB的斜率k_AB=(7-5)/(1-(-3))=0.5,并且可以通过A或B求得截距b_AB=6。
九年级数学二次函数交点问题专题
九年级二次函数交点问题专题【知识解读】二次函数与坐标轴交点问题笔记二次函数图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根当△>0时,抛物线与x轴有2个交点当△=0时,抛物线y=ax2+bx+c与x轴有1个交点当△<0时,抛物线y=ax2+bx+c与x轴没有交点【实战演练】二次函数与坐标轴交点问题例题1、二次函数y=kx2−6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3B. k<3且k≠0C. k≤3D. k≤3且k≠0练习1、已知二次函数y=x2−2mx+m2+3(m是常数),该函数的图象与x轴的交点个数为。
练习2、抛物线y=mx2+(2m−1)x+m−1与x轴的交点个数是()A.0个B.1个C.2个D.无法确定【知识解读】二次函数与一次函数交点问题笔记二次函数图象与一次函数图象的交点个数:解决二次函数y=ax2+bx+c与一次函数y=kx+m的交点个数问题,我们可以把两个函数解析式联立,即ax2+bx+c=kx+m,求这个一元二次方程的判别式即可。
若△>0,则二次函数与一次函数的图象有两个交点;若△=0,则二次函数与一次函数的图象有一个交点;若△<0,则二次函数与一次函数的图象没有交点次;函数图象与一次函数图象的交点坐标求解二次函数y=ax2+bx+c与一次函数y=kx+m的交点坐标问题,我们可以把两个函数解析式联立,即ax2+bx+c=kx+m,,求这个一元二次方程的解即可,解就是交点的横坐标,代入任意一个解析式中,求出的y值为纵坐标。
【实战演练】二次函数与一次函数交点问题例题5(1)判断直线y=−x+1与抛物线y=x2−3x+1是否有交点,如果有交点,求出交点坐标。
(2)当b为何值时,直线y=3x+b与抛物线y=x2+2x−1只有一个交点例题6、在平面直角坐标系中,抛物线y=ax2与直线y=2x+3相交于A、B两点,已知点A的坐标(-1,1),求点B的坐标。
抛物线与线段交点问题 教案
二次函数与直线、线段交点问题一、直线与二次函数的交点问题已知二次函数c bx ax y ++=2(1)y 轴与二次函数c bx ax y ++=2得交点为(0, c ). (2)与y 轴平行的直线h x =与二次函数c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)二次函数与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.二次函数与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔二次函数与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔二次函数与x 轴相切 此时二次函数为;2()y a x h =-总结完全平方形式的二次函数与x 轴只有一个交点③没有交点⇔0<∆⇔二次函数与x 轴相离.注意这种情况 当a >0,y 值恒>0,当a <0,y值恒<0,(4)平行于x 轴的直线与二次函数的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根. 例1 二次函数y=ax 2+bx+c 的图象如图所示,若方程2ax bx c ++=k 有两个不相等的实数根,则k 的取值范围( ) 若方程2ax bx c ++c=k 无实数根,则k 的取值范围 ( ) 若方程2ax bx c ++=k 相等两实数根,则k 的取值范围( ) 解: 2ax bx c ++c=k 解的情况可以看成 直线y k = 与c bx ax y ++=2交点情况 由图像可知:1) 方程有两个不相等的实数根,即y k = 与c bx ax y ++=2有两个交点,则k >-3 2) 方程无实数根,即y k = 与c bx ax y ++=2无交点,则k <-3 3)方程有相等实数根,即y k = 与c bx ax y ++=2有一个交点,则k =-3 (5)一次函数()0≠+=k n kx y 的图像l与二次函数()02≠++=a c bx ax y 的图像G的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l与G 有两个交点; ②方程组只有一组解时⇔l与G 只有一个交点;③方程组无解时⇔l与G 没有交点.当直线与二次函数有两个交点时c bx ax y nkx y ++=+=2 化简 为2()0ax b k x c n +-+-=两交点横坐标为1,x 2,x 则有 1212,b k c nx x x x a a--+=-=两横坐标的距离=∣12x x - ∣()()221212124x x x x x x -=+-(6)二次函数与x 轴两交点之间的距离:若二次函数c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,两横坐标的距离=∣12x x - ∣=()()221212124x x x x x x -=+-典型考题、例2 判断有无解情况 二次函数y=ax 2+bx+c 的图象如图所示,1)若方程2ax bx c ++=m 有两个不相等的实数根,则m 的取值范围( ) 2)若方程2ax bx c ++=m 无实数根,则m 的取值范围 ( ) 3)若方程2ax bx c ++=m 相等两实数根,则m 的取值范围( ) 解析同例 1答案 1)m <2 2)m >2 3)m=2例3 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,讨论|ax 2+bx +c |=k (k ≠0)解的情况解:设y=|ax 2+bx +c | ,则它的图像如下:|ax 2+bx +c |=k 解的情况,可以看成y=|ax 2+bx +c | 与y=k 图像的交点情况 由图像可知:1) 当k <0,y=k 与y=|2ax bx c ++| 无交点,所以方程无解 2) 当k >3,y=k 与y=|2ax bx c ++| 有两个交点,所以方程有两解 3) 0<k <3,y=k 与y=|2ax bx c ++|有4个交点,所以方程有4个解 4)k =3,y=k 与y=|2ax bx c ++|有3个交点,所以方程有3个解例 4 二次函数y =2ax bx c ++a ≠0)的图象如图所示,直线y kx n =+,则方程2()0ax b k x c n +-+-=根的情况( )解:2()0ax b k x c n +-+-= 解的情况可以看成二次函数y =2ax bx c ++与直线y kx n =+ 有无交点情况 由图可知:y =ax 2+bx+c 与直线y kx n =+有两个交点,故原方程有两个不等实根 2、利用一次函数与二次函数交点横坐标关系例5 如图,二次函数y=﹣x 2+2x+3与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,二次函数的对称轴DF 与BC 相交于点E ,与x 轴相交于点F . (1)求线段DE 的长;(2)设过E 的直线与二次函数相交于M (x 1,y 1),N (x 2,y 2),试判断当|x 1﹣x 2|的值最小时,直线MN 与x 轴的位置关系,并说明理由;y kx n =+解:由二次函数223y x x =-++ 可知C(0,3) 令y=0 则223x x -++=0,解得 x=-1,x=3∴A(-1,0),B(3,0) ∴顶点D(1,4) ∴DF=4设直线BC 的解析式为y=kx+b,代入B(3,0),C(0,3)得: 3k+b=0 k=-1 b=3 解得 b=3 ∴ 解析式为:y=-x+3 当x=1时,y=2∴解析式为;y=﹣x+3, 当x=1时,y=2 ∴E(1,2) ∴EF=2∴DE=DF-EF=4-2=2(2)设直线MN 的解析式为y=kx+b , ∵E (1,2), ∴2=k+b , ∴k=2﹣b ,∴直线MN 的解析式y=(2﹣b )x+b , ∵点M,N 的坐标是方程组 y=(2-b)x+by=-x 2+2x+3 的解 整理得 x 2-bx+b-3=0 ∴ x 1+x 2=b x 1x 2=b-321221214)(x x x x x x -+=-=)3(42--b b=8)2(2+-b∴当b=2,时21xx - 最小值为22∵b=2时,y=(2-b)+b=2 ∴直线MN//x 轴二、二次函数与线段交点问题二次函数与线段交点,由于线段是直线的一部分,所以首先考虑该线段所在的直线是否与二次函数有交点,再根据条件求值,常见考点如下: 1、 与x 轴平行的线段例6如图2y ax bx =+的对称轴为1x =与y t =在-1≤x ≤4有解,求t 的取值范围解: 2y ax bx =+ 与y=t 在-1≤x ≤4有解情况,可以看成 二次函数2y ax bx =+ 与直线y=t 在-1≤x ≤4交点情况 由图可知 当二者有交点时,-1≤t ≤8,此时2y ax bx =+ 与y=t 在-1≤x ≤4有解 2、 二次函数与y kx n =+在特定范围有解例 7:二次函数221y x bx =-+与线段的的两个端点(-1,1),(3,4)的线段只有一个交点,求b 的值解: 过设(-1,1),(3,4)两点的直线方程设为y kx b =+ 则 - -k + b =1 3k +b =4解得 34k =74b =所以线段 3744y x =+ (-1≤x ≤4)221y x bx =-+3744y x =+ 在 -1≤x ≤4 有一个解∴ 只须233(2)044x b x -+-= 在 -1≤x ≤4 有一个解即问题转化为二次函数 y=233(2)44x b x -+- 在-1≤x ≤4与x 轴有一个交点情况分两种情况:1) 抛物线与x 轴的左交点落在-1~3 之间,如图由图像可知 当 1x =-时,y ≥0 即 有1+(2b+34)-34≥0 ① 当x =3 时,y <0 即 有9-(2b+34)×3-34<0 ②解①②得:b >12) 抛物线与x 轴的右交点落在-1~3 之间,如图由图像可知 当 1x =-时,y <0 即 有1+(2b+34)-34-<0 ③ 当x =3 时,y ≥0 即 有9-(2b+34)×3-34≥0 ④解得:b <12-综上 b >1 或 b <12-3、图形与二次函数交点例8 已知,正方形ABCD,A(0,-4),B(1,-4),C(1,-5),D(0,-5),抛物线224y x mx m =+--(m 为常数) 顶点为M,1)抛物线经过定点坐标是 ,顶点M 的坐标(用m 的代数式表示是 )2)若抛物线224y x mx m =+--(m 为常数)与正方形ABCD 的边有交点,求m 的取值范围(2) 因为二次函数过定点(2,0),即二次函数与x 轴交于(2,0) 当函数左交点为(2,0)时,有 -2m>2,即m <-4,该二次函数与正方形无交点。
中考数学压轴题专题-二次函数与交点公共点综合问题
专题13二次函数与交点公共点综合问题【例1】(2021•宜昌)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).(1)写出A点坐标;(2)求k1,k2的值(用含n的代数式表示)(3)当﹣4≤n≤4时,探究k1与k2的大小关系;(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.【例2】(2021•德州)小刚在用描点法画抛物线C1:y=ax2+bx+c时,列出了下面的表格:x…01234…y…36763…(1)请根据表格中的信息,写出抛物线C1的一条性质:;(2)求抛物线C1的解析式;(3)将抛物线C1先向下平移3个单位长度,再向左平移4个单位长度,得到新的抛物线C2;①若直线y=x+b与两抛物线C1,C2共有两个公共点,求b的取值范围;②抛物线C2的顶点为A,与x轴交点为点B,C(点B在点C左侧),点P(不与点A重合)在第二象限内,且为C2上任意一点,过点P作PD⊥x轴,垂足为D,直线AP交y轴于点Q,连接AB,DQ.求证:AB∥DQ.【例3】(2021•黔西南州)如图,直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0,m),B(n,7).(1)填空:m=,n=,抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后,直线l与抛物线C仍有公共点,求a的取值范围.(3)Q是抛物线上的一个动点,是否存在以AQ为直径的圆与x轴相切于点P?若存在,请求出点P 的坐标;若不存在,请说明理由.【例4】(2021•绵阳)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B (点B在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.【例5】(2020•襄阳)如图,直线y=−12x+2交y轴于点A,交x轴于点C,抛物线y=−14x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.【题组一】1.(2021•苏州模拟)问题一:已知二次函数:y=(x﹣m)2﹣2m﹣(m为常数),当m取不同的值时,其图象构成一个“抛物线系”.我们发现:是当m取不同数值时,此二次函数的图象的顶点在同一条直线上,那么这条直线的表达式是.问题二:已知直线l:y=x﹣2交x轴于点A,交y轴于点B,抛物线L:y=(x﹣m)2﹣2m﹣(m 为常数)图象的顶点为C.(1)如图1,若点C在Rt△AOB的内部(不包括边界),求m的取值范围;(2)如图2,当抛物线L的图象经过点A,B时,在抛物线上(AB的下方)是否存在点P,使∠ABO =∠ABP?若存在,求出点P的横坐标;若不存在.请说明理由.2.(2021•东城区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+1与y轴交于点A.(1)求抛物线的对称轴;(2)点B是点A关于对称轴的对称点,求点B的坐标;(3)已知点P(0,2),Q(a+1,1).若线段PQ与抛物线与恰有一个公共点,结合函数图象,求a 的取值范围.3.(2021•南关区一模)在平面直角坐标系中,把函数y=ax2+2bx+2(a、b为常数)的图象记为G.(1)求G与y轴交点的坐标.(2)当b=2时,G与x轴只有一个交点,求a的值.(3)①设k≠0,若点A(2﹣k,t)在G上,则点B(2+k,t)必在G上,且G过点C(3,﹣1),求G的函数表达式.②点D(1,y1)、E(4,y2)是①中函数图象上的两点,比较y1与y2的大小.③点P(m,y3)、Q(m+3,y4)是①中函数图象上的两点,比较y3与y4的大小.(4)矩形FHMN四个顶点的坐标分别为F(1,﹣2)、H(4,﹣2)、M(4,4)、N(1,4),当a=﹣1时,函数y=ax2+2bx+2(x≥0)的图象在矩形FHMN内部的部分均为自左向右下降时,直接写出b 的取值范围.4.(2021•九江一模)在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+m的顶点为A.(1)求抛物线的顶点坐标(用含m的式子表示);(2)若点A在第一象限,且OA=,求抛物线的解析式;(3)已知点B(m﹣1,m﹣2),C(2,2).若该抛物线与线段BC有公共点,结合函数图象,求出m 的取值范围.【题组二】5.(2021•邯郸模拟)如图1,在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣4ax+1(a>0).(1)若抛物线过点A(﹣1,6),求出抛物线的解析式;(2)当1≤x≤5时,y的最小值是﹣1,求1≤x≤5时,y的最大值;(3)已知直线y=﹣x+1与抛物线y=ax2﹣4ax+1(a>0)存在两个交点,若两交点到x轴的距离相等,求a的值;(4)如图2,作与抛物线G关于x轴对称的抛物线G',当抛物线G与抛物线G'围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.6.(2021•姜堰区一模)已知,二次函数y=ax2+2ax﹣3a(a为常数,且a≠0)的图象与x轴交于点A、B (点B在点A的左侧),与y轴交于点C,将点A绕着点C顺时针旋转90°至点P.(1)求A、B两点的坐标;(2)设点P的坐标为(m,n),试判断m+n的值是否发生变化?若不变,请求出m+n的值;若变化,请说明理由;(3)若点D、Q在平面直角坐标系中,且D(0,﹣1),D、Q、P、C四点构成▱CPDQ.①求点Q的坐标(用含a的代数式表示);②若▱CPDQ的边DQ与二次函数的图象有公共点,直接写出满足条件的a的取值范围.7.(2021•襄州区二模)在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).(1)求c的值,并用含a的代数式表示b.(2)当a=时,①求此函数的表达式,并写出当﹣4≤x≤2时,y的最大值和最小值.②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,过点D作DE⊥OC于点E,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.(3)若线段GH的端点G、H的坐标分别为(﹣5,10)、(1,10),此二次函数的图象与线段GH只有一个公共点,求出a的取值范围.8.(2021•朝阳区校级三模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2x+1+m.(1)求此抛物线的顶点坐标(用含m的式子表示);(2)如果当﹣2<x<﹣1时,y>0,并且当2<x<3时,y<0,求该抛物线的表达式;(3)如果(2)中的抛物线与x轴相交于A、B(点A在点B左侧),现将x轴下方的图象沿x轴向上翻折,得到的图象与剩余的图象组成的图形记为M,当直线l:y=﹣x+k与M有两个公共点时,直接写出k的取值范围.【题组三】9.(2021•天心区二模)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集,如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标,于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点.请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②反比例函数y=(x>0)的图象和图形G有公共点,求k的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=mx2﹣2mx+m+与图形M有交点时m的取值范围.10.(2021•西城区校级模拟)在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+m+2,(1)该抛物线的顶点坐标为(用含m的代数式表示);(2)若该抛物线经过点A(x1,y1)和点B(x2,y2),其中x1<m<x2,且x1+x2<2m,则y1与y2的大小关系是:y1y2(填“>,=,或<”号);(3)点C(﹣4,﹣2),将点C向右平移6个单位长度,得到点D.当抛物线y=﹣x2+2mx﹣m2+m+2与线段CD有且只有一个公共点时,结合函数图象,求m的取值范围.11.(2021•商水县三模)已知抛物线y=ax2+bx+c经过A(2,0),B(1,)两点,对称轴是直线x=1.(1)求抛物线的解析式;(2)若C(m,y1),D(n,y2)为抛物线y=ax2+bx+c上两点(m<n).Q为抛物线上点C和点D之间的动点(含点C,D),点Q纵坐标的取值范围为,求m+n的值;(3)已知点E(p,﹣p),F(2,1),若抛物线与线段EF有一个交点,求p的取值范围.12.(2021•靖江市一模)已知抛物线y=x2+(m﹣2)x﹣3,抛物线与坐标轴交于点A(3,0)、B两点.(1)求抛物线解析式;(2)当点P(2,a)在抛物线上时.①如图1,过点P不与坐标轴平行的直线l1与抛物线有且只有一个交点,求直线l1的方程;②如图2,若直线l2:y=2x+b交抛物线于M,点M在点P的右侧,过点P(2,a)作PQ∥y轴交直线l2于点Q,延长MQ到点N使得MQ=NQ,试判断点N是否在抛物线上?请说明理由.【题组四】13.(2020•滨湖区模拟)如图,在平面直角坐标系中,直线y=12x﹣2与x轴交于点A,与y轴交于点C,抛物线y=12x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC下方抛物线上一动点;①连接CD,是否存在点D,使得AC平分∠OCD?若存在,求点D的横坐标;若不存在,请说明理由.②在①的条件下,若点P为抛物线上位于AC下方的一个动点,以P、C、A、D为顶点的四边形面积记作S,则S取何值或在什么范围时,相应的点P有且只有两个?14.(2020•姜堰区二模)二次函数y=6x2−23x+m(m>0)的图象交y轴于点A,顶点为P,直线PA与x轴交于点B.(1)当m=1时,求顶点P的坐标;(2)若点Q(a,b)在二次函数y=6x2−23x+m(m>0)的图象上,且b﹣m>0,试求a的取值范围;(3)在第一象限内,以AB为边作正方形ABCD.①求点D的坐标(用含m的代数式表示);②若该二次函数的图象与正方形ABCD的边CD有公共点,请直接写出符合条件的整数m的值.15.(2020•天心区模拟)如图,抛物线y=−845(+(x﹣3m)(其中m>0)与x轴分别交于A、B 两点(A在B的右侧),与y轴交于点C;(1)点B的坐标为(−3,0),点A的坐标为(3m,0)(用含m的代数式表示),点Cm的代数式表示);(2)若点P为直线AC上的一点,且点P在第二象限,满足OP2=PC•PA,求tan∠APO的值及用含m 的代数式表示点P的坐标;(3)在(2)的情况下,线段OP与抛物线相交于点Q,若点Q恰好为OP的中点,此时对于在抛物线上且介于点C与顶点之间(含点C与顶点)的任意一点M(x0,y0)总能使不等式n≤式2n−916≥−4x02+3x0+138恒成立,求n的取值范围.16.(2020•开福区校级二模)如图,抛物线y=mx2+4mx﹣12m(m<0)与x轴相交于点A、B(点A在点B的右边),顶点为C.(1)求A、B两点的坐标;(2)若△ABC为等边三角形,点M(x0,y0)为抛物线y=mx2+4mx﹣12m(m<0)上任意一点,总有n−856≥02+403y0﹣298成立,求n的最小值;(3)若m=−12,点P为x轴上一动点,若α=∠CAB+∠CPB,当tanα=4时,求P点的坐标.【题组五】17.(2020•天心区校级模拟)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最大值称为这个函数的边界值.例如,图中的函数是有界函数,其边界值是1.(1)分别判断函数y=1(x>0)和y=x+2(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+2(a≤x≤b,b>a)的边界值是3,且这个函数的最小值也是3,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足34≤t≤1?18.(2020•思明区校级模拟)已知抛物线C:y1=a(x﹣h)2﹣1,直线l:y2=kx﹣kh﹣1.(1)判断命题“抛物线C的对称轴不可能是y轴”的真假,并说明理由;(2)求证:直线l恒过抛物线C的顶点;(3)①当a=﹣1,m≤x≤2时,y1≥x﹣3恒成立,直接写出m的取值范围;②当0<a≤2,k>0时,若在直线l下方的抛物线C上至少存在两个横坐标为整数的点,求k的取值范围.19.(2020•海陵区一模)已知抛物线y1=ax2﹣2amx+am2+4,直线y2=kx﹣km+4,其中a≠0,a、k、m是常数.(1)抛物线的顶点坐标是,并说明上述抛物线与直线是否经过同一点(说明理由);(2)若a<0,m=2,t≤x≤t+2,y1的最大值为4,求t的范围;(3)抛物线的顶点为P,直线与抛物线的另一个交点为Q,对任意的m值,若1≤k≤4,线段PQ(不包括端点)上至少存在两个横坐标为整数的点,求a的范围.20(2020•遵化市三模)已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【题组六】21.(2020•中原区校级模拟)如图1所示,抛物线=232+B+与x轴交于A、B两点,与y轴交于点C,已知C点坐标为(0,4),抛物线的顶点的横坐标为72,点P是第四象限内抛物线上的动点,四边形OPAQ是平行四边形,设点P的横坐标为m.(1)求抛物线的解析式;(2)求使△APC的面积为整数的P点的个数;(3)当点P在抛物线上运动时,四边形OPAQ可能是正方形吗?若可能,请求出点P的坐标,若不可能,请说明理由;(4)在点Q随点P运动的过程中,当点Q恰好落在直线AC上时,则称点Q为“和谐点”,如图(2)所示,请直接写出当Q为“和谐点”的横坐标的值.22.(2020•丰台区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线与x轴的交点坐标;(3)已知点P(a,0),Q(0,a﹣2),如果抛物线与线段PQ恰有一个公共点,结合函数图象,求a 的取值范围.23.(2020•密云区二模)在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后,恰好经过B、C两点.(1)求k的值和点C的坐标;(2)求抛物线C1的表达式及顶点D的坐标;(3)已知点E是点D关于原点的对称点,若抛物线C2:y=ax2﹣2(a≠0)与线段AE恰有一个公共点,结合函数的图象,求a的取值范围.24.(2020•惠安县校级模拟)已知抛物线C:y=ax2+bx+c(a>0)的顶点在第一象限,且与直线y=1只有一个公共点.(1)若抛物线的对称轴为直线x=1,求a、c之间应当满足的关系式;(2)若b=﹣2,点P是抛物线的顶点,且点P与点Q关于y轴对称,△OPQ是等腰直角三角形.①求抛物线的解析式;②直线y=kx(k>0)与抛物线C1交于两不同点A、B(点A在点B的左侧),与直线y=﹣2x+4交于点R.求证:对于每个给定的实数k,总有1O+1O=2O成立.。
中考二次函数与线段相交专项练习二次函数与直线相交全面有答案
抛物线与直线相交问题方法总结:1、抛物线与x 轴相交:抛物线c bx ax y ++=2的图象与x 轴相交 )(002≠=++a c bx ax2.抛物线与x 轴的交点的个数(1)有两个交点 △>0 抛物线与x 轴相交 (2)有一个交点 △=0 抛物线与x 轴相切 (3)没有交点 △<0 抛物线与x 轴相离一、 抛物线与x 轴的交点问题例1:已知:抛物线322--=x x y (1)求抛物线与x 轴、y 轴的交点坐标 (2)求抛物线的对称轴与顶点坐标练习:1、已知:抛物线)1(3)2(2++-+-=m x m x y(1)求证:抛物线与x 轴有交点。
(2)如果抛物线与x 轴有两个交点,求m 的取值范围。
2、已知抛物线2y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式.(2)若直线y kx b =+(k ≠0)与抛物线交于点A (32,m )和B (4,n ),求直线的解析式.二、抛物线与平行于x 轴的直线的交点例2:求抛物线322--=x x y 与y =1的交点坐标练习:已知:抛物线c x x y ++=22(1) 如果抛物线与y =3有两个交点,求c 的取值范围。
(2) 如果对于任意x ,总有y >3,求c 的取值范围三:抛物线与直线的交点问题例3:若抛物线221x y =与直线y =x +m 只有一个交点,求m 的值练习:抛物线),(和点0,1-3-2A x x y =过点A 作直线L 与抛物线有且只有一个交点,并求直线L 的解析式例4:已知:抛物线c x x y ++=22(1) 当c = -3时,求出抛物线与x 轴的交点坐标(2) 当-2<x<1时,抛物线与x 轴有且只有一个交点,求c 的取值范围练习:1、抛物线222-m mx x y +=与直线y =2x 交点的横坐标均为整数,且m <2,求满足要求的m 的整数值2、已知:抛物线1y,将此抛物线沿x轴方向向左平移4个单位长度,得到一条新=xx4-2+的抛物线(1)求平移后的抛物线的解析式(2)请结合图象回答,当直线y=m与这两条抛物线有且只有四个交点时,实数m的取值范围3、已知二次函数23(1)2(2)2y t x t x =++++,在0x =和2x =时的函数值相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合问题之抛物线与直线交点个数21. (2014?北京)在平面直角坐标系xOy中,抛物线y=2x+mx+ n经过点A (0, - 2), B (3, 4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A, B之间的部分为图象G(包含A, B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.54 •(1) 将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2) 由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.2解答:解:(1 )•••抛物线y=2x +mx+ n经过点 A (0,- 2), B (3, 4),f n=-2L18+3nr^n=4•••抛物线解析式为y=2x2- 4x - 2,对称轴为直线x=1;2(2)由题意得:C (- 3,- 4),二次函数y=2x - 4x- 2的最小值为-4, 由函数图象得出D纵坐标最小值为-4,设直线BC解析式为y=kx+b ,考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:解得:*:-4n= - 2代入得:将B与C坐标代入得:3k+b=4-3k+b二-解得: k= , b=0,3•直线BC解析式为y=-x,当x=1 时,y=J点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待 定系数法是解本题的关键.2. (2011?石景山区二模)已知:抛物线与 x 轴交于A (- 2, 0)、B (4, 0),与y 轴交于C ( 0, 4).(1) 求抛物线顶点 D 的坐标;(2) 设直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线 CD 于点F ,将抛物线沿其对称轴上下平移,使抛物线 与线段EF 总有公共点•试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度? (1) 先设出过A (- 2, 0)、B (4, 0)两点的抛物线的解析式为 y=a (x+2) (x -4),再根据抛物线与 y 轴 的交点坐标即可求出 a 的值,进而得出此抛物线的解析式; (2)先用待定系数法求出直线 CD 解析式,再根据抛物线平移的法则得到( 1)中抛物线向下平移 m 各单位 所得抛物线的解析式,再将此解析式与直线CD 的解析式联立,根据两函数图象有交点即可求出m 的取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:若抛物线向下移m 个单位,其解析式 y=-_x 3 4 5+x+4-m( m >0),2'2 '—x +_x - m=02 2.'△= - 2m>0, .Ov me —8'2y= - — x +x+4+m ( m> 0), 2 方法一:当 x= - 8 时,y= - 36+m当 x=4 时,y=m,要使抛物线与 EF 有公共点,则-36+mC 0或m e 6, ••• O v me 36; (7 分)方法二:当平移后的抛物线过点E (- 8, 0)时,解得m=36当平移后的抛物线过点 F (4, 6)时,m=6 由题意知:抛物线向上最多可以平移36个单位长度,(7分)综上,要使抛物线与 EF 有公共点,向上最多可平移 36个单位,向下最多可平移 一个单位.点评: 本题考查的是二次函数的图象与几何变换,涉及到用待定系数法求一次函数与二次函数的解析式、二次函 数与一次函数的交点问题,有一定的难度.考点:待定系数法求二次函数解析式;二次函数图象与几何变换. 分析:(1)确定二次函数的顶点式,即可得出二次函数的解析式.(2)求出两个边界点,继而可得出n 的取值范围.3 (2013?丰台区一模)二次函数 y=x 2+bx+c 的图象如图所示,其顶点坐标为 M( 1, - 4).(1) 求二次函数的解析式; (2)将二次函数的图象在 x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线 y=x+ n 与这个新图象有两个公共点时,求n 的取值范围.解答: 解:(1)因为M( 1,- 4)是二次函数y= (x+m ) 2+k 的顶点坐标,2 2所以 y= (x - 1)- 4=x - 2x - 3,5(2)令 x - 2x - 3=0, 解之得:X 1=- 1, X 2=3,故A, B 两点的坐标分别为 A (- 1, 0), B (3, 0).专题:综合题.消去y ,得-••向下最多可平移 二个单位.(5分)8若抛物线向上移 m 个单位,其解析式如图,当直线y=x+n ( n v 1), 经过A点时,可得n=1, 当直线y=x+n经过B点时,可得n= - 3,•••n的取值范围为-3v nv 1,翻折后的二次函数解析式为二次函数y= - x2+2x+32当直线y=x+n与二次函数y=- x +2x+3的图象只有一个交点时,2x+n= - x +2x+3,整理得:x2- x+n - 3=0,2△ =b - 4ac=1 - 4(n- 3) =13 - 4n=0,解得:n=',4• n的取值范围为:n>4n的值.4. (2009?北京)已知关于x的一元二次方程2x2+4x+k -仁0有实数根,k为正整数.(1)求k的值;2(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x +4x+k - 1的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y= x+b (b v k)与此图象有两个公共点时,b的取值范围.864L2-4-2 (24*-2A■-6一-8—考点:二次函数综合题.分析:(1)综合根的判别式及k的要求求出k的取值;(2)对k的取值进行一一验证,求出符合要求的k值,再结合抛本题考查了待定系数法求二次函数解析式的知识,难点在第二问,关键是求出边界点时物线平移的规律写出其平移后的解析式;(3)求出新抛物线与x轴的交点坐标,再分别求出直线y=x+b经过点A B时的b的取值,进而求出其取2值范围•本题第二问是难点,主要是不会借助计算淘汰不合题意的k值.解答:解:(1)由题意得,△ =16- 8 ( k - 1)> 0.••• kw 3.•••k为正整数,•- k=1, 2, 3;2(2)设方程2x+4x+k - 1=0的两根为x i, X2,贝Ux1+x2=- 2, x1? x2= .2当k=1时,方程2x2+4x+k -仁0有一个根为零;当k=2时,X1? X2=,方程2x2+4x+k - 1=0没有两个不同的非零整数根; :当k=3时,方程2x2+4x+k - 1=0有两个相同的非零实数根- 1.综上所述,k=1和k=2不合题意,舍去,k=3符合题意.2 2当k=3时,二次函数为y=2x+4x+2,把它的图象向下平移8个单位得到的图象的解析式为y=2x +4x- 6;2(3)设二次函数y=2x +4x - 6的图象与x轴交于A、B两点,贝U A (- 3, 0), B (1 , 0). 依题意翻折后的图象如图所示.当直线y= x+b经过A点时,可得b=';2 2当直线y=「x+b经过B点时,可得b=-.2 2由图象可知,符合题意的 b (b v 3)的取值范围为-亠v b v '.2 2(3)依图象得,要图象y=_x+b (b小于k)与二次函数图象有两个公共点时,显然有两段.2, 2而因式分解得y=2x +4x - 6=2 (x - 1) (x+3),第一段,当y= x+b过(1, 0)时,有一个交点,此时b=- —.2 2当y「x+b过(-3, 0 )时,有三个交点,此时b=[而在此中间即为两个交点,此时- 'v b v ;.2 2 2 2第二段,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折后,开口向下的部分的函数解析式为y= - 2 (x - 1) (x+3).显然,当y=[x+b与y=- 2 (x - 1) (x+3) (- 3v x v 1 )相切时,y= x+b与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点.因为b v 3,而y= x+b ( b小于k, k=3),所以当b=3时,将y= x+3代入二次函数y= - 2 (x - 1) (x+3)整2 2理得,24x +9x- 6=0, △> 0,所以方程有两根,那么肯定不将有直线与两截结合的二次函数图象相交只有两个公共点.这种情况故舍去.综上,-=v bv-.考查知识点:一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数的结合等问题•不错的题目,难度不大,综合性强,考查面广,似乎是一个趋势或热点.5. (2012?东城区二模)已知关于x的方程(1 - m x4 5+ (4 - m) x+3=0 •(1)若方程有两个不相等的实数根,求m的取值范围;2(2)若正整数m满足8 - 2m> 2,设二次函数y= (1 - m) x + (4 - m) x+3的图象与x轴交于A B两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象•请你结合这个新的图象回答:当直线y=kx+3与此图象恰好有三个公共点时,求出k的值(只需要求出两个满足题意的k值即可).考点:二次函数综合题.分析:(1)根据方程有两个不相等的实数根,由一元二次方程的定义和根的判别式可求m的取值范围;(2)先求出正整数m的值,从而确定二次函数的解析式,得到解析式与x轴交点的坐标,由图象可知符合题意的直线y=kx+3经过点A、B.从而求出k的值.2 2解答:解:(1 )△ = ( 4 - m - 12 (1 - m = ( m+2),由题意得,(m+2 > 0且1 - 0.故符合题意的m的取值范围是m^- 2且m^1的一切实数.(2)v正整数m满足8 - 2m> 2,「•m可取的值为1和2.又•••二次函数y= (1 - m) x + (4 - m) x+3,m=2 •••( 4 分)5•••二次函数为y= - x +2x+3..A点、B点的坐标分别为(-1, 0)、(3, 0).依题意翻折后的图象如图所示.由图象可知符合题意的直线y=kx+3经过点A B.可求出此时k的值分别为3或-1.-( 7分)注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案.点评:本题考查了二次函数综合题. (1考查了一元二次方程根的情况与判别式△的关系:△>0?方程有两个不相等的实数根.(2)得到符合题意的直线y=kx+3经过点A B是解题的关键.6. 在平面直角坐标系中,抛物线y= - x2+-i mx+r r^- 3m+2与x轴的交点分别为原点O和点A,点B(4, n)在这2 2条抛物线上.(1)求B点的坐标;(2)将此抛物线的图象向上平移■个单位,求平移后的图象的解析式;2(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=「x+b与此图象有两个公共点时,b的取值范围.2考点:- 二次函数综合题.专题:’压轴题.分析:(1)把原点坐标代入抛物线,解关于m的一兀二次方程得到m的值,再根据二次项系数不等于0确定出函数解析式,再把点B坐标代入函数解析式求出n的值,即可得解;(2)根据向上平移纵坐标加解答即可;(3)把直线解析式与抛物线解析式联立,消掉y得到关于x的一元二次方程,根据△ =0求出b的值,然后令y=0求出抛物线与x轴的交点坐标,再求出直线经过抛物线与x轴左边交点的b值,然后根据图形写出 b 的取值范围即可. 解答:解:(1)•••抛物线经过原点O,「•m —3m+2=0解得m=1, m>=2,当m=1 时,——-=——-=0,2 2••• m=21 2•抛物线的解析式为y= ——x +3x,• •点B (4, n)在这条抛物线上,1 2n= -±X4 +3X 4=—8+12=4,2•••点B (4, 4);(2)v抛物线的图象向上平移舟个单位,•••平移后的图象的解析式y= - 2X2+3X+=;2 2消掉 y 得,-一X 2+3X + = x+b ,2 2 22整理得,X - 5x+2b - 7=0,2△ = (- 5)- 4X 1X( 2b - 7) =0,解得b= ■',8令 y=0,则-丄X 2+3X + =0, 2 2整理得,x 2 - 6X - 7=0, 解得 X I =- 1, X 2= 7,•••抛物线与X 轴左边的交点为(-1, 0),当直线y=—x+b 经过点(-1, 0)时,丄X ( - 1) +b=0,2 2解得b=—2•当直线y=—x+b 与此图象有两个公共点时,2T A9- ””本题是二次函数综合题,主要利用了解一元二次方程,二次函数图象上点的坐标特征,二次函数图象与几 何变换,难点在于(3)求出直线与抛物线有三个交点时的b 值,作出图形更形象直观.7. 关于X 的二次函数y=x 2+2x+k - 1的图象与X 轴有交点,k 为正整数. (1) 求k 的值;2 2(2) 当关于X 的二次函数y=x +2x+k - 1与X 轴的交点的横坐标均是负整数时,将关于 X 的二次函数y=x +2x+k - 1 的图象向下平移 4个单位,求平移后的图象的解析式; (3)在(2)的条件下,将平移后的二次函数的图象在 X 轴下方的部分沿X 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线 y=(b v 3)与此图象有两个公共点时,b 的取值范围.2(3)联立《y^-jx+bb 的取值范围为b >—-或 bv _8 2二次函数综合题.(1) 综合根的判别式及 k 的要求,求出k 的取值; (2)对k 的取值进行一一验证,求出符合要求的 k 值,再结合抛物线平移的规律写出其平移后的解析式;解答: 解:(1)由题意得,△ =4- 4 (k - 1)> 0.••• kw 2.•••k为正整数,• k=1, 2;2 _____________________(2) 设方程x +2x+k -仁0的两根为X i , X 2,贝Ux 什X 2=— 2, x i ? X 2=k - 1. 当k=1时,图象y=x 2+2x+k - 1与x 轴有一个交点为(0, 0),不合题意;2当k=2时,图象y=x +2x+k - 1与x 轴有一个交点为(-1, 0),符合题意; 综上所述,k=2符合题意.当k=2时,二次函数为y=x 2+2x+1,把它的图象向下平移4个单位得到的图象的解析式为: y=x 2+2x - 3;2(3) 设二次函数y=x+2x -3的图象与x 轴交于 A B 两点,贝U A (- 3,0),B (1,0). 依题意翻折后的图象如图所示.当直线y=2x+b 经过A 点时,可得b=£;2 2 当直线y=2x+b 经过B 点时,可得b=-丄.2 2由图象可知,符合题意的 b (b v 3)的取值范围为:-丄v b v 」.2 2点评:此题主要考查了一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数(3)求出新抛物线与 x 轴的交点坐标,再分别求出直线 值范围.y= x+b 经过点A 、B 时的b 的取值,进而求出其取的结合等问题•不错的题目难度不大,综合性强.、 . ___________________________________ 28 (2014?东城区一模)已知:关于x的一元二次方程mx-( 4m+1 x+3m+3=0 ( m> 1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x i, X2(其中x i>X2),若y是关于m的函数,且y=x i- 3x2,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.考点:一次函数综合题.专题:’压轴题.分析:(1)列式表示出根的判别式厶,再根据△>0 ,方程有两个不相等的实数根证明;(2)利用求根公式法求出X1、X2 ,然后代入关系式整理即可得解;(3)作出函数图象,然后求出m=2时的函数值与以及m=1时的翻折图象的对应点的坐标,再代入直线解析式求出b值,然后结合图形写出b的取值范围即可.2 2 2解答:(1)证明:△ = ( 4m+1 - 4m (3m+3 =4m - 4m+1= (2m- 1),•/ m> 1,2•••( 2m- 1) >0,•••方程有两个不等实根;(2)解:x=_ '•两根分别为_1 ' ' ; ' =3,2m-■::- - * |厂=1 +j2m ir•/ m> 1,•O v 丄v 1,IT•1v 1+—v 2,ITTx 1> x2 ,•x 1=3, X2=1+丄,IT•y=x1 - 3x2 ,=3 - 3 (1+ ),IT=-;所以,这个函数解析式为y=- : ( m> 1);(3)解:作出函数y= - ': ( m> 1)的图象,并将图象在直线m=2左侧部分沿此直线翻折,所得新图形如图IT所示,m=2 时,y=-:2m=1 时,y=- — =- 3,•••函数图象直线m=2左侧部分翻折后的两端点坐标为( 3, - 3), (2,-丄),2当m=3时,2X 3+b=- 3,解得b=- 9,当m=2时,2X 2+b=- Z2解得b=-',\ 2所以,此图象有两个公共点时,b的取值范围-9v b v-亠丄.点评:本题是一次函数综合题型,主要利用了根的判别式,求根公式法解一元二次方程,一次函数与反比例函数交点问题,难点在于(3)确定出翻折部分的两个端点的坐标以及有两个交点时的b的取值范围,作出图形更形象直观.9. (2013?门头沟区一模)已知关于x的一元二次方程- :.■.-.2(1)求证:无论m取任何实数,方程都有两个实数根;(2)当m v 3时,关于x的二次函数-二| _ 「_二■:的图象与x 轴交于A、B两点(点A在点B的左厶侧),与y轴交于点C,且2AB=3OC求m的值;(3)在(2)的条件下,过点C作直线I //x轴,将二次函数图象在y轴左侧的部分沿直线I翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G请你结合图象回答:当直线尸2芷+b与图象G只有一个公共点3时,b的取值范围.考点:二次函数综合题. 分析: (1) 运用根的判别式就可以求出△的值就可以得出结论; (2) 先当x=0或y=0是分别表示出抛物线与 x 轴和y 轴的交点坐标,表示出 AB OC 的值,由2AB=3O(建 立方程即可求出 m 的值;(3) 把(2) m 的值代入抛物线的解析式就可以求出抛物线的解析式和 C 点的坐标,当直线经过点 C 时就可以求出b 的值,由直线与抛物线只有一个公共点建立方程,根据△=0 就可以求出b 的值,再根据图象就可以得出结论. 解答:解:(1 )根据题意,得 2 △ = ( m- 2) - 4X^X( 2m- 6) 2 =(m- 4)2, •••无论m 为任何数时, •••无论m 取任何实数, (2)由题意,得当y=0时,则=汀2 都有(m- 4) >0,即0. 方程都有两个实数根;解得:X i =6 - 2m X 2=- 2,••• m< 3,点A 在点B 的左侧, • A (- 2,0),B (- 2m+6, 0), • OA=2 OB=- 2m+6 当 x=0 时,y=2m- 6,• C ( 0,2m- 6), •- OC -( 2m - 6) =- 2m+6. •/ 2AB=3OC• 2 ( 2 - 2m+6 解得:m=1; =3 (-2m+6, (3)如图,当m=1时,抛物线的解析式为x 2- x - 4,点C 的坐标为( 当直线y= x+b 经过点C 时,可得3当直线y==x+b (b v- 4)与函数 —x+b --- x - x - 4.3 2整理得:3x - 8x - 6b - 24=0,2• △ = (- 8) - 4X 3X(- 6b - 24) =0,0, - 4). b= - 4,-2y= x - x - 4 (x >0)的图象只有一个公共点时,得!_J解得:b=-二9结合图象可知,符合题意的b 的取值范围为b >- 4或b v-本题是一道一次函数与二次函数的综合试题,考查了一元二次方程根的判别式的运用,二次函数与坐标轴的交点坐标的运用,轴对称的性质的运用,解答时根据函数之间的关系建立方程灵活运用根的判别式是解 答本题的关键.点评:解答:解:(1)设抛物线解析式为y=a (x+2) (x-4), TC点坐标为(0, 4),• a=- 2, (1 分)2•••解析式为y=-丄X*2+X+4 ,2顶点D坐标为(1 , —) ; (2分)2(2)直线CD解析式为y=kx+b .(b=4•••直线CD解析式为尸x+4 , ( 3分)••• E (- 8, 0), F (4, 6),。