2020中考数学压轴题专题02 一次方程(组)的含参及应用问题

合集下载

2020年九年级数学典型中考压轴题综合专项训练:一次函数(含答案)

2020年九年级数学典型中考压轴题综合专项训练:一次函数(含答案)

2020年九年级数学典型中考压轴题综合专项训练:一次函数一.选择题(共10小题)1.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)2.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.D.163.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B、C两点直线的解析式为()A.y=x+3B.y=x+3C.y=x+3D.y=x+34.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是()A.2B.3C.4D.55.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD 是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.6.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.当S△BCD=时,t的值为()A.2或2+3B.2或2+3C.3或3+5D.3或3+57.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x+B.y=x+C.y=x+D.y=x+8.如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A 坐标是()A.(,)B.(,11)C.(2,2)D.(,)9.如图,直线AB:y=﹣x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y 轴上一动点,把线段BD绕B点逆时针旋转120°得到线段BE,连接CE,CD,则当CE 长度最小时,线段CD的长为()A.B.C.2D.510.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.①C(﹣13,0),E(﹣5,﹣3);②直线AB的解析式为:y=x+5;③设面积的和S=S△CDE+S四边形ABDO,则S=32;④在求面积的和S=S△CDE+S四边形ABDO时,琪琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,即S=S△CDE+S四边形ABDO =S△AOC”.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为.12.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标.13.如图,一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3.在直线AB上有一点P,若满足∠CPB>∠ACB,则点P横坐标x的取值范围是.14.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y =mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.15.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.16.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=﹣x上有一动点Q,连结OP,PQ,已知△OPQ的面积为,则点Q的坐标为.17.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为.18.平面直角坐标系中,直线y=﹣x﹣1与x轴和y轴分别交于B、C两点,与直线x=4交于点D,直线x=4与x轴交于点A,点M(3,0),点E为直线x=4上一动点,点F 为直线y=﹣x﹣1上一动点,ME+EF最小值为,此时点F的坐标为.19.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,以PC为边做等腰直角三角形PCD,∠CPD=90°,PC=PD,过点D作线段AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则Q点的坐标是.20.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC所在直线的函数表达式是y=2x+4,若保持AC的长不变,当点A在y轴的正半轴滑动,点C随之在x 轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是.三.解答题(共10小题)21.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.22.如图,在平面直角坐标系中,直线AB分别交x轴、y轴于点A(a,0)点,B(0,b),且a、b满足a2﹣4a+4+|2a﹣b|=0,点P在直线AB的左侧,且∠APB=45°.(1)求a、b的值;(2)若点P在x轴上,求点P的坐标;(3)若△ABP为直角三角形,求点P的坐标.23.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x 交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.24.如图1,已知直线y=2x+4与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证BE=DE;(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,a)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图(a),直线l1:y=kx+b经过点A、B,OA=OB=3,直线12:y=x﹣2交y轴于点C,且与直线l1交于点D,连接OD.(1)求直线11的表达式;(2)求△OCD的面积;(3)如图(b),点P是直线11上的一动点;连接CP交线段OD于点E,当△COE与△DEP的面积相等时,求点P的坐标.26.如图,在平面直角坐标系中,直线y=﹣x+8与x轴和y轴分别交于点B和点C,与直线OA相交于点A(3,4).(1)求点B和点C的坐标;(2)求△OAC的面积;(3)在线段OA或射线AC上是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出点M的坐标,若不存在,说明理由;(4)若点N是线段OC上一点,若将△BCN沿直线BN折叠,点C恰好落在x轴负半轴上的点D处,求BN所在直线的函数关系式.27.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.28.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y =x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.29.如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连结CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的解析式以及C点坐标;(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;(3)如图2,连结OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.30.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.参考答案一.选择题(共10小题)1.【解答】解:在y=﹣x+2中令x=0,解得:y=2;令y=0,解得:x=2.则OA=2,OB=2.∴在直角△ABO中,AB==4,∠BAO=30°,又∵∠BAB′=60°,∴∠OAB′=90°,∴B′的坐标是(2,4).故选:B.2.【解答】解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x﹣6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD﹣OA=5﹣1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选:D.3.【解答】解:∵一次函数y=﹣x+3中,令x=0得:y=3;令y=0,解得x=4,∴B的坐标是(0,3),A的坐标是(4,0).如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(7,4).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+3.故选:A.4.【解答】解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN=4,∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选:B.5.【解答】解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选:B.6.【解答】解:根据题意得:∠BAC=90°,∴∠CAO+∠BAE=90°,∵BE⊥x轴,∴∠AEB=90°=∠AOC,∴∠ABE+∠BAE=90°,∴∠CAO=∠ABE.∴△CAO∽△ABE.∴=,∵M是AC的中点,AB=AM,∴CA=2AB,∴=,∴BE=t,AE=2.分两种情况:①当0<t<8时,如图1所示:S=CD•BD=(2+t)(4﹣)=解得:t1=t2=3.②当t>8时,如图2所示,S=CD•BD=(2+t)(﹣4)=.解得:t1=3+5,t2=3﹣5(不合题意,舍去).综上所述:当t=3或3+5时,S=;故选:D.7.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC ⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选:A.8.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设直线OM的解析式为y=kx,直线AC的解析式为y=k′x+b,∵点M(﹣3,4),∴4=﹣3k,∴k=﹣,∵四边形ABCO是正方形,∴直线AC⊥直线OM,∴k′为,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°∴∠COE=∠OAD,在△COE和△OAD中,∴△COE≌△OAD(AAS),∴CE=OD,OE=AD,设A(a,b),则C(﹣b,a),设直线AC的解析式为y=mx+n,∴解得m=,∴=,整理得,b=7a,∵正方形面积为128,∴OA2=128,在RT△AOD中,AD2+OD2=OA2,即(7a)2+a2=128,解得,a=,∴b=7a=7×=,∴A(,),故选:D.9.【解答】解:如图,设D(0,m).由题意:B(5,0).在BD的下方作等边三角形△BDQ,延长DQ到M,使得QM=DQ,连接BM,DE,DE 交BQ于点N,作MH⊥x轴于H.∵△BDQ是等边三角形,∴∠DQB=∠DBQ=60°,∵QM=BQ,∴∠QMB=∠QBM,∵∠DQB=∠QMB+∠BQM,∴∠QMB=∠QBM=30°,∴∠DBM=90°,∴BM=BD,∵∠DBO+∠ODB=90°,∠DBO+∠MBH=90°,∴∠MBH=∠BDO,∵∠DOB=∠MHB=90°,∴△DOB∽△BHM,∴===,∵OD=m,OB=5,∴BH=m,MH=5,∴M(5﹣m,﹣5),∵MQ=DQ,∴Q(,),∵∠DBE=120°,∴∠DBN=∠EBN=60°,∴DE⊥BQ,DN=NE,QN=BN,∴N(,),E(,),∴CE2=()2+()2=m2﹣6m+91,∴当m=﹣=3时,CE的值最小,此时D(0,3),∴CD==2,故选:C.10.【解答】解:∵在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),故①正确;∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5.故②错误;由①知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,故③正确;④由③知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC=32.5,∴S△CDE+S四边形ABDO=12+20≠S△AOC.故④错误.综上所述,正确的结论有2个.故选:B.二.填空题(共10小题)11.【解答】解:当点E在y轴右侧时,如图1,连接AE,∵∠EAB=∠ABO,∴AE∥OB,∵A(0,8),∴E点纵坐标为8,又E点在直线y=x+4上,把y=8代入可求得x=4,∴E点坐标为(4,8);当点E在y轴左侧时,过A、E作直线交x轴于点C,如图2,设E点坐标为(a,a+4),设直线AE的解析式为y=kx+b,把A、E坐标代入可得,解得,∴直线AE的解析式为y=x+8,令y=0可得x+8=0,解得x=,∴C点坐标为(,0),∴AC2=OC2+OA2,即AC2=()2+82,∵B(4,0),∴BC2=(4﹣)2=()2﹣+16,∵∠EAB=∠ABO,∴AC=BC,∴AC2=BC2,即()2+82=()2﹣+16,解得a=﹣12,则a+4=﹣8,∴E点坐标为(﹣12,﹣8).方法二:设C(m,0),∵∠ACB=∠CBA,∴AC=BC,∴(4﹣m)2=m2+82,解得m=﹣6,∴直线AE的解析式为y=x+8,由,解得.∴E(﹣12,﹣8).综上可知,E点坐标为(4,8)或(﹣12,﹣8).故答案为:(4,8)或(﹣12,﹣8).12.【解答】解:当M运动到(﹣1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的两个P点;又∵当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有﹣x=﹣(2x+3),解得x=﹣3,所以点P坐标为(0,﹣3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有﹣x=﹣(2x+3),化简得﹣2x=﹣2x﹣3,这方程无解,所以这时不存在符合条件的P点;又∵当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有﹣x=(2x+3),解得x=﹣,这时点P的坐标为(0,).综上,符合条件的点P坐标是(0,0),(0,),(0,﹣3),(0,1).故答案为:(0,0),(0,1),(0,),(0,﹣3).13.【解答】解:如图所示:过点P1作P1E⊥x轴于点E,∵一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3,∴AO=BO=1,则BC=2,AC=,AB=,当∠CP1B=∠ACB时,又∵∠CAB=∠CAP1,∴△CAB∽△P1AC,∴=,则=,解得:AP1=5,则AE=P1E=5,故P1(﹣4,5),当∠CPB>∠ACB时,则点P横坐标x满足:﹣4<x,同理可得:当∠CP2B=∠ACB时,又∵∠ABC=∠P2BC,∴△CAB∽△P2CB,∴=,则=,解得:BP2=2,可得P2(2,﹣1),故当∠CPB>∠ACB时,则点P横坐标x满足:2>x,综上所述:﹣4<x<2且x≠0.故答案为:﹣4<x<2且x≠0.14.【解答】解:∵直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分∴直线必经过正方形的中心∵点B的坐标为(4,4)∴中心为(2,2),代入直线中得:2=2m﹣2,m=215.【解答】解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF(AAS),∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).16.【解答】解:方法一:∵点Q在直线y=﹣x上,∴设点Q的坐标为(m,﹣m).∵点A的坐标是(0,2),点B的坐标是(2,0),∴△AOB为等腰直角三角形,点O(0,0)到AB的距离h=OA=.设直线AB的解析式为y=kx+b,∵点A(0,2),点B(2,0)在直线AB上,∴有,解得.即直线AB的解析式为y=﹣x+2,∵直线y=﹣x+2与y=﹣x平行,∴点P到底OQ的距离为(平行线间距离处处相等).∵△OPQ的面积S△OPQ=OQ•h=OQ=,∴OQ=2.由两点间的距离公式可知OQ==2,解得:m=±,∴点Q的坐标为(,﹣)或(﹣,).故答案为:(,﹣)或(﹣,).方法二:当P点与A重合时,则△OPQ底OP为2,∵△OPQ的面积为,∴△OPQ的高为,即点Q的横坐标为﹣,∵点Q在直线y=﹣x上,∴点Q的坐标为(﹣,);当P点与B重合时,同理可求出点Q的坐标为(,﹣).综上即可得出点Q的坐标为(,﹣)或(﹣,).17.【解答】方法一:解:设直线AB的解析式为:y=kx+b,把A(0,2),B(3,4)代入得:,解得:k=,b=2,∴直线AB的解析式为:y=x+2;∵点B与B′关于直线AP对称,设B′坐标为(a,0)∴线段BB′的中点坐标为(,2)∵线段BB′的中点在直线AP上,且A点坐标为(0,2)∴A点为线段BB′的中点,即A、B、B′三点共线∴AP⊥AB,∴设直线AP的解析式为:y=﹣x+c,把点A(0,2)代入得:c=2,∴直线AP的解析式为:y=﹣x+2,当y=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().方法二:解:如图,连接AB、AB′∵A(0,2),B(3,4)∴AB==∵点B与B′关于直线AP对称∴AB′=AB=,在Rt△AOB′中,B′O==3∴B′点坐标为(﹣3,0)设直线BB′方程为y=kx+b将B(3,4),B′(﹣3,0)代入得:,解得k=,b=2∴直线BB′的解析式为:y=x+2,∴直线AP的解析式为:y=﹣x+2,当y AP=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().18.【解答】解:①如图,作M点关于直线x=4的对称点M′,然后作M′F⊥直线y=﹣x﹣1于F,交直线x =4于E,此时ME+EF有最小值,最小值为M′F;∵y=﹣x﹣1与x轴和y轴分别交于B、C两点,令x=0,可得y=﹣1,令y=0,可得x=﹣2,∴B(﹣2,0),C(0,﹣1),∴OB=2,OC=1,∴BC==,∵M(3,0),∴M′(5,0),∴BM′=5+2=7,∵M′F⊥直线BC,∴∠BFM′=90°=∠BOC,∵∠OBC=∠FBM′∴△BOC∽△BFM′,∴,即,解得:M′F=,∴ME+EF的最小值为;②∵直线M′F与直线y=﹣x﹣1互相垂直,∴直线M′F与直线y=﹣x﹣1的k互为负倒数,∴设直线M′F的关系式为:y=2x+b,将M′(5,0),代入y=2x+b,可得:b=﹣10,∴直线M′F的关系式为:y=2x﹣10,将直线y=2x﹣10与直线y=﹣x﹣1联立方程组得:,解得:,∴点F的坐标为(,﹣).故答案为:;(,﹣).19.【解答】解:解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴BN=2a﹣1,则2a﹣1=1,∴a=1,即BD=2.∵直线y=x,∴AB=OB=3,∴点D(3,2)∴PC=PD===,在Rt△MCP中,由勾股定理得:CM===2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,∴组成方程组解得:∴点Q(,),故答案为:(,).20.【解答】解:当x=0时,y=2x+4=4,∴A(0,4);当y=2x+4=0时,x=﹣2,∴C(﹣2,0).∴OA=4,OC=2,∴AC==2.如图所示.过点B作BD⊥x轴于点D.∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°,∴∠CAO=∠BCD.在△AOC和△CDB中,,∴△AOC≌△CDB(AAS),∴CD=AO=4,DB=OC=2,OD=OC+CD=6,∴点B的坐标为(﹣6,2).如图所示.取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=2,∴OE=CE=AC=,∵BC⊥AC,BC=2,∴BE==5,若点O,E,B不在一条直线上,则OB<OE+BE=5+.若点O,E,B在一条直线上,则OB=OE+BE=5+,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为5+,故答案为:5+.三.解答题(共10小题)21.【解答】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.22.【解答】解:(1)∵a2﹣4a+4+|2a+b|=0,∴(a﹣2)2+|2a+b|=0,∴a=2,b=4.(2)由(1)知,b=4,∴B(0,4).∴OB=4.∵点P在直线AB的左侧,且在x轴上,∠APB=45°∴OP=OB=4,∴B(4,0).(3)由(1)知a=﹣2,b=4,∴A(2,0),B(0,4)∴OA=2,OB=4,∵△ABP是直角三角形,且∠APB=45°,∴只有∠ABP=90°或∠BAP=90°,如图,①当∠ABP=90°时,∵∠BAP=45°,∴∠APB=∠BAP=45°.∴AB=PB.过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC.在△AOB和△BCP中,∠AOB=∠BCP=90°,∠ABO=∠BPC,AB=PB,∴△AOB≌△BCP(AAS).∴PC=OB=4,BC=OA=2.∴OC=OB﹣BC=2.∴P(﹣4,2).②当∠BAP=90°时,过点P'作P'D⊥OA于D,同①的方法得,△ADP'≌△BOA(AAS).∴DP'=OA=2,AD=OB=4.∴OD=AD﹣OA=2.∴P'(﹣2,2)).即:满足条件的点P(﹣4,2)或(﹣2,﹣2).23.【解答】解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.24.【解答】解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ(AAS),∴BQ=AO=4,OQ=BQ+BO=6,CQ=OB=2,∴C(﹣6,2),由A(0,4),C(﹣6,2)可知,直线AC:y=x+4;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF(AAS),∴BF=BH=4,∴OF=OB=2,∴DG=OB,∴△BOE≌△DGE(AAS),∴BE=DE;(3)如图3,直线BC:y=﹣x﹣1,P(﹣,k)是线段BC上一点,∴P(﹣,),由y=x+4知M(﹣12,0),∴BM=10,则S△BCM=10.设点N(n,0),则BN=|n+2|,假设存在点N使直线PN平分△BCM的面积,则BN•y C=×10,n=或﹣,故点N的坐标为:(,0)或(﹣,0).25.【解答】解:(1)OA=OB=3,则点A、B的坐标分别为:(3,0)、(0,3),将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线11的表达式为:y=﹣x+3…①;(2)联立l1、l2的表达式得:,解得:,故点D(2,1);△OCD的面积=×OA•y D=3×1=;(3)△COE与△DEP的面积相等,则S△CDO=S△CDE+S△OCE=S△PED+S△CED=S△PCD,则点P、O到CD的距离相等,故OP所在的直线与CD平行,则直线OP的表达式为:y=x…②,联立①②并解得:x=,则点P(,).26.【解答】解:(1)设y=0,则x=6;设点x=0,则y=6,故点B的坐标为(6,0),点C的坐标为(0,8);(2)S△OAC=×CO×x A=×8×3=12;(3)存在点M使S△OMC=S△OAC,设M的坐标为(x,y);OA的解析式是y=mx,则3m=4,解得:,则直线OA的解析式是:,∵当S△OMC=S△OAC时,即,又∵OC=8,∴,当M在线段OA上时,x>0,所以时,y=1,则M的坐标是;当M在射线上时,则y=7,则M的坐标是;则y=9,则M的坐标是,综上所述:M的坐标是:或或;(4)在Rt△OBC中,∠COB=90°,OB=6,OC=8,∴,∵△BCN沿直线BN折叠后,所得三角形为△BDN,∴CN=DN,BD=BC=10,∴OD=4在Rt△ODN中,设ON=x,则DN=8﹣x,∴42+x2=(8﹣x)2∴x=3,故点N(0,3),设直线AM的解析式为y=kx+b(k≠0)代入A(6,0),N(0,3)得:,解得,∴直线AM的解析式为.27.【解答】解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.28.【解答】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).29.【解答】解:(1)把A(6,0)代入y=kx+8中,得6k+8=0,解得:,∴,把x=3代入,得y=4,∴C(3,4);(2)作CF⊥x轴于点F,EG⊥x轴于点G,∵△CDE是等腰直角三角形,∴CD=DE,∠CDE=90°,∴∠CDF=90°﹣∠EDG=∠DEG,且∠CFD=∠DGE=90°,∴△CDF≌△DEG(AAS)∴CF=DG=4,DF=EG=3﹣m,∴OG=4+m,∴E(4+m,m﹣3);(3)点E(4+m,m﹣3),则点E在直线l:y=x﹣7上,设:直线l交y轴于点H(0,﹣7),过点O作直线l的对称点O′,∵直线l的倾斜角为45°,则HO′∥x轴,则点O′(7,﹣7),连接CO′交直线l于点E′,则点E′为所求点,OC是常数,△OCE周长=OC+CE+OE=OC+OE′+CE′=OC+CE′+O′E′=OC+CO′为最小,由点C、O′的坐标得,直线CO′的表达式为:y=﹣x+联立,解得:,故:.30.【解答】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).。

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
①-②,得 2y=2,∴y=1, x=2, x=2,
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.

2020年中考数学一轮专题复习——一次函数及其应用(含详细解析)

2020年中考数学一轮专题复习——一次函数及其应用(含详细解析)

2020年中考数学——一次函数及其应用考题感知与试做1.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4 s 行驶的路程为48 mB .在0到8 s 内甲的速度每秒增加4 m /sC .两车到第3 s 时行驶的路程相等D .在4至8 s 内甲的速度都大于乙的速度2.如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若点C ⎝⎛⎭⎫32,32,则该一次函数的表达式为 .中考考点梳理一次函数及其图象和性质1.一次函数及正比例函数的概念用自变量的一次整式表示的函数的关系式,称为一次函数.一次函数通常可以表示为y =kx +b 的形式,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y =kx (常数k ≠0)叫做正比例函数.【温馨提示】正比例函数是一种特殊的一次函数.正比例函数是一次函数,反之不一定成立;定义中k ≠0是非常重要的条件,若k =0,则函数就成为y =b (b 为常数),此函数图象是平行于x 轴(包括x 轴)的直线,不是一次函数.2.一次函数的图象和性质一次函数 y =kx +b (k ≠0)k 、b符号 k >0 k <0 b >0 b <0 b =0 b >0 b <0 b =0图象经过象限经过第一、二、三象限经过第 象限 经过第一、三象限 经过第一、二、四象限 经过第二、三、四象限经过第 象限增减性 y 随x 的增大而 y 随x 的增大而与坐标轴 的交点与x 轴的交点坐标为 , 与y 轴的交点坐标为3.一次函数y =kx +b (k ≠0)的图象向上或向下平移m (m>0)个单位的解析式为y =kx +(b±m );向左或向右平移m 个单位的解析式为y =k (x±m )+b.一次函数表达式的确定4.求一次函数表达式的常用方法是 ,具体步骤: (1)设出待求函数表达式y =kx +b (k ≠0);(2)将题中条件(图象上点的坐标)代入表达式y =kx +b ,得到含有待定系数k 、b 的方程(组); (3)解方程(组)求出待定系数k 、b 的值;(4)将所求待定系数的值代入所设函数表达式中.一次函数与方程(组),不等式的关系5.一次函数与方程(组)的关系(“数形结合”思想)(1)一次函数y =kx +b (k 、b 为常数,且k ≠0)可转化为二元一次方程kx -y +b =0; (2)一次函数y =kx +b 的图象与x 轴交点的横坐标 是方程kx +b =0的解;(3)一次函数y =kx +b 与y =k 1x +b 1图象交点的横、纵坐标值是方程组⎩⎪⎨⎪⎧y =kx +b ,y =k 1x +b 1的解.6.一次函数与不等式的关系(“数形结合”思想)(1)如图①,函数y =kx +b 中,当函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集,对应的函数图象为位于x 轴上方的部分,即x <a ;当函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集,对应的函数图象为位于x 轴下方的部分,即x >a.(2)两个一次函数可将平面分成四部分,比较两函数交点左右两边图象上下位置来判断不等式的解集,即k 1x +b 1>k 2x +b 2的解集为x >a ;k 1x +b 1<k 2x +b 2的解集为x <a (如图②).【温馨提示】灵活运用“数形结合”思想,不忘代数解法.一次函数的实际应用7.利用一次函数解决实际问题的一般步骤 (1)设定实际问题中的自变量与因变量;(2)通过列方程(组)与待定系数法求一次函数关系式; (3)确定自变量的取值范围; (4)利用函数性质解决问题;(5)检验所求解是否符合实际意义; (6)作答. 8.方案最值问题对于求方案问题,通常涉及两个相关量,解题方法为根据题中所要满足的关系式,通过 列不等式 ,求解出某一个事物的 取值范围 ,再根据另一个事物所要满足的条件,即可确定出有多少种方案.1.(2019·沈阳中考)已知一次函数y =(k +1)x +b 的图象如图所示,则k 的取值范围是( ) A .k <0 B .k <-1 C .k <1 D .k >-12.若一个正比例函数的图象经过A (3,-6)、B (m ,-4)两点,则m 的值为( ) A .2 B .8 C .-2 D .-8(第1题图) (第3题图)3.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( )A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +34.如图,正比例函数y 1=k 1x 和一次函数y 2=k 2x +b 的图象相交于点A (2,1).当x<2时,y 1 y 2.(填“>”或“<”)中考典题精讲精练一次函数的图象及性质【典例1】已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k 、b 的取值情况为( )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <0一次函数表达式的确定及与方程(组)、不等式的关系【典例2】已知函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为-2,且当x =2时,y =1,那么这个函数的表达式为 .【典例3】如图,若一次函数y =-2x +b 的图象交y 轴于点A (0,3),则不等式-2x +b >0的解集为( )A .x >32 B .x >3C .x <32 D .x <3一次函数的实际应用【典例4】甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地.甲出发1 h 后,乙出发.设甲与A 地相距y 甲(km ),乙与A 地相距y 乙(km ),甲离开A 地的时间为x (h ),y 甲、y 乙与x 之间的函数图象如图所示.(1)甲的速度是 km /h ;(2)当1≤x ≤5时,求y 乙关于x 的函数表达式;(3)当乙与A 地相距240 km 时,甲与A 地相距 km .一次函数的综合应用 【典例5】如图,把Rt △ABC 放在平面直角坐标系上,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为 cm 2.1.(2019·广安中考)一次函数y =2x -3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、三、四 D .一、二、四2.(2019·成都中考)已知一次函数y=(k-3)x+1的图象经过第一、二、四象限,则k的取值范围是 .3.(2019·通辽中考)如图,直线y=kx+b(k≠0)经过点(-1,3),则不等式kx+b≥3的解集为()A.x>-1B.x<-1C.x≥3D.x≥-14.若函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.5.(2019·大连中考)甲、乙两人沿同一条直路走步,如果两人分别从这条路上的A、B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a-b= .6.(2019·山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1、y2与x之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱?7.(2019·乐山中考)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.参考答案考题感知与试做1.(2019·中考)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( C )A .乙前4 s 行驶的路程为48 mB .在0到8 s 内甲的速度每秒增加4 m /sC .两车到第3 s 时行驶的路程相等D .在4至8 s 内甲的速度都大于乙的速度2.(2018·中考)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若点C ⎝⎛⎭⎫32,32.中考考点梳理一次函数及其图象和性质1.一次函数及正比例函数的概念用自变量的一次整式表示的函数的关系式,称为一次函数.一次函数通常可以表示为y =kx +b 的形式,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y =kx (常数k ≠0)叫做正比例函数.【温馨提示】正比例函数是一种特殊的一次函数.正比例函数是一次函数,反之不一定成立;定义中k ≠0是非常重要的条件,若k =0,则函数就成为y =b (b 为常数),此函数图象是平行于x 轴(包括x 轴)的直线,不是一次函数.2.一次函数的图象和性质3.一次函数y =kx +b (k ≠0)的图象向上或向下平移m (m>0)个单位的解析式为y =kx +(b±m );向左或向右平移m 个单位的解析式为y =k (x±m )+b.一次函数表达式的确定4.求一次函数表达式的常用方法是 待定系数法 ,具体步骤: (1)设出待求函数表达式y =kx +b (k ≠0);(2)将题中条件(图象上点的坐标)代入表达式y =kx +b ,得到含有待定系数k 、b 的方程(组);(3)解方程(组)求出待定系数k 、b 的值; (4)将所求待定系数的值代入所设函数表达式中.一次函数与方程(组),不等式的关系5.一次函数与方程(组)的关系(“数形结合”思想)(1)一次函数y =kx +b (k 、b 为常数,且k ≠0)可转化为二元一次方程kx -y +b =0;(2)一次函数y =kx +b 的图象与x 轴交点的横坐标 -bk是方程kx +b =0的解;(3)一次函数y =kx +b 与y =k 1x +b 1图象交点的横、纵坐标值是方程组⎩⎪⎨⎪⎧y =kx +b ,y =k 1x +b 1的解.6.一次函数与不等式的关系(“数形结合”思想) (1)如图①,函数y =kx +b 中,当函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集,对应的函数图象为位于x 轴上方的部分,即x <a ;当函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集,对应的函数图象为位于x 轴下方的部分,即x >a.(2)两个一次函数可将平面分成四部分,比较两函数交点左右两边图象上下位置来判断不等式的解集,即k 1x +b 1>k 2x +b 2的解集为x >a ;k 1x +b 1<k 2x +b 2的解集为x <a (如图②).【温馨提示】灵活运用“数形结合”思想,不忘代数解法.一次函数的实际应用7.利用一次函数解决实际问题的一般步骤 (1)设定实际问题中的自变量与因变量;(2)通过列方程(组)与待定系数法求一次函数关系式; (3)确定自变量的取值范围; (4)利用函数性质解决问题;(5)检验所求解是否符合实际意义; (6)作答. 8.方案最值问题对于求方案问题,通常涉及两个相关量,解题方法为根据题中所要满足的关系式,通过 列不等式 ,求解出某一个事物的 取值范围 ,再根据另一个事物所要满足的条件,即可确定出有多少种方案.1.(2019·沈阳中考)已知一次函数y =(k +1)x +b 的图象如图所示,则k 的取值范围是BA .k <0B .k <-1C .k <1D .k >-12.若一个正比例函数的图象经过A (3,-6)、B (m ,-4)两点,则m 的值为( A ) A .2 B .8 C .-2 D .-8(第1题图) (第3题图)3.(2014·宜宾中考)如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( D )A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +34.如图,正比例函数y 1=k 1x 和一次函数y 2=k 2x +b 的图象相交于点A (2,1).当x<2时,y 1 < y 2.(填“>”或“<”)中考典题精讲精练一次函数的图象及性质【典例1】已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k 、b 的取值情况为( A )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <0【解析】一次函数y =kx +b -x =(k -1)x +b. ∵函数值y 随x 的增大而增大,∴k -1>0,即k >1.又∵图象与x 轴的正半轴相交,∴图象与y 轴的负半轴相交.∴b <0.一次函数表达式的确定及与方程(组)、不等式的关系【典例2】已知函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为-2,且当x =2时,y =1,那么这个函数的表达式为 y =32x -2 W.【解析】由题意知,函数图象过(0,-2)、(2,1)两点,并代入y =kx +b ,得⎩⎪⎨⎪⎧2k +b =1,b =-2.求解出k 、b 的值,即可确定出函数的表达式.【典例3】如图,若一次函数y =-2x +b 的图象交y 轴于点A (0,3),则不等式-2x +b >0的解集为( C )A .x >32 B .x >3C .x <32D .x <3【解析】由题意可得一次函数图象与x 轴的交点坐标为⎝⎛⎭⎫32,0,对应x 轴上方的函数图象的自变量x 的取值范围即为所求.一次函数的实际应用【典例4】甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地.甲出发1 h 后,乙出发.设甲与A 地相距y 甲(km ),乙与A 地相距y 乙(km ),甲离开A 地的时间为x (h ),y 甲、y 乙与x 之间的函数图象如图所示.(1)甲的速度是 km /h ;(2)当1≤x ≤5时,求y 乙关于x 的函数表达式;(3)当乙与A 地相距240 km 时,甲与A 地相距 km . 【解析】(1)根据图象确定甲的路程与时间即可求出速度;(2)利用待定系数法求出y 乙关于x 的函数表达式即可;(3)求出乙距A 地240 km 时的时间,乘以甲的速度即可得出结果.【解答】解:(1)60;(2)当1≤x ≤5时,设y 乙关于x 的函数表达式为y 乙=kx +b.∵点(1,0)、(5,360)在其图象上, ∴⎩⎪⎨⎪⎧0=k +b ,360=5k +b ,解得⎩⎪⎨⎪⎧k =90,b =-90. ∴y 乙=90x -90(1≤x ≤5); (3)220.一次函数的综合应用【典例5】如图,把Rt △ABC 放在平面直角坐标系上,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为 16 cm 2.【解析】如图.∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5, ∴AC =4.∴A′C′=4.∵点C′在直线y =2x -6上, ∴2x -6=4,解得 x =5. 即OA′=5.∴CC′=5-1=4.根据平行四边形面积的计算方法可求线段BC 扫过的面积.1.(2019·广安中考)一次函数y =2x -3的图象经过的象限是C A .一、二、三 B .二、三、四 C .一、三、四 D .一、二、四2.(2019·成都中考)已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是k <3.3.(2019·通辽中考)如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为DA .x >-1B .x <-1C .x ≥3D .x ≥-14.若函数y =2x +b (b 为常数)的图象经过点(1,5),则b 的值为 3 W.5.(2019·大连中考)甲、乙两人沿同一条直路走步,如果两人分别从这条路上的A 、B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲、乙两人之间的距离(单位:m )与甲行走时间x (单位:min )的函数图象,则a -b =12.6.(2019·山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元. 方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1、y 2与x 之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱? 解:(1)当游泳次数为x 时,方式一费用为y 1=30x +200,方式二的费用为y 2=40x ; (2)由y 1<y 2,得30x +200<40x ,解得x >20, 当x >20时,选择方式一比方式二省钱.7.(2019·乐山中考)如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ). (1)求直线l 1的解析式; (2)求四边形PAOC 的面积.解:(1)∵点P (-1,a )在直线l 2:y =2x +4上, ∴2×(-1)+4=a ,即a =2, 则P 点的坐标为(-1,2).设直线l 1的解析式为y =kx +b (k ≠0),代入B (1,0)、P (-1,2),得 ⎩⎪⎨⎪⎧k +b =0,-k +b =2.解得⎩⎪⎨⎪⎧k =-1,b =1. ∴直线l 1的解析式为y =-x +1; (2)∵直线l 1与y 轴相交于点C , ∴C 点的坐标为(0,1).又∵直线l 2与x 轴相交于点A , ∴A 点的坐标为(-2,0),则AB =3. ∵S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =12×3×2-12×1×1=52.。

中考数学一轮复习《一次方程组 及其应用》知识梳理及典型例题讲解课件

中考数学一轮复习《一次方程组 及其应用》知识梳理及典型例题讲解课件
第二章 方程(组)与不等式(组)
第一节 一次方程(组)及其应用
一 次 方 程 (组)
等 式 的
如如果果aa==bb,,那那么么aa±c=c=②①___b__c_b__±_,_c_ac_=③___bc_____(c≠0)
性 如果a=b,那么b=a
Байду номын сангаас
及 质 如果a=b,b=c,那么a=④__c__
其 应
马,则可列方程为 A.150(12+x)=240x
B.240(12+x)=150x
(A )
C.150(x-12)=240x
D.240(x-12)=150x
2.已知xy==31, 是方程 ax+y=2 的解,则 a 的值为__-__1__.
3x-y=-4, 3.解方程组:x-2y=-3.
解:
3x-y=-4…①, x-2y=-3…②.
5.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消 毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53 元.
(1)这两种消毒液的单价分别是多少元?
(2)学校准备购进这两种消毒液共 90 瓶,且 B 型消毒液的数量不少 于 A 型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.
等式两边都除以x-m,得x+m=m.④ 等式两边都减m,得x=0.⑤ 所以任意一个实数都等于0. 以上推理过程中,开始出现错误的那一步对应的序号是___④__.
2.方程3x=2x+7的解是 A.x=4 C.x=7
( C) B.x=-4 D.x=-7
3.对于二元一次方程组
y=x-1…①, x+2y=7…②,
由①式,得 y=3x+4,代入②式,得 x
-2(3x+4)=-5x-8=-3,解得 x=-1.将 x=-1 代入②式,得-1-

2020年中考数学压轴题专项训练:一次函数的综合(含答案)

2020年中考数学压轴题专项训练:一次函数的综合(含答案)

2020年数学中考压轴题专项训练:一次函数的综合1如图,在平面内,点Q为线段AB上任意一点,对于该平面内任意的点P,若满足PQ小于等于AB,则称点P为线段AB的“限距点”(1)在平面直角坐标系Xoy中,若点A (- 1, 0), B( 1, 0).①在的点C(0, 2), D(- 2, - 2), E(0,-一 -:)中,是线段AB的“限距点”的是E②点P是直线y = x+'上一点,若点P是线段AB的“限距点”,请求出点P横坐标3 3X P的取值范围.存在线段AB的“限距点”,请直接写出t的取值范围Λ Q B∙∙∙ C不是线段AB的“限距点”;当D(-2, - 2)时,D到AB的最短距离2, T AB= 2 ,∙D不是线段AB的“限距点”;当E (0,--;)时,E到AB的最短距离「: , T AB= 2 ,∙E是线段AB的“限距点”;故答案为E;②如图:以(1 , 0)为圆心,2为半径做圆,以(-两圆与直线(2)如图,以A (t , 1)为圆心,2为半径做圆,以B (t, - 1两圆与直线(2)在平面直角坐标系XOy 中,若点A (t , 1), B (t, - 1).若直线y=解:(1)①当C (0, 2)时, C到AB的最短距离2, T AB= 2 ,1 , 0)为圆心,2为半径做圆,为圆心,2为半径做圆,上y=b"χ+±i的交点为P22.如图,已知过点 B (1, 0)的直线I i 与直线l 2: y = 2x +4相交于点 P ( - 1, a ), I i 与y 轴交于点 C, I 2与X 轴交于点 A(1) 求a 的值及直线I i 的解析式.(2) 求四边形PAoC 勺面积.(3) 在X 轴上方有一动直线平行于 X 轴,分别与I i ,丨2交于点M N 且点M 在点N 的右 侧,X轴上是否存在点 Q 使厶MN(为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.解:(1)τ y = 2x +4 过点 P (- 1,a ),.∙. a= 2,•••直线 I 1 过点 B (1,0)和点 P (- 1,2),设线段BP 所表示的函数表达式 y = kx +b 并解得: 函数的表达式y =- x +1;(2) 过点P 作PEIOA 于点E,作PF ⊥y 轴交y 轴于点F ,Il 5(3) 如图,M( 1 - a ,a ),点 N^~,小,HI a -4l-⅛-∙∙∙ MN= NQ 则3.在平面直角坐标系中,直线 I 仁y =- 2x +6与坐标轴交于 A, B 两点,直线12: y = kx +2(k > 0)与坐标轴交于点 C, D,直线∣1,丨2与相交于点 E(1) 当k = 2时,求两条直线与 X 轴围成的厶BDB 的面积;(2) 点P (a, b )在直线12: y Q kx +2 (k > 0)上,且点 P 在第二象限.当四边形 OBEC23的面积为=时.① 求k 的值;② 若m= a+b ,求m 的取值范围.%C\ .r 3\ X O B \ k X备丿 胭解:(1)τ直线l I : y =- 2x +6与坐标轴交于 A B 两点,.∙.当 Xy= O 时,得 X = 3,当 X = 0 时,y = 6;综上,点Q 的坐标为:(-匸,0)或(- 0)或( ,0) •③当 MQ NQ 寸,*∙∙∙ A (O, 6) B (3, 0);当k = 2 时,直线12: y= 2x+2 ( k≠ 0),∙ C (0, 2), D(- 1, 0)I' y=-2x÷6' K=I解F 得,,[y=2x+2 ,y=4∙ E (1, 4),•••△ BDE的面积=丄× 4× 4= 8.2(2)①连接OE设E ( n,- 2n+6),T S 四边形OBEe= S A EO+S^EOB∙—x 2× n+二× 3 ×(- 2n+6 )=二,2解得n=—,•E⅛,和14把点E 的人y= kx+2 中,丁 = p^k+2 ,解得k= 4.②T直线y= 4k+2交X轴于D,•D(-「O),τ P (a, b)在第二象限,在线段CD上,1 C∙- —V a v 0 ,•b= 4a+2 ,•m= a+b= 5a+2 ,1 C•- --v mv 2.(2)函数y =--x +b 的图象与X 轴交于点D,点E 从点D 出发沿DA 方向,以每秒2个单 位长度匀速运动到点 A (到A 停止运动).设点E 的运动时间为t 秒.①当△ ACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在 t 的值,使△ ACE 为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.解:(1)∙.∙点 C(- 2, m 在直线 y =- x +2上,.∙. m =-(- 2) +2= 2+2 = 4, •••点 C( - 2, 4), ∙.∙函数y =二χ+b 的图象过点 C (- 2, 4),--×(- 2) +b ,得 b =即m 的值是4, b 的值是一一;(2)①T 函数y =- x +2的图象与X 轴,y 轴分别交于点 A , B ,•点 A (2, 0),点 B (0 , 2),T 函数y = -χ+丄的图象与X 轴交于点D•点D 的坐标为(-14 , 0),∙∙∙ AD= 16,由题意可得,DE= 2t ,则AE= 16-2t ,y =- x +2的图象与X 轴,y 轴分别交于点 A , B,与函y=-3t+2,得≈--2f 1 14V=— XH - I g 3I l y=4则点C的坐标为(-2, 4),∙∙∙△ ACE的面积为12,∙QA盘)X 4 12•• : =12,解得,t = 5即当△ ACE的面积为12时,t的值是5;②当t = 4或t = 6时,△ ACE是直角三角形,理由:当∠ ACE= 90° 时,ACLCE •/点A (2, 0),点B( 0 , 2),点C(- 2 , 4),点D(- 14, 0), •OA= OB AC= 4 J ,∙∠BAO 45° , ∙∠CAE= 45° ,∙∠CEA= 45° ,•CA= CE= ,∙AE= 8 , ∙∙∙AE= 16- 2t ,•8 = 16- 2t ,解得,t =4;当∠ CEA 90° 时,T AC= 4 .「, ∠ CAE= 45•AE= 4 ,∙∙∙AE= 16- 2t , • 4 = 16- 2t ,解得,t =6;由上可得,当t = 4或t = 6时,△ ACE是直角三角形.5•如图1已知线段 AB 与点P ,若在线段 AB 上存在点 Q 满足P(≤ AB 则称点P 为线段(1)如图2,在平面直角坐标系 xθy (2)中,若点 A (- 1, 0), B( 1, 0)① 在 C(0, 2) 2, D(- 2, - 2), -√3) 中,是线段AB 的“限距点”的是C, E ; ② 点P 是直线y = x +1上一点,若点P 是线段AB 的“限距点”,请求出点P 横坐标XP 的取 值范围.围. 解:(1)①T 点 A (- 1, 0), B (1, 0),∙∙∙ AB= 2,T 点C 到线段AB 的最短距离是 2≤AB∙点C 是线段AB 的“限距点”,T 点D 到线段AB 的最短距离=j ∙f 「八2= ∏>AB∙点D 不是线段AB 的“限距点”(2)在平面直角坐标系XOy 中,点 A( t , 1), B(t , - 1),直线y =半沙2近与X 轴 交于点M 与y 轴交于点N 若线段MN 上存在线段AB 的“限距点”,请求出t 的取值范AB 的“限距•••点E到线段AB的最短距离是_ [≤ AB•••点E是线段AB的“限距点”,故答案为:C, E;②•••点A (- 1, 0), B (1, 0)•点P为线段AB的“限距点”的范围是平行于AB且到AB距离为2两条线段」和以点A, 点B为圆心,2为半径的两个半圆围成的封闭式图形,如图所示:如图3,直线y= x+1与该封闭式图形的交点为M N•点M坐标(1, 2)设点N (X, x+1)•( x+1) 2+ (x+1 - 0) 2= 4•X =- 1 - "< /•匚iy ¥AV F MOA V E MN•••点P 横坐标X P 的取值范围为;(2)•••直线y = ^^工卜趴卮与X 轴交于点 M 与y 轴交于点N•点 N (0, 2 品,点 M(— 6, 0)如图3,线段AB 的“限距点”的范围所形成的图形与线段MN 交于点M•••点M 是线段AB 的“限距点”,∙∙∙- 6-t = 2,∙ t = - 8,若线段AB 的“限距点”的范围所形成的图形与线段 MN 相切于点F ,延长BA '交MNF E,∙∙∙ t的取值范围为-8≤ t ≤ -:- 2.6.如图(1),在平面直角坐标系中,直线y =-2 x+4交坐标轴于A、B两点,过点C( - 4,(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C E重合),0N⊥Oh交AB于点N,连接MN①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△ OMr面积最小时,求点M的坐标和厶OM面积.4 、一解:(1)τ直线y ----- x+4交坐标轴于A B两点,d∙当y= 0 时,X= 3,当X = 0 时,y = 4,∙点A的坐标为(3, 0),点B的坐标为(0, 4),∙OA= 3;故答案为:(0, 4), 3;(2 )•••过点C (- 4, 0)作CD交AB于D,交y轴于点已且厶CO B^ BOA∙OC= 4 , OC= OB OE= OA•••点A (3 , 0),∙OA= 3 ,∙OE= 3 ,•点E的坐标为(0, 3),设过点C (- 4 , 0),点E ( 0 , 3)的直线解析式为y = kx+b ,.∙.直线CE 的解析式为y = x +3,4即直线CD 的解析式为y = x +3,4 12■■-,2?(3)①线段OM 与ON 数量关系是Oh =ON 保持不变,证明:•••△ CO B^ BoA∙∙∙ OE= OA ∠ OEI =∠ OAN ∙∙∙∠ Bo =90°, ONLOMl∙∠ MO = ∠ BOA= 90°,∙∠ MO +∠ EO =∠ EON ∠ NOA∙∠ MO = ∠ NOA在厶 MO^ NOA 中,r ZMOE=ZNOA〈OE=OA ,LZOEK=ZOAN •••△ IMO B △ NOA( SAS ,• OM= ON即线段OMl 与ON 数量关系是OM= ON 保持不变;②由①知OM= ON•当OM ,∙∙∙OC= 4 , OE= 3, ∠ COE= 90° , ∙∙∙CE= 5 ,•••当OML CE 时,OM 取得最小值,f-⅛+b=0 lb=3 ,得即点D 的坐标为 12 25 84 25); ∙∙∙ OML ON• △ OM 面积OH-ONOK 2 2 212 v 2 亍 当AOM 取得最小值时,设此时点M 的坐标为(a ,二a +3),4解得,a =-∙τa+3=故 A (4, 0);当 X = 0 时,y =— 3, 故 B (0,- 3);2 ^ 2 恥5 4×3 2 _ 2 解得,OMk125 7225^,⅛+3)Ξ 12_.S•••△OM 面积取得最小值是: •点M 的坐标为__ ), 由上可得,当△36 48 OMN 面积最小时,点 M 的坐标是(=ς?,石孑)和厶OMN 面积 25 ' 25积是 72 7.如图,一次函数「V 的图象分别与X 轴、y 轴交于点A B ,以线段AB 为边在第四象限内作等腰直角厶 ABC 且∠ BAC= 90°.(1)试写出点A B 的坐标:A ( 4 , 0 ) , B ( 0 , - 3 );(2)求点C 的坐标;解得:X = 4,故答案为:(4, 0), (0,- 3);(2)过点C作CDL X轴,垂足为点D,∙∙∙∠ BAC= 90°,∙∙∙∠OAB∠ DAC= 90 ° ,又∙∙∙∠DCA∠ DAC= 90°,∙∠ACD=∠ OAB在厶AOBm CDA中r ZBOA=ZATC•Z0A&=ZACDl AB=AC•••△ AOB^△ CDA( AAS,•AD= OB= 3, CD= OA= 4,•OD= 7,• C ( 7,- 4);(3)设直线BC的函数表达式为y = kx+b 把B (0,- 3), C (乙-4)代入上式:解之得:* 7 ,,b=~3•直线BC的函数表达式为y =今鼻-3・&如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程yι, y2 (千米)与行驶时间X (小时)之间的函数关系图象.圉I ≡2(1)填空:A, B两地相距600千米;货车的速度是40千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间X之间的函数表达式;(3)试求客车与货两车何时相距40千米?解:(1)由函数图象可得, A B两地相距:480+120 = 600 ( k∏),货车的速度是:120 ÷ 3 = 40 ( km(h)∙故答案为:600; 40 ;(2)y= 40 (X- 3) = 40x - 120 (X> 3);(3)分两种情况:①相遇前:80x+40x = 600 - 4014解之得X = -y…(8分)②相遇后:80x+40x = 600+40解之得X =千综上所述:当行驶时间为学小时或二小时,两车相遇40千米.9.如图1,在平面直角坐标系XOy中,点A (2, 0),点B( - 4, 3).(1)求直线AB的函数表达式;(2)点P是线段AB上的一点,当S∖AO P S^ AOB=2: 3时,求点P的坐标;(3)如图2,在(2)的条;件下,将线段AB绕点A顺时针旋转120°,点B落在点C处,连结CP求厶APC的面积,并直接写出点C的坐标.图1 解:(1)设直线AB 的函数表达式为•/点 A (2,0),点 B (- 4, 3),.卩沙bo V ⅛+b=3,1 解得:* ■ L b = I•••直线AB 的函数表达式为 y =-—x +1;(2)过B 作BEl X 轴于E ,过P 作PDL X 轴于D,• PD// BE• S ^AO P S ^ AO = 2 :AP 2 AB 3,•点 B (- 4, 3),• BE= 3,• PD// BE• △ APDo ^ ABEPD PD 2 BE3 3,• PD= 2,当 y = 2 时,X =- 2,• P (- 2, 2);A Xy = . kx +b ,(3)点A (2, 0)、点B (- 4, 3),点P (- 2, 2),则AP= 2 U AB= CA= 3 匚,过点P作HPL AC交AC的延长线于点H,△ APC的面积=二:ACX PH=--× 3. □× . 口 =二•;2 二2设点C (X, y),则PC= P H+H C= 15+( i. ,+3 :■) 2= 95 =( x+2) 2+ (y - 2) 2…①,CA= 45 =( X - 2) 2+y2…②,联立①②并解得:X y=∙..,故点1). 〜10.如图,平面直角坐标系中,直线AB y = kx+3 ( k≠ 0)交X轴于点A (4, 0),交y轴正半轴于点B,过点C( 0, 2)作y轴的垂线CD交AB于点E,点P从E出发,沿着射线ED 向右运动,设PE= n.(1)求直线AB的表达式;(2)当厶ABP为等腰三角形时,求n的值;(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt △ BPM试问随着点P的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.解:将点A 的坐标代入直线 AB y = kx +3并解得:k =-丁, 故AB 的表达式为:y =-工x +3;4而点A B 坐标分别为:(4, 0)、(0, 3),当AP= AB 时,同理可得: n = _ +「(不合题意值已舍去);当AB= BP 时,同理可得: n =-—+2「;⅞-)(3)在直线上,理由:如图,过点M 作MDL CD 于点H,∙∙∙∠ CPB=∠ MPH BP= PM ∠ MH =∠ PCB= 90°∙∙∙ MH △^^ PCB( AAS ,故点M 在直线y = x +1上.11.小聪和小慧去某风景区游览,两人在景点古刹处碰面,相约一起去游览景点飞瀑, 骑自行车先行出发,小慧乘电动车出发,途径草甸游玩后,再乘电动’车去飞瀑,人同时到达飞瀑.图中线段 OA 和折线B- C- D- A 表示小聪、小慧离古刹的路程(2)当 y = 2 时,X = ,故点E (■ ,2),则点 P (n +二,2),≡ A P =(壬+n - 4) 2+4 ; BP =( n2+1, AB = 25, 当 AP = BP 时,(2+ n - 4) +4=( n +")2+1,解得:n =-二6BC=1 = PH7故点M( n +—,n+∙10小聪 结果两y (米)O,∠ BPG ∠ MP = 90°,则 CP= MHb n与小聪的骑行时间X (分)的函数关系的图象,根据图中所给信息,解答下列问题:(1) 小聪的速度是多少米/分?从古刹到飞瀑的路程是多少米? (2) 当小慧第一次与小聪相遇时,小慧离草甸还有多少米? (3) 在电动车行驶速度不变的条件下,求小慧在草甸游玩的时间.U≡0.αrι解: (1) Y 小职-禺厂丄创(米/分).古刹到飞瀑的路程=180 × 50= 9000 (米).答:小聪的速度是180米/分,从古刹到飞瀑的路程是 9000米;10k+b=0.∙. Y = 450x - 4500当 X = 20, Y = 45004500 - 3000= 1500 米 答:小慧与小聪第一次相遇时,离草甸还有1500米.(3) 9000- 4500= 4500 (米) 4500 ÷ 450 = 10 (分钟). 50- 10- 10 - 10= 20 (分钟) 答:20分钟.12.对于平面直角坐标系 XOY 中,已知点 A (- 2, 0)和点B(3, 0),线段AB 和线段AB 外的一点P,给出如下定义:若 45°≤∠ APB≡ 90 °时,则称点 P 为线段AB 的可视点, 且当PA= PB 时,称点P 为线段AB 的正可视点. (1)①如图1 ,在点P 1(3, 6), P 2 (- 2, - 5) ,P 3 (2,2)(2)设 Y = kx +b , 解得⅛=450 Ib='450C则k-⅛-3000中,线段AB的可视点是P2,2-4Γ备用團解:(1)①如图1,以AB 为直径作圆 G 贝U 点P 在圆上,则∠ APB= 90°,若点P 在圆内, 则∠ APB>90°,5 — 4 —*-C/ Fr■ - **■■■ *-I70 G 1b_ Ib r ・.■-3-D—■以C (勺",女)为圆心,AC 为半径作圆,在点 P 优弧如B 上时,∠ APB= 45° ,点P 在优 弧」内,圆G 外时,45°v∠ AP 欢90°;,-—)为圆心,AD 为半径作圆,在点 P 优弧TE 上时,∠ APB= 45°,点P 在优弧」■内,圆G 外时,45°v∠ APB≤ 90°;②若点P 在y 轴正半轴上,写出一个满足条件的点 P 的坐标: P( 0,3)(答案不唯一)(2)在直线y = x +b 上存在线段 AB 的可视点,求 b 的取值范围;(3)在直线y =- x +m 上存在线段 AB 的正可视点,直接写出 m 的取值范围.Ai ■ i 占 id 斗亠3亠2 -1 O3-2-10-1-4Γ•••点P ( 3, 6), P2 (- 2,- 5), P (2, 2)∙∙∙ P I C=^4〉M= AC 则点P i在圆C外,则∠ ARB< 45°,■: ■■:P2D= ' = AC 则点P2在圆D上,则∠ APB= 45 ° ,2RG=層=BG 点P a在圆G上,则∠ APB= 90°,∙线段AB的可视点是P2, P a,故答案为:B, P a;②由图1可得,点P的坐标:P(0, 3)(答案不唯一,纵坐标y范围:∣l≤ y p≤ 6).(2)如图2,设直线y=x+b与圆C相切于点H交X轴于点N连接BH∙∙∙∠ HN=∠ HBN= 45° ,∙NH= BH ∠ NH= 90°,且NH是切线,∙BH是直径,∙BH= 5,∙BN= 10 ,∙ON= 7 ,∙点N ( - 7 , 0)∙0 =- 7+b , ∙b= 7 ,当直线y = x+b与圆D相切同理可求:b =- 88≤ b ≤ 7(3)如图3,作AB 的中垂线,交Θ C 于点Q 交Θ D 于点 W--⅛,, Xg.亠 ・■■T 直线y =- x +m 上存在线段 AB 的正可视点,.线段CC 和线段DWt 的点为线段 AB 的正可视点.别代入解析式可得:匕的函数关系如图所示:(2) 求甲、乙两车相遇后y 与X 之间的函数关系式,并写出相应的自变量 X 的取值范围.T 点 CL-,=-),点 D (-^-5√2 2.m = 3, m = .m 的取值范围:^√+3,m =-2,m =-—.「- X.二冷._ 或]13.已知 A 、B 两地之间有一条 270千米的公路, 甲、乙两车同时出发,甲车以每小时 60千米/时的速度沿此公路从 A 地匀速开往B 地, 乙车从B 地沿此公路匀速开往A 地, 两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间X (时) 之间(1)乙年的速度为75 千米/时,a = 3.6 ,b =4.5 ;⅛41),点Q),点÷ 2= 75千米/时,故答案为:75; 3.6 ; 4.5 ;(2) 60× 3.6 = 216 (千米),故A (2, O), B( 3.6 , 216) , C (4.5 , 270) 当2 V x≤ 3.6时,设y = k1x+b1,根据题意得:2k1+b 1=06k1+b1^21⅛解得∙∙∙ y = 135x - 270 (2 V x≤ 3.6 );当 3.6 V X≤ 4.5 时,设y= k2x+b2,贝U3.6k2+b Ξ=2164,解得∙当3.6 V X≤ 4.5 时,y = 60x,r135χ-270(2<x<3.6)y(60讥£代κj≤4∙5)14.已知:在平面直角坐标系中,直线x+4与X轴交于点A,与y轴交于点B,点C是X轴正半轴上一点,AB= AC 连接BC(1)如图1 ,求直线BC解析式;(2)如图2,点P Q分别是线段AB BC上的点,且AF=J BQ连接PQ若点Q的横坐标为t , △ BPC 的面积为S ,求S 关于t 的函数关系式,并写出自变量取值范围; (3) 如图3,在(2)的条件下,点 E 是线段OA 上一点,连接 BE 将厶ABE 沿BE 翻折, 使翻折后的点 A 落在y 轴上的点H 处,点F 在y 轴上点H 上方EH= FH 连接EF 并延长交BC 于点G 若B 'AR 连接PE 连接P G 交BE 于点「求BT 长.≡1鈕解:(1)由已知可得 A (- 3 , 0), B(0, 4),∙∙∙ OA= 3, OB= 4,∙∙∙ A B=常丁吐;CF 丛=•二 I = 5,∙∙∙ AB= AC∙ AC= 5,∙C ( 2, 0), 设BC 的直线解析式为 y = kx +b , 将点B 与点C 代入,得(O-Ξk+b U=b , r ⅛=-2∙ BC 的直线解析式为 y =- 2x +4;(2)过点Q 作MQ y 轴,与y 轴交于点 M 过点Q 作QEL AB 过点C 作CF ⊥ABS34图2τ Q 点横坐标是t ,∙°∙ MQ= t ,T Ma OC…典厶/5∙ BQ= ∏t ,∙.∙ AP = BQ∙ AP= F ,T AA 5,∙ PB- 5 -凤.∣t ,在等腰三角形 ABC 中, AC= AB= 5, BC= 2 一二,1 11V--ABX CF=T-ACX OB∙ CF = OB^ 4, T EQ/ CFES -√5t•— L ∙ EQ= 2t ,∙ S =丄 L-×( 5- Γt )=-.匸—t (0≤ t ≤ 2); (3)如图3,8CH≡3EH)23 占 八3 4)BG=54E 、0O E =丄OiAE =( 4 - AE ) 2+12•••将厶ABE 沿BE 翻折,使翻折后的点 A 落在y 轴上的点H 处,∙∙∙ AH= AB= 5,∙∙∙ OH= BH- ∙∙∙ EH =O+H,∙点 E (- -二,∙点 F (0,4 3∙∙∙ EH= FH= ⅛ ∙直线EF 解析式为y=—x+—, 直线BE 的解析式为: y = 3x +4,∙ X ∙- 2x +4= ―X• X =- 1,•点 T (- 1, 1)• B T =:厂 Iuj . T J = '115.如图,在平面直角坐标系中,点A (4, 0)、点B (0, 4),过原点的直线l 交直线AB 于点P * X\P 丿(1 )∠ BAQ 的度数为 45 °,△ AoB 的面积为 8(2) 当直线l 的解析式为y = 3X 时,求△ AOP 勺面积;1(3) 当时,求直线I 的解析式. Li AEOF J解:(1)τ点 A (4, 0)、点 B (0, 4),• OA= OB∙∙∙∠ AO = 90°,• △ AOB 是等腰直角三角形,∙∙∙ BG=主丄AP ∙∙∙ AP= 1, •••点 P (- 12 4 T ,百 •直线PG 的解析式为:•/ BAO= 45°,A AOB的面积=f-× 4 × 4= 8;故答案为:45, 8;(2)设直线AB 的解析式为:y = kx +b ,•••直线AB 的解析式为:y =- x +4, •••直线l 的解析式为y =3x ,解苗得Dl• P (1, 3),• △ AoP 勺面积=⅛× 4× 3= 6;(3)如图,过 P 作 PC ⊥OA 于 C, 贝y PC// OB S AAOP^ABOFAP- LPB = 3PAL •屈=1?∙∙∙ PC// OBPC AC PA OB OA AB'• PC= 1, AC= 1, ∙ OC= 3, • P (3,1), .∙.∙=直线I 的解析式为y =二χ∙把点A (4, 0)、点B(0, 4)代入得 '4fc+b=0 L b =4 解得: t b=4。

挑战2024年中考数学压轴题之学霸秘笈大揭秘(全国通用)专题02解方程与解不等式篇(原卷版+解析)

挑战2024年中考数学压轴题之学霸秘笈大揭秘(全国通用)专题02解方程与解不等式篇(原卷版+解析)

专题02 解方程与解不等式1. 解一元一次方程的步骤:①去分母——等式左右两边同时乘分母的最小公倍数。

②去括号。

注意括号前的符号,是否需要变号。

③移项——含有未知数的项移到等号左边,常数移到等号右边。

移动的项一定要变符号。

④合并——利用合并同类项的方法合并。

⑤系数化为1——等式左右两边同时除以系数(或乘上系数的倒数)。

2. 解二元一次方程组的方法:①代入消元法:将其中一个方程的其中一个未知数用另一个未知数表示出来代入另一个方程中,实现消元,进而求出方程组的解的方法叫做代入消元法。

(通常适用于有未知数的系数是±1的方程组) ②加减消元法:当方程组中的两个方程的同一个未知数的系数相同或相反时,则可以利用将两个方程相减或相加的方法消掉这个未知数的方法叫做加减消元法。

3. 解分式方程的步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。

把分式方程化成整式方程。

②解整式方程。

③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。

若公分母不为0,则未知数的值即是原分式方程的解。

若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。

4. 解一元二次方程的方法:(1)直接开方法:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0) ①p x =2时,方程的解为:p x p x -==21,。

②()p a x =+2时,方程的解为:a p x a p x --=-=21,。

③()p b ax =+2时,方程的解为:a b p x a b p x --=-=21,。

(2)配方法的具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。

②移项——把常数项移到等号右边。

③配方——两边均加上一次项系数一半的平方得到完全平方式。

④开方——整理式子,利用完全平方式开方降次得到两个一元一次方程。

⑤解一元一次方程即得到一元二次方程的根。

(3)公式法:根的判别式:ac b 42-=∆;求根公式:a ac b b x 242-±-=。

中考《一次方程(组)》经典例题及解析

中考《一次方程(组)》经典例题及解析

一次方程(组)一、方程和方程的解的概念1.等式的性质(1)等式两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式.(2)等式两边都乘以(或除以)同一个不等于零的数,所得的结果仍是等式.2.方程:含有未知数的等式叫做方程.3.方程的解:使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程.二、一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.一元一次方程0(0)ax b a +=≠的求解步骤注意:解方程时移项容易忘记改变符号而出错,要注意解方程的依据是等式的性质,在等式两边同时加上或减去一个代数式时,等式仍然成立,这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项,此时该项在方程一边是0,而另一边是它改变符号后的项,所以移项必须变号.三、二元一次方程(组)及解的概念1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a x b y c a x b y c +=⎧⎨+=⎩. 4.解二元一次方程组的基本思想解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.5.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.四、一次方程(组)的应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量. (2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.经典例题 一元一次方程的定义1.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【解析】解:因为关于x 的一元一次方程2x a -2+m =4的解为x =1, 可得:a -2=1,2+m =4,解得:a =3,m =2,所以a +m =3+2=5,故选C .【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.1.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.【答案】2x =或2x =-或x =-3.【分析】利用一元一次方程的定义判断即可.211m ∴﹣=,即1m =或0m =,方程为20x ﹣=或20x --=,解得:2x =或2x =-,当2m -1=0,即m =12时,方程为112022x --=解得:x =-3, 故答案为x =2或x =-2或x =-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.经典例题 解一元一次方程 1.解方程:221123x x x ---=- 【答案】27x = 【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解析】解:221123x x x ---=- ()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =【点睛】本题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化. 2.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1.去括号,得3x +1﹣2x +3=1.移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【答案】圆圆的解答过程有错误,正确的解答过程见解析【分析】直接利用一元一次方程的解法进而分析得出答案.【解析】解:圆圆的解答过程有错误,正确的解答过程如下:3(x +1)﹣2(x ﹣3)=6.去括号,得3x +3﹣2x +6=6.移项,合并同类项,得x =﹣3.【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的求解方法.3.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )【答案】A【分析】根据题意求出“九宫格”中的y ,【解析】如图,依题意可得2+5+8=2+7+y【点睛】此题主要考查一元一次方程的应用1.关于x 的方程38x x -=的解为x ___【答案】4【分析】方程移项、合并同类项、把x 系数【解析】解:方程38x x -=,移项,【点睛】方程移项,把x 系数化为1,即可2.有一列数,按一定的规律排列成1个数中第一个数是______.【答案】81-【分析】题中数列的绝对值的比是-3,由三解.【解析】题中数列的绝对值的比是-3,由三题意:()n 3n 9n 567+-+=-,解得:【点睛】此题主要考查数列的规律探索与运列出方程是解题的关键.3. 在实数范围内定义运算“☆”:a,再求出x 即可求解. +7+y 解得y=6∴8+x+6=2+5+8解得x=1故选A . 的应用,解题的关键是根据题意得到方程求解.=________.系数化为1,即可求出解. 得3x-x=8,合并同类项,得2x=8.解得x=4.故答案为即可求出解.3,1-,3,9-,27,-81,….若其中某三个相邻由三个相邻数的和是567-,可设三个数为n ,-由三个相邻数的和是567-,可设第一个数是n ,:n=-81,故答案为:-81.索与运用,一元一次方程与数字的应用,熟悉并会用1b a b =+-☆,例如:232314=+-=☆.如果2☆答案为:x=4.个相邻数的和是567-,则这三-3n ,9n ,据题意列式即可求,则三个数为n ,-3 n ,9n 由并会用代数式表示常见的数列,1x =,则x 的值是( ).【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解.【解析】解:由题意知:2211☆=+-=+x x x ,又21x =☆,∴11x +=,∴0x =.故选:C .【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可. 经典例题 一元一次方程的应用1.我国古代数学著作《算学启蒙》中有这样一个学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为______.【答案】(240-150)x=150×12【分析】根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x 的一元一次方程.【解析】解:题中已设快马x 天可以追上慢马,则根据题意得:(240-150)x=150×12.故答案为:(240-150)x=150×12.【点睛】本题考查了一元一次方程的应用问题,找到等量关系,正确列出一元一次方程是解题的关键.2.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.【答案】八【分析】打折销售后要保证打折后利率为20%,因而可以得到不等关系为:利润率=20%,设可以打x 折,根据不等关系列出不等式求解即可.【解析】解:设应打x 折,则根据题意得:(180×x×10%-120)÷120=20%,解得:x=8.故商店应打八折.故答案为:八.【点睛】本题考查一元一次方程的实际应用,解题关键是读懂题意,找到符合题意的等量关系式,同时要注意掌握利润率的计算方法.1.篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.【答案】9【分析】设该对胜x 场,则负14-x 场,然后根据题意列一元一次方程解答即可.【解析】解:设该对胜x 场 由题意得:2x+(14-x )=23,解得x=9.故答案为9.【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232xx +-= D .2932x x -=+ 【答案】B【分析】设有x 人,根据车的辆数不变,即可得出关于x 的一元一次方程,此题得解.【解析】解:设有x 人,根据车的辆数不变列出等量关系,每3人共乘一车,最终剩余2辆车,则车辆数为:23x +, 每2人共乘一车,最终剩余9个人无车可乘,则车辆数为:92x -, ∴列出方程为:9232x x -+=.故选:B . 【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 经典例题 二元一次方程(组)的定义1. 下列方程中,是二元一次方程组的是A .4237x y x y +=⎧⎨+=⎩B .23225412a b x c -=⎧⎨-=⎩C .245x x y ⎧=⎨+=⎩D .75x y xy +=⎧⎨=⎩ 【答案】A 【解析】根据定义可以判断:A 、4237x y x y +=⎧⎨+=⎩,满足要求;B 、23225412a b x c -=⎧⎨-=⎩中含有a ,b ,c ,是三元方程; C 、245x x y ⎧=⎨+=⎩中含有2x ,是二次方程;D 、275x y x y +=⎧⎨-=⎩中含xy ,是二次方程.故选A .【点评】二元一次方程组的三个必需条件:(1)含有两个未知数;(2)每个含未知数的项次数为1;(3)每个方程都是整式方程.1.若关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,则多项式A 可以是_____(写出一个即可). 【答案】答案不唯一,如x ﹣y . 【分析】根据方程组的解的定义,11x y =⎧⎨=⎩应该满足所写方程组的每一个方程.因此,可以围绕11x y =⎧⎨=⎩列一组算式,【解析】∵关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,而1﹣1=0, ∴多项式A 可以是答案不唯一,如x ﹣y .故答案为:答案不唯一,如x ﹣y .【点睛】此题考查二元一次方程组的定义,二元一次方程组的解,正确理解方程组的解与每个方程的关系是解题的关键. 经典例题 解二元一次方程组1.解方程组2451x y x y +=⎧⎨=-⎩. 【答案】1232x y ⎧=-⎪⎪⎨⎪=⎪⎩ 【分析】根据题意选择用代入法解答即可.【解析】解:2451x y x y +=⎧⎨=-⎩①②,将②代入①中得2(1)45y y -+=.解得32y =. 将32y =代入②,得12x =-.所以原方程组的解为1232x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查了解二元一次方程组,解答关键是根据题目特点选择代入法或加减法解答问题.2.已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________________. 【答案】5【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可.【解析】解:221255x y a x y a +=+⎧⎨+=-⎩①②,①+②,得3x+3y=6-3a ,∴x+y=2-a , ∵3x y +=-,∴2-a=-3,∴a=5.故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.3.若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( ) A .3B .3,-3 CD【分析】将21a b =⎧⎨=⎩代入二元一次方程组中解出x 和y 的值,再计算x +2y 的算术平方根即可. 【解析】解:将21a b =⎧⎨=⎩代入二元一次方程3522ax by ax by ⎧+=⎪⎨⎪-=⎩中, 得到:3522+=⎧⎨-=⎩x y x y ,解这个关于x 和y 的二元一次方程组, 两式相加,解75x =得,将75x =回代方程中,解得45y =, ∴7415223555+=+⨯==x y ,∴x +2yC . 【点睛】本题考查了二元一次方程组的解法,算术平方根的概念等,熟练掌握二元一次方程组的解法是解决本题的关键.1.方程组422x y x y +=⎧⎨-=⎩的解是_________. 【答案】22x y =⎧⎨=⎩【分析】直接利用加减消元法求解.【解析】422x y x y +=⎧⎨-=⎩①②由①+②得:3x=6,解得x=2, 把x=2代入①中得,y=2,所以方程组的解为22x y =⎧⎨=⎩.故答案为:22x y =⎧⎨=⎩. 【点睛】考查了解二元一次方程组,解题关键是利用加减消元法实现消元.2.已知1023a b +=,16343a b +=,则+a b 的值为_________. 【答案】1【分析】观察已知条件可得两式中a 与b 的系数的差相等,因此把两式相减即可得解.【解析】解:1023a b +=①,16343a b +=②,②-①得,2a+2b=2,解得:a+b=1,故答案为:1. 【点睛】此题主顾考查二元一次方程组的特殊解法,观察条件的结构特征得出2a+2b=2是解答此题的关键.3.已知关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩与215x y x by -=⎧⎨+=⎩的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为,另外两条边的长是关于x 的方程20x ax b ++=的解.试【答案】(1)-;12 (2)等腰直角三角形,理由见解析【分析】(1)关于x ,y 的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.实际就是方程组 42x y x y +=⎧⎨-=⎩的解,可求出方程组的解,进而确定a 、b 的值;(2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与形的形状.【解析】解:由题意列方程组:42x y x y +=⎧⎨-=⎩解得31x y =⎧⎨=⎩将3x =,1y =分别代入ax +=-和15x by +=解得a =-12b = ∴a =-,12b =(2)2120x -+= 解得x == 这个三角形是等腰直角三角形理由如下:∵222+=∴该三角形是等腰直角三角形.【点睛】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键. 经典例题 二元一次方程组的应用1.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩【答案】A【分析】根据大小桶所盛酒的数量列方程组即可.【解析】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,∴得到方程组5352x y x y +=⎧⎨+=⎩,故选:A. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.——进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【答案】(1)营业厅购进A 、B 两种型号手机分别为6部、4部;(2)营业厅购进A 种型号的手机10部,B 种型号的手机20部时获得最大利润,最大利润是14000元【分析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A 、B 两种型号手机各多少部;(2)根据题意,可以得到利润与A 种型号手机数量的函数关系式,然后根据B 型手机的数量不多于A 型手机数量的2倍,可以求得A 种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.【解析】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,()()300035003200034003000400035004400a b a b +=⎧⎨-+-=⎩,解得,64a b =⎧⎨=⎩, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w =(3400﹣3000)x +(4000﹣3500)(30﹣x )=﹣100x +15000,∵B 型手机的数量不多于A 型手机数量的2倍,∴30﹣x ≤2x ,解得,x ≥10,∵w =﹣100x +15000,k =﹣100,∴w 随x 的增大而减小,∴当x =10时,w 取得最大值,此时w =14000,30﹣x =20,答:营业厅购进A 种型号的手机10部,B 种型号的手机20部时获得最大利润,最大利润是14000元.【点睛】本题考查了二元一次方程组的应用,以及一次函数的应用,熟练掌握一次函数的性质是解答本题的关键.1.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意,所列方程组正确的是( )A .2x y =-⎧⎨B .2x y =-⎧⎨C .2x y =+⎧⎨D .2x y =+⎧⎨【答案】D【分析】根据“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”和“甲工程队每天比乙工程队多施工2米”可分别列出方程,联立即可.【解析】解:依据题意:“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”可列方程23()40050x x y ++=-,“甲工程队每天比乙工程队多施工2米”可列方程2x y =+,故可列方程组:223()40050x y x x y =+⎧⎨++=-⎩,故选:D . 【点睛】本题考查列二元一次方程组.能仔细读题,找出描述等量关系的语句是解题关键.2.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A .352494x y x y +=⎧⎨+=⎩B .354294x y x y +=⎧⎨+=⎩C .235494x y x y +=⎧⎨+=⎩D .435294x y x y +=⎧⎨+=⎩【答案】A 【分析】根据“上有三十五头”和“下有九十四足”两个等量关系列二元一次方程组即可.【解析】解:设鸡有x 只,兔有y 只 根据上有三十五头,可得x+y=35;下有九十四足,2x+4y=94 即352494x y x y +=⎧⎨+=⎩.故答案为A . 【点睛】本题考查了二元一次方程组的应用,弄清题意、找准等量关系是解答本题的关键.。

2020年九年级数学中考压轴专题:《一次函数实际应用》(解析版)

2020年九年级数学中考压轴专题:《一次函数实际应用》(解析版)

中考三轮压轴专题:《一次函数实际应用》1.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x套(x为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y 元.(1)求y与x的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?(3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中20<a<40),且最多购进240套甲款运动服,若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.运动服款式甲款乙款进价(元/套)60 80售价(元/套)100 1502.某单位要将一份宣传资料进行批量印刷.在甲印刷厂,在收取100元制版费的基础上,每份收费0.5元;在乙印刷厂,在收取40元制版费的基础上,每份收费0.7元.设该单位要印刷此宣传资料x份(x为正整数).(1)根据题意,填写下表:印刷数量(份)150 250 350 450 …甲印刷厂收费(元)175 ①275 ②…乙印刷厂收费(元)145 215 ③355 …(2)设在甲印刷厂收费y1元,在乙印刷厂收费y2元,分别写出y1,y2关于x的函数解析式;(3)当x≥100时,在哪家印刷厂花费少?请说明理由.3.某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费120元,购进A品牌文具袋3个和B品牌文具袋各4个共花费88元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为w元.①求w关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不低于进货价格的45%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.4.今年某水果加工公司分两次采购了一批桃子,第一次费用为25万元,第二次费用为30万元.已知第一次采购时每吨桃子的价格比去年的平均价格上涨了0.1万元,第二次采购时每吨桃子的价格比去年的平均价格下降了0.1万元,第二次采购的数量是第一次采购数量的2倍.(1)试问去年每吨桃子的平均价格是多少万元?两次采购的总数量是多少吨?(2)该公司可将桃子加工成桃脯或桃汁,每天只能加工其中一种.若单独加工成桃脯,每天可加工3吨桃子,每吨可获利0.7万元;若单独加工成桃汁,每天可加工9吨桃子,每吨可获利0.2万元为出口需要,所有采购的桃子必须在30天内加工完毕.①根据该公司的生产能力,加工桃脯的时间不能超过多少天?②在这次加工生产过程中,应将多少吨桃子加工成桃脯才能获取最大利润?最大利润为多少?5.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系;(2)若在购买计划中,B种苗的数量不少于22棵但不超过35棵,请设计购买方案,使总费用最低,并求出最低费用.6.商丘市梁园区紧紧围绕十九大报告提出的阶段性目标任务,深化农业供给侧结构性改革,调整种植结构,深入进行了四大结构调整,分别是:水池铺乡的辣椒产业、刘口乡的杂果基地,孙福集乡的山药、莲藕产业,双八镇的草莓产业.目前,这四种产业享誉省内外.某外地客商慕名来商丘考查,他准备购入山药和草莓进行试销,经市场调查,若购进山药和草莓各2箱共花费170元,购进山药3箱和草莓4箱共花费300元.(1)求购进山药和草莓的单价;(2)若该客商购进了山药和草莓共1000箱,其中山药销售单价为60元,草莓的销售单价为70元.设购进山药x箱,获得总利润为y元.①求y关于x的函数关系式;②由于草莓的保鲜期较短,该客商购进草莓箱数不超过山药箱数的,要使销售这批山药和草莓的利润最大,请你帮该客商设计一个进货方案,并求出其所获利润的最大值.7.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系,根据图象进行探究:(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义:;(3)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.8.甲、乙两车从A地出发,沿同一路线驶向B地,甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示(1)a=,甲的速度是km/h;(2)求线段CF对应的函数表达式,并求乙刚到达货站时,甲距B地还有多远?(3)乙车出发min追上甲车?(4)直接写出甲出发多长时间,甲乙两车相距40km.9.为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y(元)与使用面积x(m2)间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y与x间的函数解析式;(2)若校园文化墙总面积共600m2,其中使用甲石材xm2,设购买两种石材的总费用为w 元,请直接写出w与x间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于300m2,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?10.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买A,B 两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)11.为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动,自行车队从甲地出发,目的地为乙地,在自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往乙地,到达乙地后立即按原路返回甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的3倍.如图所示的是自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地的时间x(h)的关系图象,请根据图象提供的信息,回答下列问题.(1)自行车队行驶的速度是;邮政车行驶的速度是;a=.(2)邮政车出发多少小时与自行车队相遇?(3)当邮政车与自行车队相距15km时,此时离邮政车出发经过了多少小时?12.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.13.如图①,某商场有可上行和下行的两条自动扶梯,扶梯上行和下行的长度相等,运行速度相同且保持不变,甲、乙两人同时站上了上行和下行端,甲站上上行扶梯的同时又以0.8米/秒的速度往上走,乙站上下行扶梯后则站立不动随扶梯下行,甲到达扶梯顶端后立即乘坐下行扶梯(换乘时间忽略不计)同时以0.8米/秒的速度往下走,乙到达低端后则在原点等候甲,图②中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,高扶梯底端的路程y(米)与所用时间x(秒)的部分函数图象,结合图象解答下列问题:(1)每条扶梯的长度为米(直接填空);(2)求点B的坐标;(3)乙到达扶梯底端后,还需等待秒,甲才到达扶梯底端(直接填空).14.小明和小津去某风景区游览,小明从明桥出发沿景区公路骑自行车去陶公亭,同一时刻小津在霞山乘电动汽车出发沿同一公路去陶公亭,车速为24m/h.他们出发后xh时,离霞山的路程为ykm,y为x的函数图象如图所示:(1)求直线OC和直线AB的函数表达式;(2)回答下列问题,并说明理由;①当小津追上小明时,他们是否已过了夏池?②当小津到达陶公亭时,小明离陶公亭还有多少千米?15.武胜县白坪一飞龙乡村旅游度假区橙海阳光景点组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐橙品种A B C 每辆汽车运载量(吨) 6 5 4每吨脐橙获得(元)1200 1600 1000(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?(3)设销售利润为W(元),求W与x之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.16.“守护碧水蓝天,守护我们的家园”,某市为了改善城市环境,预算116万元购进A、B两种型号的清扫机,已知A型号清扫机的单价比B型号清扫机单价的多1.2万元,若购进2台A型号清扫机和3台B型号清扫机花费54.6万元.(1)求A型号清扫机和B型号清扫机的单价分别为多少万元;(2)该市通过考察决定先购进两种型号的清扫机共10台,且B型号的清扫机数量不能少于A型号清扫机的1.5倍,该市怎样购买才能花费最少?最少花费多少万元?17.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,其中A型净水器每台的利润为400元,B型净水器每台的利润为500元.该公司计划再一次性购进两种型号的净水器共100台,其中B型净水器的进货量不超过A型净水器的2倍,设购进A型净水器x台,这100台净水器的销售总利润为y元.(1)求y关于x的函数关系式;(2)该公司购进A型、B型净水器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型净水器出厂价下调a(0<a<150)元,且限定公司最多购进A型净水器60台,若公司保持同种净水器的售价不变,请你根据以上信息,设计出使这100台净水器销售总利润最大的进货方案.参考答案1.解:(1)根据题意得y=(100﹣60)x+(150﹣80)(300﹣x)=﹣30x+21000;即y=﹣30x+21000.(2)由题意得,60x+80(300﹣x)≤20000,解得x≥200,∴至少要购进甲款运动服200套.又∵y=﹣30x+21000,﹣30<0,∴y随x的增大而减小,∴当x=200时,y有最大值,y最大=﹣30×200+21000=15000,∴若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是15000元.(3)由题意得,y=(100﹣60+a)x+(150﹣80)(300﹣x),其中200≤x≤240,化简得,y=(a﹣30)x+21000,∵20<a<40,则:①当20<a<30时,a﹣30<0,y随x的增大而减小,∴当小00时,y有最大值,则服装店应购进甲款运动服200套、乙款运动服100套,获利最大.②当a=30时,a﹣30=0,y=21000,则服装店应购进甲款运动服的数量应满足100≤x≤120,且x为整数时,服装店获利最大.③当30<a<40时,a﹣30>0,y随x的增大而增大,∵200≤x≤240,∴当x=240时,y有最大利润,则服装店应购进甲款运动服240套、乙款运动服60套,获利最大.2.解:(1)由题意可得,当x=250时,甲印刷厂的费用为:100+0.5×250=225(元),当x=450时,甲印刷厂的费用为:100+0.5×450=325(元),当x=350时,乙印刷厂的费用为:40+0.7×350=285(元),故答案为:①225;②325;③285.(2)根据题意,得y1=100+0.5x,y2=40+0.7x.(3)设在甲、乙两个印刷厂收费金额的差为y元,则y=y1﹣y2=60﹣0.2x.当y=0时,即60﹣0.2x=0,得x=300.∴当x=300时,在甲、乙两个印刷厂花费相同.∵﹣0.2<0,∴y随x的增大而减小.∴当100≤x<300时,有y>0,在乙印刷厂花费少;当x>300时,有y<0,在甲印刷厂花费少.3.解:(1)设购进A品牌文具袋的单价为x元,B品牌文具袋的单价为y元,,得答:购进A品牌文具袋的单价为8元,B品牌文具袋的单价为16元;(2)①由题意可得,w=(12﹣8)x+(23﹣16)(100﹣x)=﹣3x+700,即w关于x的函数关系式为w=﹣3x+700;②∵所获利润不低于进货价格的45%,∴﹣3x+700≥[8x+16(100﹣x)]×45%,解得,x≥33,∵x为整数,w=﹣3x+700,∴当x=34时,w取得最大值,此时w=598,100﹣x=66,答:购进A品牌文具袋34个,B品牌文具袋66个时,可以获得最大利润,最大利润是598元.4.解:(1)设去年每吨桃子的平均价格是a万元/吨,根据题意,解得a=0.4.经检验,a=0.4是原方程的解.(吨),答:去年每吨桃子的平均价格是0.4万元,两次采购的总数量是150吨;(2)①设该公司加工桃脯用x天,根据题意得,解得x≤20.所以加工桃脯的时间不能超过20天;②设该公司加工桃脯用x天,获得最大利润为w万元,根据题意得w=0.73x+0.2×(150﹣3x)=1.5x+30,∵k=1.5>0,∴y随x的增大而增大,∵x≤20,∴当x=20时,w最大值=1.5×20+30=60(万元),∴3×20=60(吨).答:应将60吨桃子加工成桃脯才能获取最大利润,最大利润为60万元.5.解:(1)当0≤x≤20时,设y与x的函数关系式为y=k1x,20k1=160,解得,k1=8,即当0≤x≤20时,y与x的函数关系式为y=8x,当20<x≤45时,设y与x的函数关系式是y=k2x+b,,解得,即当20<x≤45时,y与x的函数关系式是y=6.4x+32,综上可知:y与x的函数关系式为;(2)设购买B种树苗x课,则22≤x≤35,设总费用为W元,当20<x≤35时,W=7(45﹣x)+(6.4x+32)=﹣0.6x+347,∵﹣6<0,∴W随x的增大而减小,故当x=35时,W取得最小值,此时W=326,45﹣x=10,答:当购买A种树苗10棵,B种树苗35棵时总费用最低,最低费用是326元.6.解:(1)设购进每箱山药的单价为x元,购进每箱草莓的单价为y元,根据题意得,解得,答:每箱山药的单价为40元,每箱草莓的单价为45元;(2)①由题意可得,y=(60﹣40)x+(70﹣45)(1000﹣x)=﹣5x+25000;②由题意可得,,解得:x≥750,又y=﹣5x+25000,k=﹣5<0,∴y随x的增大而减小,∴当x=750时,y达到最大值,即最大利润y=﹣5×750+25000=21250(元),此时1000﹣x=1000﹣750=250(箱),答:购进山药750箱,草莓250箱时所获利润最大,利润最大为21250元.7.解:(1)由题意,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,得图中点B的实际意义是:当慢车行驶4 h时,慢车和快车相遇.故答案为:当慢车行驶4 h时,慢车和快车相遇;(3)设线段CD的解析式为y=kx+b,快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150(km/h).由题意,得快车走完全程的时间按为:900÷150=6h,6时时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).将点C(6,450)、D(12,900)代入函数关系式得,解得,∴线段CD的解析式为y=75x(6≤x≤12).8.解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),甲车的速度==60(千米/小时);故答案为:4.5;60;(2)乙出发时甲所走的路程为:60×=40(km),∴线段CF对应的函数表达式为:y=60x+40;乙刚到达货站时,甲距B地的路程为:460﹣60×(4+)=180(km).(3)设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=90.乙车追上甲车的时间为40÷(90﹣60)=(小时),小时=80分钟,故答案为:80;(4)易得直线OD的解析式为y=90x(0≤x≤4),根据题意得60x+40﹣90x=40或90(x)﹣60x=40或60x=9×4﹣40,解得x=或x=或x=.答:甲出发小时或x=小时或x=小时后,甲乙两车相距40km.9.解:(1)①0≤x≤300时,设y=kx+b(k≠0),过(0,0),(300,24000),,解得,∴y=80x,②x>300时,设y=kx+b(k≠0),过(300,24000),(500,30000),,解得,∴y=30x+15000,∴y=;(2)w=30x+15000+50(600﹣x),即w=﹣20x+45000;(3)设甲种石材为am2,则乙种石材(600﹣a)m2,,∴300<x≤400,由(2)知w=﹣20x+45000,∵k=﹣20<0,∴W随x的增大而减小,即甲400m2,乙200m2时,W min=﹣20×400+45000=37000.答:甲种石材400m2,乙种石材200m2时,总费用最少,最少总费用为37000元.10.解:(1)根据题意,得20x+40y=2000得y=﹣x+50.答:y关于x的函数表达式为y=﹣x+50;(2)①∵购进的A类桶不少于B类桶的2倍,∴x≥2y,即x≥2(﹣x+50).解得x≥50.答:至少购进A类桶50个;②设购入A类桶x个,B类桶y个,C类桶c个,根据题意,得20x+40y+30c=2000得y=.∵调换后C类桶的数量不少于B类桶的数量,∴c≥.解得c≥.∵A类桶不少于B类桶的2倍.∴x≥2y∴x≥2×.解得c≥.∴.=.解得x=∵x、y、c为正整数,所以A类至少买36个,所以B类最多买18个.11.解:(1)自行车队行驶的速度是140÷7=20(m/h),邮政车行驶的速度是:20×3=60(m/h),a=1+140÷60=.故答案为:20km/h;60km/h;.(2)设邮政车出发x小时两车相遇,分两种情况:①首次相遇,由题意得20(x+1)=60x,解得,故邮政车出发小时两车首次相遇②邮政车在返程途中与自行车队再次相遇.根据题意得20(x+1)+60x=140×2,解得,故邮政车出发小时后,在返程途中与自行车队再次相遇.即邮政车出发后小时或小时与自行车队相遇.(3)设离邮政车出发经过了m小时与自行车队相距15km.当时,①当自行车队在邮政车前面时,20(m+1)﹣60m=15,解得;②当邮政车在自行车队前面时,60m﹣20(m+1)=15,解得;当时,①邮政车从乙地返回,与自行车队未相遇,20(m+1)+60m﹣140=140﹣15,解得;②邮政车从乙地返回,与自行车队相遇后,20(m+1)+60m﹣140=140+15,解得.即邮政车与自行车队相距15km时,此时离邮政车出发经过了小时或小时或小时或小时.12.解:(1)图中表示会员卡支付的收费方式是②.(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.13.解:(1)由图象可知,每条扶梯的长度为30米(直接填空);故答案为:30(2)设扶梯上行和下行的速度为xm/s,则7.5(2x+0.8)=30,解得x=1.6,7.5(x+0.8)=7.5×(1.6+0.8)=7.5×2.4=18.则点B的坐标是(7.5,18).∴B(7.5,18);(3)由题意,得30×2÷(1.6+0.8)﹣30÷1.6=60÷2.4﹣18.75=25﹣18.75=6.25(s).故乙到达扶梯底端后,还需等待6.25s,甲才到达扶梯底端.故答案为:6.2514.解:(1)小明骑车的速度为:(60﹣15)÷3.75=12(km/h),∴直线AB的函数表达式为:y=12x+15;直线OC的函数表达式为:y=24x;(2)①当小津追上小明时,24x=12x+15,解得x=1.25(h),24×1.25=30(km),30<15+20,∴当小津追上小明时,他们没有到达夏池;②小津到达陶公亭所需时间为:60÷24=2.5(h),60﹣(12×2.5+15)=15(km).答:当小津到达陶公亭时,小明离陶公亭还有15千米.15.解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20﹣x﹣y),则有:6x+5y+4(20﹣x﹣y)=100整理得:y=﹣2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x、﹣2x+20、x由题意得:,解得4≤x≤8,因为x为整数,所以x的值为4、5、6、7、8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)W=6x×1200+5(﹣2x+20)×1600+4x×1000=﹣4800x+160000,∵k=﹣4800<0∴W的值随x的增大而减小,要使利润W最大,则x=4,故选方案为:装运A种脐橙4车,B种脐橙12车,C种脐橙4车.W最大=﹣4800×4+160000=140800(元),答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为140800元.16.解:(1)设B型号清扫机的单价为x万元,则A型号清扫机的单价为()万元,根据题意得,解得x=11.6,(万元),答:A型号清扫机的单价为9.9万元,型号清扫机的单价为11.6万元;(2)设购进A型号清扫机a台,总花费为W元,根据题意得10﹣a≥1.5a,解得a≤4,W=9.9a+11.6(10﹣a)=﹣1.7a+116,∵k=﹣1.7<0,∴W随a的增大而减小,∴当购进A型号清扫机4台时花费最少,最少花费为:﹣1.7×4+116=109.2(万元).答:当购进A型号清扫机4台,B型号的清扫机6台时花费最少,最少花费为109.2万元.17.解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该公司购进A型净水器34台、B型净水器66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即公司购进34台A型净水器和66台B型净水器的销售利润最大.②a=100时,a﹣100=0,y=50000,即公司购进A型净水器数量满足≤x≤60的整数时,均获得最大利润;③当100<a<150时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即公司购进60台A型净水器和40台B型净水器的销售利润最大.。

决胜2020年中考数学压轴题全揭秘——一次函数的应用及综合问题(含答案)

决胜2020年中考数学压轴题全揭秘——一次函数的应用及综合问题(含答案)

一次函数的应用及综合问题【考点1】一次函数图象与性质【例1】(2020•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.【分析】根据直线判断出a、b的符号,然后根据a、b的符号判断出直线经过的象限即可,做出判断.【解析】A、由图可知:直线y1,a>0,b>0.∴直线y 2经过一、二、三象限,故A 正确;B 、由图可知:直线y 1,a <0,b >0.∴直线y 2经过一、四、三象限,故B 错误;C 、由图可知:直线y 1,a <0,b >0.∴直线y 2经过一、二、四象限,交点不对,故C 错误;D 、由图可知:直线y 1,a <0,b <0,∴直线y 2经过二、三、四象限,故D 错误. 故选:A .点睛:本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键. 【例2】(2020•绍兴)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( ) A .﹣1B .0C .3D .4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a ,10)代入解析式即可; 【解析】设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=k +b 7=2k +b ∴{k =3b =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3; 故选:C .点睛:本题考查一次函数上点的特点;熟练待定系数法求函数解析式是解题的关键. 【考点2】一次函数选填压轴题【例3】(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm ,10cm ,ycm (y ≤15),当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .【分析】分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.【解析】①当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8﹣x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,∴80y=30×20×(8﹣x),∴y=120−15x2,∵y≤15,∴x≥6,即:y=120−15x2(6≤x<8),②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同①的方法得,y=6x+105(0<x≤656),故答案为:y=6x+105(0<x≤656)或y=120−15x2(6≤x<8)点睛:此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.【例4】(2018•温州)如图,直线y=−√33x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB 上一点,四边形OEDC是菱形,则△OAE的面积为.【分析】延长DE交OA于F,如图,先利用一次函数解析式确定B(0,4),A(4√3,0),利用三角函数得到∠OBA=60°,接着根据菱形的性质判定△BCD为等边三角形,则∠BCD=∠COE=60°,所以∠EOF=30°,则EF=12OE=1,然后根据三角形面积公式计算.【解析】延长DE交OA于F,如图,当x=0时,y=−√33x+4=4,则B(0,4),当y=0时,−√33x+4=0,解得x=4√3,则A(4√3,0),在Rt△AOB中,tan∠OBA=4√34=√3,∴∠OBA=60°,∵C是OB的中点,∴OC=CB=2,∵四边形OEDC是菱形,∴CD=BC=DE=CE=2,CD∥OE,∴△BCD为等边三角形,∴∠BCD=60°,∴∠COE=60°,∴∠EOF=30°,∴EF=12OE=1,△OAE的面积=12×4√3×1=2√3.故答案为2√3.点睛:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(−bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.【考点3】一次函数与实际生活图象综合问题【例5】(2020•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x≤30时s关于x的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)【分析】(1)根据函数图象中的数据可以求得甲步行的速度和乙出发时甲离开小区的路程;(2)根据函数图象中的数据可以求得OA的函数解析式,然后将x=18代入OA的函数解析式,即可求得点E的纵坐标,进而可以求得乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)根据题意可以求得乙到达学校的时间,从而可以函数图象补充完整.【解析】(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x=25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.点睛:本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.【例6】(2020•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y=kx+b,运用待定系数法求解即可;(2)把y =1500代入(1)的结论即可;(3)设小聪坐上了第n 班车,30﹣25+10(n ﹣1)≥40,解得n ≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【解析】(1)由题意得,可设函数表达式为:y =kx +b (k ≠0),把(20,0),(38,2700)代入y =kx +b ,得{0=20k +b 2700=38k +b ,解得{k =150b =−3000,∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38); (2)把y =1500代入y =150x ﹣3000,解得x =30, 30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟; (3)设小聪坐上了第n 班车,则 30﹣25+10(n ﹣1)≥40,解得n ≥4.5, ∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分), 步行所需时间:1200÷(1500÷25)=20(分), 20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.点睛:本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键. 【考点4】一次函数应用—最优化问题【例7】(2018•湖州)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需用110吨和70吨有机化肥.两个仓库到A ,B 两个果园的路程如表所示:路程(千米)甲仓库乙仓库 A 果园 15 25 B 果园2020设甲仓库运往A 果园x 吨有机化肥,若汽车每吨每千米的运费为2元, (1)根据题意,填写下表.运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣10 2×20×(80﹣x)2×20×(x﹣10)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?【分析】(1)设甲仓库运往A果园x吨有机化肥,根据题意求得甲仓库运往B果园(80﹣x)吨,乙仓库运往A果园(110﹣x)吨,乙仓库运往B果园(x﹣10)吨,然后根据两个仓库到A,B两个果园的路程完成表格;(2)根据(1)中的表格求得总运费y(元)关于x(吨)的函数关系式,根据一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费.【解析】(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣10 2×20×(80﹣x)2×20×(x﹣10)故答案为80﹣x,x﹣10,2×20×(80﹣x),2×20×(x﹣10);(2)y=2×15x+2×25×(110﹣x)+2×20×(80﹣x)+2×20×(x﹣10),即y关于x的函数表达式为y=﹣20x+8300,∵﹣20<0,且10≤x≤80,∴当x=80时,总运费y最省,此时y最小=﹣20×80+8300=6700.故当甲仓库运往A果园80吨有机化肥时,总运费最省,最省的总运费是6700元.点睛:此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.【考点5】一次函数与几何综合问题【例8】(2020•温州)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm=17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由nm=17tan∠EOF和n=−12m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2√5,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5√5,利用待定系数法可得s关于t的函数表达式,根据s和t都不是负数,确定t的取值;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH=ABBQ3=BHBQ=65=25√5,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=14,列方程为2t﹣2=14(7−32t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【解析】(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=√82+42=4√5,又∵E为BC中点,∴OE=12BC=2√5;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=12OB=4,OE=12BC=2√5∵∠CDN=∠NEM,∠CND=∠MNE ∴△CDN∽△MEN,∴CNMN =CDEM=1,∴CN=MN=1,∴EN=2+42=√17,∵S△ONE=12EN•OF=12ON•EM,∴OF=3×4√17=1217√17,由勾股定理得:EF=√OE2−OF2=(2√5)2−(121717)2=1417√17,∴tan∠EOF=EFOF=14√171712√1717=76,∴nm =17×76=16,∵n=−12m+4,∴m=6,n=1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动, ∴s 关于t 成一次函数关系,设s =kt +b , ∵当点P 运动到AO 中点时,点Q 恰好与点C 重合, ∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5, ∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{t =2s =2√5和{t =4s =5√5代入得{2k +b =2√54k +b =5√5,解得:{k =32√5b =−√5, ∴s =3√52t −√5, ∵s ≥0,t ≥0,且32√5>0,∴s 随t 的增大而增大, 当s ≥0时,3√52t −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52t −√5(23≤t ≤4);②(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE , 作QH ⊥x 轴于点H ,则PH =BH =12PB ,Rt △ABQ 3中,AQ 3=6,AB =4+8=12, ∴BQ 3=2+122=6√5,∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =AB BQ 3=BH BQ =126√5=25√5, ∴BH =14﹣3t , ∴PB =28﹣6t , ∴t +28﹣6t =12,t =165; (ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5, ∵Q 3Q =s =3√52t −√5, ∴Q 3G =32t ﹣1,GQ =3t ﹣2,∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2, ∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14, ∴2t ﹣2=14(7−32t),t =3019,(iii )由图形可知PQ 不可能与EF 平行, 综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.点睛:此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.【考点6】一次函数与动点问题、存在性问题【例9】(2018•衢州)如图,Rt △OAB 的直角边OA 在x 轴上,顶点B 的坐标为(6,8),直线CD 交AB 于点D (6,3),交x 轴于点C (12,0).(1)求直线CD 的函数表达式;(2)动点P 在x 轴上从点(﹣10,0)出发,以每秒1个单位的速度向x 轴正方向运动,过点P 作直线l 垂直于x 轴,设运动时间为t .①点P 在运动过程中,是否存在某个位置,使得∠PDA =∠B ,若存在,请求出点P 的坐标;若不存在,请说明理由;②请探索当t 为何值时,在直线l 上存在点M ,在直线CD 上存在点Q ,使得以OB 为一边,O ,B ,M ,Q 为顶点的四边形为菱形,并求出此时t 的值.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,作DP ∥OB ,则∠PDA =∠B .利用平行线分线段成比例定理,计算即可,再根据对称性求出P ′;②分两种情形分别求解即可解决问题:如图2中,当OP =OB =10时,作PQ ∥OB 交CD 于Q .如图3中,当OQ =OB 时,设Q (m ,−12m +6),构建方程求出点Q 坐标即可解决问题; 【解析】(1)设直线CD 的解析式为y =kx +b ,则有{12k +b =06k +b =3,解得{k =−12b =6,∴直线CD 的解析式为y =−12x +6.(2)①如图1中,作DP ∥OB ,则∠PDA =∠B .∵DP ∥OB , ∴PA AO =AD AB ,∴PA 6=38,∴PA =94, ∴OP =6−94=154, ∴P (154,0),根据对称性可知,当AP =AP ′时,P ′(334,0),∴满足条件的点P 坐标为(154,0)或(334,0).②如图2中,当OP =OB =10时,作PQ ∥OB 交CD 于Q .∵直线OB 的解析式为y =43x , ∴直线PQ 的解析式为y =43x +403, 由{y =43x +403y =−12x +6,解得{x =−4y =8,∴Q (﹣4,8), ∴PQ =√62+82=10, ∴PQ =OB ,∵PQ ∥OB , ∴四边形OBQP 是平行四边形, ∵OB =OP ,∴四边形OBQP 是菱形,此时点M 与点Q 重合,满足条件,t =0. 如图3中,当OQ =OB 时,设Q (m ,−12m +6),则有m 2+(−12m +6)2=102, 解得m =12±4√895, ∴点Q 的横坐标为12+4√895或12−4√895,设点M 的横坐标为a , 则有:a+02=12+4√895+62或a+02=12−4√895+62,∴a =42+4√895或42−4√895, 又因为点P 从点(﹣10,0)开始运动, ∴满足条件的t 的值为92+4√895或92−4√895. 如图4中,当点Q 与C 重合时,M 点的横坐标为6,此时t =16,综上所述,满足条件的t 的值为0或16或92+4√895或92−4√895. 点睛:本题考查一次函数综合题、待定系数法、菱形的判定、平行线分线段成比例定理等知识,解题的关键是学会由分类讨论的思想思考问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,所以中考压轴题.【考点7】一次函数综合问题—新定义问题【例10】(2020•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =a+c 3,y =b+d3那么称点T 是点A ,B 的融合点.例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x=−1+43=1,y=8+(−2)3=2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.【分析】(1)x=13(﹣1+7)=2,y=13(5+7)=4,即可求解;(2)①由题意得:x=13(t+3),y=13(2t+3),即可求解;②分∠DTH=90°、∠TDH=90°、∠HTD=90°三种情况,分别求解即可.【解析】(1)x=13(﹣1+7)=2,y=13(5+7)=4,故点C是点A、B的融合点;(2)①由题意得:x=13(t+3),y=13(2t+3),则t=3x﹣3,则y=13(6x﹣6+3)=2x﹣1;②当∠DHT=90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0), 由点T 是点D ,E 的融合点得:t =t+33,2t ﹣2=2t+33, 解得:t =32,即点E (32,6); 当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15); 当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N , 则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (t+33,2t+33)则MT =3−t+33=6−t3,MD =2t+33, NE =2t+33−2t ﹣3=−2(2t+3)3,NT =t+33−t =3−2t3,由tan ∠MDT =tan ∠NTE得:6−t 32t+33=2(2t+3)33−2t 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15).点睛:本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.一.选择题(共3小题)1.(2020•拱墅区校级模拟)如图,直线y =x +m 与y =nx ﹣5n (n ≠0)的交点的横坐标为3,则关于x 的不等式x +m >nx ﹣5n >0的整数解为( )A .3B .4C .5D .6【分析】令y =0可求出直线y =nx ﹣5n 与x 轴的交点坐标,根据两函数图象与x 轴的上下位置关系结合交点横坐标即可得出不等式x +m >nx ﹣5n >0的解,找出其内的整数即可. 【解析】当y =0时,nx ﹣5n =0, 解得:x =5,∴直线y =nx ﹣5n 与x 轴的交点坐标为(5,0).观察函数图象可知:当3<x <5时,直线y =x +m 在直线y =nx ﹣5n 的上方,且两直线均在x 轴上方, ∴不等式x +m >nx ﹣5n >0的解为3<x <5, ∴不等式x +m >nx ﹣5n >0的整数解为4. 故选:B .2.(2020•温岭市校级一模)已知函数y 1={−x −1(x ≤−1)x +1(−1<x ≤0)−x +1(0<x ≤1)x −1(x >1)的图象为“W ”型,直线y =kx ﹣k +1与函数y 1的图象有三个公共点,则k 的值是( )A .1或12B .0或12C .12D .12或−12 【分析】如图,易知直线y =kx ﹣k +1,经过定点P (1,1).①当直线y =kx ﹣k +1过点P 与x 轴平行时满足条件,此时k =0.②当直线y =kx ﹣k +1过点A (﹣1,0)时满足条件,此时k =12. 【解析】如图,易知直线y =kx ﹣k +1,经过定点P (1,1).①当直线y =kx ﹣k +1过点P 与x 轴平行时满足条件,此时k =0. ②当直线y =kx ﹣k +1过点A (﹣1,0)时满足条件,此时k =12. 综上所述,满足条件的k 的值为0或12,故选:B .3.(2020•温州三模)如图,已知直线y =−12x +b (b >0)交x 轴,y 轴于点M ,N ,点A ,B 是OM ,ON 上的点,以AB 为边作正方形ABCD ,CD 恰好落在MN 上,已知AB =2,则b 的值为( )A .1+√5B .√5C .75√5D .2+√55【分析】由直线的解析式可知tan ∠OMN =12,结合正方形性质可得∠OAB =∠OMN =∠NBC ,在Rt △BCN 中,BC =2,tan ∠NBC =12,则BN =√5;在Rt △BOA 中,BA =2,tan ∠OAB =12,则BO =2√55;又由b =ON 即可求解.【解析】∵直线y =−12x +b , ∴tan ∠OMN =12, ∵正方形ABCD , ∴AB ∥CD ,∴∠OAB =∠OMN =∠NBC , ∵AB =2, ∴BC =AD =2,在Rt △BCN 中,BC =2,tan ∠NBC =12, ∴BN =√5,在Rt △BOA 中,BA =2,tan ∠OAB =12, ∴BO =2√55, ∵b >0, ∴b =ON =7√55; 故选:C .二.填空题(共5小题)4.(2020•金华模拟)如图,一次函数y =﹣x ﹣2与y =2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组{2x +m <−x −2−x −2<0的解集为 ﹣2<x <2 .【分析】先将点P (n ,﹣4)代入y =﹣x ﹣2,求出n 的值,再找出直线y =2x +m 落在y =﹣x ﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可. 【解析】∵一次函数y =﹣x ﹣2的图象过点P (n ,﹣4), ∴﹣4=﹣n ﹣2,解得n =2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组{2x+m<−x−2−x−2<0的解集为:﹣2<x<2.故答案为:﹣2<x<2.5.(2020•金华模拟)如图,在平面直角坐标系中,点A,点B分别是x轴正半轴和直线y=x(x>0)上的动点,以AB为边在右侧作矩形ABCD,AB=2,BC=1.(1)若OA=√6时,则△ABO的面积是3±√32;(2)若点A在x轴正半轴移动时,则CO的最大距离是√5+√2.【分析】(1)由于点B是直线y=x(x>0)上的点,设B(a,a),解直角三角形得到BE=√6±√22,根据三角形的面积公式即可得到结论;(2)根据点B在一次函数y=x(x>0)的图象上,得到tan∠AOB=1,作△AOB的外接圆⊙P,连接OP、PA、PB、PC,作PG⊥CD,交AB于H,垂足为G,推出AB∥CD,四边形BHGC是矩形,得到PG⊥AB,GH=BC=1,根据勾股定理得到PC=√PG2+CG2=√22+12=√5,OP=PB=√BH2+PH2=√12+12=√2,于是得到结论.【解析】(1)∵点B是直线y=x(x>0)上的点,∴设B(a,a),∴BE=OE=a,∵AB=2,∴AE=√4−a2,∵OA=√6,∴OE+AE=a+√4−a2=√6,∴a=√6−√22,a=√6+√22,∴BE =√6±√22,∴△ABO 的面积=12OA •BE =12×√6×√6±√22=3±√32; 故答案为:3±√32;(2)∵点B 在一次函数y =x (x >0)的图象上,∴tan ∠AOB =1,作△AOB 的外接圆⊙P ,连接OP 、PA 、PB 、PC ,作PG ⊥CD ,交AB 于H ,垂足为G ,∵四边形ABCD 是矩形,∴AB ∥CD ,四边形BHGC 是矩形,∴PG ⊥AB ,GH =BC =1,∵∠APB =2∠AOB ,∠BPG =12∠APB ,BH =12AB =1=CG ,∴∠BPH =∠AOB ,∴tan ∠BPH =tan ∠AOB =1,∴BH PH =1,∴PH =1,∴PG =1+1=2,∴PC =√PG 2+CG 2=√22+12=√5,OP =PB =√BH 2+PH 2=√12+12=√2,在△OPC 中,OP +PC ≥OC ,∴OC 的最大值为√5+√2,故答案为:√5+√2.6.(2020•杭州模拟)如图,在平面直角坐标系中,直线y =﹣x +3过点A (5,m )且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与y =2x 平行的直线交y 轴于点D .直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,当平移到经过点B 时,直线CD 与x 轴交点的横坐标是−32.【分析】先把A(5,m)代入y=﹣x+3得A(5,﹣2),再利用点的平移规律得到C(3,2),接着利用两直线平移的问题设CD的解析式为y=2x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;先确定B(0,3),再求出直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,然后求出直线y=2x+3与x轴的交点坐标.【解析】把A(5,m)代入y=﹣x+3得m=﹣5+3=﹣2,则A(5,﹣2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(3,2),∵过点C且与y=2x平行的直线交y轴于点D,∴CD的解析式可设为y=2x+b,把C(3,2)代入得6+b=2,解得b=﹣4,∴直线CD的解析式为y=2x﹣4;当x=0时,y=﹣x+3=3,则B(0,3),当y=0时,2x﹣4=0,解得x=2,则直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,当y=0时,2x+3=0,解得x=−32,则直线y=2x+3与x轴的交点坐标为(−32,0),所以当平移到经过点B时,直线CD与x轴交点的横坐标是−3 2,故答案为:−3 2.7.(2020•嘉善县模拟)如图,在平面直角坐标系中,正方形ABCD的顶点A与原点O重合,顶点B在直线l上,将正方形沿射线OB方向无滑动地翻滚.若直线y=√33x,正方形边长为2√3则:(1)翻滚后点A第一次落在直线l上的坐标是(12,4√3);(2)当正方形翻滚2002次点A对应点的坐标是(6009−√3,3+2003√3).【分析】(1)观察图形即可得到翻滚后点A 第一次落在直线l 上,经过4次翻滚后点A 对应点一循环,解直角三角形即可求得点A 第一次落在直线l 上的坐标(2)先求出2002÷4的商和余数,从而解答本题.【解析】(1)由正方形和直线的斜率可知,D (−√3,3),C (−√3+3,3+√3),E (−√3+3×3,3+3√3), 观察图形,即可得到翻滚后点A 第一次落在直线l 上,∴此时OA 1=4×2√3=8√3,∴此时A 1的坐标是(√32×8√3,12×8√3), 即(12,4√3);(2)观察图形可得经过4次翻滚后点A 对应点一循环,2002÷4=500…2,∴经过500次翻滚后点A 对应点A 2000的坐标为(500×12,500×4√3),即(6000,2000√3), ∴正方形翻滚2002次点A 对应点的坐标是(6000+3×3−√3,2000√3+3+3√3),即(6009−√3,3+2003√3) 故答案为:(6009−√3,3+2003√3).8.(2020•宁波模拟)当m ,n 是正实数,且满足mn =m +2n 时,就称点P (m ,mn )为“新时代点”.如图,已知点A (0,10)与点M 都在直线y =﹣x +b 上,点B ,C 是“新时代点”,且点B 在线段AM 上.若MC =3,AM =8√2,则△MBC 的面积为 √2 .【分析】由m +2n =mn 变式为m n =m ﹣2,可知P (m ,m ﹣2),所以在直线y =x ﹣2上,点A (0,10)在直线y =﹣x +b 上,求得直线AB :y =﹣x +10,进而求得B (6,4),根据直线平行的性质从而证得直线AM 与直线y =x ﹣2垂直,然后根据勾股定理求得BC 的长,从而求得三角形的面积.【解析】∵m +2n =mn 且m ,n 是正实数,∴m n +2=m ,即m n =m ﹣2,∴P (m ,m ﹣2),即“新时代点”B 在直线y =x ﹣2上,∵点A (0,10)在直线y =﹣x +b 上,∴b =10,∴直线AB :y =﹣x +10,∵“新时代点”B 在直线AB 上,∴由{y =x −2y =−x +10解得{x =6y =4, ∴B (6,4),∵一、三象限的角平分线y =x 垂直于二、四象限的角平分线y =﹣x ,而直线y =x ﹣2与直线y =x 平行,直线y =﹣x +10与直线y =﹣x 平行,∴直线AB 与直线y =x ﹣2垂直,∵点B 是直线y =x ﹣2与直线AB 的交点,∴垂足是点B ,∵点C 是“新时代点”,∴点C 在直线y =x ﹣2上,∴△MBC 是直角三角形,∵B (6,4),A (0,10),∴AB =6√2,∵AM =8√2,∴BM =2√2, 又∵MC =3,∴BC =1,∴S △MBC =12BM •BC =√2,故答案为√2.三.解答题(共12小题)9.(2020•拱墅区校级模拟)甲乙两人同时登同一座山,甲乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙在提速前登山的速度是 15 米/分钟,乙在A 地提速时距地面的高度b 为 30 米;(2)若乙提速后,乙比甲提前了9分钟到达山顶,请求出乙提速后y 和x 之间的函数关系式;(3)登山多长时间时,乙追上了甲,此时甲距C 地的高度为多少米?【分析】(1)由图象可求乙的速度,即可求解;(2)用待定系数法可求解析式;(3)求出CD 解析式,乙追上了甲即此时的y 的值相等,然后求出时间再计算距C 地的高度.【解析】(1)由图形可得乙一分钟走了15米,则乙在提速前登山的速度是15米/分钟,2分钟走了30米,∴b =30,故答案为:15,30;(2)由图形可得:t =20﹣9=11分,设AB 解析式为:y =kx +b ,{30=2k +b 300=11k +b解得:{k =30b =−30∴直线AB 解析式为:y =30x ﹣30(2≤x ≤11);(3)∵C (0,100),D (20,300)∴线段CD 的解析式:y =10x +100(0≤x ≤20),由{y =30x −30y =10x +100∴{x =6.5y =165∴经过6.5分钟后,乙追上甲,此时甲距C 地的高度=165﹣100=65米.10.(2020•萧山区一模)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系;折线OBCDA 表示轿车离甲地距离y (千米)与时间x (小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地 30 千米;(2)当轿车与货车相遇时,求此时x 的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x 的值.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)先求出线段CD 对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.【解析】(1)根据图象信息:货车的速度V 货=3005=60, ∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).所以轿车到达乙地后,货车距乙地30千米.故答案为:30;(2)设CD 段函数解析式为y =kx +b (k ≠0)(2.5≤x ≤4.5).∵C (2.5,80),D (4.5,300)在其图象上,{2.5k +b =804.5k +b =300,解得{k =110b =−195, ∴CD 段函数解析式:y =110x ﹣195(2.5≤x ≤4.5);易得OA :y =60x ,{y =110x −195y =60x,解得{x =3.9y =234, ∴当x =3.9时,轿车与货车相遇;(3)当x =2.5时,y 货=150,两车相距=150﹣80=70>20,由题意60x ﹣(110x ﹣195)=20或110x ﹣195﹣60x =20,解得x =3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x 的值为3.5或4.3小时.11.(2020•江干区二模)在图(1)中,在△ABC 中,AD ⊥BC ,垂足为点D ,点E 从点C 出发,以√5cm /s 的速度沿射线CB 运动,当点E 与点B 重合时,运动停止.过点E 作EF ⊥AC ,垂足为点F ,将线段EF 绕点F 顺时针旋转90°,点E 在射线CA 上的对应点为点H ,连接EH .若△EFH 与△ACD 的重叠部分面积为S (cm 2),点E 的运动时间为ts ,S 关于t 的函数图象如图(2)所示(其中0<t <103,103<t ≤m ,m <t ≤92时,函数解析式不同)(1)求BC 的长;(2)求S 关于t 的函数关系式,并写出自变量的取值范围.【分析】(1)由题意得:BC =√5t ,即可求解; (2)分点H 在与点A 重合(含)前;点E 在点D 之前、点H 过A 点后;E 从D 到B 三种情况,分别求解即可.【解析】(1)由题意得:BC =√5t =√5×92=9√52, 故BC 的长为:9√52;(2)设∠C =α,则EF =√5t sin α,FC =√5t cos α,当点H 在与点A 重合(含)前,即:0≤t ≤103,如图1,S =S △HFE ,且当t =103时,A 、H 重合, S =12(EF )2=12(√5t sin α)2,当t =103时,S =509,即:509=12×(√5×103sin α)2, 解得:sin α=√55,则cos α=2√55,tan α=12, FC =√5t cos α=2t ,EF =√5t sin α=t ,则S =12t 2, CH =CA =CF +FH =3t ,而A 、H 重合时,t =103,故CA =10, 则AD =AC sin α=2√5,CD =4√5, BD =BC ﹣CD =√52;当点E 在点D 之前、点H 过A 点后,即103<t <4时,如图2,设直线HE 交AD 于点M ,CE ′=√5t =√5×103=10√53,同理DE ′=2√53,而CD =4√5,故点E ′运动到点E 需要的时间为:4√5−10√53√5=23秒, 则点M 从点A 运动到点D 的速度为:2√523=3√5,连接AE , S =S △AEF +S △AEM =12×AF ×EF +12AM ×DE =12(10﹣2t )t +12×3√5(t −103)(4√5−√5t )=−172t 2+60t ﹣100, CD =4√5,m =√55=4; 综上,AD =2√5,CD =4√5,m =4;①当0<t ≤103时,S =12t 2; ②当103<t ≤4时,如图3,作GI ∥EF ,则△AIG ∽△ACD ,故IG =2AG =2(3t ﹣10),S =S △HEF ﹣S △HAI =12t 2−12(3t ﹣10)×2(3t ﹣10)=−172t 2+60t ﹣100;③当4<t≤92时,如图4,则△AIF∽△ACD,则IF=2(10﹣2t),S=S△AIF=12(10﹣2t)×2(10﹣2t)=(10﹣2t)2.综上,S={12t2(0<t≤103)−172t2+60t−100(103<t≤4)(10−2t)2(4<t≤92).12.(2020•海宁市二模)某电视台摄制组乘船往返于A码头和B码头进行拍摄,在A、B两码头间设置拍摄中心C.在往返过程中,假设船在A、B、C处均不停留,船离开B码头的距离s(千米)与航行的时间t (小时)之间的函数关系式如图所示.根据图象信息,解答下列问题:(1)求船从B码头返回A码头时的速度及返回时s关于t的函数表达式.(2)求水流的速度.(3)若拍摄中心C设在离A码头12千米处,摄制组在拍摄中心分两组拍摄,其中一组乘橡皮艇漂流到B码头处,另一组同时乘船到达A码头后马上返回,求两摄制组相遇时离拍摄中心C的距离.【分析】(1)根据图象可知,船从B地返回A地,距B地的距离为27千米,用时3小时,可求出速度,用待定系数法可求出正比例函数的关系式;(2)通过图象又可知从A返回到B用时1.5小时,可求出速度,于是便知从A到B是顺水,反之逆水,根据速度差可求出水流速度;(3)先求出船到A的时间,求出橡皮艇离开C的距离,然后是追及问题,设出追及时间,列出方程可求出追及时间,进而求出相遇是距C地的距离.【解析】(1)船从B码头返回A码头时的速度27÷3=9千米/时,。

中考数学专题复习(有答案)一次方程(组)的解法及应用

中考数学专题复习(有答案)一次方程(组)的解法及应用

第二章 方程(组)与不等式(组)第1节 一次方程(组)的解法及应用A 组1.在下列等式变形中,正确的是( B )A .如果a =b ,那么c +a =c -bB .如果a =b ,那么a -2=-b 2C .如果a 3=6,那么a =2 D .如果a -b +c =0,那么a =b +c2.若代数式4x -5与3x -6的值互为相反数,则x 的值为( A )A.117B .-1C .-117D .13.(2020南京)已知x ,y 满足方程组⎩⎪⎨⎪⎧x +3y =-1,2x +y =3,则x +y 的值为 1 . 4.(2020衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 23 名.5.(2020杭州改编)解方程:x +12-x -33=1. 解:去分母,得3(x +1)-2(x -3)=6.去括号,得3x +3-2x +6=6.移项,得3x -2x =6-3-6.合并同类项,得x =-3.6.在等式y =kx +b 中,当x =3时,y =3;当x =-1时,y =1.(1)求k ,b 的值;(2)求当x =-2时y 的值.解:(1)把x =3,y =3与x =-1,y =1代入y =kx +b ,得⎩⎪⎨⎪⎧3k +b =3,-k +b =1,解得⎩⎨⎧k =12,b =32.(2)由(1),得y =12x +32. ∴当x =-2时,y =-1+32=12. B 组7.若(x +y -1)2+||x -y -3=0,则点P (x ,y )在第 四 象限.8.(2020重庆A 卷节选)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100 kg ,A ,B 两个品种全部售出后总收入为21 600元.请求出A ,B 两个品种去年平均亩产量分别是多少?解:设A ,B 两个品种去年平均亩产量分别是x kg 和y kg.根据题意,得⎩⎪⎨⎪⎧y -x =100,10×2.4(x +y )=21 600. 解得⎩⎪⎨⎪⎧x =400,y =500. 答:A ,B 两个品种去年平均亩产量分别是400 kg 和500 kg.C 组9.(2020绍兴改编)同型号的甲、乙两辆车加满气体燃料后均可行驶210 km ,它们各自单独行驶并返回的最远距离是105 km.现在它们都加满气体燃料从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地多少千米?解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回,到达A 地时燃料用完,如图.设AB =x km ,AC =y km.根据题意,得⎩⎪⎨⎪⎧2x +2y =210×2,x -y +x =210.解得⎩⎪⎨⎪⎧x =140,y =70. ∴乙车在C 地时加注行驶70 km 的燃料,则AB 的最大长度是140 km.。

河北2020年中考数学专题复习 一元一次方程和二元一次方程组(考点+例题变式+中考真题)

河北2020年中考数学专题复习 一元一次方程和二元一次方程组(考点+例题变式+中考真题)

一元一次方程及二元一次方程组考点一、一元一次方程的概念1、方程含有未知数的等式叫做方程。

2、方程的解能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

考点二、二元一次方程组1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是(2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。

7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

考点三、实际应用考点1.列方程解应用题的一般步骤:(1)审题:审清题中的已知量、未知量及已知量与未知量之间的关系;(2)设未知数,分直接设(问什么设什么)和间接设(设与所问未知量有关系的未知量),也可设辅助未知量(设而不求);(3)列代数式和方程,这是列方程解应用的关键;(4)解方程,求出所列方程的解;(5)检验:检验求得的解是否为所列方程的解及是否符合题意;(6)写出答案。

2.列方程解应用题的常见类型:(1)数位问题:一个两位数,十位数字为a ,个位数字为b ,则该数为b a +10.(2)和、差、倍问题;(3)行程问题:路程=s 速度()⨯v 时间(t );主要分相遇问题和追击问题;(4)工程问题:工作量=工作效率⨯工作时间;(5)溶液浓度(质量分数)00100⨯=溶液溶质; (6)利润00100⨯-=成本成本售价; (7)增长率(降低率)00100⨯-=原来原来现在; (8)利率问题;本息和=本金+本金⨯利率⨯期数()00201-⨯.题型一 一元一次方程及其解例1.(2019年自贡)若712=+x ,则x 的值为( )A 、4B 、3C 、2D 、1答案:B例2.下列各题中正确的是( )A . 由7x =4x -3移项得7x -4x =3B . 由2x -13=1+x -32去分母得2(2x -1)=1+3(x -3) C . 由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=1D . 由2(x +1)=x +7移项、合并同类项得x =5答案:D【解析】试题解析:A 、7x=4x-3移项,得7x-4x=-3,故选项错误;B 、由=1+去分母,两边同时乘以6得2(2x-1)=6+3(x-3),选项错误;C 、2(2x-1)-3(x-3)=1去括号得4x-2-3x+9=1,故选项错误;D 、由2(x+1)=x+7 去括号得2x+2=x+7,移项,2x-x=7-2,合并同类项得 x=5,故选项正确.故选D .变式训练1. 方程312=+x 与032=--x a 的解相同,则a 的值为( ) A 、7 B 、5 C 、3 D 、0答案:A【解析】方程312=+x 的解是x=1,代入032=--x a 中,解得a 的值为7. 变式训练2. 如果()0512=+-a x a 是一元一次方程,则_________=a .答案:-1题型二 二元一次方程(组)及其解例1.解为⎩⎪⎨⎪⎧x =1,y =2的方程组是( ) A.⎩⎪⎨⎪⎧x -y =13x +y =5 B.⎩⎪⎨⎪⎧x -y =-13x +y =-5 C.⎩⎪⎨⎪⎧x -y =33x -y =1 D.⎩⎪⎨⎪⎧x -2y =-33x +y =5 答案:D 解析:分别代入可得答案。

2020年中考数学专项复习《一次方程与方程组》(含答案与部分解析)

2020年中考数学专项复习《一次方程与方程组》(含答案与部分解析)

中考数学专项复习 一次方程与方程组1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg. 13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x+60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x ≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12. (2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元). 答:全部售完120盏节能灯后,该商场获利1 000元.。

专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)

专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)

专题二方程、不等式中的含参问题【考法综述】1.一次方程组的含参问题一是方程组与不等式的联系时,产生的未知数的正数解或解的范围,解决这类问题是把所给的参数作为常数,利用二元一次方程组的解法代入消元法、加减消元法,先求出二元一次方程组的解,再结合所给的条件转化为对应的不等式问题;二是利用整体思想,求代数式的值,结合所给的已知条件和所求问题,找到两者之间的联系,利用整体思想和转化思想加以解决.2.一元二次方程的参数问题主要是含有参数的一元二次方程的解、一元二次方程的解的情况、一元二次方程的公共解,针对一元二次方程的参数,常利用韦达定理、根的判别式来解决,同时注意二次项系数不能为零.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.3.分式方程的参数问题主要是分式方程无解、有正数解或负数解、整数解的问题,解决此类问题的关键是化分式方程为整式方程.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.4.不等式、不等式组的参数问题主要涉及不等式(组)有解问题、无解问题、解的范围问题,解决此类问题,要掌握不等式组的解法口诀以及在数轴上熟练表示出解集的范围.已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.学+科网【典例剖析】考点一、一次方程组的含参问题例1方程组的解x,y满足x>y,则m的取值范围是()A.m>B.m>C.m>D.m>【答案】﹣.【解析】试题分析:解此题时可以运用代入消元法,解出二元一次方程组中x,y关于m的式子,然后根据x>y解出m的取值范围.试题解析:由①得x=,代入②得,8×﹣3y=m,y=.∵x>y,即>,解得m>.故选D.【点评】此题考查的是二元一次方程组和不等式的性质,先解出x,y关于m的式子,再根据x>y,求出m 的范围即可.&变式训练&变式1.1已知x+2y﹣3z=0,2x+3y+5z=0,则=.【点评】此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.变式1.2已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.【解析】试题分析:解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.试题解析:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.﹣.所以m最小值=故本题答案为:﹣.变式1.3已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.【答案】,﹣.【解析】【点评】本题考查了二元一次方程组的解法.解决本题的关键在于转化为关于A、B的二元一次方程组;体现了转化思想的应用.学科+网考点二、一元二次方程的含参问题例2关于x的方程x2+mx﹣9=0和x2﹣3x+m2+6m=0有公共根,则m的值为.【答案】﹣3,0,﹣4.5.【解析】试题分析:设这个公共根为α,那么根据两根之和的表达式,可知方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α.再根据两根之积的表达式,可知α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,然后对两式整理,用α表示m,再代入其中一个方程消掉α,求解即可得到m的值.试题解析:设这个公共根为α.则方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α,由根与系数的关系有:α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,整理得,α2+mα=9①,α2﹣3α+m2+6m=0②,②﹣①得,m2+6m﹣3α﹣mα=﹣9,即(m+3)2﹣α(m+3)=0,(m+3)(m+3﹣α)=0,所以m+3=0或m+3﹣α=0,解得m=﹣3或α=m+3,把α=m+3代入①得,(m+3)2+m(m+3)=9,m2+6m+9+m2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=﹣4.5,综上所述,m的值为﹣3,0,﹣4.5.故答案为:﹣3,0,﹣4.5.【点评】本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.&变式训练&变式2.1已知a是一元二次方程x2﹣2008x+1=0的一个根,则代数式的值是.【答案】2007【解析】试题分析:将一个根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,故有a2﹣2007a=a﹣1,和a2+1=2008a;代入要求的代数式,整理化简即可.试题解析:由题意,把根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,∴a2﹣2007a﹣a+1=0,a2+1=2008a;∴a2﹣2007a=a﹣1,∴=a﹣1+=a+﹣1=﹣1=﹣1=2008﹣1,=2007.【点评】本题规律为已知一元二次方程的一个解,则这个解一定满足方程,将其代入方程去推理、判断;将代数式与已知条件联系起来,从两头朝中间寻找关系.变式2.2已知关于x的方程(k2﹣1)x2+(2k﹣1)x+1=0有两个不相等的实数根,那么实数k的取值范围为.【答案】k<且k≠±1【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.变式2.3已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30【答案】D【解析】试题分析:根据求根公式x=求的α、β的值,然后将其代入所求,并求值.试题解析:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.变式2.4对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④D.只有③④【答案】B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.试题解析:①若b=2,方程两边平方得b2=4ac,即b2﹣4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2﹣4ac>0方程x2﹣bx+ac=0中根的判别式也是b2﹣4ac=0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=,把x0的值代入(2ax0+b)2,可得b2﹣4ac=(2ax0+b)2,综上所述其中正确的①②④.故选B【点评】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2﹣4ac=(2ax0+b)2.考点三、分式方程的含参问题例3.已知方程的两根分别为a,,则方程=a+的根是()A.a,B.,a﹣1C.,a﹣1D.a,【答案】D【解析】试题分析:首先观察已知方程的特点,然后把方程=a+变形成具有已知方程的特点的形式,从而得出所求方程的根.【点评】观察出已知方程的特点是解答本题的前提,把方程=a+变形成具有已知方程的特点的形式是解答本题的关键.&变式训练&变式3.1若关于x的方程=3的解是非负数,则b的取值范围是.【答案】b≤3且b≠2【解析】试题分析:先解关于x的分式方程,求得x的值,然后再依据“解是非负数”建立不等式求b的取值范围.试题解析:去分母得,2x﹣b=3x﹣3∴x=3﹣b∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.【点评】由于我们的目的是求b的取值范围,根据方程的解列出关于b的不等式,另外,解答本题时,易漏掉分母不等于0这个隐含的条件,这应引起足够重视.变式3.2观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n为正整数)的根,你的答案是:.【答案】x=n+3或x=n+4.【解析】试题分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.试题解析:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.变式3.3已知关于x的方程只有整数解,则整数a的值为.【答案】﹣2,0或4【解析】试题分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.试题解析:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣3=﹣5,检验,将x=﹣5代入(x﹣1)(x+2)=18≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.学*科网故答案为:﹣2,0或4.【点评】此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.考点四、不等式(组)的含参问题例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).【答案】②③.【解析】试题分析:①举出反例即可求解;②根据[x]表示不超过x的最大整数的定义即可求解;③分两种情况:﹣1<x<0;x=0;0<x<1;进行讨论即可求解;④首先确定x﹣[x]的范围为0~1,依此可得﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,再找到满足条件的x值即为所求.④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0,故原来的说法错误.故答案为:②③.【点评】本题考查了不等式的应用,正确理解[x]表示不超过x的最大整数是关键.&变式训练&变式4.1如果关于x的不等式(a+b)x+2a﹣b>0的解集是x<,那么关于x的不等式(b﹣a)x+a+2b≤0的解集是.【答案】x≥﹣.【解析】试题分析:先根据关于x的不等式(a+b)x+2a﹣b>0的解集是x<,得出b=﹣3a以及a的取值范围,进而得到b﹣a=﹣4a<0,再根据b=﹣3a,即可得到关于x的不等式(b﹣a)x+a+2b≤0的解集.试题解析:∵关于x的不等式(a+b)x+2a﹣b>0的解集是x<,∴x<,∴=,且a+b<0,即b=﹣3a,a+b<0,∴a﹣3a<0,即a>0,∴b﹣a=﹣4a<0,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥,∵==﹣,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥﹣,故答案为:x≥﹣.【点评】本题主要考查了解一元一次不等式的应用,解题时注意:根据不等式的基本性质,在去分母和化系数为1时可能需要改变不等号方向.变式4.2若不等式组无解,则m的取值范围是.【答案】m<【解析】试题分析:先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.试题解析:解不等式组可得,因为不等式组无解,所以m<.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.变式4.3按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【答案】131或26或5或【解析】试题分析:利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【点评】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.变式4.4若关于x的不等式组解集为x<2,则a的取值范围是.【答案】a≥2【解析】试题分析:求出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.试题解析:由>+1,得2x+8>3x+6,解得x<2,由x﹣a<0,得x<a,又因关于x的不等式组解集为x<2,所以a≥2.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.【实战演练】1.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y a x x++=--的解为正数,且使关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10B.12C.14D.16【答案】B.【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a ,∵关于x 的分式方程+=4的解为正数,∴6-4a >0,∴a<6.y 123)02(2①y ②y a ⎧+>≤--⎪⎨⎪⎩,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a 为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.学*科网考点:1.分式方程的解;2.解一元一次不等式组.2.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值A.98m >B.89m >C.98m =D.89m =【答案】98m =考点:根的判别式.3.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为()A.1-或2B.1或2- C.2-D.1【答案】D.【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m﹣1=0的两个根,∴x 1+x 2=2m,x 1•x 2=m 2﹣m﹣1.∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m﹣1),即m 2+m﹣2=(m+2)(m﹣1)=0,解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m﹣1=0有实数根,∴△=(﹣2m)2﹣4(m 2﹣m﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.4.(2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B.2个 C.3个D.4个5.(2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是()A.5m ≥B.5m > C.5m ≤D.5m <【答案】A.【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.6.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是【答案】k≤5且k≠1.考点:根的判别式.7.(2017山东烟台第15题)运行程序如图所示,从“输入实数x ”到“结果是否18<”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是.【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式9.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.10.(2017四川泸州第15题)关于x的分式方程2322x m mx x++=--的解为正实数,则实数m的取值范围是.【答案】m<6且m≠2.【解析】试题分析:方程两边同乘以x-2可得,x+m-2m=3(x-2),解得x=62m--,因方程的解为正实数,且x-2≠0,所以62m-->0且m≠2,即m<6且m≠2.11.(2017江苏宿迁第14题)若关于x的分式方程1322m xx x-=---有增根,则实数m的值是.【答案】1.【解析】试题分析:方程两边同乘以x-2,可得m=x-1-3(x-2),解得m=-2x+5,因分式方程1322m xx x-=---有增根,可得x=2,所以m=1.12.(2017山东菏泽第10题)关于的一元二次方程的一个根式,则的值是_______.【答案】0.【解析】试题分析:把x=0代入,得,解得k=1(舍去),或k=0;。

2020年中考数学必考经典题(江苏版)专题02一次方程(组)的解法与应用

2020年中考数学必考经典题(江苏版)专题02一次方程(组)的解法与应用

2020年中考数学必考经典题(江苏版)专题02一次方程(组)的解法与应用【方法指导】1.二元一次方程有无数解.求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.2.二元一次方程组的解法:(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用x ax b=⎧⎨=⎩的形式表示.3.二元一次方程组的应用(一)、列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)、设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.【题型剖析】【类型1】解一次方程组【例1】.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【变式1-1】.(2018•宿迁)解方程组:.【变式1-2】.(2019•建宁县模拟)解方程组.【变式1-3】.(2018•连云港模拟)解方程组.【类型2】:一次方程组的含参问题【例2】.(2019•亭湖区二模)关于x,y的方程组的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.2【变式2-1】.(2019•海港区一模)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.B.C.D.【变式2-2】(2019•宿迁模拟)已知是方程组的解,则3m+n=.【类型3】:二元一次方程的特殊解的应用【例3】受尼泊尔地震影响,西藏定日县陈卓布德村已经成为一片废墟,为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有()A.8种B.9种C.16种D.17种【变式3-1】某校举办了以“爱国、敬业、诚实、友善”为主题的演讲比赛,徐老师为鼓励同学们,带了70元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每车5元,乙种笔记本每本4元,每种笔记本至少买2本,且恰好用完70元钱,则张老师购买笔记本的方案共有()A.2种B.3种C.4种D.5种【变式3-2】(2019•盐城)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【类型4】一次方程组的应用【例4】(2019•淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批 2 5 130第二批 4 3 218试问每节火车车皮和每辆汽车平均各装物资多少吨?【变式4-1】(2019•广陵区校级二模)根据一家文具店的账目记录,有一天卖出15本笔记本和5袋签字笔,收入225元;另一天以同样的价格卖出同样的3本笔记本和6袋签字笔,收入285元,这个记录是否有错误,说明理由.【变式4-2】(2019•海陵区二模)为方便市民出行,泰州市政府决定重点建设两条快速路:永定路、东风路.目前两条路已建成通车里程约26千米,总造价为27.2亿元.如果永定快速路每千米的造价为0.8亿元,东风快速路每千米的造价为1.2亿元.问:永定快速路、东风快速路分别长多少千米?【达标检测】一.选择题(共9小题)1.(2019•朝阳)关于x,y的二元一次方程组的解是,则m+n的值为()A.4 B.2 C.1 D.02.(2019•荆门)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣33.(2019•菏泽)已知是方程组的解,则a+b的值是()A.﹣1 B.1 C.﹣5 D.54.(2019•巴中)已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.05.(2019•鸡西)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种6.(2019•齐齐哈尔)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种7.(2019•天门)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种8.(2019•永州)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁9.(2019•南充)关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4二.解答题(共8小题)10.(2019•南沙区一模)解一元一次方程:.11.(2019•广州)解方程组:.12.(2019•金华)解方程组13.(2019•枣庄)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.14.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲25 35乙35 48 求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?15.(2019•百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?16.(2019•呼和浩特)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.17.(2019•烟台)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?。

2020中考数学压轴题专题02一次方程(组)的含参及应用问题

2020中考数学压轴题专题02一次方程(组)的含参及应用问题

2020中考数学压轴题专题02⼀次⽅程(组)的含参及应⽤问题专题 02⼀次⽅程(组)的含参及应⽤问题【考点1】⼀次⽅程的有关定义【例1】(2019?呼和浩特)关于x的⽅程mx2m﹣1+(m﹣1)x﹣2=0如果是⼀元⼀次⽅程,则其解为________.【答案】x=2或x=﹣2或x=﹣3【解析】∵关于x的⽅程mx2m﹣1+(m﹣1)x﹣2=0如果是⼀元⼀次⽅程,∴当m=1时,⽅程为x﹣2=0,解得:x=2;当m=0时,⽅程为﹣x﹣2=0,解得:x=﹣2;当2m﹣1=0,即m时,⽅程为x﹣2=0,解得:x=﹣3,故答案为:x=2或x=﹣2或x=﹣3.点睛:此题考查了⼀元⼀次⽅程的定义,熟练掌握⼀元⼀次⽅程的定义是解本题的关键.【变式1-1】(2019?湘西州)若关于x的⽅程3x﹣kx+2=0的解为2,则k的值为.【答案】4【解析】∵关于x的⽅程3x﹣kx+2=0的解为2,∴3×2﹣2k+2=0,解得:k=4.故答案为:4.点睛:此题主要考查了⼀元⼀次⽅程的解,正确把已知数据代⼊是解题关键.【变式1-2】(2019?常州)若是关于x、y的⼆元⼀次⽅程ax+y=3的解,则a=.【答案】1【解析】把代⼊⼆元⼀次⽅程ax+y=3中,a+2=3,解得a=1.故答案是:1.点睛:本题运⽤了⼆元⼀次⽅程的解的知识点,运算准确是解决此题的关键.【考点2】⽅程组的解法【例2】(2019?南通)已知a,b满⾜⽅程组,则a+b的值为()A.2 B.4 C.﹣2 D.﹣4【答案】A【解析】,①+②得:5a+5b=10,则a+b=2,故选:A.点睛:此题考查了解⼆元⼀次⽅程组,利⽤了消元的思想,消元的⽅法有:代⼊消元法与加减消元法.【变式2-1】(2019?荆门)已知实数x,y满⾜⽅程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣3【答案】A【解析】,①+②×2,得5x=5,解得x=1,把x=1代⼊②得,1+y=2,解得y=1,∴x2﹣2y2=12﹣2×12=1﹣2=﹣1.故选:A.点睛:此题主要考查了⼆元⼀次⽅程组解的定义.以及解⼆元⼀次⽅程组的基本⽅法.正确解关于x、y 的⽅程组是关键.【考点3】⽅程组的含参问题【例3】(2019?朝阳)关于x,y的⼆元⼀次⽅程组的解是,则m+n的值为()A.4 B.2 C.1 D.0【答案】D【解析】把代⼊得:,解得:,则m+n=0,故选:D.点睛:此题考查了⼆元⼀次⽅程组的解,⽅程组的解即为能使⽅程组中两⽅程都成⽴的未知数的值.【变式3-1】(2019?菏泽)已知是⽅程组的解,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【答案】A【解析】将代⼊,可得:,两式相加:a+b=﹣1,故选:A.点睛:本题考查⼆元⼀次⽅程组的解,解题的关键是熟练运⽤⼆元⼀次⽅程组的解法,本题属于基础题型.【变式3-2】(2019?巴中)已知关于x、y的⼆元⼀次⽅程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.0【答案】B【解析】将代⼊得:,∴a+b=2;故选:B.点睛:本题考查⼆元⼀次⽅程组的解;熟练掌握⽅程组与⽅程组的解之间的关系是解题的关键.【考点4】⼆元⼀次⽅程的⽅案问题【例4】(2019?天门)把⼀根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【答案】B【解析】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.点睛:本题运⽤了⼆元⼀次⽅程的整数解的知识点,运算准确是解此题的关键.【变式4-1】(2019?齐齐哈尔)学校计划购买A和B两种品牌的⾜球,已知⼀个A品牌⾜球60元,⼀个B 品牌⾜球75元.学校准备将1500元钱全部⽤于购买这两种⾜球(两种⾜球都买),该学校的购买⽅案共有()A.3种B.4种C.5种D.6种【答案】B【解析】设购买A品牌⾜球x个,购买B品牌⾜球y个,依题意,得:60x+75y=1500,∴y=20x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买⽅案.故选:B.点睛:本题考查了⼆元⼀次⽅程的应⽤,找准等量关系,正确列出⼆元⼀次⽅程.【考点5】⼀次⽅程组的应⽤问题【例5】(2019?娄底)某商场⽤14500元购进甲、⼄两种矿泉⽔共500箱,矿泉⽔的成本价与销售价如表(⼆)所⽰:类别成本价(元/箱)销售价(元/箱)甲25 35⼄35 48 求:(1)购进甲、⼄两种矿泉⽔各多少箱?(2)该商场售完这500箱矿泉⽔,可获利多少元?【答案】(1)购进甲矿泉⽔300箱,购进⼄矿泉⽔200箱;(2)该商场售完这500箱矿泉⽔,可获利5600元.【解析】(1)设购进甲矿泉⽔x箱,购进⼄矿泉⽔y箱,依题意,得:,解得:.答:购进甲矿泉⽔300箱,购进⼄矿泉⽔200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉⽔,可获利5600元.点睛:本题考查了⼆元⼀次⽅程组的应⽤,找准等量关系,正确列出⼆元⼀次⽅程组是解题的关键.【变式5-1】(2019?百⾊)⼀艘轮船在相距90千⽶的甲、⼄两地之间匀速航⾏,从甲地到⼄地顺流航⾏⽤6⼩时,逆流航⾏⽐顺流航⾏多⽤4⼩时.(1)求该轮船在静⽔中的速度和⽔流速度;(2)若在甲、⼄两地之间建⽴丙码头,使该轮船从甲地到丙地和从⼄地到丙地所⽤的航⾏时间相同,问甲、丙两地相距多少⼲⽶?【答案】(1)该轮船在静⽔中的速度是12千⽶/⼩时,⽔流速度是3千⽶/⼩时;(2)甲、丙两地相距千⽶.【解析】(1)设该轮船在静⽔中的速度是x千⽶/⼩时,⽔流速度是y千⽶/⼩时,依题意,得:,解得:.答:该轮船在静⽔中的速度是12千⽶/⼩时,⽔流速度是3千⽶/⼩时.(2)设甲、丙两地相距a千⽶,则⼄、丙两地相距(90﹣a)千⽶,依题意,得:,解得:a.答:甲、丙两地相距千⽶.点睛:本题考查了⼆元⼀次⽅程组的应⽤以及⼀元⼀次不等式的应⽤,解题的关键是:(1)找准等量关系,正确列出⼆元⼀次⽅程组;(2)找准等量关系,正确列出⼀元⼀次⽅程.【变式5-2】(2019?呼和浩特)滴滴快车是⼀种便捷的出⾏⼯具,计价规则如下表:计费项⽬⾥程费时长费远途费单价 1.8元/公⾥0.3元/分钟0.8元/公⾥注:车费由⾥程费、时长费、远途费三部分构成,其中⾥程费按⾏车的实际⾥程计算;时长费按⾏车的实际时间计算;远途费的收取⽅式为:⾏车⾥程7公⾥以内(含7公⾥)不收远途费,超过7公⾥的,超出部分每公⾥收0.8元.⼩王与⼩张各⾃乘坐满滴快车,在同⼀地点约见,已知到达约见地点时他们的实际⾏车⾥程分别为6公⾥与8.5公⾥,两⼈付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际⾏车时间相差多少分钟;(2)实际乘车时间较少的⼈,由于出发时间⽐另⼀⼈早,所以提前到达约见地点在⼤厅等候.已知他等候另⼀⼈的时间是他⾃⼰实际乘车时间的1.5倍,且⽐另⼀⼈的实际乘车时间的⼀半多8.5分钟,计算俩⼈各⾃的实际乘车时间.【答案】(1)∴这两辆滴滴快车的实际⾏车时间相差19分钟;(2)⼩王的实际⾏车时间为37分钟,⼩张的实际⾏车时间为18分钟.【解析】(1)设⼩王的实际⾏车时间为x分钟,⼩张的实际⾏车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际⾏车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y=36∴y=18 ③将③代⼊①得x=37∴⼩王的实际⾏车时间为37分钟,⼩张的实际⾏车时间为18分钟.点睛:本题考查了⼆元⼀次⽅程和⼆元⼀次⽅程组在实际问题中的应⽤,根据等量关系列⽅程或⽅程组是解题的关键.1.(2019?南充)关于x的⼀元⼀次⽅程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4【答案】C【解析】因为关于x的⼀元⼀次⽅程2x a﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.点睛:此题考查⼀元⼀次⽅程的定义,关键是根据⼀元⼀次⽅程的概念和其解的概念解答.2.(2019?⾩新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元【答案】C【解析】设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.点睛:本题考查了⼀元⼀次⽅程的应⽤,找准等量关系,正确列出⼀元⼀次⽅程是解题的关键.3.(2019?鸡西)某学校计划⽤34件同样的奖品全部⽤于奖励在“经典诵读”活动中表现突出的班级,⼀等奖奖励6件,⼆等奖奖励4件,则分配⼀、⼆等奖个数的⽅案有()A.4种B.3种C.2种D.1种【答案】B【解析】设⼀等奖个数x个,⼆等奖个数y个,根据题意,得6x+4y=34,使⽅程成⽴的解有,,,∴⽅案⼀共有3种;故选:B.点睛:本题考查⼆元⼀次⽅程的应⽤;熟练掌握⼆元⼀次⽅程的解法是解题的关键.4.(2019?孝感)已知⼆元⼀次⽅程组,则的值是()A.﹣5 B.5 C.﹣6 D.6【答案】C【解析】,②﹣①×2得,2y=7,解得,把代⼊①得,x=1,解得,∴故选:C.点睛:此题考查了解⼆元⼀次⽅程组,利⽤了消元的思想,消元的⽅法有:代⼊消元法与加减消元法.5.(2019?乐⼭)《九章算术》第七卷“盈不⾜”中记载:“今有共买物,⼈出⼋,盈三;⼈出七,不⾜四.问⼈数、物价各⼏何?”译为:“今有⼈合伙购物,每⼈出8钱,会多3钱;每⼈出7钱,⼜差4钱.问⼈数、物价各多少?”根据所学知识,计算出⼈数、物价分别是()A.1,11 B.7,53 C.7,61 D.6,50【答案】B【解析】设有x⼈,物价为y,可得:,解得:,故选:B.点睛:本题考查了由实际问题抽象出⼆元⼀次⽅程组,找准等量关系,正确列出⼆元⼀次⽅程组是解题的关键.6.(2019?台州)⼀道来⾃课本的习题:从甲地到⼄地有⼀段上坡与⼀段平路.如果保持上坡每⼩时⾛3km,平路每⼩时⾛4km,下坡每⼩时⾛5km,那么从甲地到⼄地需54min,从⼄地到甲地需42min.甲地到⼄地全程是多少?⼩红将这个实际问题转化为⼆元⼀次⽅程组问题,设未知数x,y,已经列出⼀个⽅程,则另⼀个⽅程正确的是()A.B.C.D.【答案】B【解析】设未知数x,y,已经列出⼀个⽅程,则另⼀个⽅程正确的是:.故选:B.点睛:此题主要考查了⼆元⼀次⽅程组的应⽤,正确理解题意得出等式是解题关键.7.(2019?襄阳)《九章算术》是我国古代数学名著,卷七“盈不⾜”中有题译⽂如下:今有⼈合伙买⽺,每⼈出5钱,会差45钱;每⼈出7钱,会差3钱.问合伙⼈数、⽺价各是多少?设合伙⼈数为x⼈,所列⽅程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.D.【答案】B【解析】设合伙⼈数为x⼈,依题意,得:5x+45=7x+3.故选:B.点睛:本题考查了由实际问题抽象出⼀元⼀次⽅程,找准等量关系,正确列出⼀元⼀次⽅程是解题的关键.8.(2019?铁岭)若x,y满⾜⽅程组,则x+y=.【答案】7【解析】,①+②得:4x=20,解得:x=5,把x=5代⼊②得:y=2,则x+y=2+5=7,故答案为:7点睛:此题考查了解⼆元⼀次⽅程组,熟练掌握运算法则是解本题的关键.9.(2019?咸宁)《孙⼦算经》中有⼀道题:“今有⽊,不知长短,引绳度之,余绳四尺五⼨;屈绳量之,不⾜⼀尺,⽊长⼏何?”译⽂⼤致是:“⽤⼀根绳⼦去量⼀根⽊条,绳⼦剩余4.5尺;将绳⼦对折再量⽊条,⽊条剩余1尺,问⽊条长多少尺?”如果设⽊条长x尺,绳⼦长y尺,可列⽅程组为_____________.【答案】【解析】设⽊条长x尺,绳⼦长y尺,依题意,得:.故答案为:.点睛:本题考查了由实际问题抽象出⼆元⼀次⽅程组,找准等量关系,正确列出⼆元⼀次⽅程组是解题的关键.10.(2019?眉⼭)已知关于x,y的⽅程组的解满⾜x+y=5,则k的值为.【答案】2【解析】,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代⼊①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:2点睛:此题主要考查了⼆元⼀次⽅程组解的定义.以及解⼆元⼀次⽅程组的基本⽅法.正确解关于x、y 的⽅程组是关键.11.(2019?⾃贡)某活动⼩组购买了4个篮球和5个⾜球,⼀共花费了466元,其中篮球的单价⽐⾜球的单价多4元,求篮球的单价和⾜球的单价.设篮球的单价为x元,⾜球的单价为y元,依题意,可列⽅程组为.【答案】【解析】设篮球的单价为x元,⾜球的单价为y元,由题意得:,故答案为:,点睛:此题主要考查了由实际问题抽象出⼆元⼀次⽅程组,关键是正确理解题意,找出题⽬中的等量关系.12.(2019?泰安)《九章算术》是我国古代数学的经典著作,书中有⼀个问题:“今有黄⾦九枚,⽩银⼀⼗⼀枚,称之重适等,交易其⼀,⾦轻⼗三两,问⾦、银⼀枚各重⼏何?”意思是:甲袋中装有黄⾦9枚(每枚黄⾦重量相同),⼄袋中装有⽩银11枚(每枚⽩银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋⽐⼄袋轻了13两(袋⼦重量忽略不计),问黄⾦、⽩银每枚各重多少两?设每枚黄⾦重x两,每枚⽩银重y两,根据题意可列⽅程组为.【答案】【解析】设每枚黄⾦重x两,每枚⽩银重y两,由题意得:,故答案为:.点睛:此题主要考查了由实际问题抽象出⼆元⼀次⽅程组,关键是正确理解题意,找出题⽬中的等量关系.13.(2019?毕节市)某品牌旗舰店平⽇将某商品按进价提⾼40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.【答案】2000【解析】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000点睛:本题考查了⼀元⼀次⽅程的应⽤,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列⽅程解答.14.(2019?南通)《九章算术》是中国传统数学最重要的著作之⼀.书中记载:“今有⼈共买鸡,⼈出九,盈⼗⼀;⼈出六,不⾜⼗六.问⼈数⼏何?”意思是:“有若⼲⼈共同出钱买鸡,如果每⼈出九钱,那么多了⼗⼀钱;如果每⼈出六钱,那么少了⼗六钱.问:共有⼏个⼈?”设共有x个⼈共同出钱买鸡,根据题意,可列⼀元⼀次⽅程为.【答案】9x﹣11=6x+16【解析】设有x个⼈共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.点睛:本题考查了由实际问题抽象出⼀元⼀次⽅程,找准等量关系,正确列出⼀元⼀次⽅程是解题的关键.15.(2019?烟台)亚洲⽂明对话⼤会召开期间,⼤批的⼤学⽣志愿者参与服务⼯作.某⼤学计划组织本校全体志愿者统⼀乘车去会场,若单独调配36座新能源客车若⼲辆,则有2⼈没有座位;若只调配22座新能源客车,则⽤车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该⼤学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每⼈有座,⼜保证每车不空座,则两种车型各需多少辆?【答案】(1)计划调配36座新能源客车6辆,该⼤学共有218名志愿者;(2)需调配36座客车3辆,22座客车5辆.【解析】(1)设计划调配36座新能源客车x辆,该⼤学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该⼤学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n.⼜∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.点睛:本题考查了⼆元⼀次⽅程组的应⽤以及⼆元⼀次⽅程的应⽤,解题的关键是:(1)找准等量关系,正确列出⼆元⼀次⽅程组;(2)找准等量关系,正确列出⼆元⼀次⽅程.16.(2019?淮安)某公司⽤⽕车和汽车运输两批物资,具体运输情况如下表所⽰:所⽤⽕车车⽪数量(节)所⽤汽车数量(辆)运输物资总量(吨)第⼀批 2 5 130第⼆批 4 3 218试问每节⽕车车⽪和每辆汽车平均各装物资多少吨?【答案】每节⽕车车⽪装物资50吨,每辆汽车装物资6吨【解析】设每节⽕车车⽪装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节⽕车车⽪装物资50吨,每辆汽车装物资6吨;点睛:本题考查⼆元⼀次⽅程组的应⽤;能够根据题意列出准确的⽅程组,并⽤加减消元法解⽅程组是关键.17.(2019?河池)在某体育⽤品商店,购买30根跳绳和60个毽⼦共⽤720元,购买10根跳绳和50个毽⼦共⽤360元.(1)跳绳、毽⼦的单价各是多少元?(2)该店在“五?四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节⽇期间购买100根跳绳和100个毽⼦只需1800元,该店的商品按原价的⼏折销售?【答案】(1)跳绳的单价为16元/条,毽⼦的单件为4元/个;(2)该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x元/条,毽⼦的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/条,毽⼦的单件为4元/个;(2)设该店的商品按原价的a折销售,可得:(100×16+100×4)1800,解得:a=9,答:该店的商品按原价的9折销售.点睛:本题主要考查⼆元⼀次⽅程组及⼀元⼀次⽅程的应⽤,理解题意找到相等关系是解题关键.18.(2019?泸州)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费⽤不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费⽤最省的⽅案,并求出该⽅案所需费⽤.【答案】(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元;(2)最省的⽅案是购买A型汽车4辆,购进B型汽车6辆,该⽅案所需费⽤为280万元.【解析】(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元;(2)设购进A型汽车m辆,购进B型汽车(10﹣m)辆,根据题意得:解得:3≤m<5,∵m是整数,∴m=3或4,当m=3时,该⽅案所⽤费⽤为:25×3+30×7=285(万元);当m=4时,该⽅案所⽤费⽤为:25×4+30×6=280(万元).答:最省的⽅案是购买A型汽车4辆,购进B型汽车6辆,该⽅案所需费⽤为280万元.点睛:本题考查⼀元⼀次不等式组的应⽤、⼆元⼀次⽅程组的应⽤,解答本题的关键是明确题意,列出相应的不等式组和⽅程组,利⽤⽅程和不等式的性质解答.。

中考数学压轴题专题-一次方程(组)的含参及应用问题(解析版)

中考数学压轴题专题-一次方程(组)的含参及应用问题(解析版)

决胜2021中考数学压轴题全揭秘精品专题 02一次方程(组)的含参及应用问题【考点1】一次方程的有关定义【例1】关于x 的方程mx 2m ﹣1+(m ﹣1)x ﹣2=0如果是一元一次方程,则其解为 ________ .【答案】x =2或x =﹣2或x =﹣3【解析】∵关于x 的方程mx 2m ﹣1+(m ﹣1)x ﹣2=0如果是一元一次方程, ∴当m =1时,方程为x ﹣2=0,解得:x =2;当m =0时,方程为﹣x ﹣2=0,解得:x =﹣2;当2m ﹣1=0,即m时,方程为x ﹣2=0,解得:x =﹣3,故答案为:x =2或x =﹣2或x =﹣3.点睛:此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键. 【变式1-1】(2019·四川南充·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C.【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.【变式1-2】若是关于x、y的二元一次方程ax+y=3的解,则a=.【答案】1【解析】把代入二元一次方程ax+y=3中,a+2=3,解得a=1.故答案是:1.点睛:本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.【考点2】方程组的解法【例2】(2020·甘肃天水·中考真题)已知1023a b+=,16343a b+=,则+a b的值为_________.【答案】1【解析】【分析】观察已知条件可得两式中a与b的系数的差相等,因此把两式相减即可得解.【详解】解:1023a b+=①,16343a b+=②,②-①得,2a+2b=2,解得:a+b=1,故答案为:1.此题主顾考查了二元一次方程组的特殊解法,观察条件的结构特征得出2a+2b=2是解答此题的关键.【变式2-1】(2020·贵州毕节·)已知x a y b =⎧⎨=⎩是方程组2623x y x y +=⎧⎨+=-⎩的解,则+a b 的值为__. 【答案】1.【解析】【分析】先把x=a ,y=b ,代入原方程组,再解关于a 、b 的二元一次方程组,代入要求的代数式即可得出答案.【详解】把x a y b =⎧⎨=⎩代入方程组2623x y x y +=⎧⎨+=-⎩得:2623a b a b +=⎧⎨+=-⎩①②, ①+②得: 333a b +=,1a b +=,故答案为1.【点睛】本题考查了二元一次方程组的解,先将x ,y 的值代入,再计算即可.【变式2-2】(2020·湖北期末)已知关于,x y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则1m n -的平方根为________. 【答案】12±【解析】【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m 、n,再代入求平方根.【详解】将1,2x y =⎧⎨=⎩代入方程组7,234mx ny mx ny +=⎧⎨-=⎩得 27264m n m n +=⎧⎨-=⎩,解得51mn=⎧⎨=⎩.所以114 m n= -所以1m n-的平方根为12±故答案为:1 2±【点睛】考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键.【考点3】方程组的含参问题【例3】已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.0【答案】B【解析】将代入得:,∴a+b=2;故选:B.点睛:本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.【变式3-1】已知是方程组的解,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【答案】A【解析】将代入,可得:,两式相加:a+b=﹣1,故选:A.点睛:本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.【变式3-2】(2020·天津和平·)若方程组213212x yx y-=⎧⎨+=⎩的解也是二元一次方程511x my-=-的一个解,则m的值等于__________.【答案】7【解析】【分析】先把2x-y=1中的y用x表示出来,代入3x+2y=12求出x的值,再代入2x-y=1求出y的值,最后将所求x,y的值代入5x-my=-11解答即可.【详解】解:根据题意得21 3212x yx y-=⎧⎨+=⎩①②∴由①得:y=2x-1,代入②用x表示y得,3x+2(2x-1)=12,解得:x=2,代入①得,y=3,∴将x=2,y=3,代入5x-my=-11解得,m=7.故答案为:7.【点睛】本题考查了解二元一次方程和解二元一次方程组的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x 的形式.【变式3-3】(2020·浙江绍兴·中考真题)若关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为11xy=⎧⎨=⎩,则多项式A可以是_____(写出一个即可).【答案】答案不唯一,如x﹣y.【解析】【分析】根据方程组的解的定义,11xy=⎧⎨=⎩应该满足所写方程组的每一个方程.因此,可以围绕11xy=⎧⎨=⎩列一组算式,然后用x,y代换即可. 【详解】∵关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为11xy=⎧⎨=⎩,而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.故答案为:答案不唯一,如x﹣y.【点睛】此题考查二元一次方程组的定义,二元一次方程组的解,正确理解方程组的解与每个方程的关系是解题的关键.【考点4】二元一次方程的方案问题【例4】(2020·黑龙江齐齐哈尔·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种【答案】B【解析】【分析】设可以购买x支康乃馨,y支百合,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y 均为正整数即可得出小明有4种购买方案.【详解】解:设可以购买x支康乃馨,y支百合,依题意,得:2x+3y=30,∴y=10﹣23 x.∵x,y均为正整数,∴38xy=⎧⎨=⎩,66xy=⎧⎨=⎩,94xy=⎧⎨=⎩,122xy=⎧⎨=⎩,∴小明有4种购买方案.故选:B.【点睛】本题考查了二元一次方程应用中的整数解问题,找准等量关系,正确列出二元一次方程是解题的关键.【变式4-1】(2020·黑龙江鹤岗·中考真题)学校计划用200元钱购买A、B两种奖品,A种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( )A .2种B .3种C .4种D .5种 【答案】B【解析】【分析】设购买了A 种奖品x 个,B 种奖品y 个,根据学校计划用200元钱购买A 、B 两种奖品,其中A 种每个15元,B 种每个25元,钱全部用完可列出方程,再根据x ,y 为正整数可求出解.【详解】设购买了A 种奖品x 个,B 种奖品y 个,根据题意得:1525200x y +=,化简整理得:3540x y +=,得385y x =-, ∵x ,y 为非负整数, ∴08x y =⎧⎨=⎩,55x y =⎧⎨=⎩,102x y =⎧⎨=⎩, ∴有3种购买方案:方案1:购买了A 种奖品0个,B 种奖品8个;方案2:购买了A 种奖品5个,B 种奖品5个;方案3:购买了A 种奖品10个,B 种奖品2个.故选:B.【点睛】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为非负整数确定出x ,y 的值.【考点5】一次方程组的应用问题【例5】(2020·山西中考真题)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.【答案】该电饭煲的进价为580元【解析】【分析】根据满600元立减128元可知,打八折后的总价减去128元是实际付款数额,即可列出等式.【详解】解:设该电饭煲的进价为x 元根据题意,得(150%)80%128568x +⋅-=解,得580x =.答;该电饭煲的进价为580元【点睛】本题主要考察了打折销售知识点,准确找出它们之间的关系列出等式方程是解题关键.【变式5-1】(2020·辽宁大连·中考真题)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【答案】每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【解析】【分析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车,列方程组求解.【详解】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥, 由题意得,615360810440x y x y +=⎧⎨+=⎩,整理得:25120521102x y x y +=⎧⎪⎨+=⎪⎩解得:504x y =⎧⎨=⎩.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.【变式5-2】15.(2020·河北初三其他)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【答案】(1)跳绳的单价为16元/条,毽子的单件为5元/个;(2)该店的商品按原价的9折销售.【解析】【分析】(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x 折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【详解】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:30607201050360x y x y +=⎧⎨+=⎩, 解得:164x y =⎧⎨=⎩, 答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x 折销售,可得:1001610041800()10x ⨯+⨯⨯=, 解得:9x =,答:该店的商品按原价的9折销售.【点睛】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.【变式5-3】(2020·平江县南江中学初三二模)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【答案】2元、6元【解析】【分析】根据对话分别利用总钱数得出等式求出答案.【详解】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:12201121220144y x x y +=⎧⎨+=⎩, 解得:26x y =⎧⎨=⎩, 答:中性笔和笔记本的单价分别是2元、6元.【点睛】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.1.(2020·湖南益阳·中考真题)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩ 【答案】A【分析】联立9x y -=和431x y +=解二元一次方程组即可.【详解】解:有题意得:9431x y x y -=⎧⎨+=⎩①② 由①得x=9+y ③将③代入②得:36+4y+3y=1,解得y=-5则x=9+(-5)=4所以x=4,y=-5.故选:A .【点睛】本题考查了二元一次方程组的应用及解法,掌握二元一次方程组的解法是解答本题的关键.2.(2020·四川内江·中考真题)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( )A .()1552x x =--B .()1552x x =++ C .()255x x =--D .()255x x =++【答案】A【解析】【分析】 设索为x 尺,杆子为(5x -)尺,则根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x 一元一次方程.【详解】设索为x 尺,杆子为(5x -)尺, 根据题意得:12x =(5x -)5-. 故选:A .本题考查了一元一次方程的应用,找准等量关系是解题的关键.3.(2020·广东南山·初三三模)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .4【答案】C【解析】【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C .【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.4.(2020·贵州黔南·中考真题)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( )A .7.4元B .7.5元C .7.6元D .7.7元 【答案】C【解析】【分析】设该商品每件的进价为x 元,根据利润=售价-成本,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .【点睛】本题考查了一元一次方程的应用.找准等量关系,正确列出一元一次方程是解题的关键.5.(2020·山东临清·初三一模)把一根长9m 的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( )A .3种B .4种C .5种D .9种【答案】B【解析】【分析】可列二元一次方程解决这个问题.【详解】解:设2m 的钢管b 根,根据题意得: 29a b +=, a 、b 均为整数,14a b =⎧∴⎨=⎩,33a b =⎧⎨=⎩,52a b =⎧⎨=⎩,71a b =⎧⎨=⎩. 故选:B .【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.6.(2020·山东东营·中考真题)中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半, 一共走了六天才到达目的地.则此人第三天走的路程为( )A .96里B .48里C .24里D .12里【答案】B【解析】【分析】根据题意可设第一天所走的路程为x ,用含x 的式子分别把这六天的路程表示出来,相加等于总路程378,解此方程即可.【详解】解:设第一天的路程为x 里∴x x x x x x+++++=3782481632解得x=192 ∴第三天的路程为x 192==4844 故答案选B【点睛】本题主要考查了一元一次方程的应用,通过每日路程之和等于总路程建立一元一次方程是解题的关键. 7.(2020·黑龙江双鸭山·初三其他)学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A .3种B .4种C .5种D .6种【答案】B【解析】【分析】设购买A 品牌足球x 个,购买B 品牌足球y 个,根据总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可求出结论.【详解】解:设购买A 品牌足球x 个,购买B 品牌足球y 个,依题意,得:60751500x y +=, ∴4205y x =-.x ,y 均为正整数,∴11516x y =⎧⎨=⎩,221012x y =⎧⎨=⎩,33158x y =⎧⎨=⎩,44204x y =⎧⎨=⎩, ∴该学校共有4种购买方案.故选:B .【点睛】本题主要考查二元一次方程的解的问题,这类题往往涉及到方案的种类,是常考点.8.(2020·湖北恩施·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .2【答案】C【解析】【分析】 根据题目中给出的新定义运算规则进行运算即可求解.【详解】解:由题意知:2211☆=+-=+x x x ,又21x =☆,∴11x +=,∴0x =.故选:C .【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.9.(2020·东海)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种 【答案】B【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得.【详解】设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=4043x -, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.10.(2020·黑龙江穆棱·朝鲜族学校中考真题)若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A.3 B.3,-3 CD【答案】C 【解析】【分析】将21ab=⎧⎨=⎩代入二元一次方程组中解出x和y的值,再计算x+2y的算术平方根即可.【详解】解:将21ab=⎧⎨=⎩代入二元一次方程3522ax byax by⎧+=⎪⎨⎪-=⎩中,得到:3522+=⎧⎨-=⎩x yx y,解这个关于x和y的二元一次方程组,两式相加,解75x=得,将75x=回代方程中,解得45y=,∴7415223555+=+⨯==x y,∴x+2y故选:C.【点睛】本题考查了二元一次方程组的解法,算术平方根的概念等,熟练掌握二元一次方程组的解法是解决本题的关键.11.(2019·江苏南通·中考真题)已知a、b满足方程组324236a ba b+=⎧⎨+=⎩,则a+b的值为( )A.2 B.4 C.—2 D.—4【答案】A【解析】观察可知将两个方程相加得5510a b +=,化简即可求得答案.【详解】324236a b a b +=⎧⎨+=⎩①②, ①+②,得5a+5b=10,所以a+b=2,故选A.【点睛】本题考查了二元一次方程组的特殊解法,根据二元一次方程组的特点灵活选用恰当的方法是解题的关键. 12.(2020·甘肃天水·中考真题)已知1023a b +=,16343a b +=,则+a b 的值为_________. 【答案】1【解析】【分析】观察已知条件可得两式中a 与b 的系数的差相等,因此把两式相减即可得解.【详解】 解:1023a b +=①,16343a b +=②, ②-①得,2a+2b=2,解得:a+b=1,故答案为:1.【点睛】此题主顾考查了二元一次方程组的特殊解法,观察条件的结构特征得出2a+2b=2是解答此题的关键. 13.(2020·贵州毕节·)已知x a y b =⎧⎨=⎩是方程组2623x y x y +=⎧⎨+=-⎩的解,则+a b 的值为__. 【答案】1.【解析】【分析】先把x=a ,y=b ,代入原方程组,再解关于a 、b 的二元一次方程组,代入要求的代数式即可得出答案.把x a y b =⎧⎨=⎩代入方程组2623x y x y +=⎧⎨+=-⎩得:2623a b a b +=⎧⎨+=-⎩①②, ①+②得: 333a b +=,1a b +=,故答案为1.【点睛】本题考查了二元一次方程组的解,先将x ,y 的值代入,再计算即可.14.(2020·湖北期末)已知关于,x y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则1m n -的平方根为________. 【答案】12±【解析】【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m 、n,再代入求平方根.【详解】 将1,2x y =⎧⎨=⎩代入方程组7,234mx ny mx ny +=⎧⎨-=⎩得 27264m n m n +=⎧⎨-=⎩, 解得51m n =⎧⎨=⎩ . 所以114m n =- 所以1m n -的平方根为12± 故答案为:12± 【点睛】考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键.15.(2020·山东日照·中考真题)《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 辆车,有y 人,则可列方程组为_____.【答案】()3229x y x y ⎧-=⎨+=⎩ 【解析】【分析】根据两种乘车方式,找出等量关系,由此建立方程组即可.【详解】由题意,可列方程组为:()3229x yx y ⎧-=⎨+=⎩,故答案为:()3229x y x y ⎧-=⎨+=⎩. 【点睛】本题考查了列二元一次方程组,依据题意,正确找出等量关系是解题关键.16.(2020·辽宁朝阳·中考真题)已知关于x 、y 的方程221255x y a x y a+=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________________.【答案】5【解析】【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可.【详解】解:221255x y a x y a +=+⎧⎨+=-⎩①②, ①+②,得3x+3y=6-3a ,∴x+y=2-a ,∵3x y +=-,∴2-a=-3,∴a=5.故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.17.(2020·湖南中考真题)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.【答案】4【解析】【分析】设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可.【详解】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得:1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩, 解得:46x y =⎧⎨=⎩. 故答案为:4.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列出方程组求解.18.(2020·浙江绍兴·中考真题)有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.【答案】100或85.【解析】【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.19.(2019·山东淄博·中考真题)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价-成本).其每件产品的成本和售价信息如下表:问该公司这两种产品的销售件数分别是多少?【答案】A,B两种产品的销售件数分别为160件、180件.【解析】【分析】设A,B两种产品的销售件数分别为x件、y件,由题意列方程组,再计算即可得到答案.【详解】设A,B两种产品的销售件数分别为x件、y件;由题意得:572060 2420601020 x yx y+=⎧⎨+=-⎩,解得:160180 xy=⎧⎨=⎩;答:A,B两种产品的销售件数分别为160件、180件.【点睛】本题考查二元一次方程组的实际应用,解题的关键是熟练掌握二元一次方程组的实际应用. 20.(2020·河北初三其他)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.【解析】【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【详解】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:500 253514500 x yx y+=⎧⎨+=⎩,解得:300200 xy=⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(3525)300(4835)2005600-⨯+-⨯=(元).答:该商场售完这500箱矿泉水,可获利5600元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

2020年中考数学一次函数压轴题训练(含答案)

2020年中考数学一次函数压轴题训练(含答案)

2020年中考数学一次函数压轴题训练【名师精选全国真题,值得下载练习】1.建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上(1)操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.(2)模型应用:①如图2,在直角坐标系中,直线l:y=3x+3与y轴交于点A,与x轴交于点B,将直线l绕着点A顺时针旋转45°得到直线m.求直线m的函数表达式.②如图3,在直角坐标系中,点B(4,3),作BA⊥y轴于点A,作BC⊥x轴于点C,P是直线BC上的一个动点,点Q(a,5a﹣2)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2.如图,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)若点D在x轴上,使得S△DOC=2S△BOC的值,请求出D点的坐标;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,则k的值为.3.【模型建立】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A 作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.4.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距km设甲、乙两车与B地之间的距离为,y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1)A,B两地之间的距离为km;(2)当x为何值时,甲、乙两车相距5km?5.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x 相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.6.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,画出点E 的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使AACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.7.(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A 作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.8.水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)针对居民用水浪费现象,市政府将向每个家庭收取污水处理费,按每立方米1元收费.此外,市政府还将向市民收取自来水费,收费标准为:规定每个家庭每月的用水量不超过10立方米,则按每立方米2.5元收费;超过10立方米的部分,按每立方米3.2元收费.若我市某家庭某月用水量为x立方米,产生的污水量也为x立方米,则这个家庭在该月应缴纳的水费(包括污水处理费)W1为多少钱?(用含x的代数式表示)(2)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:不再收取污水处理费,每天6:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日6:00为用水低谷期,水价可定为每立方米3.2元,若某家庭高低峰时期都有用水,且高峰期的用水量比低谷期多20%.设这个家庭这个月用水低谷期的用水量为y立方米,请计算该家庭在这个月按照此方案应缴纳的水费W2为多少钱?(用含y的代数式表示)(3)若某三口之家按照(1)问中的方案与(2)问中的方案所交水费都为392元,请计算表示哪种方案下的用水量较少?9.已知:在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B,点C 是x轴正半轴上一点,AB=AC,连接BC.(1)如图1,求直线BC解析式;(2)如图2,点P、Q分别是线段AB、BC上的点,且AP=BQ,连接PQ.若点Q 的横坐标为t,△BPQ的面积为S,求S关于t的函数关系式,并写出自变量取值范围;(3)如图3,在(2)的条件下,点E是线段OA上一点,连接BE,将△ABE沿B E 翻折,使翻折后的点A落在y轴上的点H处,点F在y轴上点H上方EH=FH,连接EF并延长交BC于点G,若BG=AP,连接PE,连接PG交BE于点T,求BT长.10.为加大环境保护力度,某市在郊区新建了A、B两个垃圾处理厂来处理甲、乙两个垃圾中转站的垃圾.已知甲中转站每日要输出100吨垃圾,乙中转站每日要输出80吨垃圾,A垃圾处理厂日处理垃圾量为70吨,B垃圾处理厂日处理垃圾量为110吨.甲、乙两中转站运往A、B两处理厂的垃圾量和运费如下表.垃圾量(吨)运费(元/吨)甲中转站乙中转站甲中转站乙中转站A垃圾处理厂x240 180 B垃圾处理厂10+x250 160 (1)设甲中转站运往A垃圾处理厂的垃圾量为x吨,根据信息填表;(2)设总运费为y元,求总运费y(元)关于x(吨)的函数关系式,并写出x的取值范围;(3)当甲、乙两中转站各运往A、B两处理厂多少吨垃圾时,总运费最省?最省的总运费是多少?11.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为米/分钟;F点的坐标为;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.12.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A﹣B﹣C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.14.如图,A,B两地相距30千米,甲骑自行车从A地出发前往B地,乙在甲出发1小时后骑摩托车从A地前往B地,图中的线段OR和线段MN分别反映了甲和乙所行驶的路程s(千米)与行驶时间t(小时)的函数关系.请根据图象所提供的信息回答问题:(1)两人的相遇地点与A地之间的距离是千米;(2)乙骑摩托车的速度比甲骑自行车的速度每小时快千米;(3)求出甲所行驶的路程s(千米)与行驶时间t(小时)的函数关系式,并写出t 的取值范围.15.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC ⊥y轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.参考答案1.解:(1)∵∠ACB=90°,∴∠ACD+∠BCE=90°∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠ECB∵在△DAC和△ECB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB ∴△DAC≌△ECB(AAS);(2)过点B作BC⊥BA,交直线l2于点C,过点C作CD⊥x轴于点D.由直线l:y=3x+3与y轴交于点A,与x轴交于点B,可求点A坐标为(0,3),点B坐标为(﹣1,0),∴AO=3,OB=1.由△DCB≌△OBA可得,DC=OB=1,DB=OA=3,∴点C的坐标为(﹣4,1)设直线m的解析式为:y=kx+b,把(0,3),(﹣4,1)代入,求得.(3)如图3,由△AEQ≌△QFP可得AE=QF,3﹣(5a﹣2)=4﹣a,求得.如备用图,由△AEQ≌△QFP可得AE=QF,(5a﹣2)﹣3=4﹣a,求得.2.解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,在y=﹣x+5中,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∵S△DOC=2S△BOC,∴OD×4=2×,∴OD=5,∴D点的坐标为(5,0)或(﹣5,0);(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣,故答案为或2或﹣.3.解:(1)证明:∵△ABC为等腰直角三角形∴CB=CA又∵AD⊥CD,BE⊥EC∴∠D=∠E=90°∠ACD+∠BCE=180°﹣90°=90°又∵∠EBC+∠BCE=90°∴∠ACD=∠EBC在△ACD与△CBE中,∠D=∠E,∠ACD=∠EBC,CA=BC,∴△ACD≌△CBE(AAS);(2)过点B作BC⊥AB交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°∴△ABC为等腰Rt△由(1)可知:△CBD≌△BAO∴BD=AO,CD=OB∵,y=0,x=﹣3∴A(﹣3,0),x=0,y=4∴B(0,4)∴BD=AO=3,CD=OB=4∴OD=4+3=7.∴C(﹣4,7),直线l2表达式中的k为:﹣7,点C(﹣4,7),则l2的解析式:y=﹣7x﹣21;(3)如下图,设点Q(m,2m﹣6),当∠AQP=90°时,由(1)知,△AMQ≌△QNP(AAS),∴AM=QN,即|8﹣m|=6﹣(2m﹣6),解得:m=4或,故:Q(4,2),.4.解:(1)A,B两地之间的距离为20km.故答案为:20;(2)乙车的速度为:20÷=120(km/h),甲车的速度为:=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)﹣120x=5,解得x=0.75;相遇后:120x﹣(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.5.解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EP A=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NP A=90°,∴∠MEP=∠NP A,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(14,);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(16,20);上,E(,)或(14,)或;(2,)或(16,20).6.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入,y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)如图点E为所求点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线DB1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入一次函数表达式并解得:故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为.(3)存在,D点的坐标为(﹣1,3)或.①当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);②当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∠F AO=∠CBO,∠AOF=∠BOD,AO=BO,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组并解得:x=,∴交点D的坐标为.7.解:(1)∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠ACD=∠CAD=90°,∵∠ACB=90°,∴∠ACD=∠BCE=90°,∴∠BCE=∠CAD,在△BEC和△CDA中,∴△BEC≌△CDA(AAS);(2)①根据题意可得点C的坐标为C(4,6)或C(6,2);故答案为:C(4,6)或C(6,2);②如图,作BP⊥MN交MN的延长线于P,作DQ⊥MN于Q∵∠BCP+∠BCA=∠CAM+∠AMC,∵∠BCA=∠AMC,∴∠BCP=∠CAM,在△CBP与△ACM中,,∴△CBP≌△ACM(AAS),∴MC=BP,同理,CM=DQ,∴DQ=BP在△BPN与△DQN中,,∵△BPN≌△DQN(AAS),∴BN=ND,∴N是BD的中点.8.解:(1)用水量不超过10立方米,应缴纳的水费W1=2.5x+x=3.5x,用水量超过10立方米,应缴纳的水费W1=2.5×10+3.2(x﹣10)+x=4.2x﹣7;(2)用水低谷期的用水量为y立方米,则用水高峰期的用水量为(1+20%)y=1.2y (立方米),W2=3.2y+4×(1+20%)y=8y;(3)∵392÷10=3.92(元),∴用水量超过10立方米,4.2x﹣7=392解得x=95;8y=392,解得:y=49,∴1.2y=58.6(立方米)49+58.6=107.6∵107.6>95∴问题(2)中的方案下的用水量较少.9.解:(1)由已知可得A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB===5,∴AC=5,∴C(2,0),设BC的直线解析式为y=kx+b,将点B与点C代入,得,∴,∴BC的直线解析式为y=﹣2x+4;(2)过点Q作MQ⊥y轴,与y轴交于点M,过点Q作QE⊥AB,过点C作CF⊥AB,∵Q点横坐标是t,∴MQ=t,∵MQ∥OC,∴,∴,∴BQ=t,∴AP=t,∵AB=5,∴PB=5﹣t,在等腰三角形ABC中,AC=AB=5,BC=2,∵AB×CF=AC×OB,∴CF=OB=4,∵EQ∥CF∴∴EQ=2t,∴S=×(5﹣t)=(0≤t≤2);(3)如图3,∵将△ABE沿BE翻折,使翻折后的点A落在y轴上的点H处,∴AH=AB=5,AE=EH,∴OH=BH﹣OB=1,∵EH2=EO2+OH2,∴AE2=(4﹣AE)2+1,∴AE==EH,∴OE=,∴点E(﹣,0)∵EH=FH=,∴OF=∴点F(0,)∴直线EF解析式为y=x+,直线BE的解析式为:y=3x+4,∴﹣2x+4=x+,∴x=,∴点G(,)∴BG==,∵BG=AP,∴AP=1,设点P(a,a+4)∴1=∴a=﹣,∴点P(﹣,),∴直线PG的解析式为:y=x+,∴3x+4=x+,∴x=﹣1,∴点T(﹣1,1)∴BT==10.解:(1)甲中转站运往A垃圾处理厂的垃圾量为x吨,则甲中转站运往B垃圾处理厂的垃圾量为(100﹣x)吨,乙中转站运往A垃圾处理厂的垃圾量(70﹣x)吨,乙中转站运往B垃圾处理厂的垃圾量(10+x)吨;故答案为:(70﹣x);(100﹣x);(2)依题意有y=240x+250(100﹣x)+180(70﹣x)+160(10+x)=﹣30x+39200(0≤x≤70).(3)在上述一次函数中,k=﹣30<0,所以y的值随x的增大而减小.所以当x=70时,总运费y最省,最省的总运费为37100元.即甲中转站运往A处理厂70吨垃圾,运往B处理厂30吨垃圾,乙中转站运往B处理厂80吨垃圾.11.解:(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,2400÷96=25,所以F点的坐标为(25,0).故答案为:240;(25,0);(2)设李越从乙地骑往甲地时,s与t之间的函数表达式为s=kt,2400=10k,得k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为s=240t,故答案为:s=240t;(3)设王明从甲地到乙地时,s与t之间的函数表达式为s=kt+2400,根据题意得,25k+2400=0,解得k=﹣96,所以王明从甲地到乙地时,s与t之间的函数表达式为:s=﹣96x+2400;(4)根据题意得,240(t﹣2)﹣96t=2400,解得t=20.答:李越与王明第二次相遇时t的值为20.12.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线D B1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入,得.解得k=﹣3,b=﹣4.故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为(,0).②存在,D点的坐标为(﹣1,3)或(,).附:当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组,解得.∴交点D的坐标为(,).13.解:(1)设直线AB的解析式为y=kx+b,把A(4,2),B(6,0)代入得:,解得:,∴直线AB的表达式为y=﹣x+6;(2)作点B(6,0)关于y轴的对称点B',∴B'(﹣6,0),连接AB'交y轴于M,此时MA+MB最小,设直线AB'的解析式为y=mx+n,将A(4,2),B'(﹣6,0)代入得:,解得:,∴直线AB'的解析式为:y=x+,当x=0时,y=,∴M(0,);(3)存在,理由:设:点N(m,0),点A(4,2),点O(0,0),则AO2=20,AN2=(m﹣4)2+4,ON2=m2,①当AO=AN时,20=(m﹣4)2+4,解得:m=8或0(舍去0);②当AO=ON时,同理可得:m=;③当AN=ON时,同理可得:m=;故符合条件的点N坐标为:(﹣2,0)或(2,0)或(8,0)或(,0).14.解:(1)由图象可知两人的相遇地点与A地之间的距离是20千米.故答案为:20(2)乙骑摩托车的速度是20÷(2﹣1)=20,即速度是每小时20千米;甲骑自行车的速度是20÷2=10,即速度是每小时10千米,∴乙骑摩托车的速度比甲骑自行车的速度每小时快10千米.故答案为:10;(3)设甲所行驶的路程s(千米)与行驶时间t(小时)的函数关系式为s=kt(k≠0).把(2,20)或(3,30)代入s=kt,得30=3k.∴k=10.因此,甲所行驶的路程s(千米)与行驶时间t(小时)的函数关系式为s=10t,t的取值范围为0≤t≤3.15.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠B OA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CBD=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(﹣3,5),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣5x﹣10;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(,),又∵点D在直线y=﹣2x+1上,∴﹣2×=,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 02一次方程(组)的含参及应用问题【考点1】一次方程的有关定义【例1】(2019•呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为________.【答案】x=2或x=﹣2或x=﹣3【解析】∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴当m=1时,方程为x﹣2=0,解得:x=2;当m=0时,方程为﹣x﹣2=0,解得:x=﹣2;当2m﹣1=0,即m时,方程为x﹣2=0,解得:x=﹣3,故答案为:x=2或x=﹣2或x=﹣3.点睛:此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.【变式1-1】(2019•湘西州)若关于x的方程3x﹣kx+2=0的解为2,则k的值为.【答案】4【解析】∵关于x的方程3x﹣kx+2=0的解为2,∴3×2﹣2k+2=0,解得:k=4.故答案为:4.点睛:此题主要考查了一元一次方程的解,正确把已知数据代入是解题关键.【变式1-2】(2019•常州)若是关于x、y的二元一次方程ax+y=3的解,则a=.【答案】1【解析】把代入二元一次方程ax+y=3中,a+2=3,解得a=1.故答案是:1.点睛:本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.【考点2】方程组的解法【例2】(2019•南通)已知a,b满足方程组,则a+b的值为()A.2 B.4 C.﹣2 D.﹣4【答案】A【解析】,①+②得:5a+5b=10,则a+b=2,故选:A.点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【变式2-1】(2019•荆门)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣3【答案】A【解析】,①+②×2,得5x=5,解得x=1,把x=1代入②得,1+y=2,解得y=1,∴x2﹣2y2=12﹣2×12=1﹣2=﹣1.故选:A.点睛:此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y 的方程组是关键.【考点3】方程组的含参问题【例3】(2019•朝阳)关于x,y的二元一次方程组的解是,则m+n的值为()A.4 B.2 C.1 D.0【答案】D【解析】把代入得:,解得:,则m+n=0,故选:D.点睛:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.【变式3-1】(2019•菏泽)已知是方程组的解,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【答案】A【解析】将代入,可得:,两式相加:a+b=﹣1,故选:A.点睛:本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.【变式3-2】(2019•巴中)已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.0【答案】B【解析】将代入得:,∴a+b=2;故选:B.点睛:本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.【考点4】二元一次方程的方案问题【例4】(2019•天门)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【答案】B【解析】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.点睛:本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.【变式4-1】(2019•齐齐哈尔)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种【答案】B【解析】设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.点睛:本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程.【考点5】一次方程组的应用问题【例5】(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲25 35乙35 48 求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.【解析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式5-1】(2019•百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?【答案】(1)该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)甲、丙两地相距千米.【解析】(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:,解得:.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,依题意,得:,解得:a.答:甲、丙两地相距千米.点睛:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.【变式5-2】(2019•呼和浩特)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.【答案】(1)∴这两辆滴滴快车的实际行车时间相差19分钟;(2)小王的实际行车时间为37分钟,小张的实际行车时间为18分钟.【解析】(1)设小王的实际行车时间为x分钟,小张的实际行车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y=36∴y=18 ③将③代入①得x=37∴小王的实际行车时间为37分钟,小张的实际行车时间为18分钟.点睛:本题考查了二元一次方程和二元一次方程组在实际问题中的应用,根据等量关系列方程或方程组是解题的关键.1.(2019•南充)关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4【答案】C【解析】因为关于x的一元一次方程2x a﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.点睛:此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.2.(2019•阜新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元【答案】C【解析】设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.3.(2019•鸡西)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种【答案】B【解析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.点睛:本题考查二元一次方程的应用;熟练掌握二元一次方程的解法是解题的关键.4.(2019•孝感)已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.6【答案】C【解析】,②﹣①×2得,2y=7,解得,把代入①得,x=1,解得,∴故选:C.点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2019•乐山)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11 B.7,53 C.7,61 D.6,50【答案】B【解析】设有x人,物价为y,可得:,解得:,故选:B.点睛:本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.(2019•台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程,则另一个方程正确的是()A.B.C.D.【答案】B【解析】设未知数x,y,已经列出一个方程,则另一个方程正确的是:.故选:B.点睛:此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.7.(2019•襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.D.【答案】B【解析】设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.点睛:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.(2019•铁岭)若x,y满足方程组,则x+y=.【答案】7【解析】,①+②得:4x=20,解得:x=5,把x=5代入②得:y=2,则x+y=2+5=7,故答案为:7点睛:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.9.(2019•咸宁)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为_____________.【答案】【解析】设木条长x尺,绳子长y尺,依题意,得:.故答案为:.点睛:本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.(2019•眉山)已知关于x,y的方程组的解满足x+y=5,则k的值为.【答案】2【解析】,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代入①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:2点睛:此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y 的方程组是关键.11.(2019•自贡)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【答案】【解析】设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.12.(2019•泰安)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.【答案】【解析】设每枚黄金重x两,每枚白银重y两,由题意得:,故答案为:.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.13.(2019•毕节市)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.【答案】2000【解析】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000点睛:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.14.(2019•南通)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.【答案】9x﹣11=6x+16【解析】设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.点睛:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2019•烟台)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】(1)计划调配36座新能源客车6辆,该大学共有218名志愿者;(2)需调配36座客车3辆,22座客车5辆.【解析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.点睛:本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.16.(2019•淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批 2 5 130第二批 4 3 218试问每节火车车皮和每辆汽车平均各装物资多少吨?【答案】每节火车车皮装物资50吨,每辆汽车装物资6吨【解析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;点睛:本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.17.(2019•河池)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【答案】(1)跳绳的单价为16元/条,毽子的单件为4元/个;(2)该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x元/条,毽子的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/条,毽子的单件为4元/个;(2)设该店的商品按原价的a折销售,可得:(100×16+100×4)1800,解得:a=9,答:该店的商品按原价的9折销售.点睛:本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.18.(2019•泸州)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.【答案】(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元;(2)最省的方案是购买A型汽车4辆,购进B型汽车6辆,该方案所需费用为280万元.【解析】(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元;(2)设购进A型汽车m辆,购进B型汽车(10﹣m)辆,根据题意得:解得:3≤m<5,∵m是整数,∴m=3或4,当m=3时,该方案所用费用为:25×3+30×7=285(万元);当m=4时,该方案所用费用为:25×4+30×6=280(万元).答:最省的方案是购买A型汽车4辆,购进B型汽车6辆,该方案所需费用为280万元.点睛:本题考查一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的不等式组和方程组,利用方程和不等式的性质解答.。

相关文档
最新文档