利用散点图判断两个变量之间的线性相关关系
高中数学必修3第二章:统计2.3变量间的相关关系
Y 研考点·知规律
探究悟道 点拨技法
题型一 相关关系的判断 【例 1】 河北国欣农研会的科研人员在 7 块并排、形状大小 相同的试验田上对某棉花新品种进行施化肥量 x 对产量 y 影响的 试验,得到如下表所示的一组数据(单位:kg): 施化肥量 x 15 20 25 30 35 40 45 棉花产量 y 330 345 365 405 445 450 455
D 读教材·抓基础
回扣教材 扫除盲点
课本导读
1.两个变量的线性相关 (1)在散点图中,点散布在从 左下角 到 右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从 左上角 到 右下角的区域,两个 变量的这种相关关系称为负相关. (3)如果散点图中点的分布在整体上看大致在一条直线附近 , 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之 间的回归直线方程为 yˆ =250+4x,当广告费用为50万元时,预计 汽车销售量约为 ______辆.
2.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的 距离的平方
和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,
^^ ^
y1)、(x2,y2),…,(xn,yn).其回归方程为y=bx+a,则
n
n
xi- x yi- y xiyi-n x y
【创新设计14-2015学年高中数学 2.3.1 变量之间的相关关系;2.3.2 两个变量的线性相关课件 新人教A版必修3
^
(
)
C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kg D.若该大学某女生身高为170 cm,则可断定其体重必为 58.79 kg
答案 D ^ 解析 当 x=170 时,y =0.85×170-85.71=58.79,
体重的估计值为 58.79 kg.
5.正常情况下,年龄在 18 岁到 38 岁的人,体重 y(kg)对身高 x(cm)的回归方程为y=0.72x-58.2,张红同学(20 岁)身高 178 cm,她的体重应该在________kg 左右.
跟踪演练1
下列两个变量之间的关系,哪个不是函数关系 ( )
A.正方体的棱长和体积 B.圆半径和圆的面积 C.正n边形的边数和内角度数之和 D.人的年龄和身高 答案 D
解析
A、B、C都是函数关系,对于A,V=a3;对于B,S=
πr2;对于C,g(n)=(n-2)π.而对于年龄确定的不同的人可以 有不同的身高,∴选D.
(2)正相关与负相关:
右上角 的 左下角 到_______ ①正相关:散点图中的点散布在从_______ 区域.
左上角 到_______ 右下角 的 ②负相关:散点图中的点散布在从_______
区域.
2.回归直线的方程 (1)回归直线:如果散点图中点的分布从整体上看大致在 一条直线 附近,就称这两个变量之间具有_________ 线性相关 关 _________
^
A.y平均增加1.5个单位
B.y平均增加2个单位
C.y平均减少1.5个单位
答案 解析 C
D.y平均减少2个单位
∵两个变量线性负相关,∴变量x增加一个单位,y
平均减少1.5个单位.
4.(2013· 滨州高一检测)设某大学的女生体重 y(单位:kg)与身高 x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i = 1,2,…,n),用最小二乘法建立的回归方程为y = 0.85x - 85.71,则下列结论中不正确的是 A. y 与 x 具有正的线性相关关系 B.回归直线过样本点的中心(x, y)
2017学年数学必修三:2.3.1-变量之间的相关关系~2.3.2 两个变量的线性相关2
(2)问题2中,从表里数据能得出小麦的产量y与施肥量x之间的 函数关系式吗? 提示:从表格里我们很容易发现施肥量越大 ,小麦的产量就越高. 但是,施肥量并不是影响小麦产量的唯一因素 ,小麦的产量还受 土壤的质量、降雨量、田间管理等诸多因素影响 ,这时两个变
量之间就不是确定性的函数关系,因此不能得到y和x的函数关
1.两个变量的线性相关 左下角 到_______. 右上角 (1)正相关:点散布的方向:从_______ 左上角 到_______. 右下角 (2)负相关:点散布的方向:从_______ (3)回归直线:如果散点图中点的分布从整体上看在一条直线附
线性相关 关系,这条直线叫做 近,就称这两个变量之间具有_________
【解析】(1)作出散点图如图所示,
(2)由散点图可知,各点并不在一条直线附近,所以两个变量是
非线性相关关系.
类型二
求回归方程
1.(2013·锦州高一检测)已知一组观测值具有线性相关关系,
bx a ,求得 b =0.51, x =61.75, y =38.14, 则回归方 若对于 y
【探究总结】
1.散点图的作用
(1)判断两个变量之间有无相关关系,一种常用的简便可行的方
法是绘制散点图.
(2)根据散点图很容易看出两个变量之间是否具有相关关系,是
不是线性相关关系,是正相关还是负相关,相关关系强还是弱.
2.利用散点图判断变量间的关系的方法 (1)如果所有的样本点都落在某一函数的曲线上,就用该函数来 描述变量间的关系,即变量具有函数关系. (2)如果所有的样本点都落在某一函数曲线附近,变量之间就有 相关关系. (3)如果所有的样本点都落在某一条直线附近,变量之间就有线 性相关关系.
利用散点图判断两个变量的相关关系
.
年龄 23 27
39
41
45
49 50
53
54
56
57
58
脂肪
9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6
30.2
31.4 30.8 33.5
年龄 60
61
脂肪 35.2 34.6
如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄
人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
下面我们以年龄为横轴, 脂肪含量为纵轴建立直 角坐标系,作出各个点, 称该图为散点图。
脂肪含量 40 35
如图:
30 25 20 15 10 5
O
20
25
30 35 40
年龄
45 50 55
60 65
从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。 但有的两个变量的相关,如下图所示:
如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越 少。 作出散点图发现,它们散 布在从左上角到右下角的区 域内。又如汽车的载重和汽 车每消耗1升汽油所行使的 平均路程,称它们成负相关.
O
1、散点图的特点形象地体现了各数据的密切程度,因此我们可以根据散点图来判断两个 变量有没有线性关系.
2、从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋 势.
一块农田的水稻产量与施肥量之间的关系 。 水稻产量并不是由施肥量唯一确定,在取值上带有随机性
两个变量的线性相关 (11)
2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关1.变量间的相关关系 (1)相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.(2)散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形叫做散点图.(3)正相关与负相关①正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.②负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.2.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.1.下列两个变量具有相关关系的是( ) A .角度和它的余弦值 B .圆的半径和该圆的面积 C .正n 边形的边数和它的内角和 D .居民的收入与存款D [A 、B 、C 中两变量是确定的函数关系.]2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为( )A .y ^=1.5x +2 B .y ^=-1.5x +2 C .y ^=1.5x -2 D .y ^=-1.5x -2B [由散点图知,变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,故只有B 选项符合.]3.5位学生的数学成绩和物理成绩如下表:A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关C [数学成绩x 和物理成绩y 的散点图如图所示.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关.] 4.设有一个回归方程为y ^=2-1.5x ,则变量x 每增加1个单位时,y 平均减少________个单位.1.5 [因为y ^=2-1.5x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(x +1)]-(2-1.5x )=-1.5,所以y 平均减少1.5个单位.](2)判断y与x是否具有线性相关关系.[解](1)散点图如图所示.(2)由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.相关关系的判断方法(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.1.下列关系中,属于相关关系的是________(填序号).①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.②④[在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.]1.任意两个统计数据是否均可以作出散点图? [提示] 任意两个统计数据均可以作出散点图. 2.任何一组数据都可以由最小二乘法得出回归方程吗?[提示] 用最小二乘法求回归方程的前提是先判断所给数据具有线性相关关系,否则求回归方程是无意义的.3.回归系数b ^的含义是什么?[提示] (1)b ^代表x 每增加一个单位,y 的平均增加单位数,而不是增加单位数.(2)当b ^>0时,两个变量呈正相关关系,含义为:x 每增加一个单位,y 平均增加b ^个单位数;当b ^<0时,两个变量呈负相关关系,含义为:x 每增加一个单位,y 平均减少b ^个单位数.【例2】 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下: 零件数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间y (分)626875818995102108115122(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程.思路点拨:画散点图→确定相关关系→求回归直线系数→写回归直线方程. [解] (1)画散点图如下:由上图可知y与x具有线性相关关系.(2)列表、计算:i 1 2 3 4 5 6 7 8 9 10 x i10 20 30 40 50 60 70 80 90 100 y i62 68 75 81 89 95 102 108 115 122x i y i620 1 360 2 250 3 240 4 450 5 700 7 140 8 6401035012200 a^=y-b^x=91.7-0.668×55=54.96.即所求的回归直线方程为:y^=0.668x+54.96.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)(5)代入公式计算b ^,a ^,公式为(6)写出回归直线方程y ^=b ^x +a ^.2.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y30 40 60 50 70(1)画出散点图;(2)求回归方程.[解](1)散点图如图所示.(2)列出下表,并用科学计算器进行有关计算.i 1 2 3 4 5x i 2 4 5 6 8y i30 40 60 50 70x i y i 60 160 300 300 560 x 2i416253664x =5,y =50,∑5i =1 x 2i =145,∑5i =1i i y i =1 380于是可得,b ^===6.5,a ^=y -b ^x =50-6.5×5=17.5. 于是所求的回归方程是y ^=6.5x +17.5.回归方程的应用学生 A B C D E 总成绩x 428 383 421 364 362 数学成绩y 7865716461(2)求y 对x 的线性回归方程(结果保留到小数点后3位数字); (3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩. [解] (1)散点图如图所示:(2)由题中数据计算可得 x =391.6,y=67.8,∑5i =1x 2i =770654,∑5i =1x i y i =133 548.代入公式得b ^=133 548-5×391.6×67.8770 654-5×391.62≈0.204,a ^=67.8-0.204×391.6≈-12.086,所以y 对x 的线性回归方程为y ^=-12.086+0.204x .(3)由(2)得当总成绩为450分时,y ^=-12.086+0.204×450≈80,即这个学生的数学成绩大约为80分.利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点;①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.3.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720.(1)求月储蓄y (千元)关于月收入x (千元)的线性回归方程; (2)若该居民区某家庭的月收入为7千元,预测该家庭的月储蓄. [解] (1)由题意知n =10,x =1n ∑10i =1x i =110×80=8,y =1n ∑n i =1y i =110×20=2,又∑ni =1x 2i -n x 2=720-10×82=80,∑10i =1x i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^y =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入线性回归方程,可以得到该家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元).1.判断变量之间有无相关关系,简便可行的方法就是绘制散点图.根据散点图,可看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线的方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ^,b ^的值时,要先算出b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.若回归方程为y ^=b ^x +a ^,则x=x 0处的估计值为y ^0=b ^x 0+a ^.1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)相关关系是两个变量之间的一种确定的关系. ( ) (2)回归直线方程一定过样本中心点.( )(3)选取一组数据的部分点得到的回归方程与由整组数据得到的回归方程一定相同.( )[★答案★] (1)× (2)√ (3)×2.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( )A .不能小于0B .不能大于0C .不能等于0D .只能小于0C [当b ^=0时,不具有相关关系,b ^可以大于0,也可以小于0.]3.若施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ^=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.650 [当x =80时,y ^=400+250=650.]4.2019年元旦前夕,某市统计局统计了该市2018年10户家庭的年收入和年饮食支出的统计资料如下表:年饮食支出y (万元) 0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3如果已知y 与x 是线性相关的,求回归方程.(参考数据:∑10i =1x i y i =117.7,∑10i =1x 2i =406)[解] 依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑10i =1x i y i =117.7,∑10i =1x 2i =406,∴b ^=≈0.17,a ^=y -b ^ x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.。
利用散点图判断两个变量的相关关系资料讲解
负相关:如果散点图的点散布的位置是从在左上角到右下角的区域,即一个变量的值由小变大时,另 一个变量的值也近似的由大变小,对于两个变量的这种相关关系,我们称为负相关.
在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们将变量所对应的 点描出来,这些点就组成了变量之间的一个散点图.
探究:
(2)函数关系与相关关系之间有着密切联系: 在一定的条件下可以相互转化.而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后, 又可以用一种确定性的关系对这两个变量间的取值进行估计:
3、判断相关关系的基本程序
两个变量 →一个变量值一定→另一个变量带有不确定性→相关关系
4、相关关系的类型 相关关系可分为线性相关,非线性相关两类.
如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越 少。 作出散点图发现,它们散 布在从左上角到右下角的区 域内。又如汽车的载重和汽 车每消耗1升汽油所行使的 平均路程,称它们成负相关.
O
1、散点图的特点形象地体现了各数据的密切程度,因此我们可以根据散点图来判断两个 变量有没有线性关系.
利用散点图判断两个变量的相关关系
讲授新课
一:变量之间的相关关系
1.两变量之间的关系
(1)函数关系: 当自变量取值一定时,因变量取值由它唯一确定
正方形面积S与其边长x之间的函数关系S=x2 , 对自变量边长的每一个确定值,都有唯一确定值一定时,因变量的取值带有一定的随机性
一块农田的水稻产量与施肥量之间的关系 。 水稻产量并不是由施肥量唯一确定,在取值上带有随机性
不确定关系
2、相关关系的概念 自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫相关关系.
专题68 变量间的相关关系与统计案例-高考数学复习资料(解析版)
D.58 件
【答案】A
【解析】由题中数据,得 x =10, y =38,回归直线y^=b^x+a^过点( x , y ),且b^=-2,代入得a^=58, 则回归方程y^=-2x+58,所以当 x=6 时,y=46,故选 A.
附: K 2
n(ad bc)2
.
(a b)(c d)(a c)(b d)
P(K2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
【解析】 (1)由调查数据,男顾客中对该商场服务满意的比率为 40 0.8 ,因此男顾客对该商场服务满 50
意的概率的估计值为0.8.
支出费用为 3.00 万元的家庭购买水果和牛奶的年支出费用约为( )
A.1.795 万元
B.2.555 万元
C.1.915 万元
D.1.945 万元
【答案】A
【解析】
x
1 = ×(2.09+2.15+2.50+2.84+2.92)=2.50(万元),
y
1 = ×(1.25+1.30+1.50+1.70
^
y=99+17.5×9=256.5(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(ⅰ)从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线 y=-30.4+13.5t 上下,
这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描述环境基础设施投资额的趋势.2010 年
(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.
--
(2)样本点的中心:对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(x,y)称为
第九章 变量间的相关关系统计案例
返回
(2)∵ xiyi=3 245, x =25, y =15.43, x2=5 075,7( x )2=4 375,7x y=2 695 i
i= 1 i= 1
7
7
--
y xiyi-7 x ·
i= 1
7
^ ∴b =
≈0.79,
xi2-7 x 2
i= 1
7
^= y -b x =-4.32,∴回归直线方程是y =0.79x-4.32. ^ a (3)进店人数80人时,商品销售的件数y=0.79×80-4.32≈59件.
^ B.y =2x+100 ^ D.y =2x-100
^ 解析:B、D为正相关,C中y 值恒为负,不符合题意.
答案: A
返回
2.两个变量y与x的回归模型中,分别选择了4个不同模
型,它们的相关指数R2如下,其中拟合效果最好的 模型是 A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80 C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.25 解析:相关指数R2越大拟合效果越好. ( )
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该 项运动与性别有关” D.在犯错误的概率不超过0.1%的前提下,认为“爱好该 项运动与性别无关”
返回
[自主解答]
根据独立性检验的定义,由K2≈7.8>6.635
可知我们有99%以上的把握认为“爱好该项运动与性别
^= a
^ y -b x .
n
^ ^ Q= yi-b xi-a 2 的最小值而得到回归直线的方 3.通过求
i= 1
法,即求回归直线,使得样本数据的点到它的距离的平 方和最小,这一方法叫做最小二乘法.
2023年高考数学(文科)一轮复习讲义——变量间的相关关系与统计案例
第4节 变量间的相关关系与统计案例考试要求 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆);3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用.1.相关关系与回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系. 2.线性回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^__,则b ^=, a ^=y --b ^x -.其中,b ^是回归方程的斜率,a ^是在y 轴上的截距.回归直线一定过样本点的中心(x -,y -). 3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.(2)样本点的中心:对于一组具有线性相关关系的数据(x 1, y 1)(x 2, y 2),…,(x n, y n ), 其中(x -,y -)称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(4)相关指数:R 2=.其中是残差平方和,其值越小,则R 2越大(接近1),模型的拟合效果越好. 4.独立性检验(1)利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)为y 1 y 2 总计 x 1 a b a +b x 2 c dc +d总计a +cb +d a +b +c +d则随机变量K 2=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )n =a +b +c +d 为样本容量.1.求解回归方程的关键是确定回归系数a ^,b ^,应充分利用回归直线过样本点的中心(x -,y -).2.根据回归方程计算的y ^值,仅是一个预报值,不是真实发生的值.3.根据K 2的值可以判断两个分类变量有关的可信程度,若K 2越大,则两分类变量有关的把握越大.1.思考辨析(在括号内打“√”或“×”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( )(2)通过回归直线方程y ^=b ^x +a ^可以估计预报变量的取值和变化趋势.( ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( ) (4)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) 答案 (1)√ (2)√ (3)√ (4)√2.(易错题)(2022·兰州模拟)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,n ∈N *,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ) A.-1 B.0C.12D.1答案 D解析 由题设知,所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,可知这组样本数据完全正相关,故其相关系数为1,故选D.3.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( ) A.模型1的相关指数R 2为0.98 B.模型2的相关指数R 2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25答案 A解析在两个变量y与x的回归模型中,它们的相关指数R2越近于1,拟合效果越好,在四个选项中A的相关指数最大,所以拟合效果最好的是模型1.4.(2020·全国Ⅰ卷)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+b e xD.y=a+b ln x答案 D解析由散点图可以看出,这些点大致分布在对数型函数的图象附近.故选D. 5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科文科男1310女720已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.答案 5%解析 K 2的观测值k ≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.6.(2022·银川模拟)某车间为了提高工作效率,需要测试加工零件所花费的时间,为此进行了5次试验,这5次试验的数据如下表:零件数x (个) 10 20 30 40 50 加工时间y (min)62a758189若用最小二乘法求得回归直线方程为y ^=0.67x +54.9,则a 的值为________. 答案 68解析 x -=10+20+30+40+505=30,y -=62+a +75+81+895=61+2+a 5,所以61+2+a5=0.67×30+54.9, 解得a =68.考点一 相关关系的判断1.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份 1 2 3 4 5 6 人均销售额 6 5 8 3 4 7 利润率(%)12.610.418.53.08.116.3根据表中数据,下列说法正确的是( ) A.利润率与人均销售额成正相关关系 B.利润率与人均销售额成负相关关系 C.利润率与人均销售额成正比例函数关系D.利润率与人均销售额成反比例函数关系 答案 A解析 由统计表可得利润率与人均销售额不是正比例关系,也不是反比例关系,排除C 和D ;其属于正相关关系,A 正确,B 错误.2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A.r 2<r 4<0<r 3<r 1B.r 4<r 2<0<r 1<r 3C.r 4<r 2<0<r 3<r 1D.r 2<r 4<0<r 1<r 3 答案 A解析 由散点图知图①与图③是正相关,故r 1>0,r 3>0, 图②与图④是负相关,故r 2<0,r 4<0,且图①与图②的样本点集中在一条直线附近,因此r 2<r 4<0<r 3<r 1,故选A. 3.(2022·合肥模拟)根据如下样本数据,得到回归直线方程y ^=b ^x +a ^,则( )x 3 4 5 6 7 8 y-3.0 -2.00.5-0.52.54.0A.a ^>0,b ^>0 B.a ^>0,b ^<0 C.a ^<0,b ^>0D.a ^<0,b ^<0答案 C解析 作出散点图(图略),由散点图可知,a ^<0,b ^>0. 感悟提升 判断相关关系的两种方法:(1)散点图法:如果样本点的分布从整体上看大致在某一曲线附近,变量之间就有相关关系;如果样本点的分布从整体上看大致在某一直线附近,变量之间就有线性相关关系.(2)相关系数法:利用相关系数判定,|r |越趋近于1,相关性越强. 考点二 回归分析 角度1 线性回归方程及应用例1 (2021·成都诊断)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x (单位:年)与失效费y (单位:万元)的统计数据如下表所示:使用年限x (单位:年) 1234567失效费y (单位:万元)2.903.30 3.604.40 4.805.20 5.90(1)由上表数据可知,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(精确到0.01)(2)求出y 关于x 的线性回归方程,并估算该种机械设备使用10年的失效费. 参考公式:相关系数r =∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2∑ni =1(y i -y -)2.线性回归方程y ^=b ^x +a ^中斜率和截距最小二乘估计计算公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -. 参考数据:∑7i =1(x i -x -)(y i -y -)=14.00, ∑7i =1(y i -y -)2=7.08,198.24≈14.10.解 (1)由题意,知x -=1+2+3+4+5+6+77=4,y -=2.90+3.30+3.60+4.40+4.80+5.20+5.907=4.30,∑7i =1(x i -x -)2=(1-4)2+(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2+(7-4)2=28, ∴r =14.0028×7.08=14.00198.24≈14.0014.10≈0.99.因为y 与x 的相关系数近似为0.99,所以y 与x 的线性相关程度相当大,从而可以用线性回归模型拟合y 与x 的关系. (2)∵b ^=∑7i =1 (x i -x -)(y i -y -)∑7i =1 (x i -x -)2=1428=0.5, ∴a ^=y --b ^x -=4.3-0.5×4=2.3.∴y 关于x 的线性回归方程为y ^=0.5x +2.3.将x =10代入线性回归方程,得y ^=0.5×10+2.3=7.3, ∴估算该种机械设备使用10年的失效费为7.3万元. 角度2 非线性回归方程及应用例2 (2022·郑州调研)人类已经进入大数据时代.目前,数据量级已经从TB(1 TB =1 024 GB)级别跃升到PB(1 PB =1 024 TB),EB(1 EB =1 024 PB)乃至ZB(1 ZB =1 024 EB)级别.国际数据公司(IDC)研究结果表明,2008年全球产生的数据量为0.49 ZB ,2009年数据量为0.8 ZB ,2010年增长到1.2 ZB ,2011年数据量更是高达1.82 ZB.下表是国际数据公司(IDC)研究的全球近6年每年产生的数据量(单位:ZB)及相关统计量的值:表中z i =ln y i ,z -=16∑6i =1z i . (1)根据上表数据信息判断,方程y =c 1·e c 2x (e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(c 2精确到0.01);(2)有人预计2022年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由. 参数数据:e4.56≈95.58,e4.58≈97.51,回归方程y ^=a ^+b ^x 中,b ^=∑n i =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i -nx -2, a ^=y --b ^x -.解 (1)由y =c 1·e c 2x 得ln y =c 2x +ln c 1, 即z =c 2x +ln c 1,∴c 2=∑6i =1(x i -x -)(z i -z -)∑6i =1(x i -x -)2=6.7317.5≈0.38.又∵z -=c 2x -+ln c 1,0.38×3.5+ln c 1=2.85,ln c 1=1.52. ∴ln y =0.38x +1.52,即y =e 0.38x +1.52为所求的回归方程. (2)根据(1)知回归方程为y =e 0.38x +1.52.当x =9时,y =e 0.38×9+1.52=e 4.94>e 4.56≈95.58,95.581.82≈52.52.据此可以判断2022年全球产生的数据量超过2011年的50倍,因此,这种判断是准确的.感悟提升 回归分析问题的类型及解题方法 (1)求回归方程①根据散点图判断两变量是否线性相关,如不是,应通过换元构造线性相关. ②利用公式,求出回归系数b ^.③待定系数法:利用回归直线过样本点的中心求系数a ^.(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值. (3)利用回归直线判断正、负相关,决定正相关还是负相关的是系数b ^.(4)回归方程的拟合效果,可以利用相关系数判断,当|r |越趋近于1时,两变量的线性相关性越强.训练1 下面给出了根据我国2015~2021年水果人均占有量y (单位:kg)和年份代码x 绘制的散点图和线性回归方程的残差图.(2015年~2021年的年份代码x 分别为1~7)(1)根据散点图分析y 与x 之间的相关关系;(2)根据散点图相应数据计算得∑7i =1y i =1 074,∑7i =1x i y i =4 517,求y 关于x 的线性回归方程;(精确到0.01)(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果. 附:回归方程y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为 b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2, a ^=y --b ^x -.解 (1)从散点图可以看出,这些点的分布整体上在一条直线附近,且当x 由小变大时,y 也由小变大,所以y 与x 之间具有线性相关关系,且是正相关. (2)由题意可知,x -=1+2+3+4+5+6+77=4,y -=17∑7i =1y i=1 0747, ∑7i =1x 2i =12+22+32+42+52+62+72=140, ∴b ^=∑7i =1x i y i-7x - y -∑7i =1x 2i -7x -2=4 517-7×4×1 0747140-7×42=22128≈7.89,∴a ^=y --b ^x -=1 0747-7.89×4≈121.87,∴y 关于x 的线性回归方程为y ^=7.89x +121.87.(3)由残差图可以看出历年数据的残差均分布在-2~2之间,且图中各点比较均匀地分布在数值0所在直线附近,带状区域很窄,说明对应的回归直线拟合效果较好.考点三 独立性检验例3 (2021·武汉质检)有关研究表明,正确佩戴安全头盔,规范使用安全带能够将交通事故死亡风险大幅降低,对保护群众生命安全具有重要作用.2020年4月,“一盔一带”安全守护行动在全国各地开展,行动期间,公安交管部门将加强执法管理,依法查纠摩托车和电动自行车骑乘人员不佩戴安全头盔,汽车驾乘人员不使用安全带的行为,助推养成安全习惯,该行动开展一段时间后,某市针对电动自行车骑乘人员是否佩戴安全头盔问题进行调查,在随机调查的1 000名骑行人员中,记录其年龄和是否佩戴头盔情况,得到统计图如图所示.(1)估算该市电动自行车骑乘人员的平均年龄; (2)根据所给的数据,完成列联表:是否佩戴头盔是否(3)根据(2)中的列联表,判断是否有99%的把握认为佩戴安全头盔与年龄有关. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)该市电动自行车骑乘人员平均年龄为25×0.25+35×0.35+45×0.2+55×0.15+65×0.05=39(周岁). (2)完成2×2列联表如下:(3)K 2的观测值k =1 000×(60×540-60×340)2600×400×880×120=12522≈5.682<6.635.故没有99%的把握认为佩戴安全头盔与年龄有关.感悟提升 1.在2×2列联表中,如果两个变量没有关系,则应满足ad -bc ≈0. |ad -bc |越小,说明两个变量之间关系越弱;|ad -bc |越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成2×2列联表:(2)根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)计算K2的观测值k;(3)通过比较观测值k与临界值的大小关系来作统计推断.训练2 (2022·南宁模拟)第五代移动通信技术(5G技术)是最新一代蜂窝移动通信技术,也是继4G、3G和2G系统之后的延伸.5G的性能目标是高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接.某大学为了解学生对“5G”相关知识的了解程度,随机抽取100名学生参与测试,并根据得分划分成“不太了解”或“比较了解”两类后整理得到如下列联表:(1)补全列联表,并判断是否有99.9%的把握认为“学生对5G的了解程度与性别有关”;(2)从“不太了解”的学生中按性别分层抽取6人,再从这6人中随机选取2人参加“5G”知识讲座,求抽到的2人中恰有1名女生的概率.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(n=a+b+c+d). 临界值表:解(1)补全的列联表如下:不太了解 比较了解 总计 男生 25 33 58 女生 5 37 42 总计3070100所以K 2的观测值k =100×(25×37-33×5)258×42×30×70≈11.291>10.828,故有99.9%的把握认为“学生对5G 的了解程度与性别有关”. (2)“不太了解”的男生有25人,女生有5人,按性别分层抽样从中抽取6人,则男生应抽取5人,记为a ,b ,c ,d ,e ,女生应抽取1人,记为x ,再从这6人中随机抽取2人共有15种情况:xa ,xb ,xc ,xd ,xe ,ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,抽到恰有1名女生有5种情况:xa ,xb ,xc ,xd ,xe , 所以所求的概率为515=13.1.为调查中学生近视情况,测得某校在150名男生中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( ) A.回归分析 B.均值与方差 C.独立性检验 D.概率答案 C解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断. 2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v ,有观测数据(u i ,v i )(i =1,2,…,10),得散点图(2),由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关 答案 C解析 由题图(1)可知,y 随x 的增大而减小,各点整体呈下降趋势,x 与y 负相关,由题图(2)可知,u 随v 的增大而增大,各点整体呈上升趋势,u 与v 正相关. 3.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数R 2来刻画回归的效果,R 2值越接近于1,说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.正确的是( ) A.①② B.②③ C.①③ D.①②③答案 D4.(2022·昆明诊断)下表是关于某设备的使用年限x (单位:年)和所支出的维修费用y (单位:万元)的统计表:x 2 3 4 5 6 y3.44.25.15.56.8由表可得线性回归方程y ^=0.81x +a ^,若规定:维修费用y 不超过10万元,一旦大于10万元时,该设备必须报废.据此模型预测,该设备使用年限的最大值约为( ) A.7B.8C.9D.10答案 D解析 由已知表格,得x -=15×(2+3+4+5+6)=4, y -=15×(3.4+4.2+5.1+5.5+6.8)=5,因为回归直线恒过样本点的中心(x -,y -), 所以5=0.81×4+a ^,解得a ^=1.76, 所以回归直线的方程为y ^=0.81x +1.76,由y ≤10,得0.81x +1.76≤10,解得x ≤82481≈10.17,由于x ∈N *,所以据此模型预测,该设备使用年限的最大值为10.故选D. 5.某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:附表:参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参照附表,得到的正确结论是( )A.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别有关B.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别无关C.有99.99%以上的把握认为喜欢“应用统计”课程与性别有关D.有99.99%以上的把握认为喜欢“应用统计”课程与性别无关 答案 A解析 ∵K 2的观测值k =55×(20×20-5×10)225×30×30×25≈11.978>10.828,所以有99.9%的把握认为喜欢“应用统计”课程与性别有关,即在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别有关. 6.下列说法:①残差可用来判断模型拟合的效果;②设有一个回归方程:y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归直线:y ^=b ^x +a ^必过点(x -,y -);④在一个2×2列联表中,由计算得K 2的观测值k =6.665,则有99%的把握确认这两个变量间有关系(其中P (K 2≥6.635)=0.010), 其中错误的个数是( ) A.0 B.1 C.2 D.3答案 B解析 对于①,残差可用来判断模型拟合的效果,残差越小,拟合效果越好,∴①正确;对于②,回归方程y ^=3-5x 中,变量x 增加一个单位时,y 平均减少5个单位,∴②错误;对于③,线性回归直线y ^=b ^x +a ^必过样本点的中心(x -,y -),∴③正确; 对于④,在2×2列联表中,由计算得k =6.665,对照临界值得,有99%的把握确认这两个变量间有关系,∴④正确. 综上,其中错误的命题是②,共1个,故选B.7.已知x 和y 的散点图如图所示,在相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^=b ^x +a ^拟合时的相关指数为R 22,则R 21,R 22中较大的是________.答案 R 21解析 由散点图知,用y =c 1e c 2x 拟合的效果比y ^=b ^x +a ^拟合的效果要好,所以R 21>R 22,故较大者为R 21.8.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2的观测值k ≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.则下列结论中,正确结论的序号是________. ①有95%的把握认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%. 答案 ①解析 k ≈3.918≥3.841,而P (K 2≥3.814)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆.9.在一次对人体脂肪含量和年龄的关系的研究中,研究人员获得了一组样本数据,并制成如图所示的人体脂肪含量与年龄的关系的散点图,下列结论中正确的是________(填序号).①人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%; ②人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%;③人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%; ④人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%. 答案 ②解析 观察图形,可知人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%.10.(2022·河南名校联考)某学校食堂统计了最近5天到餐厅就餐的人数x (单位:百人)与食堂向食材公司购买所需食材(原材料)的数量y (单位:袋),得到如下统计表:(1)根据所给的5组数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(2)已知购买食材的费用C (单位:元)与数量y (单位:袋)的关系为C =⎩⎨⎧400y -20,0<y <36(y ∈N ),380y ,y ≥36(y ∈N ),投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1 500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2,a ^=y --b ^x -. 参考数据:∑5i =1x i y i =1 343,∑5i =1x 2i =558,∑5i =1y 2i=3 237. 解 (1)由所给数据可得x -=13+9+8+10+125=10.4,y -=32+23+18+24+285=25,所以b ^=∑5i =1x i y i -5x - y -∑5i =1x 2i-5x -2=1 343-5×10.4×25558-5×10.42=2.5,又a ^=y --b ^x -=25-2.5×10.4=-1, 所以y 关于x 的线性回归方程为y ^=2.5x -1. (2)由(1)中求出的线性回归方程知,当x =15时,y =36.5,即预计需要购买食材36.5袋. 因为C =⎩⎪⎨⎪⎧400y -20,0<y <36(y ∈N ),380y ,y ≥36(y ∈N ),所以当y <36时,利润L =700y -(400y -20)=300y +20,y ∈N , 此时当y =35时,利润L max =300×35+20=10 520(元);当y ≥36时,根据线性回归方程预测需要购买食材36.5袋,并且剩余的食材只能无偿退还,此时当y =36时,利润L =700×36-380×36=11 520(元), 当y =37时,利润L =700×36.5-380×37=11 490(元).综上,食堂应购买36袋食材,才能获得最大利润,最大利润为11 520元. 11.(2022·“四省八校”开学考试)据我国一项专题调查显示,某市高级职称的中年知识分子中竟有高达75.3%的人处于亚健康状态,更令人担忧的是85%以上的企业管理者处于慢性疲劳状态或亚健康状态,这是由他们所处的特殊工作及生活的环境和行为模式所决定的.亚健康是指非病非健康的一种临界状态.如果这种状态不能及时得到纠正,非常容易引起身心疾病.某高科技公司为了了解亚健康与性别的关系,对本公司部分员工进行了不记名问卷调查,该公司处于正常工作状态的员工(包括管理人员)共有8 000人,其中男性员工有6 000人,女性员工有2 000人,从8 000人中用分层抽样的方法随机抽取了400人作为样本进行健康状况的调查.(1)求男性员工、女性员工各抽取多少人?(2)通过调查得到如图所示的统计图,其中a=0.2,b=0.1.根据统计图,完成下面2×2列联表,健康亚健康总计男员工女员工总计400问是否有97.5%的把握认为人处于亚健康状态与性别有关?参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d. 参考数据:P(K≥k0)0.050.0250.0100.005k0 3.841 5.024 6.6357.879解(1)由题意知样本容量与总体的比值为4008 000=120,∴男性员工抽取了6 000×120=300(人),女性员工抽取了2 000×120=100(人).(2)由统计图可知,样本中男员工处于亚健康状态的人数为300×0.2=60,样本中女员工处于亚健康状态的人数为100×0.1=10,2×2列联表为健康 亚健康 总计 男员工 240 60 300 女员工 90 10 100 总计33070400则K 2的观测值k =400×(240×10-60×90)2300×100×330×70≈5.195>5.024,∴有97.5%的把握认为人处于亚健康状态与性别有关.12.已知某次考试之后,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学、物理成绩(单位:分)对应如下表:学生编号 1 2 3 4 5 6 7 8 数学成绩 60 65 70 75 80 85 90 95 物理成绩7277808488909395给出散点图如下:根据以上信息,判断下列结论:①根据散点图,可以判断数学成绩与物理成绩具有线性相关关系; ②根据散点图,可以判断数学成绩与物理成绩具有一次函数关系;③从全班随机抽取甲、乙两名同学,若甲同学数学成绩为80分,乙同学数学成绩为60分,则甲同学的物理成绩一定比乙同学的物理成绩高. 其中正确的为________(填序号). 答案 ①解析 由散点图知,各点大致分布在一条直线附近,故可以判断数学成绩与物理成绩具有线性相关关系,但不能判断数学成绩与物理成绩具有一次函数关系,故①正确,②错误;若甲同学数学成绩为80分,乙同学数学成绩为60分,则甲同学的物理成绩可能比乙同学的物理成绩高,故③错误.13.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x 6,y 6)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2-12附近波动.经计算∑6i =1x i =12,∑6i =1y i =14,∑6i =1x 2i =23,则实数b 的值为________. 答案 1723解析 令t =x 2,则曲线的回归方程变为线性的回归方程,即y =bt -12, 此时t -=∑6i =1x 2i 6=236,y -=∑6i =1yi 6=73,代入y =bt -12,得73=b ×236-12,解得b =1723.14.近年来,国资委、党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:(1)求y 关于x 的线性回归方程(计算结果保留两位小数);(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -,K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .临界值表:解 (1)依题意得,x -=1+2+3+4+55=3,y -=8+10+13+25+245=16,故∑5i =1(x i -x -)(y i -y -)=(-2)×(-8)+(-1)×(-6)+1×9+2×8=47, ∑5i =1(x i -x -)2=4+1+1+4=10,则b ^=∑5i =1(x i -x -)(y i -y -)∑5i =1 (x i -x -)2=4710=4.7,a ^=y --b ^x -=16-4.7×3=1.9.所以y 关于x 的线性回归方程为y ^=4.7x +1.9. (2)依题意,女性不愿意参与管理的人数为50, 计算得K 2的观测值为k =300×(150×50-50×50)2200×100×200×100=300×5 000×5 000200×100×200×100=18.75>10.828, 故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.。
变量间的相关关系统计案例
其中两个变量x、y具有相关关系的图是
A.①②
B.①④
C.③④
D.②③
解析:由散点图知③④具有相关关系.
答案: C
()
返回
2.如图所示,有5组(x,y)数据,去 掉________组数据后,剩下的4组 数据具有较强的线性相关关系. 解析:由散点图知呈带状区域时有较强的线性相关关系, 故去掉D. 答案: D
男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110
返回
由χ2=a+bcn+add-ab+cc2b+d算得,
χ2=110×60×405×0×306-0×205×0202≈7.8.
附表:
P(χ2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
多考查基本思想的应用及基本运算.
返回
返回
一、变量间的相关坐标,另一个变量的相应
取值为纵坐标,在直角坐标系中描点,这样的图形叫 做散点图. 三、回归直线方程与回归分析 (1)直线方程=a+bx,叫做Y对x的 回归直线方程 ,b 叫
做 回归系数 .要确定回归直线方程,只要确定a与回 归系数b.
n
n
xi- x 2 yi- y 2
i=1
i=1
r=
n xiyi-n-x -y
i=1
n
xi2-n-x 2n yi2-n-y 2
i=1
i=1
=
.
返回
(4)样本相关系数r具有以下性质:|r|≤1,并且|r|越接近1,
线性相关程度 越强 ;|r|越接近0,线性相关程度越弱.
返回
四、独立性检验 (1)2×2列联表:
A.^y=-2x+100
高中数学精品课件 2.3.1 变量之间的相关关系--2.3.2 两个变量的线性相关
①画出数据对应的散点图; ②判断房屋的销售价格和房屋面积之间是否具有相关关系,如果 有相关关系,是正相关还是负相关?
解 ①数据对应的散点图如图所示.
②通过以上数据对应的散点图可以判断,房屋的销售价格和房屋 面积之间具有相关关系,并且是正相关.
x0123 y1357 则 y 与 x 的线性回归方程为y^=b^ x+a^ 必过点( )
A.(2,2)
B.(1,2)
C.(1.5,0)
D.(1.5,4)
解析 易得-x=1.5,-y=4,由于回归直线过样本点的中心(-x,
-y),故选 D. 答案 D
4.小学生身高 y 与年龄 x 之间的线性回归直线方程为y^=8.8x+65, 预测一名 10 岁的小学生的身高为________. 解析 当 x=10 时,y^=8.8×10+65=153. 答案 153
题型三 利用回归方程对总体进行估计 【例3】 某地最近十年粮食需求量逐年上升,下表是部分统计数
据:
年份
2008 2010 2012 2014 2016
需求量/万吨 236 246 257 276 286
(1)利用所给数据求年需求量与年份之间的回归直线方程y^=b^ x+ a^ ; (2)利用(1)中所求出的直线方程预测该地 2018 年的粮食需求量.
函数关系
变量之间的关系可以用函数表示
相关关系 变量之间有一定的联系,但不能完全用函数表示
2.相关关系与函数关系的区别与联系
类别
区别
联系
函 ①函数关系中两个变量间是一种确定性 ①在一定的条件下可以相
高中数学复习教案:变量间的相关关系、统计案例
第四节 变量间的相关关系、统计案例[考纲传真] 1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.了解独立性检验的基本思想、方法及其初步应用.4.了解回归分析的基本思想、方法及简单应用.1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点散布在左上角到右下角的区域内,两个变量的这种相关关系称为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程为y ^=b ^x +a ^,其中b ^=,a ^=.(3)通过求Q = (y i -bx i -a )2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(5)相关指数:R 2=1-.其中是残差平方和,其值越小,则R 2越大(接近1),模型的拟合效果越好.3.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )(其中n =a +b +c +d ).[常用结论]1.从散点图观察相关性;(1)正相关:样本点分布在从左下角到右上角的区域; (2)负相关:样本点分布在从左上角到右下角的区域. 2.b ^的几何意义:体现平均增加或平均减少.3.线性回归方程y ^=b ^x +a ^一定过样本点的中心(—x ,—y ). 4.由回归直线求出的数据是估算值,不是精确值.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)相关关系与函数关系都是一种确定性的关系, 也是一种因果关系.( ) (2)只有两个变量有相关关系,所得到的回归模型才有预测价值.( ) (3)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( )(4)由独立性检验可知,在犯错误的概率不超过1%的前提下认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( )A .回归分析B .均值与方差C .独立性检验D .概率C [“近视”与“性别”是两类变量,其是否有关,应用独立性检验判断.]3.(教材改编)已知变量x 与y 正相关,且由观测数据算得样本平均数—x =3,—y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4A [因为变量x 和y 正相关,排除选项C,D.又样本中心(3,3.5) 在回归直线上,排除B,选项A 满足.]4.下面是2×2列联表:则表中a ,b 的值分别为( )y 1 y 2 合计 x 1 a 21 73 x 222 2547合计 b 46 120A.94,72 C .52,74D .74,52C [∵a +21=73,∴a =52.又a +22=b ,∴b =74.]5.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则所得到的统计学结论是:有多少的把握认为“学生性别与支持该活动有关系”.( )附:P (K 2≥k 0) 0.100 0.050 0.025 0.010 0.001k 02.7063.841 5.024 6.635 10.828A.0.1% C .99%D .99.9%C [因为7.069与附表中的6.635最接近,所以得到的统计学结论是:有1-0.010=0.99=99%的把握认为“学生性别与支持该活动有关系”.]相关关系的判断1.( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关C [因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.]2.甲、乙、丙、丁四位同学各自对A ,B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:甲乙丙丁r 0.82 0.78 0.69 0.85 m 106 115 124 103则哪位同学的试验结果体现A ,B 两变量有更强的线性相关性( ) A .甲 B .乙 C .丙 D .丁D [在验证两个变量之间的线性相关关系时,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大;残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现了A ,B 两变量有更强的线性相关性.]3.(2019·泰安月考)x 和y 的散点图如图所示,则下列说法中所有正确命题的序号为________.①x ,y 是负相关关系;②在该相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^=b ^x +a ^拟合时的相关指数为R 22,则R 21>R 22;③x ,y 之间不能建立线性回归方程.①② [在散点图中,点散布在从左上角到右下角的区域,因此x ,y 是负相关关系,故①正确;由散点图知用y =c 1e c 2x 拟合比用y ^=b ^x +a ^拟合效果要好,则R 21>R 22,故②正确;x ,y 之间可以建立线性回归方程,但拟合效果不好,故③错误.][规律方法] 判定两个变量正、负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:r >0时,正相关;r <0时,负相关. (3)线性回归方程中:时,正相关;时,负相关.线性回归分析及应用【例1】 (2018·全国卷Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.[解] (1)利用模型①,可得该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,可得该地区2018年的环境基础设施投资额的预测值为 y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.[规律方法] 线性回归分析问题的类型及解题方法 (1)求线性回归方程: ①利用公式,求出回归系数②待定系数法:利用回归直线过样本点中心求系数.(2)利用回归方程进行预测:,把回归直线方程看作一次函数,求函数值. (3)利用回归直线判断正、负相关: 决定正相关还是负相关的是系数(2018·临沂期末)某市春节期间7家超市广告费支出x i (万元)和销售额y i (万元)数据如下表:超市AB C D E F G广告费支出x i 1 246 11 13 19销售额y i19 32 40 44 52 53 54(1)若用线性回归模型拟合y 与x 的关系,求y 与x 的线性回归方程;(2)若用二次函数回归模型拟合y 与x 的关系,可得回归方程:y ^=-0.17x 2+5x +20,经计算,二次函数回归模型和线性回归模型的R 2分别约为0.93和0.75,请用R 2说明选择哪个回归模型更合适,并用此模型预测A 超市广告费支出3万元时的销售额.参考数据:.参考公式:[解] (1)=2 794-7×8×42708-7×82=1.7,故y 关于x 的线性回归方程是y ^=1.7x +28.4. (2)∵0.75<0.93,∴二次函数回归模型更合适. 当x =3时,y ^=33.5.故选择二次函数回归模型更合适,并且用此模型预测A 超市广告费支出3万元时的销售额为33.5万元.独立性检验及应用【例2】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50 kg箱产量≥50 kg旧养殖法新养殖法(3)附:P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828,K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).[解](1)旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表箱产量<50 kg 箱产量≥50 kg旧养殖法 62 38 新养殖法3466K 2的观测值k =200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.[规律方法] 独立性检验的一般步骤 (1)根据样本数据制成2×2列联表; (2)根据公式K 2=,计算K 2的观测值k 的值;(3)查表比较K 2的观测值k 与临界值的大小关系,作统计判断.课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这180名学生中选择社会科学类的男生、女生均为45名.(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?(2)根据抽取的180名学生的调查结果,完成下面的2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?选择自然科学类 选择社会科学类 合计男生 女生 合计附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .P (K 2 ≥k 0) 0.500 0.400 0.250 0.150 0.100 0.050 0.025 0.010 0.005 0.001 k 00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828[解] (1)从高一年级学生中随机抽取1人,抽到男生的概率约为105180=712. (2)根据统计数据,可得2×2列联表如下:选择自然科学类 选择社会科学类 合计男生 60 45 105 女生 30 45 75 合计9090180则K 2的观测值为k =180×(60×45-30×45)2105×75×90×90=367≈5.142 9>5.024,所以能在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.(2018·全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m 不超过m 第一种生产方式 第二种生产方式(3)根据(2)中的列联表, 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (K 2≥k 0) 0.050 0.010 0.001k 03.841 6.635 10.828[解] (1)理由如下:(ⅰ)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ⅱ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(ⅲ)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.(ⅳ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.(以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.)(2)由茎叶图知m=79+812=80.列联表如下:(3)由于K2的观测值k=20×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.。
2019版数学(理)高分计划一轮高分讲义:第9章 统计与统计案例 9.3 变量间的相关关系与统计案例
9.3变量间的相关关系与统计案例[知识梳理]1.相关关系与回归方程(1)相关关系的分类①正相关:从散点图上看,点散布在从左下角到右上角的区域内,如图1;②负相关:从散点图上看,点散布在从左上角到右下角的区域内,如图2。
(2)线性相关关系:从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(3)回归方程①最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.②回归方程:两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归方程为错误!=错误!x+错误!,则错误!=错误!=错误!,错误!=错误!-错误!错误!.其中,错误!是回归方程的斜率,错误!是在y轴上的截距,错误!=错误!错误!x i,错误!=错误!错误!y i,(错误!,错误!)称为样本点的中心.说明:回归直线错误!=错误!x+错误!必过样本点的中心(错误!,错误!),这个结论既是检验所求回归直线方程是否准确的依据,也是求参数的一个依据.(4)样本相关系数r=错误!,用它来衡量两个变量间的线性相关关系.①当r>0时,表明两个变量正相关;②当r<0时,表明两个变量负相关;③r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|〉0.75时,认为两个变量有很强的线性相关关系.2.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为2×2列联表构造一个随机变量K=错误!,其中n=a+b+c+d为样本容量.(3)独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.[诊断自测]1.概念思辨(1)利用散点图可以直观判断两个变量的关系是否可以用线性关系表示.()(2)通过回归方程错误!=错误!x+错误!可以估计和观测变量的取值和变化趋势.()(3)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大.()(4)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.()答案(1)√(2)√(3)√(4)×2.教材衍化(1)(必修A3P94A组T3)某种产品的广告费用支出x(单位:万元)与销售额y(单位:万元)之间有如下的对应数据:错误!错误!错误!,则此直线一定经过点( )A .(5,60)B .(5,50)C .(6,50)D .(8,70) 答案 B解析 回归直线样本点的中心为(x -,错误!),而错误!=错误!×(2+4+5+6+8)=5,错误!=错误!×(30+40+60+50+70)=50,所以回归直线一定经过点(5,50).故选B.(2)(选修A1-2P 96T 2)通过随机询问72名不同性别的大学生在购买食物时是否看生产日期,得到如下列联表:则有________的把握认为性别与是否读生产日期有关. 答案 99.5%解析 由表中数据得k =错误!≈8。
第八章 成对数据的统计分析(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第八章成对数据的统计分析(公式、定理、结论图表)一、成对数据的统计相关性1.变量的相关关系(1)函数关系函数关系是一种确定性关系,常用解析式来表示.(2)相关关系两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.与函数关系不同,相关关系是一种非确定性关系.2.散点图(1)散点图成对样本数据都可用直角坐标系中的点表示出来,由这些点组成的统计图叫做散点图.(2)正相关和负相关如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关.3.线性相关一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,则称这两个变量线性相关.4.样本相关系数(1)对于变量x和变量y,设经过随机抽样获得的成对样本数据为(,),(,),,(,),利用相关系数r 来衡量两个变量之间线性关系的强弱,相关系数r的计算公式:,,,,,的均值分别为和).①当r >0时,称成对样本数据正相关.这时,当其中一个数据的值变小时,另一个数据的值通常也变小;当其中一个数据的值变大时,另一个数据的值通常也变大.②当r <0时,称成对样本数据负相关.这时,当其中一个数据的值变小时,另一个数据的值通常会变大;当其中一个数据的值变大时,另一个数据的值通常会变小.二、一元线性回归模型及其应用1.线性回归方程:(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:()()()1122,,,,,,n n x y x y x y ,其回归方程为a bx y +=∧,则1221,.n i i i n i i x y nx y b x nx a y bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点(),x y .(3)相关系数:()()n i i x x y y r --=∑n i i x y nxy -=∑【方法归纳】(1)利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.(2)利用相关系数判定,当r 越趋近于1相关性越强.当残差平方和越小,相关指数2R 越大,相关性越强.(3)在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数r 进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.(4)正确运用计算 ,b a 的公式和准确的计算,是求线性回归方程的关键.并充分利用回归直线 y bxa =+ 过样本点的中心(),x y 进行求值.2、回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。
高中数学选修2-3统计案例之线性回归方程习题课
1.相关关系的分类从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关.2.线性相关从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线.3.回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(x n,y n),其回归方程为y^=b^x+a^,则b^,a^其中,b是回归方程的斜率,a是在y轴上的截距.4.样本相关系数r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2,用它来衡量两个变量间的线性相关关系.(1)当r>0时,表明两个变量正相关;(2)当r<0时,表明两个变量负相关;(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.5.线性回归模型(1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差.(2)相关指数用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好.规律(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.注意(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.考向一相关关系的判断例1.下列选项中,两个变量具有相关关系的是( )A.正方形的面积与周长B.匀速行驶车辆的行驶路程与时间C.人的身高与体重D.人的身高与视力答案:C例2.对变量x、y有观测数据(x i,y i)(i =1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由题图1可知,各点整体呈递减趋势,x与y负相关,由题图2可知,各点整体呈递增趋势,u与v正相关.例3.下面哪些变量是相关关系().A.出租车车费与行驶的里程B.房屋面积与房屋价格C.身高与体重D.铁块的大小与质量解析A,B,D都是函数关系,其中A一般是分段函数,只有C是相关关系.答案 C例4.如图所示,有5组(x,y)数据,去掉________组数据后,剩下的4组数据的线性相关性最大.解析:因为A、B、C、E四点分布在一条直线附近且贴近某一直线,D点离得远.答案:D例5.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v 有观测数据(u i、v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断().A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.答案 C例6.下列关系属于线性负相关的是( )A.父母的身高与子女身高的关系B.球的体积与半径之间的关系C.汽车的重量与汽车每消耗1 L汽油所行驶的平均路程D.一个家庭的收入与支出解析:选C.A、D中的两个变量属于线性正相关,B中两个变量是函数关系.例7.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg):(1)画出散点图;(2)判断是否具有相关关系.[审题视点] (1)用x 轴表示化肥施用量,y 轴表示棉花产量,逐一画点.(2)根据散点图,分析两个变量是否存在相关关系.解 (1)散点图如图所示(2)由散点图知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y具有线性相关关系.利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.例8. 根据两个变量x,y之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).解析从散点图看,散点图的分布成团状,无任何规律,所以两个变量不具有线性相关关系.答案否考向二线性回归方程例9.对有线性相关关系的两个变量建立的回归直线方程y^=a+bx中,回归系数b( )A.不能小于0 B.不能大于0C.不能等于0 D.只能小于0解析:选C.∵b=0时,r=0,这时不具有线性相关关系,但b能大于0也能小于0.例10.已知回归方程y^=4.4x+838.19,则可估计x与y的增长速度之比约为________.解析:x与y的增长速度之比即为回归方程的斜率的倒数14.4=1044=522.答案:5 22例11.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是().A.y^=-10x+200 B.y^=10x+200 C.y^=-10x-200 D.y^=10x-200 解析因为销量与价格负相关,由函数关系考虑为减函数,又因为x,y不能为负数,再排除C,故选A.答案 A例12.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^;(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程.预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)[审题视点] (2)问利用公式求a ^、b ^,即可求出线性回归方程.(3)问将x =100代入回归直线方程即可. 解 (1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:i =14x 2i =86,x =3+4+5+64= 4.5(吨),y =2.5+3+4+4.54=3.5(吨). 已知∑i =14x i y i =66.5,所以,由最小二乘法确定的回归方程的系数为:b ^=∑i =14x i y i -4x ·y ∑i =14x 2i -4x 2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35.因此,所求的线性回归方程为y ^=0.7x +0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90-(0.7×100+0.35)=19.65(吨标准煤).在解决具体问题时,要先进行相关性检验,通过检验确认两个变量是否具有线性相关关系,若它们之间有线性相关关系,再求回归直线方程.例13.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y对x的线性回归方程为().A.y=x-1 B.y=x+1C.y=88+12x D.y=176解析由题意得x=174+176+176+176+1785=176(cm),y=175+175+176+177+1775=176(cm),由于(x,y)一定满足线性回归方程,经验证知选C.答案 C例14.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y^=bx+a;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:对预处理后的数据,容易算得,x=0,y=3.2,b=26040=6.5,a=y-b x=3.2.由上述计算结果,知所求回归直线方程为y -257=b(x-2 006)+a=6.5(x-2 006)+3.2,即y^=6.5(x-2 006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).例15.下列有关回归直线方程y^=bx+a 的叙述正确的是( )①反映y^与x之间的函数关系;②反映y与x之间的函数关系;③表示y^与x之间的不确定关系;④表示最接近y与x之间真实关系的一条直线.A.①② B.②③C.③④ D.①④解析:选D.y^=bx+a表示y^与x之间的函数关系,而不是y与x之间的函数关系;但它反映的关系最接近y与x之间的真实关系,故选D.例16.设有一个回归方程y^=3-5x,变量x增加一个单位时( )A.y平均增加3个单位B.y平均减少5个单位C.y平均增加5个单位D.y平均减少3个单位解析:选B.∵-5是斜率的估计值,说明x每增加一个单位,y平均减少5个单位.例17.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不.正确的是( ) A.由样本数据得到的回归方程y^=b^x+a^必过样本中心(x,y)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r =-0.9362,则变量y和x之间具有线性相关关系解析:选C.C中应为R2越大拟合效果越好.例18.已知回归方程y^=2x+1,而试验得到一组数据是(2,4.9),(3,7.1),(4,9.1),则残差平方和是( )A .0.01B .0.02C .0.03D .0.04解析:选C.当x =2时,y ^=5, 当x =3时,y ^=7,当x =4时,y ^=9.∴e ^1=4.9-5=-0.1,e ^2=7.1-7=0.1, e ^3=9.1-9=0.1.∴ i =13e ^i 2=(-0.1)2+(0.1)2+(0.1)2=0.03.例19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②回归方程y ^=bx +a 必过点(x ,y ); ③曲线上的点与该点的坐标之间具有相关关系;④在一个2×2列联表中,由计算得K2=13.079,则其两个变量间有关系的可能性是 90%.其中错误的是________.解析:①正确.由回归方程的定义及最小二乘法思想,知②正确.③④不正确.答案:③④例20.在2009年十一国庆8天黄金周期间,某市物价部门,对本市五个商场销售的某商品的一天销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:9通过分析,发现销售量对商品的价格x具有线性相关关系,则销售量y对商品的价格x的回归直线方程为________.解析:由数据表可得x=10,y=8,离差x-x:-1,-0.5,0,0.5,1;离差y-y:3,2,0,-2,-3.∴b^=-1×3-0.5×2-0.5×2-1×3 1+0.25+0+0.25+1=-3.2,a ^=y -b ^x =40,∴回归直线方程为y ^=-3.2x +40. 答案:y ^=-3.2x +40例21.在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如表:根据上述数据,画出散点图并判断居民的身高和体重之间是否有相关关系.解:以x 轴表示身高,y 轴表示体重,可得到相应的散点图如图所示:由散点图可知,两者之间具有相关关系,且为正相关.12.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程y^=b^ x+a^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?解:(1)设抽到不相邻2组数据为事件A,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻2组数据的情况有4种,所以P(A)=1-410=35.(2)由数据求得,x=12,y=27,由公式求得.b^=52,a^=y-b^x=-3.所以y关于x的线性回归方程为y^=5 2 x-3.(3)当x=10时,y^=52×10-3=22,|22-23|<2;当x=8时,y^=52×8-3=17,|17-16|<2.所以该研究所得到的线性回归方程是可靠的.。
2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系-2.3.2两个变量的线性相关
2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系2.3.2两个变量的线性相关学习目标 1.了解变量间的相关关系,会画散点图;2.根据散点图,能判断两个变量是否具有相关关系;3.了解线性回归思想,会求回归直线的方程.知识点一变量间的相关关系思考1粮食产量与施肥量间的相关关系是正相关还是负相关?答案在施肥不过量的情况下,施肥越多,粮食产量越高,所以是正相关.思考2怎样判断一组数据是否具有线性相关关系?答案画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.梳理1.相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.2.散点图将样本中n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形叫做散点图.3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.知识点二两个变量的线性相关思考任何一组数据都可以由最小二乘法得出线性回归方程吗?答案用最小二乘法求线性回归方程的前提是先判断所给数据是否具有线性相关关系(可利用散点图来判断),否则求出的线性回归方程是无意义的.梳理 回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b ^x ,其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.类型一 相关关系的判断与应用 命题角度1 判断两个变量的相关性例1 为了研究质量对弹簧长度的影响,对6根相同的弹簧进行测量,所得数据如下:判断它们是否有相关关系,若有,判断是正相关还是负相关. 解 散点图如图:由散点图可以看出两个变量对应的点大致分布在一条直线附近,因此可以得出结论:质量与弹簧长度这两个变量具有相关关系,且它们是正相关关系.反思与感悟在研究两个变量之间是否存在某种关系时,必须从散点图入手,对于散点图,可以作出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一直线附近,那么变量之间就有线性相关关系;(3)如果散点图中的点的分布几乎没有什么规律,那么这两个变量之间不具有相关关系,即两个变量之间是相互独立的.跟踪训练1下表是某地的年降雨量与年平均气温的统计表,判断两者是否具有相关关系,求线性回归方程有意义吗?解以x轴为年平均气温,y轴为年降雨量,可得相应的散点图如图.因为图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没必要用回归直线进行拟合,即使用公式法求出线性回归方程也是没有意义的.命题角度2函数关系与相关关系的区别与联系例2下列关系中,是相关关系的是________.①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.答案②④解析①中,正方形的边长与面积之间的关系是函数关系;②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人达到一定年龄后,身高就不发生明显变化了,所以它们不具有相关关系;④中,降雪量与交通事故的发生率之间具有相关关系. 反思与感悟 相关关系与函数关系的区别与联系如表所示:跟踪训练2 下列图形中两个变量具有相关关系的是( )答案 C解析A 是一种函数关系;B 也是一种函数关系;C 中从散点图中可看出所有点看上去都在某条直线附近波动,具有相关关系,而且是一种线性相关;D 中所有的点在散点图中没有显示任何关系,因此变量间是不相关的. 类型二 回归直线的求解与应用例3 一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器运转速度的变化而变化,下表为抽样试验的结果:(1)画出散点图;(2)如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系;(3)在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内? 解 (1)散点图如图所示:(2)近似直线如图所示:(3)由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.引申探究1.本例(3)中近似方程不变,若每增加一个单位的转速,生产有缺点的零件数近似增加多少? 解 因为y =5170x -67,所以当x 增加一个单位时,y 大约增加5170.2.本例(3)中近似方程不变,每小时生产有缺点的零件件数是7,估计机器的转速. 解 因为y =5170x -67,所以当y =7时,7=5170x -67,解得x ≈11.反思与感悟 求线性回归方程的一般步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i .(5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x2,a ^=y -b ^x .(6)写出线性回归方程y ^=b ^x +a ^.跟踪训练3 (1)变量y 与x 满足线性回归方程y ^=b ^x +a ^,现在将y 的单位由厘米变为米,x的单位由毫米变为米,则在新的线性回归方程y ^=b ^*x +a ^*中,b ^*是b ^的____________倍.(2)为了均衡教育资源,加大对偏远地区的教育投入,调查了某地区若干户家庭的年收入x (单位:万元)和年教育支出y (单位:万元),调查显示年收入x 与年教育支出y 具有相关关系,并由调查数据得到y 对x 的线性回归方程为y ^=0.15x +0.2.由线性回归方程可知,家庭年收入每增加1万元,年教育支出平均增加________万元. 答案 (1)10 (2)0.15解析 (1)由回归系数公式知,当y 的值变为原来的10-2倍,x 的值变为原来的10-3倍时,b^*的值应为原来的10倍.(2)回归直线的斜率为0.15,所以家庭年收入每增加1万元,年教育支出平均增加0.15万元.1.设有一个线性回归方程为y ^=2-1.5x ,则变量x 增加1个单位时,y 平均( ) A .增加1.5个单位 B .增加2个单位 C .减少1.5个单位 D .减少2个单位答案 C2.由三点(3,10),(7,20),(11,24)确定的线性回归方程为( ) A.y ^=1.75x -5.75 B.y ^=1.75x +5.75 C.y ^=-1.75x +5.75 D.y ^=-1.75x -5.75答案 B解析 设线性回归方程为y ^=b ^x +a ^, 则b ^=x 1y 1+x 2y 2+x 3y 3-3x y x 21+x 22+x 23-3x2=3×10+7×20+11×24-3×7×189+49+121-3×49=1.75,a ^=y -b ^x =18-1.75×7=5.75. 故y ^=1.75x +5.75,故选B.3.某地区近10年居民的年收入x 与年支出y 之间的关系大致符合y ^=0.8x +0.1(单位:亿元),预计今年该地区居民收入为15亿元,则今年支出估计是________亿元. 答案 12.1解析 将x =15代入y ^=0.8x +0.1,得y ^=12.1.4.某市居民2012~2016年家庭年平均收入x (单位:万元)与年平均支出y (单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是__________万元,家庭年平均收入与年平均支出有________线性相关关系. 答案 13 正解析 考查中位数的定义,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时需取中间两数的平均数.由统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.5.某5名学生的总成绩和数学成绩(单位:分)如表所示:(1)画出散点图;(2)求y 对x 的线性回归方程(结果保留到小数点后3位数字); (3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩. 解 (1)散点图如图所示:(2)由题中数据计算可得x =391.6,y =67.8,∑i =15x 2i =770 654,∑i =15x i y i =133 548.代入公式得b ^=133 548-5×391.6×67.8770 654-5×391.62≈0.204,a ^=67.8-0.204×391.6≈-12.086,所以y 对x 的线性回归方程为y ^=-12.086+0.204x .(3)由(2)得当总成绩为450分时,y ^=-12.086+0.204×450≈80,即这个学生的数学成绩大约为80分.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是不是线性相关,是正相关还是负相关. 2.求线性回归方程时应注意的问题(1)知道x 与y 成线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出线性回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的. (2)用公式计算a ^、b ^的值时,要先计算b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.若回归方程为y ^=b ^x +a ^,则x =x 0处的估计值为y ^0=b ^x 0+a ^.40分钟课时作业一、选择题1.某商品销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200答案 A解析 x 的系数为负数,表示负相关,排除B 、D ,由实际意义可知x >0,y >0,C 中,散点图在第四象限无意义,故选A.2.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 答案 D解析 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,所以D 不正确.3.对变量x ,y 有观测数据(x i ,y i )(i =1,2,3,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,3,…,10),得散点图2,由这两个散点图可以判断( )A .y 与x 正相关,v 与u 正相关B .y 与x 正相关,v 与u 负相关C .y 与x 负相关,v 与u 正相关D .y 与x 负相关,v 与u 负相关 答案 C解析 根据散点图直接进行判断.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本点的中心(3,3.5),代入验证得A 正确,B 错误.故选A. 5.已知x 与y 之间的一组数据:若y 与x 线性相关,则y 与x 的回归直线y ^=b ^x +a ^必过( ) A .点(2,2) B .点(1.5,0) C .点(1,2) D .点(1.5,4)答案 D 解析 ∵x =0+1+2+34=1.5,y =1+3+5+74=4, ∴回归直线必过点(1.5,4).故选D. 6.已知x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +132,则b ^等于( )A .-12B.12 C .-110D.110答案 A 解析 ∵x =2+3+43=3,y =6+4+53=5, ∴回归直线过点(3,5),∴5=3b ^+132,∴b ^=-12,故选A.二、填空题7.为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的数据,计算得回归方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.答案 6解析 x =3+4+5+6+75=5,y =2.5+3+4+4.5+c 5=14+c 5,代入回归方程中得14+c5=0.85×5-0.25,解得c =6.8.如图所示的五组数据(x ,y )中,去掉________后,剩下的四组数据相关性增强.答案 (4,10)解析 去掉点(4,10)后,其余四点大致在一条直线附近,相关性增强. 9.在一次试验中测得(x ,y )的四组数据如下:根据上表可得线性回归方程y ^=-5x +a ^,据此模型预报当x =20时,y 的值为________. 答案 26.5解析 x =16+17+18+194=17.5,y =50+34+41+314=39,∴回归直线过点(17.5,39), ∴39=-5×17.5+a ^, ∴a ^=126.5,∴当x =20时,y =-5×20+126.5=26.5.10.某工厂对某产品的产量与成本的资料分析后有如下数据:由表中数据得到的线性回归方程y ^=b ^x +a ^中b ^=1.1,预测当产量为9千件时,成本约为________万元. 答案 14.5解析 由表中数据得x =4,y =9,代入线性回归方程得a ^=4.6,∴当x =9时,y ^=1.1×9+4.6=14.5. 三、解答题11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求两变量之间的回归方程y ^=b ^x +a ^;(2)利用(1)中所求出的回归方程预测该地第6年的粮食需求量. 解 (1)由所给数据得 x =3,y =5.8,b ^=∑i =15(x i -x )(y i -y )∑i =15(x i -x )2=1.1,a ^=y -b ^x =2.5, ∴y ^=1.1x +2.5.故所求的回归方程为y ^=1.1x +2.5. (2)第6年的粮食需求量约为 y ^=1.1×6+2.5=9.1(万吨).12.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求月储蓄y (千元)关于月收入x (千元)的线性回归方程; (2)若该居民区某家庭的月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x =1n ∑i =110x i =110×80=8,y =1n ∑i =110y i =110×20=2,又∑i =110x 2i -n x 2=720-10×82=80, ∑i =110x i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入线性回归方程,可以得到该家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元). 13.为了分析某高三学生的学习状态,对其下一阶段的学习提供指导性建议,现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩(单位:分).(1)他的数学成绩与物理成绩哪个更稳定?并说明理由;(2)已知该学生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少分,并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.解 (1)x =100+-12-17+17-8+8+127=100,y =100+-6-9+8-4+4+1+67=100,s 2数学=142,s 2物理=2507,因为s 2数学>s 2物理, 所以他的物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系,经计算得b ^=0.5,a ^=100-0.5×100=50. 所以线性回归方程为y ^=0.5x +50. 当y =115时,x =130. 估计他的数学成绩是130分.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.。
第十章 统计与概率10-3变量间的相关关系与统计案例
(3)利用回归直线方程对总体进行估计 ^ ^ ^ 若回归直线方程为y=bx+a,则在x=x0处的估计值: ^0=bx0+a. ^ y ^ (4)线性相关强度的检验: 对于变量x与y随机取到的n对数据(xi,yi),用y与x间 x y xi--yi--
i=1 n
的相关系数r= x y xi--2· yi--2
i=1 4 ^
所以,由最小二乘法确定的回归直线方程的系数 为:
(3)由(2)的回归方程及技改前生产100吨甲产 品的生产能耗,得降低的生产能耗为: 90-(0.7×100+0.35)=19.65(吨标准煤).
(2010·山东枣庄模考)某单位为了了解用电 量y(度)与气温x(℃)之间的关系,随机统计 了某4天的用电量与当天气温,并制作了对 照表: 18 13 10 -1 气温(℃)
疱疹面积不 疱疹面积小 合计 小于 2 于70mm 70mm2 注射药物 A a= b=
注射药物 nad-bc2 c= d= 2 附:χ = B a+bc+da+cb+d 合计
n=
[解析]
(1)
可以看出注射药物A后的疱疹面积的中位数 在65至70之间,而注射药物B后的疱疹面积 的中位数在70至75之间,所以注射药物A后 疱疹面积的中位数小于注射药物B后疱疹面 积的中位数. (2)表3: 疱疹面积 疱疹面积不 合计 小于 小于 70mm2 70mm2 100 注射药物A a=70 b=30 100 注射药物B c=35 d=65 105 95 合计 n=200
关关系,这条直线叫做回归直线. 数为:
(2)回归直线方程的求法——最小二乘法.
n n y x y xiyi-n x · xi--yi-- i=1 i=1 ^ = b= n n 2 2 x xi -n x xi--2 i=1 i=1 a=--b x ^ y ^ 1 n 1 n 其中 - = x i, - = y i,( - , - )称作样本点的中 x y x y n i=1 n i=1 心. ^ ^ a , b 表示由观察值用最小二乘法求得的a,b的估计 值,叫回归系数.
利用散点图判断两个变量的相关关系-PPT精品文档
一块农田的水稻产量与施肥量之间的关系 。 水稻产量并不是由施肥量唯一确定,在取值上带有随机性 不确定关系
2、相关关系的概念
自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫相关关系.
(1)相关关系与函数关系的异同点:相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系。 而相关关系是一种非确定关系; 关关系不一定是因果关系,也可能是随机关系.
2、从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋 势.
61 34.6
如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
4、相关关系的类型 相关关系可分为线性相关,非线性相关两类.
注意: 两个变量之间的关系具有确定性关系—函数关系. 两个变量变量之间的关系具有随机性,不确定性—相关关系.
二:散点图
1、散点图:将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,以表示具有相关 关系的两个变量的一组数据的图形叫做散点图.
即,函数关系是一种因果关系,而相
(2)函数关系与相关关系之间有着密切联系:
在一定的条件下可以相互转化.而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后, 又可以用一种确定性的关系对这两个变量间的取值进行估计:
3、判断相关关系的基本程序
两个变量 →一个变量值一定→另一个变量带有不确定性→相关关系
如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越 少。 作出散点图发现,它们散 布在从左上角到右下角的区
利用散点图判断两个变量的相关关系
.
年龄 23 27
39
41
45
49 50
53
54
56
57
58
脂肪
9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6
30.2
31.4 30.8 33.5
年龄 60
61
脂肪 35.2 34.6
如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄
人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
下面我们以年龄为横轴, 脂肪含量为纵轴建立直 角坐标系,作出各个点, 称该图为散点图。
脂肪含量 40 35
如图:
30 25 20 15 10 5
O
20
25
30 35 40
年龄
45 50 55
60 65
从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。 但有的两个变量的相关,如下图所示:
如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越 少。 作出散点图发现,它们散 布在从左上角到右下角的区 域内。又如汽车的载重和汽 车每消耗1升汽油所行使的 平均路程,称它们成负相关.
O
1、散点图的特点形象地体现了各数据的密切程度,因此我们可以根据散点图来判断两个 变量有没有线性关系.
(2)函数关系与相关关系之间有着密切联系: 在一定的条件下可以相互转化.而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后, 又可以用一种确定性的关系对这两个变量间的取值进行估计:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自测自评 1.两个变量之间关系如下, x y 2 3 4 4 6 8
回归直线一定经过点(
C )
B.(4,4)
D.(5,5)
A.(3,3)
C.(4,5)
2.一位母亲记录了儿子3~9岁的身高,数据(略), 由此建立的身高与年龄的回归模型为 ∧ y =7.19x+73.93, 用这个模型预测这个孩子10岁时的身高,则正确的叙述 是( C ) A.身高一定是145.83 cm B.身高在145.83 cm以上
解析:设线性回归方程为 ^ y=bx+a,而 a= y -b x , 即 a=t-bs,t=bs+a. ∴(s,t)在回归直线上. ∴直线 l1 和 l2 一定有公共点(s,t). 答案:A
例如:人的身高和体重的关系是相关关系还是函数 关系? 相关关系
4.最小二乘法:在求回归直线时,公式中选取 的 a,b 使得误差 yi-y i 的平方和 Q= (yi-bxi-a)2
i=1
∧
n
最小,也就是使得样本数据的点到它的距离的平方和最 小,这一方法称为最小二乘法.值得指出的是,讨论变 量是否线性相关,应先进行相关性检验,在确认线性相 关后,再求回归直线.相关性检验的有关概念、方法和 步骤,大纲不作考试要求. 5.回归直线:设 x 与 y 是具有相关关系的两个变量, 且相应于 n 组观测值的 n 个点(xi,yi)(i=1,2,…,n) 大致分布在一条直线附近,则由
^ b=
i=1
n
- - xi- x yi- y =
i=1
i=1
-- x y - n ii x y -2 2 xi -n x i=1
n
n
-2 xi- x
n
^ - ^- - 1 n - 1n a= y -b x , x = xi, y = yi ni=1 ni=1 ^ ^ ^ 所得到的直线方程y =bx+a叫做回归直线方程,b是 ^ 回归方程的斜率,a是截距,相应的直线叫做回归直线.由 回归直线方程算出的结果仅为预测,非必然结果.
变量之间的相关关系及两个变量的线性相关
全州三中高数组 文新红
1.会作两个有关联变量数据的散点图,会利用散
点图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回 归方程系数公式建立线性回归方程.
基础梳理 1.相关系数:相关系数是描述两个变量关系程度和 方向的统计量,用r表示.相关系数的范围在-1到1之间, 即-1≤r≤1,当r=1为完全正相关即两者之间具有函数关系, r=-1,为完全负相关即两者之间具有函数关系,r=0为 不相关,r的范围在0.3~0.5是低度正相关;r的范围在 0.5~0.8是中度正相关;r的范围在0.8以上是高度正相关; 只有显著相关以上才需要考察相关方程.r的计算不作要 求. 2.散点图:表示具有相关关系的两个变量的一组数 据的图形叫做散点图.
2.如何利用散点图判断两个变量之间是否具备相 关关系? 解析:可根据散点图中对应点的离散程度来判断 两个变量是否具有相关关系.如果散点图中变量的对应 点分布在某条直线周围,我们就可以得出这两个变量具 有相关关系,如果点的分布大致在左下角到右上角的区 域,则为正相关,如果因变量随自变量的增大而减小, 则是负相关.如果变量的对应点分布没有规律,我们就 说这两个变量不具有相关关系.
年降雨 量(mn)
748
542
507
813
574
701
432
解析:以x轴为年平均气温,y轴为年降雨量,可得 相应的散点图如下图所示.
因为图中各点并不在一条直线的附近,所以两者不 具有相关关系,没必要用回归直线进行拟合,如果用公 式求得回归直线也是没有意义的.
跟踪训练 1.下列图形中,两个变量具有线性相关关系的 )
是(
解析:要求大致在一条直线上,但不是函数关系. 答案:B
了解回归直线方程的意义 为了考查两个变量x和y之间的线性关系,甲、 乙两位同学各自独立做了10次和15次试验,并且利用线性 回归的方法,求得回归直线分别为l1,l2,已知两人得到的 试验数据中,变量x和y的数据的平均值都相等,且分别是s, t,那么下列说法正确的是( ) A.直线l1和l2一定有公共点(s,t) B.直线l1和l2相交,但交点不一定是(s,t) C.必有直线l1∥l2 D.l1和l2必定重合
C.身高在145.83 cm左右
D.身高在145.83 cm以下
相关关系 的两个变量进行统计分析的方 3.对具有__________ 法叫回归分析.
4.表示具有相关关系的两个变量的一组数据的图形点图判断两个变量之间的线性相关关系 下表是某地的年降雨量与年平均气温,判断两 者是相关关系吗?求回归直线方程有意义吗? 年平均 12.51 12.84 12.84 13.69 13.33 12.74 13.05 气温(℃)
∧
思考应用 1.变量之间的相关关系与函数关系有何区别? 解析:变量间的相互关系有两种,一种是函数关系, 变量之间的对应是确定的;另一种是变量间确实存在着 关系,但又不具备函数关系所要求的确定性,它们的关 系带有随机性.相关关系分为两种:(1)正相关:两个变 量具有相同的变化趋势.(2)负相关:两个变量具有相反 的变化趋势.
3.如何认识线性回归模型?
解析:两个变量之间的相关性可以用一条直线或曲 线来进行拟合.如果两个变量之间的依赖关系是近似一 条直线,那么这两个变量就是线性相关的;如果两个变 量之间的依赖关系是近似一条曲线,那么这两个变量就 是非线性相关的;如果两个变量之间不存在明显的依赖 关系,那么这两个变量就是不相关的.
例如:某产品产量与生产费用关系如表,画出相应 的散点图. 序号 1 2 2 3 3.1 4 3.8 5 5 6 6.1 7 7.2 8 8 产品产量 1.2 (千吨)x 生产费用 (万元)y
62
86
80
110
115
132
135
160
解析:相应的散点图如下
3.线性相关:当一个变量变动时,另一个变量也 相应发生大致均等的变动,两者之间叫做线性相关.相 关关系与函数关系的相同点均是指两个变量的关系;不 同点是:函数关系是一种确定的关系,而相关关系是一 种非确定关系.