实数的化简与计算(综合测试)(人教版)(含答案)

合集下载

人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册第六章实数。

单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。

$n=0.13$,求 $m-n$ 的值。

19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。

讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。

”小军说:“面积和长宽比例是确定的,肯定可以围得出来。

”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。

20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。

专题6.5实数(压轴题综合训练卷)(人教版)(原卷版)

专题6.5实数(压轴题综合训练卷)(人教版)(原卷版)

专题6.5 实数(满分100)学校:___________姓名:___________班级:___________考号:___________题号一 二 三 总分得分评卷人得 分 一.选择题(本大题共10小题,每小题3分,满分30分)1.(2021秋•宛城区期中)下列各数中,化简结果为﹣2021的是( )A .﹣(﹣2021)B .√(2021)2C .|﹣2021|D .√−2021332.(2021秋•东城区校级期中)实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .b +d >0D .a >﹣d 3.(2021秋•茂名期中)下列说法:①127的立方根是±13;①−√17是17的平方根;①﹣27没有立方根;①比√2大且比√3小的实数有无数个.错误的有( )A .①①B .①①C .①①D .①①4.(2021秋•内江期末)若m <√5−1<n ,且m ,n 是两个连续整数,则m +n 的值是( )A .1B .2C .3D .4 5.(2021秋•滦南县期中)若√1−2x 3和√3x −53互为相反数,则(1−√x )2018的值为( )A .0B .1C .﹣1D .20186.(2021秋•东港市期中)若a 2=b 2,则下列等式成立的有( )①|a |=|b |;①√a 3=√b 3;①a =b ;①√a =√b .A .1个B .2个C .3个D .4个 7.(2021秋•会宁县期中)下列说法正确的个数( )①无限小数都是无理数;①带根号的数都是无理数;①无理数与无理数的和一定是无理数;①无理数与有理数的和一定是无理数;①√22是分数;①无理数与有理数的积一定是无理数.A .1个B .2个C .3个D .4个 8.(2021秋•晋州市期末)已知A ,B ,C 是数轴上三点,点B 是线段AC 的中点,点A ,B 对应的实数分别为﹣1和√2,则点C 对应的实数是( )A .√2+1B .√2+2C .2√2−1D .2√2+19.(2020秋•仁寿县期末)已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .210.(2021秋•平阳县期中)已知a ,b ,c 三个数,a 为8−√8,b 为7−√7,c 为6−√6,则这三个数的大小关系是( )A .c <b <aB .b <c <aC .a =b =cD .b <a <c评卷人得 分 二.填空题(本大题共5小题,每小题3分,满分15分)11.(2021秋•揭阳月考)在实数√8116、−√33、−337、√93、|−12|、2.1010010001…(两个1之间依次多一个0)中,无理数共有 个.12.(2021秋•西湖区期末)如图,每个小正方形的边长为1,可通过“剪一剪”,“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.(2021秋•海陵区期末)对于实数s 、t ,我们用符号max {s ,t }表示s 、t 两数中较大的数,如max {3,1}=3.若max {x 2﹣10,3x 2}=6,则x = .14.实数a 、b 、x 、y 满足y +|√x −√3|=1﹣a 2,|x ﹣3|=y ﹣1﹣b 2,那么2x +y +2a +b 的值是 .15.(2021•肇源县二模)对于三个互不相等的数a ,b ,c ,我们规定用M {a ,b ,c }表示这三个数的平均数,用med {a ,b ,c }表示这三个数中从小到大排中间的数.例如:M {﹣1,2,3}=43,med {2,3,﹣1}=2,则med {−5,√3,0}= ,如果M {3,2x +1,4x ﹣1}=med {4,﹣x +3,6x },那么x = .评卷人得 分三.解答题(本大题共9小题,满分55分)16.(4分)(2021秋•南岗区校级期末)计算:(1)|√2−√3|+√2; (2)√−273+√0.16−75.17.(4分)(2021秋•鼓楼区校级期末)求下列各式中的x :(1)(x +2)2=64; (2)8x 3+125=0.18.(4分)(2021春•雨花区期中)实数a 、b 、c 在数轴上的位置如图所示,其中c 为8的立方根,求代数式√a 2+|b ﹣a |+√(b −c)2−|2b |的值.19.(6分)(2021春•鼓楼区校级期中)已知|7﹣3m |+(5﹣n )2=3m ﹣7−√m −4,求(√m −√n )2.20.(6分)(2021秋•三元区期中)我们知道,任意一个有理数与无理数的和为无理数;任意一个不为0的有理数与一个无理数的积为无理数;而0与无理数的积为0.由此可得:如果ax +b =0,其中a ,b 为有理数,x 为无理数,那么a =0且b =0.(1)如果(m +1)√3+(n ﹣2)=0,其中m ,n 为有理数,那么m = ,n = ;(2)如果(3+√5)m ﹣2√5n =18,其中m ,n 为有理数,求m +3n 的值.21.(6分)(2021秋•承德县期末)阅读下面的文字,解答问题.现规定:分别用[x]和①x①表示实数x的整数部分和小数部分,如实数3.14的整数部分是[3.14]=3,小数部分是①3.14①=0.14;实数√7的整数部分是[√7]=2,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即√7−2就是√7的小数部分,所以①√7①=√7−2.(1)[√2]=,①√2①=;[√11]=,①√11①=.(2)如果①√5①=a,[√101]=b,求a+b−√5的立方根.22.(8分)(2021秋•温州期中)观察下列一组算式的特征,并探索规律:①√13=1=1;①√13+23=1+2=3;①√13+23+33=1+2+3=6;①√13+23+33+43=1+2+3+4=10.根据以上算式的规律,解答下列问题:(1)13+23+33+43+53=()2=;(2)√13+23+33+⋯+(n−1)3+n3=;(用含n的代数式表示)(3)简便计算:113+123+133+…+193+203.23.(8分)(2020秋•皇姑区期末)阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B﹣x A=b﹣a.如图,在数轴上点A,B表示的实数分别为﹣3,4,则记x A=﹣3,x B=4,因为﹣3<4,显然A,B两点的距离AB=x B﹣x A=4﹣(﹣3)=7.若点C为线段AB的中点,则AC=CB,所以x C﹣x A=x B﹣x C,即x C=x A+x B.2解决问题:(1)直接写出线段AB的中点C表示的实数x C=;(2)在点B右侧的数轴上有点P,且AP+BP=9,求点P表示的实数x P;(3)在(2)的条件下,点M是AP的中点,点N是BP的中点,若A,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则点B的速度为每秒个单位长度.24.(9分)(2021春•兴宁区校级期中)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是3个单位长度,长方形ABCD的长AD是6个单位长度,长方形EFGH的长EH是10个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为14.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.EH,M以每秒4个单位的速度向右匀速运动,N (2)若线段AD的中点为M,线段EH上一点N,EN=14以每秒3个单位的速度向左运动,设运动时间为x秒,原点为O.当OM=2ON时,求x的值.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,当S=12时,求此时t的值.。

第6章 实数 人教版数学七年级下册单元测试(含答案)

第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。

2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。

3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。

4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。

5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。

7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。

【答案】解:原式=4×2+1-6 =-+1+6 =7。

8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。

11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。

13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。

人教版七年级数学第六章第3节《实数》单元训练题 (9)(含答案解析)

人教版七年级数学第六章第3节《实数》单元训练题 (9)(含答案解析)

第六章第3节《实数》单元训练题 (9)一、单选题1.下列各组数中都是无理数的为( )A .0.07,23,π; B .0.7•,π;C ,π;D .0.1010101……101,π21的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间3.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个4.观察下列各等式:231-+= -5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1335.在实数-3.14,0,π中,无理数有( ) A .1个B .2个C .3个D .4个6.下列说法中错误的有( ) ①实数和数轴上的点是一一对应的; ②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±. A .0个B .1个C .2个D .3个7.下列说法中,正确的是( ) A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数8.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( ) A .2B .4C .6D .89.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2 B .4C .8D .6二、填空题10______0.5. 11.如图,把正方形的四个角折起来成为阴影的小正方形,四个顶点都落在点M 处,画了如图的三个圆,与数轴的交点为A ,B ,C ,D ,E ,F ,则表示数11点分别是________(填相应的字母,注意顺序).12.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n ,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个. 13.如图,在数轴上点A 和点B 之间表示整数的点共有_____个14.观察下列各数的排列规律,可知第9行的第4个数为__________.15.有若干个数,第一个数记为1a ,第二个数记为2a ,,第n 个数记为n a .若112a =,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过计算,由你发现的规律计算2021a =__________. 16.设12211112S =++,22211123S =++,32211134S =++,…,22111(1)n S n n =+++.设n S S =+,则S =_______(用含n 的代数式表示,其中n 为正整数).17.将按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___18.规定运算:()a b a b *=-,其中b a 、为实数,则4)=____三、解答题19.观察下列各式及其变形过程:11a ==-2a ==3a ==(1)按照此规律,写出第五个等式5a = ;(2)按照此规律,若123···n n S a a a a =++++,试用含n 的代数式表示n S . 20.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,1()2-④= ; (2)关于除方,下列说法错误的是A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算有理数的除方运算如何转化为乘方运算呢?(3)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于 ; (4)算一算: 1()3-④×1()2-③-1()3-⑧÷63.21.把下列各数写入相应的集合中:-120.1,2π0,0.1212212221...(相邻两个1之间2的个数逐次加1)(1)正数集合{ }; (2)有理数集合{ }; (3)无理数集合{ }.2215,42π-0,0.3737737773……(相邻两个3之间7的个数逐次增加1) 有理数集:______________________ 无理数集:______________________ 整数集:________________________ 分数集:________________________ 23.计算:(1)8+(14-)-5-(-0.25)(22- (3)()1314864⎛⎫-+⨯- ⎪⎝⎭(4)2232113()(2)()32-⨯---÷-24.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式a-b=ab+1成立的一对有理数a ,b 为“和谐数对”,记为(a ,b ),如:数对(2,13),(5,23)都是“和谐数对”.(1)数对(3,1),(4,35)中是“和谐数对”的是 ; (2)若(x ,y )是“和谐数对”,则(y ,x ) “和谐数对”(填“是”或“不是”); (3)若(m ,5)是“和谐数对”,求m 的值; 25.把下列各数分别填入相应的集合里: ﹣2,114,•5.2-,0,2π,3.1415926,227-,+10%,2.626 626 662……,2020正数集合 {…} 负数集合 { …} 整数集合 { …} 分数集合{…} 无理数集合{…}26.把下列各数分别填入相应的集合中 0, -54,3.14, -|-2|, 2π , 0.130********…, 0.13 (1)整数集合:{________________________…} (2)分数集合:{________________________…} (3)负有理数集合:{____________________…} (4)无理数集合:{______________________…}27.把下列各数分别填入相应的集合里:()2+-,0,0.314-, 5.0101001-(两个1间的0的个数依次多1个),()11--,227,143-,0.33333,325-. 正有理数集合:{ } 无理数集合: { } 整数集合: { } 分数集合: { }28.a ,b 为有理数,如果规定一种新的运算“⊕”,定义:21a b a ab a ⊕=-+-,请根据“⊕”的定义计算下列各题:例如:()()22522521410214115)2(01⊕-⨯-+-=--+-=++-==-.计算:(1)(3⊕4) (2)(2⊕3)⊕(-3) 29.我们知道.在计算21001333++++值时,可设21001333S =++++①则2310133333S =++++②,②-①,得101231S =-,所以101312S -= (1)试利用上述方法求220041888++++的值.(2)211111222++的值. (3)求2345111217777777-+-+-+-+的值.30.已知,x y 为有理数,现规定一种新运算*,满足*1x y xy =-,Θ(-1)x y x y =, 例如:2Θ32(3-1)224=⨯=⨯=;(-2)Θ3(-2)(3-1)(-2)2-4=⨯=⨯=, (1)求()()52*33Θ⨯--的值;(2)求()()()()Θ2Θ12*3*35⎡⎤-⎣⎦⨯--的值.【答案与解析】1.C【解析】根据无理数的定义,依次判断即可.解:A. 0.07,23是有理数,故该选项错误;B.0.7是有理数,故该选项错误;C,π都是无理数,故该选项正确;D.0.1010101……101是有理数,故该选项错误.故选:C.本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.B【解析】的取值即可得到答案.由题意得78<<,617∴<<,1介于6~7之间.故选B.3.D【解析】直接根据无理数的定义直接判断得出即可.,π,2.32232223共3个.故选D.本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.4.C【解析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.解:第一行:211=; 第二行:224=; 第三行:239=; 第四行:2416=; ……第n 行:2n ;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132. 故选:C .此题主要考查探索数与式的规律,正确找出规律是解题关键. 5.B 【解析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.=4,所给数据中无理数有:,π,共2个. 故选:B .本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式. 6.D 【解析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可. ①实数和数轴上的点是一一对应的,正确; ②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误. 综上,错误的个数有3个.故选:D .本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键. 7.C 【解析】根据实数的概念和分类即可判断.A 、无理数包括正无理数和负无理数,则此项错误;B 、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C 、无理数都是无限不循环小数,则此项正确;D (0=,则此项错误; 故选:C .本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键. 8.D 【解析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8. 解:2017÷4=504…1, 循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8. 故选:D .本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点. 9.C 【解析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8.本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,…. 10.> 【解析】根据无理数的估算方法,先估算,再比较大小即可.>2>,11>,12>0.5>. 故答案为:>.本题考查了实数比较大小,熟练掌握无理数的估算是解题的关键. 11.C 、F 【解析】找到三个圆的圆心与半径,结合正方形的性质得到各个点表示的数, 从而得到结果. 解:由题意可得:大正方形的边长为2,中间处的圆是以原点为圆心,阴影正方形的边长为半径,=可得:点B 表示E ,而左右两侧的圆分别以-1和1为半径,∴点A 表示1--D 表示1-点C 表示1F 表示1∴表示数11点分别C 和F , 故答案为:C 、F .本题考查了实数与数轴,解题的关键是找到各个圆的圆形与半径. 12.12 【解析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有12个.故答案是:12.本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.13.4【解析】先确定之间的整数即可.21-<-<-,23<<,∴之间的整数为:-1、0、1、2,共4个.故答案为:4.本题主要考查无理数的估算能力以及数轴的意义,数形结合思想的运用是解题关键.14.【解析】根据题意可得数阵中的每个数为其序号的算术平方根,据此得出第9行的第4个数即可. 解:∵前4行共有123410+++=个数,∴前1n -行共有(1)123(1)2n n n -+++⋯+-=个数.∵11,2=3=, ∴数阵中的每个数为其序号的算术平方根,∴前8行共有981238362个数,∴第9行的第440210,故答案是:本题考查了规律型中数字的变化,解题的关键是根据数阵中的每个数为其序号的算术平方根. 15.2【解析】先根据倒数的定义分别求出1234,,,a a a a 的值,再归纳类推出一般规律,由此即可得出答案.由题意得:112a =, 211122a ⎛⎫=÷-= ⎪⎝⎭, ()31121a =÷-=-,()411112a =÷--=⎡⎤⎣⎦,归纳类推得:12,,,n a a a 是以1,2,12-循环往复的,其中n 为正整数, 因为202136732=⨯+,所以202122a a ==,故答案为:2.本题考查了倒数、有理数的除法与减法,依据题意,正确归纳类推出一般规律是解题关键.16.221n n n ++ 【解析】试题分析:先求出S n 111n n +-+,再总结出S 的表达式,从而可以得出结论. 22111(1)n S n n =+++ 222222(1)(1)(1)n n n n n n ++++=+ 222[(1)]221[(1)]n n n n n n ++++=+ 22[(1)1][(1)]n n n n ++=+, (1)111111(1)(1)1n n n n n n n n ++==+=+-+++.n S S ∴+1111111112231n n =+-++-+++-+111n n =+-+ 22(1)1211n n n n n +-+==++. 本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解.17.【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.18.4【解析】根据题意将原式展开,然后化简绝对值,求解即可.4)+4=4-=4故答案为4.本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.19.(1(2)1n S =. 【解析】(1)根据上述的规律第五个等式a 5(2)根据(1)总结得到的规律,用含n 的等式表示a n ,然后计算S n ,抵消合并后,即可得到S n =1- 解:()51a =-()2用含字母n (n 为正整数)的等式表示(1)中的一般规律为n a ==123···n n S a a a a ∴=++++1?··=-+ 1=-此题考查了分母有理化,属于规律型题,根据题意找出一般性规律是解本题的关键.20.(1)12,4;(2)C ;(3)21n a -;(4)19- 【解析】(1)根据除方的定义,将原式变形求解;(2)根据除方的定义,结合有理数除法的定义逐一判断即可;(3)根据除方定义展开,然后按照乘方和有理数除法的定义即可总结通项式;(4)根据(3)中通项式将原式每一项展开,然后根据有理数混合运算的运算法则求解即可.(1)2③=2÷2÷2=12, 1()2-④=11112222⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=12222⨯⨯⨯=4 故答案为12,4; (2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确;B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=19,4③=4÷4÷4=14则 3④≠4③; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选C ;(3)a ⓝ=a÷a÷a…÷a=1÷a n ﹣2=21n a -.(4)由(3)得:1()3-④=421913-=⎛⎫- ⎪⎝⎭,1()2-③=321212-=-⎛⎫- ⎪⎝⎭,1()3-=6821313-=⎛⎫- ⎪⎝⎭故,原式=()66923318119⨯--÷=--=-. 本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.21.(1)0.1、2π0.1212212221...(相邻两个1之间2的个数逐次加1);(2)12-、 0.1、、0 ;(32π、0.1212212221...(相邻两个1之间2的个数逐次加1). 【解析】根据实数的分类标准进行填写即可.解:(1)正数集合{0.1、2π0.1212212221...(相邻两个1之间2的个数逐次加1)};(2)有理数集合{ -12、 0.1、0 };(3)无理数集合2π、0.1212212221...(相邻两个1之间2的个数逐次加1) }. 本题主要考查了实数的分类,掌握有理数和无理数的概念是解答本题的关键.22.有理数集:14,52-,,0π,0.3737737773……(相邻两个3之间7的个数逐次增加1);整数集:,0;分数集合:14,52-,【解析】根据有理数、无理数、整数、分数的定义逐一判断即可.解:有理数集:14,52-,,0;,π,0.3737737773……(相邻两个3之间7的个数逐次增加1);整数集:0;分数集:14,52- 本题考查实数的分类,掌握有理数、无理数、整数和分数的定义是解题的关键.23.(1)3;(2)139-;(3)-76;(4)31【解析】(1)先化简符号,写成省略加好和再计算,(2)先算立方根,算术平方根,化去绝对值,再加减即可,(3)先算乘法对加法分配律,约分后再加减,(4)先算乘方,再把除变乘,除数变它的倒数相乘,再算加减即可.(1)8+(-14)-5-(-0.25)=8-14-5+0.25 =3,(22- =-2+89-2 =139-, (3)()1314864⎛⎫-+⨯- ⎪⎝⎭=1348484864-+⨯-⨯==-48+8-36=-76, (4)2232113()(2)()32-⨯---÷-=119(8)94-⨯--÷=-1+8×4=-1+32=31. 本题考查立方根,算术平方根,绝对值,混合运算等知识,掌握这些知识,熟悉运算顺序,选择恰当方法,会用它们解决问题是关键.24.(1)(4,35);(2)是 ;(3)32m =- 【解析】(1)按等式左右分别计算,比较即可,(2)由(x ,y )是和谐数对,有等式x-y=xy+1,验证(-y ,-x )是否满足等式即可,(3)利用和谐数对等式,列出方程,解方程即可.解:(1)-3-1=-4,-3×1+1=-3+1=-2,所以(-3,1)不是和谐数对, 5-213=33,2135+1=33⨯所以(4,35)是和谐数对, 答案为:(4,35); (2)(x,y )是和谐数对,则有x-y=xy+1,-y-(-x)=x-y ,(-y )(-x )+1=xy+1,-y-(-x)= (-y )(-x )+1,(-y,-x )是和谐数对,答案为:是;(3)解:551m m -=+,得32m =-. 本题考查新定义和谐数对问题,读懂含义,抓住等式,采取验证方法即求代数式值是解决问题的关键.25.见解析.【解析】根据正数、负数、整数、分数、无理数的定义即可得.22 3.1428577-=小数点后的142857是无限循环的, 正数集合 3.1415926,10%,2.626626662,202011,,42,π⎧+⎫⎨⎬⎩⎭; 负数集合•222,,75.2,⎧-⎫--⎨⎬⎩⎭; 整数集合{}2,0,2,020-; 分数集合•5.23.14159261221,,,,10%47,⎧⎫-+⎨⎩⎭-⎬; 无理数集合 2.626626662,,2π⎧⎫⎨⎬⎩⎭. 本题考查了正数、负数、整数、分数、无理数,熟记各定义是解题关键. 26.0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********…【解析】(1)根据整数的定义选出即可;(2)根据负数和分数的定义选出即可;(3)根据负有理数的定义选出即可;(4)根据无理数的定义选出即可.22--=-,(1)整数集合:{0,2--,…}(2)分数集合:{54-,3.14,0.13,…} (3)负有理数集合:{54-,2--,…} (4)无理数集合:{2π , 0.130********…,…}故答案为:0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********…. 本题考查了实数的分类,解题的关键是明确实数包括无理数和有理数,无理数包括正无理数和负无理数,有理数包括正有理数,0,负有理数.27.见解析.【解析】先去括号、化简绝对值,再根据正有理数、无理数、整数、分数的定义即可得.22,()1111--=,22 3.1428577=小数点后142857是无限循环的,332255-=, 正有理数集合:()2211,,0.3333332,5,7⎧⎫--⎨⎬⎩⎭-; 无理数集合:{}5.0101,001-;整数集合:()(){}2,0,11,+---;分数集合:221,,4,0.33333,30.3142,735--⎧⎫-⎨⎬⎩⎭.本题考查了去括号、绝对值、正有理数、无理数、整数、分数,熟练掌握实数的分类是解题关键.28.(1)-1;(2)-4【解析】(1)根据题中的新定义a ⊕b=a 2-ab+a-1,可得a=3,b=4,代入新定义运算,根据有理数的运算法则即可得出结果;(2)先根据题中的新定义a ⊕b=a 2-ab+a-1,可得a=2,b=3,先算出1⊕3,然后再利用新定义可得出最后结果.解:(1)根据题意得:3⊕4=32-3×4+3-1=9-12+3-1=-1; (2)根据题意得:2⊕3=22-2×3+2-1=-1, 则(2⊕3)⊕(-3)=(-1)⊕(-3)=(-1)2-(-1)×(-3)+(-1)-1=1-3-1-1=-4.此题考查了有理数的混合运算,属于新定义的题型.解这种关于定义一种新运算的题目,关键是搞清楚新的运算规则,按规则解答计算.29.(1)2005817-;(2)11112-;(3)13178+ 【解析】(1)设220041888S =++++,得到8S 的值,两式相减即可得到结果; (2)设211111222S =+++,得到231211112222S =+++,两式相减即可; (3)设2345111217777777S =-+-+-+-+,得到7S ,两式相减即可; (1)设220041888S =++++,①, 23200588888S =++++,②,②-①得:2005781S =-,2005817S -=;(2)设211111222S =+++,①, 231211112222S =+++, ①-②得:12111222S =-, 11112S ∴=-; (3)设2345111217777777S =-+-+-+-+,①,234561213777777777S =-+-+-+-+,②,①+②得:13817S =+, 13178S +=. 本题主要考查了实数的规律计算,准确分析计算是解题的关键.30.(1)84;(2)-160.【解析】(1)根据定义的新运算“*、Θ”从左到右计算即可;(2)先根据新运算“*、Θ”计算即可,题目中的中括号指明运算顺序的按指明运算顺序计算. 解:(1)()()52*33Θ⨯--=()()73Θ5-⨯-=21Θ5=84;(2)()()()()Θ2Θ12*3*35⎡⎤-⎣⎦⨯--=()()()1535Θ*-⨯--=()()()116Θ5-⨯--=()80Θ1-=-160.本题考查了定义新运算的意义,结合例子明白新定义的程序是解题的关键,当题目中出现括号时要按照括号指明运算顺序计算.。

实数的数轴表示及化简(人教版)(含答案)

实数的数轴表示及化简(人教版)(含答案)

实数的数轴表示及化简(人教版)一、单选题(共10道,每道10分)1.如图,数轴上A,B两点表示的数分别是和,点B关于点A的对称点为C,则点C 所表示的数为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实数在数轴上的表示2.如图,在数轴上A,B两点表示的数分别是,,点C与点B关于点A对称,则点C表示的数是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实数在数轴上的表示3.如图,在数轴上A,B两点表示的数分别是,,点C也在数轴上,且点A与点B 关于点C对称,则点C表示的数为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数在数轴上的表示4.实数a在数轴上所对应的点的位置如图所示,则化简的结果是( )A.10B.-10C.2a-16D.无法确定答案:A解题思路:试题难度:三颗星知识点:二次根式的化简5.实数a,b,c在数轴上所对应的点的位置如图所示,则化简的结果是( )A.aB.1C.0D.-1答案:C解题思路:试题难度:三颗星知识点:二次根式的化简6.若,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二次根的性质与化简7.若,则化简的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次根式的化简8.化简的结果是( )A.-2B.-2-2xC.0D.2x答案:C解题思路:试题难度:三颗星知识点:二次根式的性质与化简9.化简的结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二次根式的性质与化简10.若化简的结果是2x-5,则x的取值范围是( )A.x为任意实数B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次根式的性质与化简。

【3套打包】福州市人教版初中数学七年级下册第六章《实数》测试卷(解析版)

【3套打包】福州市人教版初中数学七年级下册第六章《实数》测试卷(解析版)

人教版七年级下册第六章实数尖子生培优测试试卷一、单选题(共10题;共30分)1.如图,在数轴上表示无理数的点落在( )A. 线段AB上B. 线段BC上C. 线段CD上D. 线段DE 上2.在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是( )A. 2个B. 3个C. 4个 D 5个3.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A. x+1B. x2+1C. +1D.4.下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A. 1B. 2C. 3D. 45.下列说法中,不正确的是( ).A. 3是(﹣3)2的算术平方根B. ±3是(﹣3)2的平方根C. ﹣3是(﹣3)2的算术平方根D. ﹣3是(﹣3)3的立方根6.的算术平方根是()A. 4B.C. 2D.7.如图,数轴上A,B两点分别对应实数a、b,则下列结论中正确的是()A. a+b>0B. ab>0C.D. a+ab-b<08.已知一个正数的两个平方根分别是a+3和2a-15,则这个正数为()A. 4B.C. -7D. 499.晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 202010.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定二、填空题(共6题;共24分)11.的平方根是________,的算术平方根是________,-216的立方根是________.12.是9的算术平方根,而的算术平方根是4,则= ________.13.已知:(x2+y2+1)2﹣4=0,则x2+y2=________.14.实数a在数轴上的位置如图,则|a﹣3|=________.15.若四个有理数同时满足:,,,则这四个数从小到大的顺序是________.16.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为________.三、计算题(共1题;共6分)17.计算:四、解答题(共6题;共40分)18.一个数的算术平方根为2M-6,平方根为±(M-2),求这个数.19.某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?20.a,b,c在数轴上的对应点如图所示,化简+|c﹣b|﹣()3.21.阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.22.规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.23.求下列x的值.(1)2x3=﹣16 (2)(x﹣1)2=4.答案一、单选题1. C2. B3. D4.A5.C6.C7.C8. D9. B 10. C二、填空题11.±;;-6 12.19 13.1 14.3﹣a 15.16.﹣5三、计算题17. 解:原式=5+3-6=2四、解答题18.解:应分两种情况:①2M-6=M-2,解得M=4,∴2M-6=8-6=2,22=4,② 2M-6=-(M-2),解得M=,∴2M-6=-6=(不合题意,舍去),故这个数是4.19.解:把d=32,f=2代入v=16 ,v=16 =128(km/h)∵128>80,∴肇事汽车当时的速度超出了规定的速度20.解:根据数轴上点的位置得:a<b<0<c,且|a|>|b|>|c|,∴a﹣b<0,c﹣b>0,a+c<0,则原式=|a﹣b|+|c﹣b|﹣(a+c)=b﹣a+c﹣b﹣a﹣c=﹣2a21.解:∵<,<,∴a= ﹣2,b= ﹣3,∴= ﹣2+ ﹣3﹣= ﹣522.解:∵a△b=a×b﹣a+b+1,∴(﹣3)△=(﹣3)×﹣(﹣3)++1=4﹣2,△(﹣3)=×(﹣3)﹣+(﹣3)+1=﹣4﹣2,∵4﹣2>﹣4﹣2,∴﹣3△>△(﹣3).23.解:(1)∵2x3=﹣16,∴x2=﹣8,∴x=﹣2.(2)∵(x﹣1)2=4,∴x﹣1=±2,∴x=﹣1或3.人教版七年级数学下册第六章实数单元检测题一、选择题。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

人教版七年级数学下册第六章第三节实数考试习题二(含答案) (88)

人教版七年级数学下册第六章第三节实数考试习题二(含答案) (88)

人教版七年级数学下册第六章第三节实数考试复习题二(含答案)我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.(3)对于“对数”运算,小明同学认为有“log a MN=log a M•log a N(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.【答案】(1)1、4;(2)m=10;(3)不正确,理由见解析.【解析】【分析】(1)根据题目中所给对数的定义分别进行计算即可得解;(2)根据题目中所给对数的定义可得m﹣2=23,然后求解即可;(3)不正确,设a x=M,a y=N,根据对数的定义可得log a M=x,log a N=y(a>0,a≠1,M、N均为正数),又因a x•a y=a x+y,可得a x+y=M•N,所以log a MN=x+y,即log a MN=log a M+log a N.【详解】(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设a x=M,a y=N,则log a M=x,log a N=y(a>0,a≠1,M、N均为正数),∵a x•a y=a x+y,∴a x+y=M•N,∴log a MN=x+y,即log a MN=log a M+log a N.【点睛】本题是阅读理解题,读懂题目信息,理解对数的定义是解题的关键.72.对于有理数a,b,定义运算:a⊕b=ab-2a-2b+1.(1)计算5⊕4的值;(2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.【答案】(1)3;(2)-24;(3)成立.【解析】【分析】(1)按照给定的运算程序,一步一步计算即可;(2)先按新定义运算,先计算(-2)⊕6、再将所得结果-19与3计算规定运算可得;(3)成立,按新定义分别运算即可说明理由.【详解】(1)5⊕4=5×4-2×5-2×4+1=20-10-8+1=2+1=3.(2)原式=[-2×6-2×(-2)-2×6+1]⊕3=(-12+4-12+1)⊕3=-19⊕3=-19×3-2×(-19)-2×3+1=-24.(3)成立.∵a⊕b=ab-2a-2b+1,b⊕a=ab-2b-2a+1,∴a⊕b=b⊕a,∴定义的新运算“⊕”交换律还成立.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.73.问题:如何快速计算1+2+3+…+n 的值呢?(1)探究:令s=1+2+3+…+n①,则s=n+n-1+…+2+1①①+①得2s=(n+1)(n+1)+…+(n+1)=n⨯(n+1)因此s=_________________.(2)应用:①计算:123200++++=________;①如图1,一串连续的整数1,2,3,4,…,自上往下排列,最上面一行有一个数,以下各行均比上一行多一个数字,若共有15行数字,则最底下一行最左边的数是_______;①如图2,一串连续的整数-25,-24,-23,…,按图1方式排列,共有14行数字,求图2中所有数字的和.【答案】(1)()12n n +;(2)①20100;①106;①2835. 【解析】【分析】(1)两边同时除以2即可;(2)①直接运用1+2+3+…+n =()12n n +进行计算;②第15行的最底下一行最左边的数即前14行的数子中最后一个加1即可. ③分情况讨论,0左边和右边两种情况分析.【详解】解:(1)2s= n ⨯(n+1),所以s=()12n n +; (2)①123200++++=200(2001)2+ =20100; ①∵前14行的数子中,最后一个数为:1+2+3+……+14=14(141)1052⨯+=, 所以第15行第一个数为:105+1=106;①图2中共有()141411052⨯+=个数,其中有25个负数、一个0、79个正数,①图2中所有数字的和为:()()122501279----+++++ ()()252517979122⨯+⨯+=-+ 3253160=-+2835=【点睛】考查数字的变化规律及整式的运算、解方程的能力,弄清题干中求和的方法、并熟练运用是解题的关键.74.定义一种新的运算符号“*”,规定:2*a b a b b +=.例如:23583*5525+==,求[]2*(2)*(3)--的值. 【答案】13-. 【解析】【分析】理解规则即可.【详解】()()2*2*3⎡⎤--⎣⎦=()()222*32---=0*(-3)=()()2033+-- = - 13【点睛】正确理解题意是解题的关键.75.计算:2(2)- 【答案】【解析】【分析】根据有理数的乘方、绝对值的意义、立方根的定义化简,然后合并即可.【详解】 原式44=+=【点睛】本题考查了实数运算,熟练掌握实数的混合运算法则是解题的关键.76.已知实数x y m 、、30x y m ++=,且y 是负数,求m 取值范围.【答案】6m >【解析】【分析】根据非负数的性质列出方程求出x 、y 的值,然后根据y 是负数即可得到一个关于m 的不等式,从而求得m 的范围.【详解】解:根据题意得:20{30x x y m +=++=, 解得:x 2{6y m=-=-, 则6-m <0,解得:m >6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.77123-;【答案】32+【解析】【分析】首先计算负指数次幂,去掉绝对值符号,化简平方根,立方根,然后计算即可.【详解】解123- =3-12-3=32+【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、平方根、立方根等考点的运算.78.计算:12033⎛⎫÷- ⎪⎝⎭【答案】2.【解析】【分析】先根据平方根、立方根的定义进行化简,然后再进行乘除运算,最后进行加减运算即可得解.【详解】原式=()()2203335⨯--+⨯- =839+-=2【点睛】本题考查了实数的运算,熟悉平方根、立方根是解题的关键.79.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,一般地,把n a a a a÷÷÷⋯(a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③=_____,(﹣12)⑤=_____. (2)关于除方,下列说法准确的选项有_________(只需填入正确的序号) ①.任何非零数的圈2次方都等于1; ①.对于任何正整数n ,1ⓝ=1; ①.3④=4③ ①.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如: 2④=2÷2÷2÷2=2×12×12×12=( )2 (幂的形式)试一试:将下列除方运算直接写成幂的形式.5⑥=_____;(﹣12)⑩=_____;a ⓝ=_____(a ≠0). 算一算:14⎛⎫- ⎪⎝⎭④÷23+(﹣8)×2③. 【答案】【初步探究】(1)12,-8; (2)① ②④;【深入思考】(1)1()54,28 或8(2)-, 1()a(n-2);(2)-2. 【解析】【分析】初步探究:(1)分别按公式进行计算即可;(2)根据定义依次判定即可;深入思考:把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果,将第二问的规律代入计算即可.【详解】初步探究:(1) 2③=12222÷÷=; (﹣12)⑤=1111()()()2228-÷-÷-=-; 故答案是:11,28-; (2)①任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项①正确;②因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项②正确;③3④=3÷3÷3÷3=19,4③=4÷4÷4=14,则3④≠4③;所以选项③错误; ④负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项④正确;所以正确的选项有:① ②④;故答案是:① ①①;深入思考:(1) 15⎛⎫ ⎪⎝⎭4, 28 或(-2)8 1a ⎛⎫ ⎪⎝⎭(n-2), (2)1(4-)④÷23+(﹣8)×2③ =16÷8+(-8)×12=2-4=-2【点睛】考查了新运算以及实数的运算.解决问题的关键是掌握新运算的法则,理解新运算的意义.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.80.把下列各数表示在数轴上,并比较它们的大小(用“<”连接).2-, 0, 3-, π-<<<-<【解析】【分析】先在数轴上描出各点,再根据数轴上右边的数大于左边的数即可得出结论.【详解】-<<<-<203π【点睛】本题考查了利用数轴比较实数的大小.关键是利用数形结合,把抽象的问题转化成直观的问题处理即可.。

人教版七年级数学下册第六章《实数》同步练习(含答案)

人教版七年级数学下册第六章《实数》同步练习(含答案)

)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )

中考数学专题复习《实数》检测题真题(含答案)

中考数学专题复习《实数》检测题真题(含答案)

中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。

2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。

3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。

若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。

5、倒数: 没有倒数。

正数的倒数是正数,负数的倒数是负数。

若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。

7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。

在a n中,a 叫做 ,n 叫做 。

8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。

a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。

10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。

a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。

11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。

3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。

知识回顾12、无理数:像2、33、……这样的 。

13、实数: 和 统称为实数。

实数与数轴上的点 。

1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

实数的化简与计算(习题)

实数的化简与计算(习题)

实数的化简与计算(习题)➢例题示范例110y-=________.0,10y-≥,而两者之和等于0,所以=,10y-=,可得12x=,1y=,代入得32===.例2:化简21+思路分析:先挖掘题目隐含条件,被开方数非负,得0x≥,化简原式得11x x+-+,下一步考虑10x+>,去绝对值计算即可.解:由题意得,0x≥,∴11x+≥,111(1)11x xx xx x=+-+=+-+=+--=∴原式➢巩固练习1.若x,y为实数,且10x+=,则3yx⎛⎫⎪⎝⎭的值为()A.2 B.-2 C.8 D.-82.与2(24)y-互为相反数,则2x y-的值为()A.4 B.4-C.8-D.5-3.如果实数a,b2(21)a b--==______.4.若a,b(0y+=,则y x-=________.5.若3n=的值是________.6.若y=y=________.7.互为相反数,则x y+的值为_____.8.实数a 在数轴上所对应的点的位置如图所示,结果是( ) A .aB .10C .0D.-109.若实数a ,b ,c 在数轴上的位置如图所示,ca ba b+.10. 当1<x <44x -11.2.12. 计算:(1)23(2-+;105a(2212⎛⎫- ⎪⎝⎭.13. 如图,数轴上A ,B 两点所对应的实数分别为1,点B 关于点A 的对称点为C ,设点C 所对应的实数为x ,则2x x -+=_________.【参考答案】1. D2. C3.4. -45. 46. 87. 08. B9. c10. -x +3 11. 112. (1)3- (2)11213. 2。

新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)(1)

新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)(1)

人教版七年级下册数学第六章实数培优试题一.选择题(共10小题)1.下列实数中,无理数是()A.-1 B.22C.16D.2)A.线段AB上B.线段BC上C.线段CD上D.线段DE上3.下列说法正确的是()A.立方根等于它本身的实数只有0和1B.平方根等于它本身的实数是0C.1的算术平方根是±1D.绝对值等于它本身的实数是正数4是2的()A.倒数B.平方根C.立方根D.算术平方根5-8的立方根之和是()A.0 B.-4 C.4 D.0或-46.已知则以下对m的估算正确的是()A.3<m<4 B.4<m<5 C.5<m<6 D.6<m<77.已知实数a在数轴上的位置如图所示,则化简|a+2|-|a-1|的结果为()A.-2a-1 B.2a+1 C.-3 D.38.数轴上A,B,C,D,E的点在()A.点A与点B之间B.点B与点C之间C.点C与点D之间D.点D与点E之间9.已知a ,b 为两个连续整数,且,a b <<则a+b 的值为( ) A .9B .8C .7D .610.最“接近1)-的整数是( ) A .0B .1C .2D .3二.填空题(共6小题)11.若一个数的立方根是-3,则这个数是 .12.9的平方根是 .13=0.102,则x= ,已知=155.8,则y= 14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= .15.如图,在数轴上点A ,B 表示的数分别是1,若点B ,C 到点A 的距离相等,则点C 所表示的数是 .16.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .三.解答题(共7小题) 17.求出下列x 的值(1)3(x-1)2(2)8(x 3+1)=-5618.计算:2018(1)|2|---19.将12--在数轴上表示,并将原数用“<”连接.20.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.21.将一个体积为364cm 的立方体木块锯成8个同样大小的小立方体木块.求每个小立方体木块的表面积.22.对于实数a 、b 定义运算"#"a#b=ab-a-1. (1)求(-2)#3的值;(2)通过计算比较3#(-2)与(-2)#3的大小关系;(3)若x#(-4)=9,求x的值.23.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=1,4EH M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x为何值时,原点O 恰为线段MN的三等分点.答案:1-5 BCBDD6-10 BBCCA11.-2712. ±3,213. 0.010404 , 378000014.15. 2+16.201917.解:(1)3(x-1)2=9,(x-1)2=3,x-1=±,x1=+1,x2=-+1;(2)x3+1=-7,x3=-8,x=-2.18. 解:原式=-1-(2-)+9-3=-1-2++9-3=3+.19.解:20. 解:(1)∵|a|=5,b2=4,c3=-8.∴a=±5,b=±2,c=-2,∵a<b,∴a=-5,b=±2,∴a+b=-5+2=-3或a+b=-5-2=-7, 即a+b 的值为-3或-7; (2)∵abc >0,c=-2, ∴ab <0,∴a=5,b=-2 或 a=-5,b=2,∴当a=5,b=-2,c=-2时,a-3b-2c=5-3×(-2)-2×(-2)=15, 当 a=-5,b=2,c=-2时,a-3b-2c=-5-3×2-2×(-2)=-7, ∴a-3b-2c=15 或-7.21. 解:根据题意知64÷8=8(cm 3),=2(cm),6×22=24(cm 2)或=4(cm),4÷2=2(cm),22×6=24(cm 2)答:每个小立方体木块的表面积是24cm 222. 解:(1)人教版七年级数学下册 第六章 实数 单元综合检测卷一、选择题(每小题3分,共30分)1、若的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数2、下列各组数中,互为相反数的组是( )A 、-2与B 、-2和C 、-与2 D 、︱-2︱和2 3、下列说法不正确的是( ) A 、的平方根是 B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 4、下列运算中,错误的是 ( ) ①,②,③ ④A 、 1个B 、 2个C 、 3个D 、 4个 5、下列说法正确的是( ) A 、 有理数都是有限小数 B 、 无限小数都是无理数a 2)2(-38-2125115±1251144251=4)4(2±=-3311-=-2095141251161=+=+C 、 无理数都是无限小数D 、有限小数是无理数6、 若m 是169的算术平方根,n 是121的负的平方根,则(+)2的平方根为( )A 、 2B 、 4C 、±2D 、 ±4 7、若 (k 是整数),则k =( )A 、 6B 、7C 、8D 、9 8、下列各式成立的是( ) A 、B 、C 、D 、9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )A 、2B 、8C 、3D 、210、若均为正整数,且,,则的最小值是( )A 、3B 、4C 、5D 、6 二、填空题(每小题3分,共24分)11、 4的平方根是_________;4的算术平方根是__________. 12、比较大小:________.(填“>”,“<”或“=”)13、已知5-a+3+b ,那么.14、在中,________是无理数.16、 若5+的小数部分是,5-的小数部分是b ,则+5b = . 17、 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= . 18、若、互为相反数,、互为负倒数,则=_______.三、解答题(共46分)1k k <<+a b c d19.(6分)计算:231(2)2⎛⎫-- ⎪⎝⎭20. (8分)求下列各式中的x.(1)(x-2)2-4=0; (2)(x+3)3+27=0.21.(6分)求出符合下列条件的数: (1)绝对值小于的所有整数之和; (2)绝对值小于的所有整数.22.把下列各数填入相应的大括号内.32,-32,3-8,0.5,2π,3.141 592 65,-|-25|,1.103 030 030 003…(两个3之间依次多一个0). ①有理数集合{ …}; ②无理数集合{ …}; ③正实数集合{ …}; ④负实数集合{ …}.23.(6分)已知m 是的整数部分,n 是的小数部分,求m -n 的值。

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。

【3套打包】承德市人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

【3套打包】承德市人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

人教版七年级下册单元检测卷:第六章 实数一.选择题(共10小题) 1.2的平方根是( )A B .C .D .42.若a 2=4,b 2=9,且ab<0,则a-b 的值为( ) A .-2B .±5C .5D .-53的平方根是则a 的值为( ) A .2B .-2C .5D .-54.下列说法正确的是( ) A .-3是-9的平方根 B .1的立方根是±1 C .a 是2a 的算术平方根 D .4的负的平方根是-25.下列各式中正确的是( )A 3B =xC 3D =-x6.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a7.小明在作业本上做了4;②=4=9=-6,他做对的题有( ) A .1道B .2道C .3道D .4道8.下列实数是无理数的是( )A .227B .C .πD .09.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .b>-2B .-b<0C .-a>bD .a>-b10.如图,数轴上的点A,B,C,D,E 对应的数分别为-1,0,1,2,3,那么与实数112-对应的点在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上二.填空题(共6小题)11.有一个数值转换器,原理如图:当输入的x=4时,输出的y 等于 .12.如果某数的一个平方根是-5,那么这个数是 . 13.若3a =-8,则a= .14.已知=2,ab<0,的值为 .15.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .16.实数a 、b 在数轴上的位置如图所示,则化简|a+2b|-|a-b|的结果为 .三.解答题(共7小题)17.将-2,12-在数轴上表示,并将原数用“<”连接.1819.已知5a+2的立方根是3,4a+2b+1的平方根是±5,求a-2b 的平方根.20.解下列方程: (1)(x-2)2-25=0(2)x3-1=21521.已知一个正方体的体积是1000cm3,现要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积是488cm3.(1)截去的每个小正方体的棱长是多少?(2)截完余下部分的表面积是多少?22.阅读完成问题:数轴上,已知点A、B、C.其中,C为线段AB的中点:(1)如图,点A表示的数为-1,点B表示的数为3,则线段AB的长为,C点表示的数为;(2)若点A表示的数为-1,C点表示的数为2,则点B表示的数为;(3)若点A表示的数为t,点B表示的为t+2,则线段AB的长为,若C点表示的数为2,则t=,(4)点A表示的数为1,x点B表示的为2x人教版七年级下册数学第6章实数培优试题一.选择题(共10小题)1.289的平方根是±17的数学表达式是()A=17 B=±17 C.=±17 D.=172则这个数的立方是()A.8 B.64 C.8或-8 D.64或-64 3.一个数的算术平方根是0.01,则这个数是()A.0.1 B.0.01 C.0.001 D.0.0001 4.下列各式中正确的是()A±4 B=-9 C D=3 25.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a 6.已知正方体的体积为64,则这个正方体的棱长为()A.4 B.8 C.D.7.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.48.在这四个数中,最小的数是()A.-2 B.0 C.1 D9)A.线段AB上B.线段BC上C.线段CD上D.线段DE上10.下列说法正确的是()A,则a>0B.若a与b也互为相反数C2,则a=bD.若a>b>0,b>二.填空题(共6小题)11.已知2x-1的平方根是±3,则5x+2的立方根是.12.若一个数的算术平方根与它的立方根相等,那么这个数是13.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1):将荧幕显示的数变成它的算术平方根,例如:荧幕显示的数为49时,按下后会变成7.(2):将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.04.(3):将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成36.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第2018下后荧幕显示的数是25x=4,则x的值为.14.对于正实数a,b作新定义:a⊙若215.已知实数a、b都是比2小的数,其中a是整数,b是无理数,请根据要求,分别写出一个a、b的值:a= ,b= .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为.三.解答题(共8小题)17.求x的值:(1)(x+1)2=64(2)8x3+27=0.1819.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.20.如图所示的圆柱形容器的容积为81升,它的底面直径是高的2倍.(π取3)(1)这个圆柱形容器的底面直径为多少分米?(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)21.对于实数a、b定义运算"#"a#b=ab-a-1.(1)求(-2)#3的值;(2)通过计算比较3#(-2)与(-2)#3的大小关系;(3)若x#(-4)=9,求x的值.22.已知表示a,b两个实数的点在数轴上的位置如图所示,化简|a-b|+|a+b|.23.右图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况;(4)当输出的y 时,判断输入的x 值是否人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10小题)1.下列式子,表示4的平方根的是( ) A . 4B .42C .-4D .±42.若a 是无理数,则a 的值可以是( )A .14B .1C .2D .93.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A .-a<-b B .a+b<0 C .|a|<|b| D .a-b>04.实数3的大小在下列哪两个整数之间,正确的是( ) A .0和1 B .1和2 C .2和3 D .3和45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10 B .10,11 C .11,12 D .12,13 6.在-3、0、6、4这四个数中,最大的数是( ) A .-3 B .0 C . 6 D .47.下列说法正确的是( )A .立方根等于它本身的实数只有0和1B .平方根等于它本身的实数是0C .1的算术平方根是±1D .绝对值等于它本身的实数是正数8.已知a ,b 为两个连续整数,且a< 13<b,则a+b 的值为( ) A .9 B .8 C .7 D .6 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 10.有下列说法:①实数与数轴上的点一一对应; ②2- 7的相反数是7-2;③在1和3之间的无理数有且只有2, 3,5,7这4个;④2+3x-4x 2是三次三项式; ⑤绝对值等于本身的数是正数; 其中错误的个数为( ) A .1 B .2 C .3 D .4二.填空题(共6小题)11.4的算术平方根是 ,-64的立方根是 .12.若m 为整数,且5<m< 10,则m=13.某个正数的平方根是x 与y,3x-y 的立方根是2,则这个正数是 .14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= . 15.如图,在数轴上点A ,B 表示的数分别是1,- 2,若点B ,C 到点A 的距离相等,则点C所表示的数是 .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为 .三.解答题(共7小题)17.求x 的值: (1)2x 2-32=0; (2)(x-1)3=2718.计算:49-| 3-64|+(-3)2- 31252719.已知2的平方等于a,2b-1是27的立方根,± c-2表示3的平方根. (1)求a,b,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b)-c,其中x <4.20.正数x 的两个平方根分别为3-a 和2a+7. (1)求a 的值;(2)求44-x 这个数的立方根.21.定义新运算:对任意实数a 、b ,都有a △b=a 2-b 2,例如:(3△2)=32-22=5,求(1△2)△4的值.22.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm 3. (1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为.23.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为.(2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的13,则移动后点F 在数轴上表示的数为.②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?答案: 1.D 2.C 3.C 4.B 5.B 6.D 7.B 8.C 9.A 10.C 11.2,-4 12.3 13.4 14.1,15.2+ 16.2-3 17. 解:(1)∵2x 2-32=0, ∴2x 2=32, 则x 2=16, 所以x=±4;(2)∵(x-1)3=27, ∴x-1=3, 则x=4. 18.解:原式=23-4+3- 53=-2.19. 解:(1)由题意知a=22=4, 2b-1=3,b=2; c-2=3,c=5; (2)∵x <4, ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5. 20. 解:(1)∵正数x 的两个平方根是3-a 和2a+7, ∴3-a+(2a+7)=0, 解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13,∴这个正数是169.44-x=44-169=-125,-125的立方根是-5.21. 解:(1△2)△4=(12-22)△4=(-3)。

实数的化简与计算(化简一)(人教版)(含答案)

实数的化简与计算(化简一)(人教版)(含答案)

实数的化简与计算(化简一)(人教版)一、单选题(共8道,每道10分)1.若实数a,b满足,则=( )A.16B.-16C. D.答案:A解题思路:试题难度:三颗星知识点:算式平方根的双重非负性2.已知,则的值为( )A.-8B.C.8D.答案:B解题思路:试题难度:三颗星知识点:算式平方根的双重非负性3.若与互为相反数,则的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:算式平方根的双重非负性4.如果实数满足,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:算式平方根的双重非负性5.若,则的值为( )A. B.C. D.-2答案:D解题思路:试题难度:三颗星知识点:算式平方根的双重非负性6.若实数a,b满足,则的值是( )A. B.2C. D.4答案:B解题思路:试题难度:三颗星知识点:算式平方根的双重非负性7.若,则2mn的算术平方根是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:算术平方根的性质与化简8.若△ABC的三边长a,b,c满足,则△ABC是( )A.等腰三角形B.等边三角形C.直角三角形D.无法确定答案:A解题思路:试题难度:三颗星知识点:算式平方根的双重非负性二、填空题(共2道,每道10分)9.已知与互为相反数,则a的值为____.答案:1解题思路:试题难度:知识点:立方根的性质10.若a,b为实数,且满足,则y-x的值为____.答案:4解题思路:试题难度:知识点:算式平方根的双重非负性。

人教版七年级数学下册第六章第三节实数试题(含答案) (35)

人教版七年级数学下册第六章第三节实数试题(含答案) (35)

人教版七年级数学下册第六章第三节实数练习试题三(含答案)计算:(1)2(2)2()()a b a b a b +--+(2)201910221()(3)(2)3π---++--- 【答案】(1)2264b ab a +-;(2)54【解析】【分析】(1)根据平方差和完全平方公式计算即可;(2)根据实数的运算法则计算即可得出结论.【详解】(1)原式=222222442264a ab b a b b ab a ++-+=+-;(2)原式=31511244-++-=. 【点睛】本题考查了平方差和完全平方公式,实数的运算,熟练掌握公式和运算法则是解题的关键.42()022π+-. 【答案】3【解析】【分析】根据实数的性质即可化简求解.【详解】()022π+- =21-=3+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.43.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p ≤q ,n ≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q n p n ++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值. 【答案】(1)1022;(2)3066,2226;(3)6736【解析】【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x 、y 即可,从而求出所有特色数;(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n++,故将(2)中特色数分解,找到最小分解,然后将n 、p 、q 的值代入F (m )=q n p n++,再比较大小即可. 【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),根据题意得:100y+10(2x ﹣y )+2x+y ﹣3y =88y+22x =21(4y+x )+(4y+x ),∵21(4y+x )+(4y+x )被7除余3,∴4y+x =3+7k ,(k 是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y >10,故舍去);x =3,y =7(此时2x ﹣y <0,故舍去);x =3,y =0;x =2,y =2;x =1,y =4(此时2x ﹣y <0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n++, 由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F (3066)=61263=50252++ 对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F (2226)=6365267=342++ ∵63675236< 故所有“特色数”的F (m )的最大值为:6736. 【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.44.计算:(1)36×(153--1294)+(﹣3)2(2)2﹣2×(3.14﹣π)0﹣|﹣22|÷(12)3【答案】(1)-35;(2)3314-【解析】【分析】(1)首先利用乘法分配律计算36×(1531294--),同时计算乘方,然后再计算加减即可;(2)先算负整数指数幂、零次幂、绝对值和乘方,然后再算乘除,后算加减即可.【详解】解:(1)原式=36×112﹣36×59﹣36×34+9,=3﹣20﹣27+9,=﹣35;(2)原式=14×1﹣418÷,=14﹣32,=3314-.【点睛】此题考查的是有理数的混合运算,掌握有理数的运算法则、负指数幂的性质和任何非0数的0次幂都等于1是解决此题的关键.45.如果一个三位正整数是19的倍数,且它的个位、十位、百位上的数字之和是6的倍数,那么我们把这样的三位正整数叫“天天数”.例如:912是一个“天天数”(1)请写出最小的“天天数”(2)若一个三位正整数的百位上的数字比1大,且百位上的数字与十位上的数字相等、百位上的数字与十位上的数字的和是个位上的数字的一半,请判断这个三位正整数是否是“天天数”【答案】(1)114;(2)这个三位正整数是228,是“天天数”.【解析】【分析】(1)先求出19的倍数中最小的三位正整数,再按照“天天数”的定义判断这个正整数是不是“天天数”,如果不是,再求出19的倍数中第二小的三位正整数,依此类推;(2)设百位上的数字是a,则十位上的数字是a、个位上的数字是4a,根据a>1,4a<10求出a值,从而求出这个三位正整数,再按照“天天数”的定义判断这个正整数是不是“天天数”,即可.【详解】解:(1)∵19×5=95,19×6=114,∴19的倍数中最小的三位正整数是114,∵1+1+4=6,∴114是“天天数”,∴最小的“天天数”是114.(2)设百位上的数字是a,则十位上的数字是a、个位上的数字是4a,∴a>1,4a<10,∴1<a<2.5,∵a 是整数,∴a=2,∴这个三位正整数是228,∵228=19×12,2+2+8=12=6×2,∴228是“天天数”.【点睛】此题考查了整数中的新定义,理解定义为关键点.能求出19的倍数中最小的三位正整数是突破口.46.计算:10112-⎛⎫⨯- ⎪⎝⎭. 【答案】1-【解析】【分析】本题涉及零指数幂、负整数指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】10112-⎛⎫⨯- ⎪⎝⎭, =211⨯-=1-【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.47.计算:2sin60°2|+(﹣1)﹣1【答案】3.【解析】【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【详解】2sin60°2|+(﹣1)﹣1=221﹣(﹣2)=2 1=3.【点睛】本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.48.计算:(1)﹣12+2×(﹣3)2+(﹣6)÷|﹣13|; (2)22221124a b ab ab a b ⎛⎫--- ⎪⎝⎭. 【答案】(1)﹣1;(2)32a 2b ﹣54ab 2【解析】【分析】(1)先计算乘方、将除法转化为乘法,再计算乘法,最后计算加减可得;(2)先去括号,再合并同类项即可得.【详解】解:(1)原式=﹣1+2×9+(﹣6)×3=﹣1+18﹣18=﹣1;(2)原式=12a2b﹣ab2﹣14ab2+a2b=32a2b﹣54ab2.【点睛】本题主要考查实数和整式的混合运算,解题的关键是熟练掌握实数混合运算顺序和运算法则及去括号、合并同类项法则.49.老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧交数轴于点A.(1)A点表示的数是多少?在数轴上,A点与表示一1.42的点有什么位置关系;(2)你认为老师作这样的图是为了说明什么?(3)请类比上面的作法在数轴上画出表示 B.(请保留作图痕迹)【答案】(1)A点表示的数是,在数轴A点在与表示-1.42的点的右边;(2)说明数轴上的点和实数一一对应关系;(3)画图见解析.【解析】【分析】(1)首先根据勾股定理求出正方形对角线的长度即为OA的长,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)利用题中给出的方法画图,画图时即看是直角边和斜边分别多少,再从数轴上画出来即可解决问题.【详解】解:(1)∵22+=,112∴2OA=,∴A点表示的数是-2,在数轴上A点在表示-1.42的点的右边;(2)数轴上的点和实数一一对应关系;(3)如图:如图以数轴的单位长度为边,作3×2的长方形,以数轴上的原点O为圆心,长方形的对角线的长为半径作弧与数轴负半轴交于一点B,则点B表示的数就是.【点睛】本题主要考查了实数与数轴之间的定义关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.501【解析】【分析】利用立方根,二次根式的乘除运算及绝对值的性质分别化简得出答案.【详解】解:原式-1.【点睛】本题考查了实数的运算,正确把握定义是解题的关键.。

实数的化简与计算(计算二)(人教版)(含答案)

实数的化简与计算(计算二)(人教版)(含答案)

实数的化简与计算(计算二)(人教版)一、单选题(共10道,每道10分)1.若,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平方根和立方根2.若,则x的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:平方根和立方根3.若,则x的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平方根和立方根4.若,则x的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方根和立方根5.若,则x的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:平方根和立方根6.如图,数轴上A,B两点表示的数分别是和,点B关于点A的对称点为C,则点C 所表示的数为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实数在数轴上的表示7.如图,在数轴上A,B两点表示的数分别是,,点C也在数轴上,且点A与点B 关于点C对称,则点C表示的数为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数在数轴上的表示8.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是1和,点C所对应的实数是x,则x的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:实数在数轴上的表示9.如图,数轴上A,B两点所对应的实数分别为和,点B关于点A的对称点为C,设点C所对应的实数为x,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数在数轴上的表示10.如图,数轴上A,B两点所对应的实数分别为-2和,点A,B关于点C对称,设点C 所对应的实数为x,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数在数轴上的表示。

人教版数学中考复习:实数的混合运算及代数式的化简求值(含答案)

人教版数学中考复习:实数的混合运算及代数式的化简求值(含答案)

实数的混合运算一、选择题1.计算(-2)0+9÷(-3)的结果是()A.-1 B.-2 C.-3 D.-42.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( ) A.+B.-C.×D.÷3.计算(12-56+512-724)×24的结果是( )A.-5 B.-4 C.-8 D.84.计算(-12)×16-16÷23的结果是( )A.0 B.14 C.-4 D.-185的结果是( )A.6 B.C. 6 D.126( )A.6至7之间B.7至8之间C.8至9之间D.9至10之间7.计算-22+(|-3|2-42×116-8.5)÷(-12)3的结果是( )A.0 B.1 C.2 D.3 二、填空题8.计算:-0.252÷(-12)4×(-1)27=______.9.计算:(-298081)×(-9)=______.10.计算:-13×23-0.34×27+13×(-13)-57×0.34=______.112-1-|-2|+(-13)0=______.12.计算:=______.13.若a+1,则a3-5a+2015=______.三、解答题14.计算6÷(-12+13).方方同学的计算过程如下:原式=6÷(-12)+6÷13=-12+18 =6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.15.计算:(1) 10+8×(-12)2-2÷15.(2) (3-)-2+|1-(π-2)0.16.已知a =2b =2,试求下列各式的值:(1)ab -ba ;(2)(a )2(b )2.代数式的化简求值一、选择题1.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2·3ab 3=-3a 2b 5C .b a b -+a b a -=-1D .21a a -·11a +=-12.计算:2225631x x xx x x -+-÷-+,其结果是( )A .(1)2x x x --B .(2)1x x x --C .2(1)x x x -- D .1(2)x x x --3.当x =2时,多项式ax 5+bx 3+cx -10的值为7,则当x =-2时,这个多项式的值是() A .-3 B .-27 C .-7 D .74.当a =14,b =198时,式子6a 2-2ab -2(3a 2-12ab )的值是( )A .-17 B .17 C .-7 D .75.若x 2+4x -4=0,则3(x -2)2-6(x -1)(x +1)的值为( )A .-6B .6C .18D .306.若a +b +c =0,则111111()()()a b c b c c a a b +++++的值等于( )A .0B .1C .-1D .-37.已知多项式ax +3与bx 2-6x +9的乘积中不含x 2与x 的项,则a 、b 的值为( )A .a =2,b =0B .a =1,b =1C .a =0,b =0D .a =2,b =4二、填空题8.若(2a +3b )2=(2a -3b )2+A ,则A =______.9.计算:(m -2n +3)(m +2n -3)=________.10.化简:(23a a -+93a-)÷3a a +=______. 11.已知x 2+x -5=0,则代数式(x -1)2-x (x -3)+(x +2)(x -2)的值为______.12.若1(21)(21)n n -+=2121a b n n +-+,对任意自然数n 都成立,则a =______,b =______;计算:m =113⨯+135⨯+157⨯+…+11921⨯=______. 三、解答题13.已知x ,y 满足方程组52, 25 1.x y x y -=-⎧⎨+=-⎩①②求代数式(x -y )2-(x +2y )(x -2y )的值.14.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y .15.先化简,再求值:(a +1-451a a --)÷(11a --22a a -),其中a =-1. 16.先化简(22221x x x +--2221x x x x --+)÷1x x +,然后解答下列问题: (1)当x =3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?参考答案实数的混合运算1.B[解析]原式=1-3=-2.故选B.2.C[解析]填入“+”时的结果是2;填入“-”时的结果是-4;填入“×”时的结果是-11;填入“÷”时的结果是325.填入“-”时结果最小.故选C.3.A[解析]原式=12×24-56×24+512×24-724×24=12-20+10-7=22-27=-5.故选A.4.D[解析]原式=(-1)×16-16÷8=-16-2=-18.故选D.5.D [解析]原式=-)==12.6.B[解析]原式=43<4,∴7<48.故选B.7.A[解析]原式=-4+(9-1-812)÷(-18)=-4+(-12)÷(-18)=-4+4=0.8.1[解析]原式=-116×16×(-1)=1.9.26989[解析]原式=298081×9=(30-181)×9=270-19=26989.10.-13.34[解析]原式=-13×(2133+)-0.34(2577+)=-13-0.34=-13.34.11.72[解析]原式=3-12+2-2+1=72.12.-13 [解析]原式=-+(=()2-2=2-(15-)=-13.13.2017[解析]∵a2=+1)2=3+,∴原式=a(a2-5)+2015=+1)(3+-5)+2015=+-1)+2015=2+2015=2017.14.解:方方同学的计算过程错误.正确的计算过程如下:原式=6÷(-36+26)=6÷(-16)=-36.15.解:(1)原式=10+8×14-2×5=10+2-10=2;(2)原式=(9-5)-2+1)-1=16.解:(1)∵a+b=(2+(2=4,a-b=(2-(2)=ab =(2=4-3=1.∴a b -b a =22a b ab-=()()a b a b ab +-=;(2)(a )2(b )2=[(a )(b )]2=[ab (a +b )+2]2=(3+)2=41+.代数式的化简及求值1.C2.B3.B [解析]依题意,得25a +23b +2c -10=7.即25a +23b +2c =17.当x =-2时,原式=-25a -23b -2c -10=-(25a +23b +2c )-10=-17-10=-27.故选B .4.A [解析]原式=6a 2-2ab -6a 2+ab =-ab .当a =14,b =198时,原式=-14×198=-17.故选A . 5.B [解析]原式=3(x 2-4x +4)-6(x 2-1)=3x 2-12x +12-6x 2+6=-3x 2-12x +18=-3(x 2+4x )+18.∵x 2+4x -4=0,∴x 2+4x =4.原式=-3×4+18=6.故选B .6.D [解析]原式=a c b ++a b c ++b c a +=b b -+c c-+a a -=-3 7.D [解析](ax +3)(bx 2-6x +9)=abx 3-6ax 2+9ax +3bx 2-18x +27=abx 3-(6a -3b )x 2+(9a -18)x +27.依题意可得630,9180.a b a -=⎧⎨-=⎩解得2,4.a b =⎧⎨=⎩ 8.24ab9.m 2-4n 2+12n -910.a [解析]原式=(23a a --93a -)÷3a a +=293a a --÷3a a +=(a +3)·3a a +=a . 11.2 [解析]原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3.因为x 2+x -5=0,所以x 2+x =5.所以原式=5-3=2.12.12,-12;1021 [解析]∵1(21)(21)n n -+=2121a b n n +-+=(21)(21)(21)(21)a n b n n n ++--+=2()()(21)(21)a b n a b n n ++--+, ∴对任意自然数n ,等式2(a +b )n +a -b =1都成立.∴0,1.a b a b +=⎧⎨-=⎩解得a =12,b =-12. ∴m =12(1-13+13-15+…+119-121)=12(1-121)=1021. 13.解:原式=x 2-2xy +y 2-x 2+4y 2=-2xy +5y 2.①+②得:3x =-3,即x =-1.把x =-1代入①,求得y =15. 所以原式=-2×(-1)×15+5×(15)2=25+15=35. 14.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y 时,原式=-1+1=0. 15.解:原式=21(45)1a a a ----÷2(1)a a a --=2(2)1a a --·(1)2a a a --=a 2-2a . 当a =-1时,原式=(-1)2-2×(-1)=3.16.解:(1)原式=[2(1)(1)(1)x x x x +-+-2(1)(1)x x x --]•1x x + =(21x x --1x x -)•1x x + =1x x -•1x x + =11x x +-. 当x =3时,原式=3131+-=2; (2)如果11x x +-=-1,那么x +1=-x +1. 解得x =0. 当x =0时,除式1x x +=0,原式无意义. 故原代数式的值不能等于-1.。

人教版七年级数学下册第六章第三节实数复习试题一(含答案) (89)

人教版七年级数学下册第六章第三节实数复习试题一(含答案) (89)

人教版七年级数学下册第六章第三节实数复习试题一(含答案) 一般情况下2424m n m n ++=+不成立,但有些数可以使得它成立,例如0m n ==.我们称使得2424m n m n ++=+成立的一对数m ,n 为“相伴数对”,记为(m ,n ).(1)试说明(1,-4)是相伴数对;(2)若(x ,4)是相伴数对,求x 的值.【答案】(1)见详解;(2)x=-1【解析】【分析】(1)根据定义即可判断;(2)根据定义列出方程即可求出答案.【详解】解:(1)由题意可知:m=1,n=-4,141242-∴+=- ; ∴(1,-4)是相伴数对;(2)由题意可知:4+4246x x += 解得:x=-1.【点睛】本题考查等式的性质,解题的关键是正确理解相伴数对的定义,本题属于基础题型.82.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【答案】(1)202021-;(2)2020312-;(3)201101554-. 【解析】【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (54)-+++++= 同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.83.阅读下列材料:小明为了计算1+2+22+……+22018+22019的值,采用以下方法:设S=1+2+22+……+22018+22019①则2S=2+22+……+22019+22020②②-①得,2S-S=S=22020-1请仿照小明的方法解决以下问题:(1)1+2+22+……+29=;(2)3+32+……+310=;(3)求1+a+a 2+……+a n 的和(a >0,n 是正整数,请写出计算过程).【答案】(1)S=210-1;(2)11332-;(3)111n a a +--,见解析 【解析】【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+210,然后把两式相减计算出S即可;(2)利用题中的方法设S=3+32+33+34+…+310,两边乘以3得到3S=3+32+33+34+35+…+311,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【详解】解:(1)令S=1+2+22+……+29①,则2S=2+22+……+210②,②-①得,2S-S=S=210﹣1,即S=210-1.故答案为:210﹣1.(2)令S=3+32+……+310,①则3S=32+33+……+311,②②-①得,3S﹣S=2S=311﹣3,∴S=11 33 2-故答案为:11332-(3)令S=1+a+a2+……+a n,①则aS=a+a2+……+a n+1,②②-①得,aS﹣S=(a﹣1)S=a n+1﹣1,∴S=111naa+--.即1+a+a2+……+a n=111naa+--.【点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.84.计算:))0-+--.2131【答案】【解析】【分析】根据二次根式、绝对值和零指数幂的性质化简,然后再进行计算.【详解】解:原式231=-+-=.【点睛】本题考查了实数的混合运算,熟练掌握二次根式、绝对值和零指数幂的性质是解题关键.85.观察下列等式:12×231=132×21,13×341=143×3123×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25②×396=693×;(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明;(3)若(2)中a ,b 表示一个两位数,例如a =11,b =22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a ,b ),并写出a +b 的取值范围.【答案】(1)①275,572;②63,36;(2)(10a +b )•[100b +10(a +b )+a ]=[100a +10(a +b )+b ]•(10b +a ),证明见解析;(3)22≤a +b ≤99【解析】【分析】(1)观察几行等式发现规律,根据规律求解即可;(2)根据两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数、个位上的数、十位上的数,即可写出等式;(3)通过观察可知,a 、b 都是个位与十位数字相等的两位数,且c a b +=,则ab bca acb ba =,由此规律写出只含a 、b 的规律的式子,再由2299c ≤≤得+a b 的取值范围.【详解】解:(1)观察可知:若两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数字、个位上的数字、十位上的数字,这样的两位数与三位数的积,则等于这个三位数与两位数各自交换个位数字与十位数字所得的三位数与两位数的积,∴①5227557225⨯⨯=②6339669336⨯⨯=.故答案为:①275、572;②63、36.(2)()()()()1010010=1001010a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦ 验证:等式左边()()()()=1011011111010a b b a a b b a ++=++等式右边()()()()=1101110111010a b b a a b b a ++=++左边=右边.答:表示“数字对称等式”一般规律的式子为:()()()()1010010=1001010a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦;(3)规律:若11a m =,11b n =,(m 、n 均为1至8的自然数),且2299a b ≤+≤,则()()()()10010000100=10000100100a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦.+a b 的取值范围为:2299a b ≤+≤.【点睛】本题考查数字变化规律问题,能观察多组数据找出数字间的运算规律是解题关键,从特殊到一般总结出普遍规律是解题难点.86.计算:|﹣4|﹣2cos60°+)0﹣(﹣3)2.【答案】-5【解析】【分析】先将各项化简,再把各项相加即可.【详解】原式4119=-+-5=-【点睛】本题考查了实数的混合运算,掌握实数混合运算的法则是解题的关键.87.计算:20191--【答案】-1【解析】【分析】根据实数的计算对原式进行化简即可求解.【详解】 解:原式1=-+1=-.【点睛】本题主要考查了实数的计算,熟练掌握二次根式的化简,绝对值的计算以及有理数的乘方计算是解决本题的关键.88.若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到个新的双子数m ',记22()1111m m F m '+=为“双子数”m 的“双11数”.例如,1313m =,3131m '=,则2131323131(1313)81111F ⨯+⨯==. (1)计算2424的“双11数”(2424)F =______;(2)若“双子数”m 的“双11数”的()F m 是一个完全平方数,求()F m 的值;(3)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b ≤<≤,19c ≤≤,19d ≤≤,c d ≠且a 、b 、c 、d 都为整数,若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()2()(432)0F p F q a b d c +-+++=,令(,)101p q G p q -=,求(,)G p q 的值. 【答案】(1)12;(2)4或16或36;;(3)51或17.【解析】【分析】(1)直接根据“双子数”m 的“双11数”的计算方法即可得出结论;(2)设出四位数,进而得出F (m )=2(x +y ),再求出0<x +y ≤18,再根据F (m )是一个完全平方数,求出x +y ,即可得出结论;(3)先根据“双11数”F (p )能被17整除,进而判断出p 为8989,求出F (q )=2(c +d ),再根据F (p )+2F (q )﹣(4a +3b +2d +c )=0,得出d 2532c -=,进而求出c ,d ,即可得出结论.【详解】(1)由题意知,2424的“双11数”F (2424)()224244242224242424211111111+⨯+⨯===12. 故答案为:12;(2)设“双子数”m 的个位数字和十位数字分别为x ,y ,(0≤x ≤9,0<y ≤9)则数字m 为1000y +100x +10y +x =1010y +101x ,∴“双子数”m '为1010x +101y ,∴F (m )()()()210101012101010121111111111111111y x x y x y ++++===2(x +y ).∵0≤x ≤9,0<y ≤9,∴0<x +y ≤18.∵F (m )是一个完全平方数,∴2(x +y )是一个完全平方数,∴x+y=2或x+y=8或x+y=18,∴F(m)=2×2=4或16或36,即:F(m)的值为4或16或36;(3)∵“双子数”p,p abab=,∴F(p)=2(a+b).∵“双11数”F(p)能被17整除,∴a+b是17的倍数.∵1≤a<b≤9,∴3≤a+b<18,∴a+b=17,∴a=8,b=9,∴“双子数”p为8989,F(p)=34.∵“双子数”q,q cdcd=,∴F(q)=2(c+d).∵F(p)+2F(q)﹣(4a+3b+2d+c)=0,∴34+2×2(c+d)﹣(4×8+3×9+2d+c)=0,∴3c+2d=25,∴d2532c-=,∵1≤c≤9,1≤d≤9,c≠d,c、d都为整数,∴c为奇数,1≤c<9,当c=1时,d=11,不符合题意,舍去,当c=3时,d=8,∴“双子数”q 为3838,∴G (p ,q )898938385151101101101p q --====51, 当c =5时,d =5,不符合题意,舍去,当c =7时,d =2,∴“双子数”q 为7272,∴G (p ,q )898972721717101101101p q --====17, ∴G (p ,q )的值为51或17.【点睛】本题是新定义题目,主要考查了完全平方数,整除问题,理解和运用新定义是解答本题的关键.89.已知,x y 为有理数,定义一种新运算∆,其意义是x ∆()1y xy x y =++-,试根据这种运算完成下列各题(1)求①2∆3;②(4∆3)∆(-2)(2)任意选择两个有理数,分别代替x 与y ,并比较y x 和y x 两个运算的结果,你有何发现;(3)根据以上方法,探索()b c a b a c a ++与的关系,并用等式把它们表示出来.【答案】(1)①10;②-21;(2)x △y=y △x ;(3)a △b+a △c -a △(b+c) =a -1【解析】【分析】(1)①根据新运算法则计算即可;②先算4∆3的结果,再用结果和-2进行计算.(2)将x,y代入新运算计算即可.(3)分别对两个式子进行计算,得出结果作差即可.【详解】(1)①2∆3=2×3+(2+3)-1=10;②4∆3=4×3+(4+3)-1=18,18∆(-2)=18⋅(-2 )+(18-2)-1=-21.(2)因为x△y=xy +(x+y)-1,y△x=yx +(y+x)-1,发现有x△y=y△x(3)因为a△b+a△c= ab + (a +b) -1+ac + (a +c) -1 = ab +ac+2a +a +b +c - 2 ,a△(b+c) = a(b +c) +a + (b +c) -1 = ab +ac +a +b +c -1所以有a△b+a△c-a△(b+c) =a-1【点睛】本题考查新定义的运算下的代数计算,关键在于理解题意,熟练运用代数计算方法.9020082009-⨯(0.25)4【答案】6-【解析】【分析】先利用乘法结合律计算乘法,最后算减法即可.【详解】原式20082008(0.25)44-⨯⨯2008⨯-⨯)4][(0.2542008-⨯(1)4--⨯=214=6-【点睛】本题主要考查乘法运算律在实数运算中的应用,掌握乘法结合律是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数的化简与计算(综合测试)(人教版)一、单选题(共10道,每道10分)
1.若,则的值为( )
A.4
B.1
C.0
D.
答案:A
解题思路:
试题难度:三颗星知识点:算式平方根的双重非负性
2.若,则的值为( )
A.9
B.3
C.0
D.
答案:A
解题思路:
试题难度:三颗星知识点:算式平方根的非负性
3.已知与互为相反数,则a的值为( )
A.4
B.-4
C.1
D.2
答案:B
解题思路:
试题难度:三颗星知识点:立方根的性质
4.若a,b为实数,且满足,则y-x的值为( )
A.4
B.-4
C.1
D.2
答案:A
解题思路:
试题难度:三颗星知识点:算式平方根的双重非负性
5.已知实数a满足,则a的取值范围是()
A.a>3
B.a≧4
C.a=4
D.a=3
答案:D
解题思路:
试题难度:三颗星知识点:实数的化简与计算
6.已知实数a,b,c在数轴上的位置如图所示,
化简:的结果是( )
A.-a+b
B.2a+b
C.2a-b-2c
D.-b
答案:C
解题思路:
试题难度:三颗星知识点:实数的化简与计算
7.化简的结果是( )
A.1-2x
B.2x-1
C.-1
D.1
答案:D
解题思路:
试题难度:三颗星知识点:实数的化简与计算
8.若,则x的值为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:平方根和立方根
9.的计算结果是( )
A.0
B.-2
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:实数的化简与计算
10.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和-1,则点C所对应的实数是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:实数在数轴上的表示。

相关文档
最新文档