大学数学经典求极限方法(最全)
求极限的若干方法
求极限的若干方法求极限是数学中的重要内容之一,它在微积分、数学分析、几何等诸多领域中都有广泛的应用。
在数学中,我们经常使用各种方法来求解极限,以下是一些常见的方法。
1. 代入法:当出现极限中的变量可以直接代入某个值时,可以利用代入法求解。
当求lim(x→0) (sinx/x)时,我们可以将x代入0,得到lim(x→0) sinx/0 = lim(x→0) (sin0)/0 = 1/0 = ∞。
2. 抵消法:当极限存在但不易计算时,可以通过抵消法将其化简为易计算的形式。
当求lim(x→∞) (x^2 + 2x + 3)/(x + 1)时,可以利用抵消法将分子的x^2项与分母的x 项抵消,得到lim(x→∞) (x^2 + 2x + 3)/(x + 1) = lim(x→∞) (x + 2 + 3/x)/(1 + 1/x) = ∞/1 = ∞。
4. 夹逼法:当极限存在但不易直接计算时,可以利用夹逼法将其夹在两个已知的极限之间,从而求出极限的值。
当求lim(x→0) x*sin(1/x)时,可以利用夹逼法,由于-1 ≤ sin(1/x) ≤ 1,所以有-lim(x→0) x ≤ lim(x→0) x*sin(1/x) ≤ lim(x→0) x,即-0 ≤ lim(x→0) x*sin(1/x) ≤ 0。
根据夹逼定理,由-lim(x→0) x = 0及lim(x→0) x = 0可知,lim(x→0) x*sin(1/x) = 0。
5. 利用特殊函数的性质:当极限涉及到特殊函数时,可以利用特殊函数的性质来求解。
当求lim(x→∞) (1 + 1/x)^x时,可以利用自然对数函数的性质,将极限转化为lim(x→∞) e^(x*log(1 + 1/x)) = e^lim(x→∞) (x*log(1 + 1/x)) = e^lim(x→∞) (log(1 + 1/x))/((1/x)) = e^lim(x→∞) ((log(1 + 1/x))/((1/x))),再利用洛必达法则,得到lim(x→∞) ((log(1 + 1/x))/((1/x))) = lim(x→∞) (1/((1 + 1/x)(-1/x^2))) = 1。
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
16种求极限的方法及一般题型解题思路分享
千里之行,始于足下。
16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。
在求极限的过程中,有很多种不同的方法可以使用。
本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。
1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。
这种方法适用于对于给定的变量值函数值可以直接计算的状况。
2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。
3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。
4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。
5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。
6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。
7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。
第1页/共3页锲而不舍,金石可镂。
8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。
9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。
这个法则对于解决0/0和∞/∞型的极限问题格外有用。
10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。
11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。
12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。
13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。
14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。
16种求极限的方法
16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
求极限的13种方法
求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。
本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。
I. 无穷小量法无穷小量法是求解极限最常见的方法之一。
它的基本思想是将待求极限转化为无穷小量之间的比较。
下面通过一个例题来说明这个方法。
例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。
根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。
因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。
故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。
下面通过一个例题来说明夹逼法的思想。
例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。
然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。
也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。
根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。
故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。
下面通过一个例题来说明泰勒展开法的应用。
例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。
16种求极限方法及一般题型解题思路分享
16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
大学数学经典求极限方法及解析(最全)
求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
大学数学经典求极限方法(最全)
求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高等数学求极限的17种常用方法(附例题和详解)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:
;
cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。
本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。
一、直接代入法直接代入法是求极限的最基本方法之一。
当函数在某一点连续时,可以直接将该点代入函数中来求极限。
例题1:求函数f(x) = x^2在x=2处的极限。
解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。
因此,f(x)在x=2处的极限为4。
二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。
它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。
例题2:求极限lim(x→∞) [(x+1)/x]。
解:我们可以用夹逼法来求解这个极限。
首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。
因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。
根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。
三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。
该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。
例题3:求极限lim(x→0) (sinx/x)。
解:我们可以利用极限的四则运算法则来求解这个极限。
首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。
根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。
大一高数求极限的方法总结
大一高数求极限的方法总结大一高等数学中,求极限是一个非常重要的概念和技巧。
在学习求极限的过程中,我们需要掌握一些基本的方法和技巧。
下面是对一些常用的求极限方法进行总结。
一、无穷小量代换法当我们在求一个函数的极限时,可以将函数中的无穷小量用一个新的无穷小量来代替,从而简化计算。
例如,当求极限lim(x->0)(sinx)/x时,可以将sinx用x来代替,即lim(x->0)x/x=1二、夹逼定理夹逼定理是一种非常常用的求极限方法。
当我们无法直接计算一个函数的极限时,可以通过找到两个已知的函数,使它们的极限分别为L和L’,并且夹在待求函数的极限值周围时,我们可以得出待求函数的极限也为L。
三、洛必达法则洛必达法则是一种非常常用的求导法则,它可以用来求解一些不定型的极限。
当我们在计算一个函数的极限时,如果得到的结果为0/0或者∞/∞的形式,那么我们可以使用洛必达法则来求解极限。
具体做法是对分子和分母同时求导,并再次计算极限,直到得到一个有限的值。
四、泰勒展开法当我们计算一些函数在一点的极限时,可以使用泰勒展开来逼近函数的值。
泰勒展开是将一个函数表示为无限项的级数,通过截取有限项来逼近函数的值。
这样可以大大简化我们的计算过程。
五、换元法有时候我们可以通过进行一些变量的替换来改变函数的形式,从而更容易求解极限。
例如,当我们计算lim(x->0)(3^(2x)-2^x)时,可以令y=2^x,然后再进行计算,就可以得到较为简单的表达式。
六、分数的极限当我们计算一个函数的极限时,如果得到的结果为一个分数形式,可以进行有理化来方便我们的计算。
有理化的方法有分子分母同时乘以一些适当的因式、差化积等。
七、级数化积当我们计算一个函数的极限时,通常可以将函数展开为一个级数,然后进行计算。
例如,当我们计算lim(x->0)(e^x-1)/x时,可以将e^x展开为一个级数,再进行计算。
八、寻找特殊点有时候我们可以通过找到一些特定的点来计算极限。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。
其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。
本文将介绍求极限的常用方法,并提供相应的例题和详解。
一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。
具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。
2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。
3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。
则可以得到 lim[f(x)] = lim[g(x)] = A。
下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。
解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。
则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。
二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。
具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。
其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。
高等数学求极限的14种方法
高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((3)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件。
是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。
另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用 (2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
大学数学经典求极限方法(新整理)
3求极限的各种方法1. 约去零因子求极限x 4 - 1例 1:求极限lim x →1x - 1【说明】 x → 1表明 x 与1无限接近,但 x ≠ 1 ,所以 x - 1 这一零因子可以约去。
【解】limx →1 (x - 1)(x + 1)(x 2 + 1)x - 1= lim(x + 1)(x 2 x →1 + 1) = 6 =42. 分子分母同除求极限x 3 - x 2例 2:求极限lim 3x →∞ 3x + 1 【说明】 ∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
∞【解】lim x 3 - x 2 1 - 1 1 = lim x=x →∞ 3x 3 + 1 x →∞ 3 + 1 3 x 【注】(1) 一般分子分母同除 x 的最高次方;⎧⎪ 0m > n a x n + a x n -1+ + a ⎪(2) lim nn -1 0 = ⎨∞ m < n x →∞ b m x m + b m -1 x m -1 + + b ⎪ a n⎪ b m = n⎩ nx 2 + 3 x 2 + 3 + x 2 + 1⎢ ⎭3. 分子(母)有理化求极限例 3:求极限 lim ( - x →+∞x 2 + 1)【说明】分子或分母有理化求极限,是通过有理化化去无理式。
2【解】 lim ( x →+∞- x + 1) = limx →+∞= lim2 = 0x →+∞例 4:求极限limx →0【解】lim x 3= limtan x - sin x x →0 x 3 x →0 x 3 1 + tan x - 1 + sin x= lim1lim tan x - sin x = 1 lim tan x - sin x = 1 x →01 + tan x + 1 + sin x x →0 x 32 x →0 x3 4【注】本题除了使用分子有理化方法外,及时分.离.极.限.式.中.的.非.零.因.子.是解题的关键4. 应用两个重要极限求极限两个重要极限是1(1 + x ) x= e ,第 一个重要极限过于简单且可通过等价无穷小来实现。
求极限的方法与技巧
求极限的方法与技巧求极限是微积分中的基本问题,它在解决实际问题中起着关键作用。
在高等数学中,求极限的方法有多种。
下面将介绍一些常见的求极限的方法与技巧。
一、代入法:当极限中存在一些点,可以通过直接将该点代入函数中来求得极限。
二、化简法:当题目给出的函数比较复杂时,可以通过化简来求极限。
比如,利用封闭函数性质、基本运算法则等进行化简。
三、夹逼法:夹逼法也叫夹定理法,是一种常用的求极限方法。
其基本思想是给出两个函数,找到一个中间函数,使得中间函数的极限等于极限所求的值。
通过夹定理可得:若函数f(x)、g(x)、h(x)满足f(x)≤g(x)≤h(x),当x趋于其中一值a时,f(x)和h(x)的极限都等于L,则g(x)的极限也等于L。
四、间断分解法:当函数在其中一点存在间断时,可以将函数分解开来,单独求解每一段函数的极限,然后再进行综合得出最后的极限。
五、无穷小量替换法:当给出的函数极限不好求解时,可以通过将其替换为一个相等的无穷小量来简化计算。
比如,将极限中的分子或分母替换为无穷小量,或者将函数替换为等价的无穷小量。
六、洛必达法则:洛必达法则是求解一些形如$\displaystyle\frac{0}{0}$ 或$\displaystyle\frac{\pm\infty }{\pm\infty }$型极限的常用方法。
其基本思想是将函数的极限转化为分数的形式,然后对分子和分母同时求导,最后将得到的导数值带入原函数中。
如果在求导之后依然得到一个$\displaystyle\frac{0}{0}$形式的极限,可以继续应用洛必达法则,直到得到非$\displaystyle\frac{0}{0}$形式的极限。
七、级数展开法:对于一些无穷级数的极限求解,可以通过级数展开来计算。
例如,利用泰勒级数展开,将函数展开成无穷级数的形式,然后利用级数的性质进行计算。
八、极限换元法:有时候对于一些较为复杂的函数,可以通过对变量进行换元简化问题。
归纳总结:求极限十法
1、利用定义求极限。 2、利用柯西准则来求。 柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm| 3、利用极限的运算性质及已知的极限来求。 如:lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1. 4、利用不等式即:夹挤定理。 5、利用变量替换求极限。 例如lim (x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/m. 6、利用两个重要极限来求极限。 (1)lim sinx/x=1 x->0 (2)lim (1+1/n)^n=e n->∞ 7、利用单调有界必有极限来求。 8、利用函数连续得性质求极限。 9、用洛必达法则求,这是用得最多的。 10、用泰勒公式来求Fra bibliotek这用得也很经常。
求极限的方法总结
求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。
二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。
()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。
limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1lim xxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
例5:求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1+,最后凑指数部分。
【解】2221212112111lim 121lim 11lim e x x x x x x x xx x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫⎝⎛-++∞→xx a x a x ,求a 。
5.用等价无穷小量代换求极限 【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x-,()abx ax x x b~11,21~cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。
例7:求极限0ln(1)lim1cos x x x x→+=-【解】 002ln(1)limlim 211cos 2x x x x x xx x →→+⋅==-.例8:求极限xxx x 30tan sin lim -→【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 6.用罗必塔法则求极限例9:求极限220)sin 1ln(2cos ln lim xx x x +-→ 【说明】∞∞或0型的极限,可通过罗必塔法则来求。
【解】220)sin 1ln(2cos ln lim x x x x +-→x x xx x x 2sin 12sin 2cos 2sin 2lim20+--=→ 3sin 112cos 222sin lim20-=⎪⎭⎫⎝⎛+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xxxx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 00)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f7.用对数恒等式求)()(lim x g x f 极限 例11:极限xx x 20)]1ln(1[lim ++→【解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lime eexx xx x x ==+++→→【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -因为===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -例12:求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解1】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭= 20ln 2cos ln 3lim x x x →+-=()01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim 22cos 6x x x x →=-⋅=-+【解2】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x →+⎛⎫ ⎪⎝⎭= 20cos 1ln 3limx x x→-+=(1)20cos 11lim 36x x x →-==-8.利用Taylor 公式求极限例13 求极限 ) 0 ( ,2lim20>-+-→a x a a x x x .【解】 ) (ln 2ln 1222ln x a x a x ea ax xο+++==,) (ln 2ln 1222x a x a x axο++-=-;). (ln 2222x a x a a x x ο+=-+-∴ a xx a x x a a x x x x 22222020ln ) (ln lim 2lim =+=-+→-→ο. 例14 求极限011lim (cot )x x x x→-.【解】 00111sin cos lim (cot )lim sin x x x x x x x x x x x→→--= 323230()[1()]3!2!lim x x x x x x x xοο→-+--+= 333011()()12!3!lim 3x x x x ο→-+==.9.数列极限转化成函数极限求解例15:极限21sin lim n n n n ⎪⎭⎫ ⎝⎛∞→【说明】这是∞1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。
【解】考虑辅助极限611sin 11011sin 222lim lim 1sin lim -⎪⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛-+∞→+∞→===⎪⎭⎫ ⎝⎛+e eex x y y y y x x x x x x所以,6121sin lim -∞→=⎪⎭⎫ ⎝⎛e n n n n10.n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法 (1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n Λ 【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。
⎰=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→10)(211lim dx x f n n f n f n f n n Λ 【解】原式=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∞→222112111111lim n n n n n n Λ 1212ln2111102+--=+=⎰dx x例17:极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim Λ 【说明】(1)该题遇上一题类似,但是不能凑成⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→n n f n f n f n n Λ211lim的形式,因而用两边夹法则求解;(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。
【解】⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim Λ 因为11211122222+≤++++++≤+n n nn n n nn n Λ又 nn nn +∞→2lim11lim2=+=∞→n n n所以 ⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim Λ=1 12.单调有界数列的极限问题例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==L(Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=L ,则数列{}n x 有界. 于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 61sin 01sin 110032221lim lim sin 1lim --→⎪⎭⎫ ⎝⎛-→→===⎪⎭⎫ ⎝⎛+++e ee x x xx x x x x x x xx (使用了罗必塔法则)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.。