九年级数学上册-21.2-解一元二次方程(第1课时)教案-(新版)新人教版
21.2.1解一元二次方程(1)接开平方法(教案)-2021-2022学年人教版九年级数学上册
4.能够运用开平方法解决实际问题,培养数学应用能力。
二、核心素养目标
1.培养学生逻辑推理能力,通过一元二次方程的一般形式推导出开平方法解方程的原理,理解数学知识的内在联系。
2.提升学生数学运算能力,掌握开平方法求解一元二次方程的具体步骤,并能熟练运用解决相关问题。
此外,在教学过程中,我对难点的处理仍需改进。有些学生对开平方法的理解不够深入,尤其是对于负数平方根的处理。在今后的教学中,我需要更加关注这些细节,通过更多实例和练习,帮助学生克服难点。
最后,我认为课堂总结部分还有待加强。今天的教学总结较为简单,可能没有充分激发学生的课后复习兴趣。在以后的教学中,我会尝试用更生动有趣的方式来进行课堂总结,激发学生继续探索一元二次方程的欲望。
五、教学反思
在今天的教学中,我带领学生们学习了“解一元二次方程(1)接开平方法”。回顾整个教学过程,我觉得有几个地方值得反思。
首先,关于导入新课的部分,我尝试通过提出与生活相关的问题来引起学生的兴趣,但感觉效果并不理想。可能是因为问题设置不够贴近学生的实际生活,导致他们参与度不高。在今后的教学中,我需要更加关注问题的选择,力求让学生在轻松愉快的氛围中进入学习状态。
其次,在新课讲授环节,我发现学生们对于一元二次方程的一般形式和开平方法的掌握程度参差不齐。在讲解过程中,我尽量用简单明了的语言和例子来阐述,但仍有部分学生显得困惑。这可能是因为我讲得太快,没有给学生足够的消化时间。针对这个问题,我打算在接下来的教学中适当放慢节奏,让学生有更多的思考和实践机会。
在实践活动和小组讨论环节,学生们表现出较高的积极性。他们能够将所学知识应用到解决实际问题中,这让我感到很欣慰。但同时,我也注意到有的小组在讨论过程中出现了偏离主题的情况。为了提高讨论效果,我将在下次教学中加强对学生的引导,确保讨论内容紧扣主题。
九年级数学上册-解一元二次方程21.2.1配方法第1课时直接开平方法教案新版新人教版
21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.。
人教版九年级数学上册21.2.1解一元二次方程(第1课时)一等奖优秀教学设计
人教版义务教育课程标准实验教科书九年级上册
21.2.1解一元二次方程(第1课时)教学设计
一、教材分析
1、地位作用:本节为一元二次方程解法的起始课。
一元二次方程的求解是初中代数学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视。
首先“直接开平方法解一元二次方程”是配方法解一元二次方程的基础;其次,求解二次函数与x轴交点等问题中都必须应用一元二次方程的解法;同时这一节的教材编写中还突出体现了“换元、转化、类比”等重要的数学思想方法。
因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
2、教学目标:①了解形如x2=a (a≥0)和(mx+n)2=p(p≥0)的一元二次方程的解法——直接开平方法;
②会用直接开平方法解一元二次方程;
③了解转化、降次思想在解方程中的运用。
3、教学重、难点
教学重点:①解形如x2=a和(mx+n)2=p(p≥0)的方程;
②通过本节课的学习体会换元和转化思想。
教学难点:①解形如(mx+n)2=p(p≥0)的方程。
突破重难点的方法:直接开平方法适用一元二次方程类型的探究,通过根据平方根的意义解形如x2=a (a≥0),知识迁移到根据平方根的意义解形如(mx+n)2=p(p≥0)的方程,做好合适的铺垫,引导学生发现运用直接开平方法解一元二次方程的求解途径,引导学生运用换元、转化思想探求一元二次方程如何用直接开平方法来解,提高探究能力。
二、教学准备:多媒体课件、导学案、
三、教学过程。
九年级数学上册21.1一元二次方程教案1(新版)新人教版
一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0 C.(x-1)(x-2)=3 D.ax2+bx+c=0 解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x|k-1|+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)( x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2.已知床单的长是2m,宽是1.4m,求花边的宽度.请根据题意列出方程. 解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x 2-2x =0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C. 方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解. 【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( ) A .1 B .-1C .0D .无法确定 解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m -1)+1+1=0,解得m =-1,此时m -1=-2≠0,∴m =-1.故选B. 方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题. 三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版九年级数学上册《解一元二次方程》教案
21.2解一元二次方程21.2.1配方法第1课时直接开平方法1.理解解一元二次方程的“降次”——转化的数学思想,并能应用它解决一些具体问题.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程.3.理解形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法.阅读教材第5至6页“练习”的部分,完成以下问题.问题1一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?我们知道x2=25,根据平方根的意义,直接开平方得x=±5.问题2解下列方程:(1)3x2-1=5;(2)4(x-1)2-9=0;(3)x2+4x+4=9.知识探究一般地,对于方程x2=p:(1)当p>0时,根据平方根的意义,方程有两个不等的实数根:x1=-p,x2=p;(2)当p=0时,方程有两个相等的实数根x1=x2=0;(3)当p<0时,因为对任意实数x,都有x2≥0,所以方程无实数根.自学反馈解下列方程:(1)x2=8;(2)(2x-1)2=5;(3)x2+6x+9=2; (4)4m2-9=0;(5)x2+4x+4=1; (6)3(x-1)2-9=108.解一元二次方程的实质:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.活动1小组讨论例 用平方根的意义解下列方程:(1)(3x +1)2=7; (2)y 2+2y +1=24;(3)9n 2-24n +16=11.解:(1)-1±73.(2)-1±2 6. (3)4±113. 运用开平方法解形如(x +m)2=n(n ≥0)的方程时,最容易出错的是漏掉负根.活动2 跟踪训练用直接开平方法解下列方程:(1)3(x -1)2-6=0; (2)x 2-4x +4=5;(3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25;(7)x 2+2x +1=4.活动3 课堂小结应用直接开平方法解形如x 2+2ax +a 2=b(b ≥0),可得x +a =±b 达到降次转化的目的.【预习导学】问题1 略. 问题2 (1)x =±2.(2)x 1=-12,x 2=52. (3)x 1=1,x 2=-5. 自学反馈(1)x =±2 2.(2)x 1=5+12,x 2=-5+12.(3)x 1=2-3,x 2=-2-3.(4)x =±32.(5)x 1=-1,x 2=-3.(6)x 1=1+39,x 2=1-39.【合作探究】活动2 跟踪训练(1) x 1=1+2,x 2=1- 2.(2)x 1=2+5,x 2=2- 5.(3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=0,x 2=-10.(7)x 1=1,x 2=-3.第2课时 配方法通过可直接化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.阅读教材第6至9页的部分,完成以下问题.问题1 填空:(1)x 2+6x +____=(x +____)2;(2)x 2-x +____=(x -____)2;(3)4x 2+4x +____=(2x +____)2.问题2 解方程:x 2+6x +4=0.知识探究1.如果方程能化成a(x +b)2=c 的形式,那么可得x =________.2.以上解法中,为什么在方程x 2+6x +4=0两边加5?加其他数行吗?________.3.什么叫配方法?________________________________________________________________________.4.配方法的目的是什么?________.5.配方法的关键是什么?________.自学反馈用配方法解下列关于x 的方程:(1)x 2-4x +2=0; (2)x 2-12x -1=0; (3)2x 2-4x -8=0; (4)2x 2+2x =5.活动1 小组讨论例 用配方法解下列关于x 的方程:(1)x 2-8x +1=0; (2)2x 2+1=3x.解:(1)x 1=4+15,x 2=4-15.(2)x 1=1,x 2=12. (1)用配方法解一元二次方程时,方程左边分别为二次项和一次项,常数项放右边,二次项系数不为1的,可以将方程各项除以二次项系数;(2)配方时所加常数为一次项系数一半的平方;(3)注意:配方时一定要在方程两边同加.活动2 跟踪训练1.若x 2-4x +p =(x +q)2,则p 、q 的值分别是( )A .p =4,q =2B .p =4,q =-2C .p =-4,q =2D .p =-4,q =-22.填空:(1)x 2+10x +____=(x +____)2;(2)x 2-12x +____=(x -____)2;(3)x 2+5x +____=(x +____)2;(4)x 2-23x +____=(x -____)2. 3.用配方法解下列关于x 的方程:(1)x 2-36x +70=0; (2)x 2+2x -35=0; (3)2x 2-4x -1=0; (4)x 2-8x +7=0;(5)x 2+4x +1=0; (6)x 2+6x +5=0;(7)2x 2+6x -2=0; (8)9y 2-18y -4=0;(9)x 2+3=23x.4.如果x 2-4x +y 2+6y +z +2+13=0,求(xy)z 的值.类似第4题的,通常将等式一边变形为几个非负数的和,而另一边为零的形式.活动3 课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.【预习导学】问题1 (1)9 3 (2)14 12(3)1 1 问题2 x 1=-3+5,x 2=-3- 5.知识探究1.-b±c a2.不行3.通过配成完全平方形式来解一元二次方程的方法4.降次5.配平 自学反馈 (1)x 1=2+2,x 2=2- 2.(2)x 1=14+174,x 2=14-174.(3)x 1=1+5,x 2=1- 5.(4)x 1=11-12,x 2=-11-12. 【合作探究】活动2 跟踪训练1.B 2.(1)25 5 (2)36 6 (3)254 52 (4)19 133.(1)x 1=18+254,x 2=18-254.(2)x 1=5,x 2=-7.(3)x 1=1+62,x 2=1-62.(4)x 1=1,x 2=7.(5)x 1=-2+3,x 2=-2- 3.(6)x 1=-1,x 2=-5.(7)x 1=-32+132,x 2=-32-132.(8)y 1=1+133,y 2=1-133.(9)x 1=x 2= 3. 4.由已知方程,得x 2-4x +4+y 2+6y +9+z +2=0,即(x -2)2+(y +3)2+z +2=0.∴x =2,y=-3,z =-2.∴(xy)z =[2×(-3)]-2=136.21.2.2 公式法1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.阅读教材第9至12页的部分,完成以下问题.1.用配方法解下列方程:(1)6x 2-7x +1=0; (2)4x 2-3x =52.2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题 已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a. 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.知识探究一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b±b 2-4ac 2a就得到方程的根,当b 2-4ac <0,方程没有实数根; (2)x =-b±b 2-4ac 2a叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式; (3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程可能有两个不等的实数根,也可能有两个相等的实数根或没有实数根;(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字“Δ”表示,即Δ=b 2-4ac.自学反馈用公式法解下列方程:(1)2x 2-4x -1=0; (2)5x +2=3x 2;(3)(x -2)(3x -5)=0; (4)4x 2-3x +1=0.活动1 小组讨论例1 在什么情况下,一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根?有两个相等的实数根?没有实数根?解:Δ=b 2-4ac ,Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等实数根;Δ<0时,没有实数根.例2 写出一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac ≥0)的求根公式:x =-b±b 2-4ac 2a. 例3 方程x 2-4x +4=0的根的情况是(B )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根活动2 跟踪训练1.利用判别式判定下列方程的根的情况:(1)2x 2-3x -32=0; (2)16x 2-24x +9=0; (3)x 2-42x +9=0; (4)3x 2+10x =2x 2+8x.2.用公式法解下列方程:(1)x 2+x -12=0; (2)x 2-2x -14=0; (3)x 2+4x +8=2x +11; (4)x(x -4)=2-8x ;(5)x 2+2x =0; (6)x 2+25x +10=0.用公式法解一元二次方程时,一定要先写对a ,b ,c 的值,再判断Δ的正负.活动3 课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.4.一元二次方程根的情况.【预习导学】自学反馈(1)x 1=1+62,x 2=1-62.(2)x 1=2,x 2=-13.(3)x 1=2,x 2=53.(4)无解.【合作探究】活动2跟踪训练1.(1)有两个不相等的实数根.(2)有两个相等的实数根.(3)无实数根.(4)有两个不相等的实数根. 2.(1)x1=3,x2=-4.(2)x1=2+32,x2=2-32.(3)x1=1,x2=-3.(4)x1=-2+6,x2=-2- 6.(5)x1=0,x2=-2.(6)无解.21.2.3因式分解法1.会用因式分解法解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.阅读教材第12至14页,完成预习内容.1.将下列各题因式分解:am+bm+cm=________;a2-b2=________;a2±2ab+b2=________.2.解下列方程:(1)2x2+x=0(用配方法);(2)3x2+6x=0(用公式法).知识探究仔细观察上面两个方程特征,除配方法或公式法,你能找到其他的解法吗?1.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于零,从而实现降次,这种解法叫做________.2.如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么x+1=0或________,即x=-1或________.自学反馈1.说出下列方程的根:(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.2.用因式分解法解下列方程:(1)x2-4x=0;(2)4x2-49=0;(3)5x 2-20x +20=0.活动1 小组讨论例1 用因式分解法解下列方程:(1)5x 2-4x =0;(2)3x(2x +1)=4x +2;(3)(x +5)2=3x +15.解:(1)x 1=0,x 2=45. (2)x 1=23,x 2=-12. (3)x 1=-5,x 2=-2.解这里的(2)(3)题时,注意整体的思想.例2 用因式分解法解下列方程:(1)4x 2-144=0;(2)(2x -1)2=(3-x)2;(3)5x 2-2x -14=x 2-2x +34; (4)3x 2-12x =-12.解:(1)x 1=6,x 2=-6.(2)x 1=43,x 2=-2. (3)x 1=12,x 2=-12. (4)x 1=x 2=2.注意本例中的方程可以使用多种方法求解.活动2 跟踪训练1.用适当的方法解下列方程:(1)x 2+x =0; (2)x 2+x -12=0;(3)3x 2-6x =-3; (4)4x 2-121=0;(5)4x 2-x -9=0.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.活动3 课堂小结1.因式分解法解一元二次方程的一般步骤:(1)将方程右边化为0; (2)将方程左边分解成两个一次因式的乘积; (3)令每个因式分别为0,得两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.归纳解一元二次方程不同方法的优缺点.【预习导学】(a +b +c)m (a +b)(a -b) (a±b)2知识探究1.因式分解法 2.x -1=0 x =1自学反馈1.(1)x 1=0,x 2=8.(2)x 1=-13,x 2=52. 2.(1)x 1=0,x 2=4.(2)x 1=72,x 2=-72.(3)x 1=x 2=2. 【合作探究】活动2 跟踪训练1.(1)x 1=0,x 2=-1.(2)x 1=-4,x 2=3.(3)x 1=x 2=1.(4)x 1=112,x 2=-112.(5)x 1=1+1458,x 2=1-1458. 2.设小圆形场地的半径为x m .则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去).答:小圆形场地的半径为(5+52)m .*21.2.4 一元二次方程的根与系数的关系1.理解并掌握根与系数关系:x 1+x 2=-b a ,x 1x 2=c a. 2.会用根的判别式及根与系数的关系解题.阅读教材第15至16页,完成预习内容.知识探究1.完成下列表格:方程 x 1 x 2 x 1+x 2 x 1x 2 x 2-5x +6=0 2 3 5 6 x 2+3x -10=02-5-3-10问题:你发现什么规律? ①用语言叙述你发现的规律;(两根之和为一次项系数的相反数;两根之积为常数项) ②x 2+px +q =0的两根为x 1,x 2,用式子表示你发现的规律. (x 1+x 2=-p ,x 1x 2=q) 2.完成下列表格:方程 x 1 x 2 x 1+x 2 x 1x 2 2x 2-3x -2=0 2 -12 32 -1 3x 2-4x +1=01314313问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律;(两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比) ②ax 2+bx +c =0的两根为x 1,x 2,用式子表示你发现的规律. (x 1+x 2=-b a ,x 1x 2=ca)3.利用求根公式推导根与系数的关系:ax 2+bx +c =0的两根x 1=________________,x 2=________________. 则x 1+x 2=________,x 1x 2=________. 自学反馈根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积: (1)x 2-3x -1=0; (2)2x 2+3x -5=0; (3)13x 2-2x =0.活动1 小组讨论例1 不解方程,求下列方程的两根之和与两根之积: (1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=-73,x 1x 2=-3.(3)x 1+x 2=54,x 1x 2=14.先将方程化为一般形式,找对a 、b 、c 的值.例2 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为32,k =3.本题有两种解法:一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;另一种是利用根与系数关系解答.例3 已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值. (1)1α+1β;(2)α2+β2;(3)α-β. 解:(1)-35.(2)19.(3)29或-29.活动2 跟踪训练1.不解方程,求下列方程的两根之和与两根之积: (1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10; (4)4x 2-144=0; (5)3x(x -1)=2(x -1); (6)(2x -1)2=(3-x)2. 2.两根均为负数的一元二次方程是( ) A .7x 2-12x +5=0 B .6x 2-13x -5=0 C .4x 2+21x +5=0 D .x 2+15x -8=0两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.活动3 课堂小结1.一元二次方程的根与系数的关系.2.一元二次方程的根与系数的关系成立的前提条件.【预习导学】 知识探究3.-b +b 2-4ac 2a -b -b 2-4ac 2a -b a c a自学反馈(1)x 1+x 2=3,x 1x 2=-1.(2)x 1+x 2=-32,x 1x 2=-52.(3)x 1+x 2=6,x 1x 2=0.【合作探究】 活动2 跟踪训练1.(1)x 1+x 2=3,x 1x 2=-15.(2)x 1+x 2=0,x 1x 2=-1.(3)x 1+x 2=3,x 1x 2=-8.(4)x 1+x 2=0,x 1x 2=-36.(5)x 1+x 2=53,x 1x 2=23.(6)x 1+x 2=-23,x 1x 2=-83. 2.C。
新人教版九年级数学上册 第21章 《一元二次方程》全章教学设计
第二十一章一元二次方程21.1 一元二次方程【知识与技能】1.使学生理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项. 2.会判断一个数是否是一元二次方程的根.【过程与方法】经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.【情感态度】进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性. 【教学重点】一元二次方程的概念及其一般表现形式.【教学难点】从实际问题中抽象出一元二次方程的模型;识别方程中的“项”及“系数”.一、情境导入,初步认识(课件展示问题)雷锋纪念馆前的雷锋雕像高为2m,设计者当初设计它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,即下部高度的平方等于上部与全部的积,如果设此雕像的下部高为xm,则其上部高为(2-x)m,由此可得到的等量关系如何?它是关于x的方程吗?如果是,你能看出它和我们以往学过的方程有什么不同吗?二、思考探究,获取新知由上述问题,我们可以得到x2=2(2-x),即x2+2x-4=0.显然这个方程只含有一个未知数,且x的最高次数为2,这类方程在现实生活中有广泛的应用.探究1见教材第2页问题1.(课件展示问题)【教学说明】针对上述问题可给予5~8分钟时间让学生讨论,教师可相应设置如下问题帮助学生分析:如果设四角折起的正方形的边长为xm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600cm2,可得到的方程又是怎样的?【讨论结果】设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,由此可得到方程(100-2x)(50-2x)=3600,整理为:4x2-300x+1400=0,化简,得x2-75x+350=0,由此方程可得出所切去的正方形的大小.探究2见教材2~3页问题2.【教学说明】教学过程中,教师可设置如下问题:(1)这次排球赛共安排场;(2)若设应邀请x个队参赛,则每个队与其它个队各赛一场,这样共应有场比赛;(3)由此可列出的方程为,化简得.教师提出问题,引导学生思考方程的建模过程,同时注重激发学生解决问题的欲望和兴趣.(课件展示)【讨论结果】设应邀请x个队参赛,通过分析可得到12·x·(x-1)=28,化简,得x2-x=56,即x2-x-56=0.观察思考观察前面所构建的三个方程,它们有什么共同点?可让学生先独立思考,然后相互交流,得出这些方程的特征:(1)方程各项都是整式;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.【归纳结论】1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程称为一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.想一想1.二次项的系数a为什么不能为0?2.在指出二次项系数、一次项系数和常数项时,a、b、c都一定是正数吗?谈谈你的看法.探究3 从探究2中我们可以看出,由于参赛球队的支数x只能是正整数,因此可列表如下:可以发现,当x=8时,x2-x-56=0,所以x=8是方程x2-x-56=0的解,一元二次方程的解也叫做一元二次方程的根.思考1.一元二次方程的根的定义应怎样描述呢?2.方程x2-x-56=0有一个根为x=8,它还有其它的根吗?【探讨结论】1.一元二次方程根的定义:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的根;2.由于x=-7时,x2-x-56=49-(-7)-56=0,故x=-7也是方程x2-x-56的一个根.事实上,一元二次方程如果有实数根,则必然有两个实数根,通常记为x1=m,x2=n.三、典例精析,掌握新知例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10,移项、合并同类项,得一元二次方程的一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.【教学说明】以上两例均可让学生独立思考,自主完成.教师巡视,了解学生的掌握情况,最后选取几个优秀作业和有代表性问题作业通过幻灯片展示给全班同学学习与思考,加深对本节知识的理解和掌握.四、运用新知,深化理解1.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式,指出其二次项系数、一次项系数及常数项:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的平方,求较短一段的长x.【教学说明】让学生当堂完成上述练习,达到巩固新知目的.最后全班同学核对答案即可.五、师生互动,课堂小结教师提出以下问题,让学生交流,加强反思、提炼及知识归纳.(1)一元二次方程的定义,一般式及二次项系数、一次项系数和常数项;(2)一元二次方程一般形式ax2+bx+c=0(a≠0)中的括号是否可有可无?为什么?(3)通过这节课的学习你还有哪些收获?1.布置作业:教材“习题21.1”第1,2,3题21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法【知识与技能】1.会利用开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.一、情境导入,初步认识问题我们知道,42=16,(-4)2=16,如果有x2=16,你知道x的值是多少吗?说说你的想法.如果3x2=18呢?【教学说明】让学生通过回顾平方根的意义初步感受利用开平方法求简单一元二次方程的思路,引入新课.教学时,教师提出问题后,让学生相互交流,在类比的基础上感受新知.解:如果x2=16,则x=±4;若3x2=18,则x=6.二、思考探究,获取新知探究一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 设一个盒子的棱长为xdm,则它的外表面面积为,10个这种盒子的外表面面积的和为,由此你可得到方程为,你能求出它的解吗?解:6x2,10×6x2,10×6x2=1500,整理得x2=25,根据平方根的意义,得x=±5,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm,故x=5dm. 【教学说明】学生通过自主探究,尝试用开平方法解决一元二次方程,体验成功的快乐.教师应关注学生的思考是否正确,是否注意到实际问题的解与对应的一元二次方程的解之间的关系,帮助学生获取新知.【归纳结论】一般地,对于方程x2=p,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根x1p,x2p(2)当p=0时,方程(Ⅰ)有两个相等的实数根x1=x2=0;(3)当p<0时,因为对任意实数x,都有x2≥0,所以方程(Ⅰ)无实数根.思考2对上面题解方程(Ⅰ)的过程,你认为应该怎样解方程(x+3)2=5?学生通过比较它们与方程x2=25异同,从而获得解一元二次方程的思路.在解方程(Ⅰ)时,由方程x2=25得x=±5.由此想到:由方程(x+3)2=5,②得x+3=5,即55.③于是,方程(x+3)2=5的两个根为x1525【教学说明】教学时,就让学生独立尝试给出解答过程,最后教师再给出规范解答,既帮助学生形成用直接开平方法解一元二次方程的方法,同时为以后学配方法作好铺垫,让学生体会到类比、转化、降次的数学思想方法.【归纳结论】上面的解法中,由方程②得到③,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程②转化为我们会解的方程了.【教学说明】上述归纳结论应由师生共同探讨获得,教师要让学生知道解一元二次方程的实质是转化.三、典例精析,掌握新知例解下列方程:(教材第6页练习)(1)2x2-8=0; (2)9x2-5=3;(3)(x+6)2-9=0; (4)3(x-1)2-6=0;(5)x2-4x+4=5; (6)9x2+5=1.解:(1)原方程整理,得2x2=8,即x2=4,根据平方根的意义,得x=±2,即x1=2,x2=-2.(2)原方程可化为9x2=8,即x2=8/9.两边开平方,得x=±223,即x1=223,x2=-223.(3)原方程整理,得(x+6)2=9,根据平方根的意义,得x+6=±3,即x1=-3,x2=-9.(4)原方程可化为(x-1)2=2,两边开平方,得x-1=±2,∴x1=1+2,x2=1-2;(5)原方程可化为(x-2)2=5,两边开平方,得x-2=±5,∴x1=2+5,x2=2-5.(6)原方程可化为9x2=-4,x2=-4/9.由前面结论知,当p<0时,对任意实数x,都有x2≥0,所以这个方程无实根.【教学说明】本例可选派六位同学上黑板演算,其余同学自主探究,独立完成.教师巡视全场,发现问题及时予以纠正,帮助学生深化理解,最后师生共同给出评析,完善认知.特别要强调用直接开平方法开方时什么情况下是无实根的.四、运用新知,深化理解1.若8x2-16=0,则x的值是.2.若方程2(x-3)2=72,那么这个一元二次方程的两根是.3.如果实数a、b满足3a+4+b2-12b+36=0,则ab的值为.4.已知方程(x-2)2=m2-1的一个根是x=4,求m的值和另一个根.【教学说明】让学生独立完成,加深对本节知识的理解和掌握.五、师生互动,课堂小结教师可以向学生这样提问:(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.【教学说明】教师可引导学生提炼本节知识及方法,感受解一元二次方程的降次思想方法.1.布置作业:教材“习题21.2”第1题.21.2.1配方法(第2课时)教学过程教学反思:21.2.2 公式法教学目标1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导. 教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=52 解: (1)移项,得:6x 2-7x=-1二次项系数化为1,得:x 2-76x=-16配方,得:x 2-76x+(712)2 = -16+(712)2(x-712)2 = 25144x-712= ±512 x 1=512+712=7512+=1 , x 2=-512+712=7512-=16(2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 二、探索新知如果这个一元二次方程是一般形式ax 2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a≠0)且b 2-4ac≥0,试推导它的两个根x 1x 2=2b a--分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-ca配方,得:x 2+b a x+(2b a )2=-c a +(2ba )2即(x+2b a)2=2244b ac a - ∵b 2-4ac≥0且4a 2>0∴2244b aca -≥0直接开平方,得:x+2ba即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a≠0)的根由方程的系数a 、b 、c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac≥0时,将a 、b 、c 代入式子(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1b 2-4ac=(-4)2-4×2×(-1)=24>0== ∴x 1x 2 (2)将方程化为一般形式3x 2-5x-2=0a=3,b=-5,c=-2 b 2-4ac=(-5)2-4×3×(-2)=49>0576±= x 1=2,x 2=-13(3)将方程化为一般形式3x 2-11x+9=0a=3,b=-11,c=9 b 2-4ac=(-11)2-4×3×9=13>0∴x=(11)11236--±=⨯ ∴x 1=116+x 2=116-(3)a=4,b=-3,c=1b 2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根. 三、巩固练习教材P 12 练习1 第1题21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9 x)=0.∴x =0或10-4.9 x =0,∴x 1=0, x 2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x (x -2)+ x -2=0; (2)5 x 2-2 x -14= x 2-2 x +34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2, x2=-1. (2)原方程整理为4x 2-1=0.因式分解,得(2x +1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12, x 2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B. (x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D. x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.布置作业:教材“习题21.2”第6题.。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案
21.2解一元二次方程21.2.3因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x 2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2b a -±(b 2-4ac≥0).2.什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b),a²±2ab+b²=(a±b)².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x 2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s 的速度竖直上抛,那么经过x s 物体离地面的高度(单位:m)为10x -4.9x 2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0.解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x 公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac=(-10)2-0=100,a acb b x 242-±-=()101024.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0.∴x=0或10-4.9x=0,∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1解下列方程:(出示课件11)(1)x(x-2)+x-2=0;(2)5x 2-2x-14=x 2-2x+34.师生共同解答如下:解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x -2)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1=0.因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0.因式分解,得(3x-2)(2x+1)=0.于是得3x-2=0或2x+1=0,x1=23,x2=12 .⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2∴x12.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28..∴x1,x2.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x2×3=2±7 3.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0.∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0.∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0.∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2)5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2.解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0时,只得出一个根x=1,则被漏掉的一个根是()A.x=4B.x=3C.x=2D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3.若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0时,x2+3=0,原方程无解;②当y=4时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法教案新人教版(2021
2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版的全部内容。
21.2.2 公式法※教学目标※【知识与技能】1.理解并掌握求根公式的推导过程.2。
能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严禁认真的科学态度.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.※教学过程※一、复习导入1.前面我们学习过直接开平方法解一元二次方程,比如,方程24x,227x:提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数"的特殊的一元二次方程有效,不能实施于一般形式的一元二次方程)2.面对这种局限性,我们该怎么办?(使用配方法,把一般形式的一元二次方程化为能够直接开平方的形式)(学生活动) 用配方法解方程:2x x.237总结用配方法解一元二次方程的步骤(学生总结,老师点评)(1)先将已知方程化为一般形式; (2)二次项系数化为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一般的平方,使左边配成一个完全平方式; (5)变形为2x np 的形式,如果0p ,就可以直接开平方求出方程的解,如果0p ,则一元二次方程无解.二、探索新知能否用上面配方法的步骤求出一元二次方程200ax bx c a 的两根?移项,得2ax bxc .二次项系数化为1,得2b cx xa a. 配方,得22222b b c b xx a aaa,即222424b b ac x aa .此时,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?师生共同完善认知:(1)当b 2—4ac >0时,两边可直接开平方,得242b b ac x a,∴2142bb ac x a,2242bb ac x a;(2)当b 2—4ac =0时,有202b x a 。
新人教版九年级上《21.2解一元二次方程》教案
人教版义务教育教材◎数学九年级上册21.2 解一元二次方程教学目标1. 掌握配方法、公式法、因式分解法解一元二次方程的基本步骤和过程.2. 了解一元二次方程求根公式的推导过程,会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.3. 了解一元二次方程的根与系数的关系.4. 能根据具体问题的实际意义,检验方程的解是否合理.教学重点1. 掌握配方法、公式法、因式分解法解一元二次方程的基本步骤和过程,明确各种解法的来源和特点.2. 一元二次方程求根公式的推导过程.教学难点1. 在具体问题时,如何根据方程的特点恰当选择解方程的基本方法.2. 一元二次方程求根公式的推导过程.课时安排7课时.1教师备课系统──多媒体教案2教案A第1课时教学内容21.2.1 配方法(1).教学目标1.能运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.通过实例,合作探讨,建立数学模型,掌握直接开平方法的的基本步骤.3.在经历用直接开平方法解一元二次方程的过程中,进一步体会化归思想.教学重点运用开平方法解形如(x+n)2=p(p≥0)的方程,领会降次—转化的数学思想.教学难点通过根据平方根的意义解形如x2=p的方程,然后知识迁移到根据平方根的意义解形如(x+n)2=p(p≥0)的方程.教学过程一、导入新课问题:一桶油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?通过问题,导入新课的教学.二、新课教学1.解决问题.学生思考、讨论,教师引导,汇报解题过程和步骤.设其中一个盒子的棱长为x dm,则这个盒子的表面积为6x2 dm2,根据一桶油漆可刷的面积,列出方程10×6x2=1 500.整理,得x2=25.根据平方根的意义,得x=±5,即人教版义务教育教材◎数学九年级上册x1=5,x2=―5可以验证,5和―5是方程10×6x2=1 500的两个根,因为棱长不能是负值,所以盒子的棱长为5 dm.强调:用方程解决实际问题时,要考虑所得的结果是否符合实际意义.根据解题过程,类似地,解下列方程:x2=5,x2=0,x2=―5.2.归纳总结.教师引导学生总结上述方程的共同点,归纳出一般形式x2=p,并根据p的取值范围得到方程的解的三种情况.一般地,对于方程x2=p,(1)当p>0时,根据平方根的意义,方程x2=p有两个不等的实数根x1=―p,x2=p;(2)当p=0时,方程x2=p有两个相等的实数根x1=x2=0;(3)当p<0时,因为对任意实数x,都有x2≥0,所以方程x2=p无实数根.3.巩固拓展.思考:如果把上面的方程稍作变形,如(x+3)2=5你还会解吗?学生独立思考,并给出解法.引导学生先把(x+3)看看成一个数,对方程两边开平方,得x+3=±5,把它转化成两个一元一次方程x+3=5和x+3=―5.于是,方程(x+3)2=5的两个根为x1=―3+5和x2=―3―5.这种解法实质上是把一个一元二次方程“降次”,转化为两个我们会解的一元一次方程.三、巩固练习1.市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2.解:设每年人均住房面积增长率为x,则10(1+x)2=14.4,化简得(1+x)2=1.44.直接开平方,得1+x=±1.2,即1+x=1.2,1+x=―1.2.所以,方程的两根是x1=0.2=20%,x2=―2.2.3教师备课系统──多媒体教案4 因为每年人均住房面积的增长率应为正的,因此,x2=―2.2应舍去.答:每年人均住房面积增长率应为20%.2.教材第6页“练习”.学生独立完成,小组内订正.四、课堂小结今天你学习了什么?有哪些收获?五、布置作业习题21.2第1题(1)(2)(3).第2课时教学内容21.2.1 配方法(2).教学目标1.了解配方法的概念,掌握配方法的基本步骤,会用配方法解一元二次方程.2.在经历用配方法解一元二次方程的过程中,进一步体会化归思想.教学重点用配方法解题的基本步骤.教学难点二次项次数为1时,配方要把方程两边同时加上一次项次数一半的平方;二次项次数不为1时,先把二次项次数化为1.教学过程一、导入新课让学生复述将次解一元二次方程的步骤,导入新课的教学.二、新课教学1.用配方法解方程.探究:怎样解方程x2+6x+4=0?我们已经会解方程(x+3)2=5.因为它的左边是含有x的完全平方式,右边是非负数.所以可以直接降次解方程.那么,能否将方程x2+6x+4=0转化为可以直接降次的形式再求解呢?教师先让学生观察、尝试,引导学生运用学过的知识解方程.学生在教师的引导下解方程x2+6x+4=0.解题过程和步骤如下:x2+6x+4=0→x2+6x=-4→x2+6x+9=-4+9→(x+3)2=5,通过降次可得x+3人教版义务教育教材◎数学九年级上册5 =±5,即x +3=5,或x +3=-5.解一次方程得x 1=-3+5,x 2=-3-5.通过验证,可知-3±5是方程x 2+6x +4=0的两个根.教师引导学生总结解方程的基本步骤,让学生了解关键是把方程的左边配成完全平方式的形式,然后解方程.归纳:像上面那样,通过配成完全平方形式来解一元二次方程的方法,叫做配方法.可以看出,配方是为了降次,把一个一元二次方程转化成两个一元一次方程来解.2.实例详解例 解下列方程:(1)x 2-8x +1=0; (2)2x 2+1=3x ; (3)3x 2-6x +4=0.分析:(1)方程的的二次项系数为1,直接运用配方法.(2)先把方程化成2x 2-3x +1=0,它的二次项系数为2,为了便于配方需将二次项系数化为1,为此方程的两边都除以2.(3)与(2)类似,方程的两边都除以3后再配方.解:略.3.总结解一元二次方程x 2+p x +q =0的基本思路和具体步骤.结合这几个方程的求解,让学生总结解一元二次方程x 2+p x +q =0的基本思路和具体步骤.要注意什么问题?学生独立思考、讨论、总结.最后师生共同归纳.基本思路是将含有未知数的项配成完全平方式.具体步骤:(1)将q 移到方程右边;(2)在方程两边加上一次项系数p 的一半的平方;(3)根据22⎪⎭⎫ ⎝⎛p -q 的取值讨论解的情况.在此过程中要注意保证变形的过程是恒等变形.4.总结一元二次方程通过配方转化成(x +n )2=p 时,方程的实数根情况.教师引导学生总结p >0,p =0,p <0时,方程根的情况.(1)当p >0时,方程(x +n )2=p 有两个不等的实数根.x 1=-n -p ,x 2=-n +p ;(2)当p =0时,方程(x +n )2=p 有两个相等的实数根.x 1=x 2=-n ;(3)当p <0时,因为对任意实数x 都有(x +n )2≥0,所以方程(x +n )2=p 无实数根.教师备课系统──多媒体教案6 三、巩固练习教材第9页“练习”第1、2题.学生独立完成,小组内订正.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题第21.2第3题.第3课时教学内容21.2.2 公式法(1).教学目标1.理解一元二次方程求根公式的推导过程.2.了解公式法的概念.教学重点一元二次方程求根公式的推导.教学难点一元二次方程求根公式的推导.教学过程一、导入新课总结用配方法解一元二次方程的步骤:1.移项;2.化二次项系数为1;3.方程两边都加上一次项系数的一半的平方;4.原方程变形为(x+n)2=p的形式;5.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、新课教学如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),能否也用配方法的步骤求出方程的解呢?教师引导学生分析、讨论,然后师生共同推导一元二次方程的求根公式.人教版义务教育教材◎数学九年级上册7 已知ax 2+bx +c =0(a ≠0),移项,得ax 2+bx =-c .二次项系数化为1,得x 2+a b x =-ac . 配方,得 x 2+a b x +22⎪⎭⎫ ⎝⎛a b =-a c +22⎪⎭⎫ ⎝⎛a b , 即22⎪⎭⎫ ⎝⎛+a b x =2244a ac b -. 因为a ≠0,所以4a 2>0,式子b 2-4ac 的值有以下三种情况:(1)b 2-4ac >0 这时2244a ac b ->0,由22⎪⎭⎫ ⎝⎛+a b x =2244a ac b -得 x 2+a b 2=±a ac b 242-. 方程有两个不等的实数根x 1=a ac b b 242-+-,x 2=aac b b 242---. (2)b 2-4ac =0 这时2244a ac b -=0,由22⎪⎭⎫ ⎝⎛+a b x =2244a ac b -可知,方程有两个不等的实数根 x 1=x 2=ab 2-. (3)b 2-4ac <0 这时2244a ac b -<0,由22⎪⎭⎫ ⎝⎛+a b x =2244a ac b -可知22⎪⎭⎫ ⎝⎛+a b x <0,而x 取任何实数都不能使22⎪⎭⎫ ⎝⎛+a b x <0,因此方程无实数根. 一般地,式子b 2-4ac 叫做一元二次方程ax 2+bx +c =0根的判别式,通常用希腊教师备课系统──多媒体教案8字母“Δ”表示它,即Δ=b 2-4ac .归纳:由上可知,当Δ>0时,方程ax 2+bx +c =0(a ≠0)有两个不等的实数根;当Δ=0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ<0时,方程ax 2+bx +c =0(a ≠0)无实数根.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根可写为x =aac b b 242-±- 的形式,这个式子叫做一元二次方程ax 2+bx +c =0的求根公式,利用求根公式解一元二次方程的方法叫做公式法.三、巩固练习教材第12页练习1第(1)(2)题.四、课堂小结这节课你学习了什么?有什么收获?还有哪些问题?五、布置作业习题第21.2第4题.第4课时教学内容21.2.2 公式法(2).教学目标1.进一步认识一元二次方程求根公式的推导过程,了解公式法.2.能熟练运用公式法解一元二次方程.教学重点用公式法解一元二次方程.教学难点用公式法解一元二次方程.教学过程一、导入新课复习一元二次方程求根公式的推导过程,导入新课的教学.人教版义务教育教材◎数学九年级上册9二、新课教学1.用公式法解决实际问题.教师引导学生阅读教材本章引言中的问题,用公式法解一元二次方程.设雕像下部高x m ,得方程x 2+2x ―4=0.用公式法解这个方程得x =12)4(14222⨯-⨯⨯-±-=2202±-=-1±5. 即x 1=―1+5,x 2=―1―5.如果结果保留小数点后两位,那么,x 1≈1.24,x 2≈―3.24.这两个根中,只有x 1≈1.24符合问题的实际意义,因此雕像下部的高度应设计为约1.24 m .2.用公式法解下列方程.(1)x 2-4x ―7=0; (2)2x 2-22x +1=0;(3)5x 2-3x =x +1; (4)x 2+17=8x .解:(1)根据一元二次方程的一般形式ax 2+bx +c =0可知,在方程x 2-4x ―7=0中a =1,b =-4,c =-7.Δ=b 2-4ac =(-4)2-4×1×(-7)=44>0.方程有两个不等的实数根x =aac b b 242-±-=1244)4(⨯±--=2±11, 即x 1=2+11,x 2=2―11.(2)(3)解题步骤见教材第11、12页.(4)方程化为x 2-8x +17=0.a =1,b =-8,c =17.Δ=b 2-4ac =(-8)2-4×1×17=-4<0.方程无实数根.三、巩固练习教材第12页练习1第(3)~(6)题.教师备课系统──多媒体教案10 四、课堂小结这节课你学习了什么?有什么收获?还有哪些问题?五、布置作业习题第21.2第5题.第5课时教学内容21.2.3 因式分解法.教学目标1.掌握用因式分解法解一元二次方程.2.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.教学重点用因式分解法解一元二次方程.教学难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便.教学过程一、导入新课分别用配方法和公式法解下列方程.(1)2x2+x=0;(2)3x2+6x=0教师引导学生分别用配方法和公式法进行解方程,复习用配方法和公式法解方程的基本步骤,导入新课的教学.二、新课教学1.提出问题根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么物体经过x s离地面的高度(单位:m)为10x-4.9x2.根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?2.分析解答教师引导学生审题,找出已知条件或所求问题,根据等量关系列出方程求解.设物体经过x s落回地面,这时它离地面的高度为0 m,即10x-4.9x2=0.在列出方程后,教师引导学生思考:除配方法或公式法以外,能否找到更简单的方法解这个方程?学生思考、讨论,寻找其他方法.人教版义务教育教材◎数学九年级上册11教师在学生充分思考的基础上用因式分解的方式解这个方程.方程10x -4.9x 2=0的右边是0,左边可以因式分解,得x (10-4.9x )=0.这个方程的左边是两个一次因式的乘积,右边是0.我们知道,如果两个因式的积为0,那么这两个因式中至少有一个等于0;反之,如果两个因式中任何一个为0,那么它们的积也等于0.所以x =0或10-4.9x =0.所以,方程x (10-4.9x )=0的两个根是x 1=0,x 2=49100≈2.04. 这两个根中,x 2≈2.04表示物体约在2.04 s 时落回地面,而x 1=0表示物体被抛离开地面的时刻,即在0 s 时物体被抛出,此刻物体的高度是0m .3.概括总结.思考:解方程x (10-4.9x )=0时,二次方程是如何降为一次的?可以发现,上述解法中,由x (10-4.9x )=0到x =0或10-4.9x =0的过程,不是用开平方降次,而是先因式分解.使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解一元二次方程的方法叫做因式分解法.三、巩固练习1.用因式分解法解下列方程.(1)x (x -2)+x -2=0; (2)5x 2-2x -41=x 2-2x +43. 教师引导学生掌握用因式分解法解方程的关键,要先将方程化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.学生掌握这个方法后,再解这两个方程就比较简单了.2.教材第14页练习.学生独立完成,小组内订正.四、课堂小结归纳:配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式解方程;因式分解法要先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法在解某些一元二次方程时比较简便.总之,解一元二次方程的基本思路是:将二次方程化为一次方程,即降次.五、布置作业习题21.2第6题.第6课时教师备课系统──多媒体教案12 教学内容21.2.4 一元二次方程根与系数的关系.教学目标1.了解一元二次方程根与系数的关系,能进行简单应用.2.掌握不解方程,应用根与系数关系解题的方法.3.了解根与系数系关系的推导过程,在元二次方程根与系数关系的探究过程中,感受由特殊到一般地认识事物的规律.教学重点应用根与系数关系解决问题.教学难点根系关系的推导过程.教学过程一、导入新课师:一元二次方程的一般形式是什么?生:方程的一般形式是ax2+bx+c=0(a≠0).师:你知道它的求根公式吗?生:求根公式是x=a acb b24 2-±-.过渡:方程ax2+bx+c=0(a≠0)的求根公式x=a acb b24 2-±-,不仅表示可以由方程的系数a,b,c决定根的值,而且反映了根与系数之间的联系,那么一元二次方程根与系数之间的联系还有其他表现方式吗?复习一元二次方程的一般形式及求根公式,使学生明确求根公式是方程的根与系数之间的一种关系,从而导入新课的教学.二、新课教学1.思考1.从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根为x1和x2,将方程化为x2+p x+q=0的形式,你能看出x1,x2与p,q之间的关系吗?教师引导学生进行思考、讨论,明晰解题思路和过程.把方程(x-x1)(x-x2)=0的左边展开,化成一般形式,得方程x2-(x1+x2) x+x1x2=0.这个方程的二次项系数为1,一次项系数p=-(x1+x2),常数项q=x1x2.于是,上述方程的两个根的和、积与系数分别有如下关系:(x1+x2)=-p,x1x2=q.2.思考2.一般的一元二次方程ax2+bx+c=0中,二次项系数a未必是1,它的两个根的和、积与系数又有怎样的关系?根据求根公式可知,人教版义务教育教材◎数学九年级上册13x 1=a ac b b 242-+-,x 2=aac b b 242---. 由此可得x 1+x 2=a ac b b 242-+-+aac b b 242---=a b 22-=-a b , x 1x 2=a ac b b 242-+-·aac b b 242---=2224)4()(a ac b b ---=a c . 因此,方程的两个根x 1,x 2和系数a 、b 、c 有如下关系:x 1+x 2=-a b ,x 1x 2=ac . 这表明任何一个一元二次方程的根与系数的关系为:两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.三、巩固练习根据一元二次方程的根与系数的关系,求下列方程两个根x 1,x 2的和与积:(1)x 2-6x -15=0; (2)3x 2+7x -9=0;(3)5x -1=4x 2.教师让学生独立计算.教师在学生计算时要让学生注意以下问题:一是可能会出现先求出一元二次方程的根,再求两根之和、两根之积的情况;二是要把方程化为一元二次方程的一般形式再求两根和与积.三是不要把两根之和与积的关系搞混.四、课堂小结今天你学习了什么,有什么收获?五、布置作业习题21.2 第7题.第7课时教学内容解一元二次方程复习课.教学目标1. 能掌握解一元二次方程的四种方法以及各种解法的要点.2. 会根据不同的方程特点选用恰当的方法,使解题过程简单合理,通过揭示各种解法的本质联系,渗透降次化归的思想方法.教师备课系统──多媒体教案14教学重点会根据不同的方程特点选用恰当的方法,使解题过程简单合理.教学难点通过揭示各种解法的本质联系,渗透降次化归的思想.教学过程一、导入新课师:同学们好,我们学习了第21章第2节解一元二次方程,今天就对这一及的内容进行梳理与复习.二、新课教学师:一元二次方程有哪些解法?生:有配方法、公式法和因式分解法.师:这些解法分别在什么情况下适用?生:方程左边可以写成完全平方式的情况下适用配方法;公式法适用方程的一般式;方程的左边能化为两个乘积等于0的情况可用因式分解法解方程.师:什么是“降次”?生:在解方程的过程中,把一个一元二次方程转化为两个一元一次方程的方法就叫做“降次”.师:在什么情况下一元二次方程有两个不相等的实数根?有两个相等的实数根?没有实数根?生:当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个不相等的实数根;当b 2-4ac <0时,方程无实数根.师:一元二次方程的判别式和求根公式分别是什么?生1:式子b 2-4ac 叫做一元二次方程ax 2+bx +c =0根的判别式,通常用希腊字母“△”表示它,即△=b 2-4ac .生2:当△≥0时,方程ax 2+bx +c =0(a ≠0)的实数根可写为x =aac b b 242-±- 的形式,这个式子叫做叫做一元二次方程ax 2+bx +c =0的求根公式.师:一元二次方程根与系数之间的联系还有其他表现方式吗?生:方程的两个根x 1,x 2和系数a 、b 、c 有如下关系:x 1+x 2=-a b ,x 1 x 2=ac . 两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.三、课堂小结通过对这一节的整理和复习,你有什么收获?还有什么问题吗?人教版义务教育教材◎数学九年级上册四、布置作业习题21.2 第8、9、12题.教案B第1课时教学内容21.2.1 配方法(1).教学目标1.能运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.通过实例,合作探讨,建立数学模型,掌握直接开平方法的的基本步骤.3.在经历用直接开平方法解一元二次方程的过程中,进一步体会化归思想.教学重点运用开平方法解形如(x+n)2=p(p≥0)的方程,领会降次—转化的数学思想.教学难点通过根据平方根的意义解形如x2=p的方程,然后知识迁移到根据平方根的意义解形如(x+n)2=p(p≥0)的方程.教学过程一、导入新课师:同学们好,我们上节学习了一元二次方程,你能说出什么是一元二次方程吗?生:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.师:很好.一元二次方程的一般形式是什么?生:ax2+bx+c=0(a≠0).师:我们今天就学习解一元二次方程.二、新课教学问题:一桶油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?教师引导学生审题,然后找出等量关系,列方程求解.学生思考、讨论.最后师生合作,共同完成解方程.设其中一个盒子的棱长为x dm,则这个盒子的表面积为6x2 dm2,根据一桶油漆可刷的面积,列出方程15教师备课系统──多媒体教案1610×6x2=1 500.整理,得x2=25.讲到这里后,教师引导学生:什么数的平方等于25?学生回答:5或者-5的平方都等于25.所以x=±5,即x1=5,x2=―5.方程解后应该怎么办?教师引导学生解方程后要进行检验.用方程解决实际问题时,要考虑所得的结果是否符合实际意义.最后验证,5和―5是方程10×6x2=1500的两个根,因为棱长不能是负值,所以盒子的棱长为5 dm.解决这个问题后,教师让学生解方程x2=0和x2=―25.学生很容易得出方程x2=0有两个相等的实数根x1=x2=0;方程x2=―25无解.通过这三个方程,教师引导学生对它们进行过归纳总结.一般地,对于方程x2=p,(1)当p>0时,根据平方根的意义,方程x2=p有两个不等的实数根x1=―p,x2=p;(2)当p=0时,方程x2=p有两个相等的实数根x1=x2=0;(3)当p<0时,因为对任意实数x,都有x2≥0,所以方程x2=p无实数根.探究:解方程(x+3)2=5.由方程x2=25得x=±5可知,方程(x+3)2=5可以化为x+3=±5,即x+3=5,或x+3=―5.于是,方程(x+3)2=5的两个根为x1=―3+5,x2=―3―5.上面的解法中,由方程(x+3)2=5得到x+3=5,或x+3=―5,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程(x+3)2=5转化为我们会解的方程了.三、巩固练习教材第6页练习.学生独立完成,小组内订正.人教版义务教育教材◎数学九年级上册四、课堂小结今天你学习了什么?有哪些收获?五、布置作业习题21.2第1题(1)(2)(3).第2课时教学内容21.2.1 配方法(2).教学目标1.了解配方法的概念,掌握配方法的基本步骤,会用配方法解一元二次方程.2.在经历用配方法解一元二次方程的过程中,进一步体会化归思想.教学重点用配方法解题的基本步骤.教学难点二次项次数为1时,配方要把方程两边同时加上一次项次数一半的平方;二次项次数不为1时,先把二次项次数化为1.教学过程一、导入新课解下列方程:(1)3x2-1=5 (2)4(x+1)2-16=0点评:上面的方程都能化成x2=p或(x+n)2=p(p≥0)的的形式,那么可得x=±p或x+n=p(p≥0).你能解方程x2+6x+4=0吗?二、新课教学1.配方法.教师引导学生思考、讨论,明确解题思路与过程.由方程(x+3)2=5可直接降次解方程想到把x2+6x+4=0转化为可以直接降次的形式再求解.17教师备课系统──多媒体教案18x 2+2bx +b 2的形式↓降次↓↓解一次方程得可以验证,-3±5是方程x 2+6x +4=0的两个根.归纳:像上面那样,通过配成完全平方形式来解一元二次方程的方法,叫做配方法.可以看出,配方是为了降次,把一个一元二次方程转化成两个一元一次方程来解.2.解下列方程:(1)x 2-8x +1=0; (2)2x 2+1=3x ; (3)3x 2-6x +4=0.分析:(1)方程的的二次项系数为1,直接运用配方法.(2)先把方程化成2x 2-3x +1=0,它的二次项系数为2,为了便于配方需将二次项系数化为1,为此方程的两边都除以2.(3)与(2)类似,方程的两边都除以3后再配方.解:(1)移项,得x 2-8x =-1.配方,得x 2-8x +42=-1+42. (x -4)2=15.由此可得x -4=±15,x 1=4+15,x 2=4-15.(2)略.(3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-34. 配方,得人教版义务教育教材◎数学九年级上册19x 2-2x +12=-34+12, (x -1)2=-31. 因为实数的平方不会是负数,所以x 取任何实数时,(x -1)2都是非负数,上式都不成立,即原方程无实数根.3.总结.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有:(1)当p >0时,方程(x +n )2=p 有两个不等的实数根x 1=-n -p ,x 2=-n +p ;(2)当p =0时,方程(x +n )2=p 有两个相等的实数根x 1=x 2=-n ;(3)当p <0时,因为对任意实数x 都有(x +n )2≥0,所以方程(x +n )2=p 无实数根.三、巩固练习1.解方程x 2+2x -35=0分析:显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式.解:移项,得x 2-2x =35.配方,得x 2-2x +12=35+1.(x -1)2=36.由此可得x -1=±6x 1=7,x 2=-5可以验证x 1=7,x 2=-5都是x 2+2x -35=0的根.2.教材第9页“练习”第1、2题.学生独立完成,小组内订正.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题第21.2第3题.教师备课系统──多媒体教案20第3课时教学内容21.2.2 公式法(1).教学目标1.理解一元二次方程求根公式的推导过程.2.了解公式法的概念.教学重点一元二次方程求根公式的推导.教学难点一元二次方程求根公式的推导.教学过程一、导入新课教师引导学生复习上节内容,导入新课的教学.二、新课教学探究任何一个一元二次方程都可以写成一般形式ax 2+bx +c =0(a ≠0).能否也用配方法的出这个方程的解呢?教师引导学生思考、讨论,然后共同探究解题过程.我们可以根据用配方法解一元二次方程的经验来解决这个问题. 移项,得ax 2+bx =-c .二次项系数化为1,得x 2+a b x =-ac . 配方,得 x 2+a b x +22⎪⎭⎫ ⎝⎛a b =-a c +22⎪⎭⎫ ⎝⎛a b , 即22⎪⎭⎫ ⎝⎛+a b x =2244a ac b -. 因为a ≠0,所以4a 2>0,式子b 2-4ac 的值有以下三种情况:(1)b 2-4ac >0人教版义务教育教材◎数学九年级上册21这时2244a ac b ->0,由22⎪⎭⎫ ⎝⎛+a b x =2244a ac b -得 x 2+a b 2=±aacb 242-.方程有两个不等的实数根x 1=a ac b b 242-+-,x 2=aacb b 242---.(2)b 2-4ac =0时,方程有两个不等的实数根x 1=x 2=ab2-. (3)b 2-4ac <0时,方程无实数根.一般地,式子b 2-4ac 叫做一元二次方程ax 2+bx +c =0根的判别式,通常用希腊字母“Δ”表示它,即Δ=b 2-4ac .归纳:由上可知,当Δ>0时,方程ax 2+bx +c =0(a ≠0)有两个不等的实数根;当Δ=0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ<0时,方程ax 2+bx +c =0(a ≠0)无实数根.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根可写为x =aac b b 242-±-是形式,这个式子叫做一元二次方程ax 2+bx +c =0的求根公式,利用求根公式解一元二次方程的方法叫做公式法.三、巩固练习1.用公式法解下列方程.(1)2x 2-4x -1=0 (2)5x +2=3x 2分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a =2,b =-4,c =-1b 2-4ac =(-4)2-4×2×(-1)=24>0x=(4)22--±==⨯∴x 1x 2(2)将方程化为一般形式3x 2-5x -2=0。
人教版数学九年级上册21.2解一元二次方程(教案)
此外,我也会反思自己的教学方法,看看是否有更直观、更生动的方式来讲解这些概念,使它们更容易被学生接受。我可能会引入更多的教学工具,如图形、实物模型等,来帮助学生们直观理解一元二次方程的解法。
-能够灵活运用各种解法求解一元二次方程,并理解解的几何意义。
-解决实际问题中涉及的一元二次方程,体会数学在生活中的应用。
举例:重点讲解配方法中的“完全平方公式”,并让学生通过练习熟练掌握其运用。
2.教学难点
-理解并掌握配方法中“移项”和“配方”的步骤,特别是在“配方”过程中常数项的处理。
-对公式法中求根公式的理解和记忆,以及正确运用求根公式求解一元二次方程。
c.让学生通过反复练习,掌握配方过程中关键步骤,并能独立完成类似题目。
对于公式法的难点,可通过以下方式帮助学生理解:
a.解释求根公式的来源和推导过程,增强学生的理解。
b.通过对比不同类型的一元二次方程,让学生体会求根公式的普适性。
c.通过典型例题,展示求根公式在实际应用中的正确使用方法。
对于分解因式法的难点,可以采取以下策略:
b.通过实例演示,如何将实际问题转化为数学方程。
c.让学生通过小组讨论和实际操作,学会将实际问题数学化,培养建模能力。
c”的指令,继续完成示范课的一元二次方程的四种解法,并能熟练运用。
2.过程与方法:通过实例分析,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度价值观:激发学生学习数学的兴趣,提高他们解决问题的自信心。
人教版数学九年级上册21.2.2公式法解一元二次方程 教案
21.2公式法解一元二次方程教学设计学情分析本节是在学生已经掌握了配方法解一元二次方程的基础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元二次方程教学目标知识目标1.理解求根公式的推导过程和判别公式;2.使学生能熟练地运用公式法求解一元二次方程.能力目标1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。
德育目标让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.教学的重、难点教学的重点1.掌握公式法解一元二次方程的一般步骤.2.熟练地用求根公式解一元二次方程。
教学的难点:理解求根公式的推导过程及判别公式的应用。
教学过程一.情境设计上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。
利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。
然后让学生思考对于一般形式的一元二次方程ax 2+bx+c=0(a ≠0) 能否用配方法求出它的解?引出本节课的内容。
(学生活动)用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=52(学生独立完成,老师点评)总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式a x 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:a x 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a+(2b a )2即(x+2b a)2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0∴2244b ac a-≥0直接开平方,得:x+2b a =±2a即x=2b a-±∴x 1=2b a -,x 2=2b a- 由上可知,一元二次方程a x 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac≥0时,•将a 、b 、c 代入式子 (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.三、例题讲解例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0(学生独立完成,教师指名学生上台板书,教师巡视并指导)分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.四、针对练习不解下列方程,直接说出a 、b 、c 以及b2-4ac 的值①2x2+x −6 = 0; ②x2+4x = 2;③5x2−4x −12 = 0; ④4x2+4x+10 = 1−8x教学要点:(1)对于方程②和④,首先要把方程化为一般形式;②强调确定a 、b 、c 值时,不要把它们的符号弄错;③先计算b2−4ac 的值,五、达标测试1、x2+4x =22、6t2 -5 =13t3、x ² - x -1= 04、2x ² - 4x+2= 05、3x(x-3)=2(x-1)(x+1)6、4x2-3x-1=x-2六、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.七、布置作业八、板书设计1.(回顾旧知识)配方法的一般步骤2.(讲授新课)推导求根公式3.(总结归纳)用公式法解一元二次方程的步骤4.例题讲解九、教学反思本节课在学生有了认识了配方法的作基础,再讨论如何用配方法解一元二次方程的一般形式ax2+bx+c=0(a≠0),就得到一元二次方程的求根公式,于是有了直接利用公式的公式法,并引出用判别式确定一元二次方程的根的情况. 利用求根公式解一元二次方程的一般步骤:1. 找出a,b,c的相应的数值2. 判别式是否大于等于03. 当判别式的数值符合条件,可以利用公式求根.学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.主要的有:1. a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号 2. 求根公式本身就很难,形式复杂,代入数值后出错很多.通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:1.让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。
九年级数学上册(人教版)21.2解一元二次方程(直接开平方法)优秀教学案例
1.通过举例、讲解等方式,引导学生理解平方根的概念,为学习直接开平方法打下基础。
2.设计多个层次的练习题,让学生在练习中掌握直接开平方法的基本步骤,注意一些易错点。
3.引导学生总结直接开平方法的应用规律,提高解题效率。
在教学过程中,我将采用“问题-探究”的教学方法,引导学生通过举例、观察、分析等方法,自主地发现和总结平方根的概念。然后,我将结合学生的认知规律,设计一系列由浅入深的练习题,让学生在实践中逐步掌握直接开平方法的基本步骤,并注意一些易错点。在学生掌握基本方法后,我将引导学生总结直接开平方法的应用规律,提高他们在解题过程中的效率。
2.直接开平方法:在学生理解平方根的概念后,我会引入直接开平方法。我会通过讲解和示例,引导学生掌握直接开平方法的基本步骤。首先,我会让学生观察和分析一些具体的一元二次方程,使他们能够发现直接开平方法的应用规律。然后,我会引导学生总结直接开平方法的一般步骤,如确定方程的根的性质、求出方程的平方根、检验平方根是否为方程的解等。
(三)学生小组讨论
1.设计讨论问题:我会提出一些与本节课内容相关的问题,让学生进行小组讨论。例如,探讨直接开平方法在实际问题中的应用,讨论解一元二次方程时可能遇到的问题及解决方法等。
2.组织学生进行讨论:我会让学生分组进行讨论,鼓励他们积极发表自己的观点和想法。在讨论过程中,我会巡回指导,给予学生必要的帮助和提示。
二、教学目标
(一)知识与技能
1.理解直接开平方法的概念,掌握其解题步骤。
2.能够运用直接开平方法解一元二次方程。
3.了解直接开平方法在实际问题中的应用。
在教学过程中,我将以生动的语言、形象的比喻和具体的例子,帮助学生理解直接开平方法的概念,使他们能够清晰地认识到直接开平方法的特点和作用。通过大量的练习题,让学生在实践中掌握直接开平方法的解题步骤,使他们能够熟练地运用该方法解决实际问题。
人教版九上数学 21.2解一元二次方程(第1课时) 教案
21.1 解一元二次方程(1)【教学目标】知识与技能:1.会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程2.探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.过程与方法:在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。
情感态度价值观:体会由未知向已知转化的思想方法.【教学重难点】重点:用直接开平方法和配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x十m)2=n(n 0)的形式.【教学过程】一、复习引入【问题】1.求出下列各式中x的值,并说说你的理由.(1)x2=9 (2)x2=5 (3)x2=a(a>0).说明:复习平方根的意义,解形如x2=n的方程,为继续学习引入作好铺垫.2.什么是完全平方式?3. 填上适当的数,使下列各式成立.(1)x2+ 6x+ =(x+3)2(2) x2+8x+ =(x+ )2(3)a2+2ab+ =(a+ )2 (4)a2-2ab+=(a- )2二、探索新知【问题】一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?分析:学生独立分析题意,发现若设正方体的棱长为x dm ,则一个正方体的表面积为6x 2 dm 2,根据一桶油漆可以刷的面积,列出方程:10×6x 2=1500整理,得x 2=25x=±5x 1=5,x 2=-5棱长不能为负数,所以盒子的棱长为5 dm说明:在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.归纳:一般地,对于方程2x p =(1)当P >0时,方程有两个不等的实数根(2)当P=0时,方程有两个相等的实数根(3)当P <0时,方程没有实数根【探究】你认为怎样解方程2(3)5x +=?学生独立分析问题,发现和【问题】中的方程形式类似,可以利用平方根的定义,直接开平方得到35x +=±,于是得到13x =-23x =-归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程. 说明:在学生讨论方程的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.【探究】怎样解方程2640x x ++=?归纳:1.通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;2.配方的目的是为了降次,把一元二次方程转化为两个一元一次方程说明:引导学生根据降次的思想,利用配方的方法把一元二次方程转化为两个一元一次方程来解方程.【例题讲解】例:解下列方程(1)x 2-8x + 1 = 0; (2)2213x x +=; (3)23640x x -+=.学生首先独立思考,自主探索,然后交流配方时的规律.经过分析得到(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=; (3)按照(2)的方式进行处理.总结:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式20ax bx c ++=; (2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.说明:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理等),通过解几个具体的方程,归纳作配方法解题的一般过程.归纳:一般地,对于方程2()x n p +=(1)当P >0时,方程有两个不等的实数根,1x n =-+2x n =-(2)当P=0时,方程有两个相等的实数根12x x n ==-(3)当P <0时,方程没有实数根三、巩固练习教材9页第1、2题.说明:检查学生对基础知识的掌握情况,进一步掌握配方法四、小结作业小结:1. 要熟练直接开平方法和配方法的技巧,来解一元二次方程,2.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。
人教版九年级数学上册21.2.1《用直接开平方法解一元二次方程》教学设计
人教版九年级数学上册21.2.1《用直接开平方法解一元二次方程》教学设计一. 教材分析人教版九年级数学上册21.2.1《用直接开平方法解一元二次方程》是本册教材中关于一元二次方程解法的一个知识点。
学生在学习本节课之前,已经掌握了一元一次方程的解法、不等式的解法以及二次根式的性质和运算。
本节课通过实例引入直接开平方法解一元二次方程,让学生掌握一元二次方程的解法,为后续学习一元二次方程的应用和更深入的数学知识打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于方程、不等式等知识有一定的了解。
但学生在解一元二次方程时,仍存在一定的困难,尤其是对于开平方法的运用和理解。
因此,在教学过程中,需要教师引导学生通过观察、分析、归纳等方法,深入理解直接开平方法解一元二次方程的原理和步骤。
三. 教学目标1.知识与技能:使学生掌握一元二次方程的直接开平解法,能运用该方法解一元二次方程。
2.过程与方法:通过观察、分析、归纳等方法,让学生学会用数学思维解决问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元二次方程的直接开平解法。
2.难点:对直接开平方法解一元二次方程的理解和运用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生发现规律。
2.实例分析法:教师通过具体实例,讲解一元二次方程的直接开平解法。
3.小组讨论法:学生分组讨论,交流解题心得,共同解决问题。
六. 教学准备1.教材:人教版九年级数学上册。
2.课件:教师根据教材内容制作课件。
3.练习题:针对本节课内容,准备适量的一元二次方程练习题。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程的解法,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过课件展示一元二次方程的直接开平解法,让学生观察、分析,引导学生发现解题规律。
3.操练(15分钟)教师给出具体的一元二次方程实例,让学生分组讨论,运用直接开平方法解方程。
人教版数学九年级上册21.2.1配方法解一元二次方程 教案
配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第21章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
1、用直接开平方法解一元二次方程(1)定义:运用平方根的定义直接开方求出一元二次方程解。
(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。
问题2:要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?问题2重在引出用配方法解一元二次方程。
九年级数学上册 21.2.1 配方法教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案
配方法第1课时直接开平方法1.了解降次将一元二次方程转化为一元一次方程.2.能用直接开平方法解x2=p(p≥0)或(mx+n)2=p(p≥0)形式的方程.【重点难点】会用直接开平方法解一元二次方程.【新课导入】1.你能求出方程x2=16中的未知数吗?2.把方程(x-1)2=9中的x-1看作一个整体,你能转化为两个一元一次方程吗? 【课堂探究】一、用直接开平方法解形如x2=p的一元二次方程1.一元二次方程2x2-6=0的解为x1=,x2=-.2.解方程4x2=9.解:由4x2=9,得x2=,两边直接开平方,得x=±,所以原方程的解为:x1=,x2=-.二、用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程3.解方程2(x+3)2-4=0.解:x1=-3+,x2=-3-.4. 解方程(2x+1)2=(x-1)2.解:两边直接开平方,得到2x+1=±(x-1),即2x+1=x-1或2x+1=-(x-1), 解得x1=-2,x2=0.1.只有二次项和常数项的方程x2=p(p≥0),方程两根为x=±.2.方程左边是完全平方式,右边是常数的方程(mx+n)2=p(m≠0,p≥0)方程可转化为两个一元一次方程mx+n=±p,解得x1=,x2=.1.方程x2-4=0的根是(C)(A)x=2 (B)x=-2(C)x1=2,x2=-2 (D)x=42.(2013某某)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)(A)x-6=-4 (B)x-6=4(C)x+6=4 (D)x+6=-43.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为(B)(A)14 (B)12(C)12或14 (D)以上都不对4.关于x的一元二次方程(x-k)2+k=0,当k>0时的解为(D)(A)k+ (B)k-(C)k±(D)无实数解5.解方程:2y2=8.解:两边同除以2,得y2=4,所以y1=2,y2=-2.6.解方程:4(3x-2)2-32=0.解:移项,得4(3x-2)2=32,方程两边同除以4,得(3x-2)2=8.两边直接开平方,得3x-2=±2,所以3x-2=2或3x-2=-2.因此,原方程的解是:x1=,x2=.第2课时配方法1.会用配方法解数字系数的一元二次方程.2.掌握配方法的推导过程,熟练地用配方法解一元二次方程. 【重点难点】配方法解一元二次方程.【新课导入】1.将x2+6x配成完全平方式且原整式不变(x+3)2-9.2.你能将方程x2-2x-5=0的左边配成完全平方式吗?【课堂探究】一、多项式的配方1.填空: x2-8x+16=(x-4)2.2.应用配方法把关于x的二次三项式x2-4x+6变形,然后证明:无论x取任何实数值,二次三项式的值都是正数.解:x2-4x+6=x2-4x+4-4+6=(x-2)2+2,无论x取任何实数值,(x-1)2≥0,则(x-1)2+2>0.所以无论x取任何实数值,二次三项式的值都是正数.二、配方法解一元二次方程3.解方程x2-2x-1=0.解:移项,得x2-2x=1,配方,得(x-1)2=2,两边开平方,得x-1=±,所以x1=1+,x2=1-.4.用配方法解方程4x2-12x-1=0.解:二次项系数化为1,得x2-3x-=0,移项,得x2-3x=,配方,得x2-3x+-2=+-2,得到x-2=,则x-=±,∴x1=+,x2=-.小结:配方法解一元二次方程的关键一步是:配方,即方程两边同时加上一次项系数一半的平方,化成(x+m)2=n(n≥0)的形式.1.配方法:通过配成完全平方式来解一元二次2.配方法解一元二次方程的步骤方程的方法. (1)移项:方程右边只有常数项,(2)化1:二次项系数化为1,(3)配方:方程化为(x+m)2=n形式,(4)开方:n≥0时,方程两边直接开方,n<0时,无解,(5)求解:解两个一元一次方程得原方程解.1.(2013某某)用配方法解方程x2-2x-1=0时,配方后所得的方程为(D)(A)(x+1)2=0 (B)(x-1)2=0(C)(x+1)2=2 (D)(x-1)2=22.用配方法解方程x2-x-1=0应该先变形为(C)(A)x-2= (B)x-2=-(C)x-2= (D)x-2=03.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为(B)(A)12 (B)15(C)12或15 (D)不能确定4.解方程:x(x+4)=21.解:原方程即x2+4x=21,配方,得(x+2)2=25,两边开平方,得x+2=±5,所以x1=-7,x2=3.5.解方程:-2x2+2x+1=0.解:化二次项系数为1,得x2-x-=0,移项,配方, 得x2-x+=+即x-2=,两边开平方, 得x-=±,所以x1=,x2=.。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)公式法教案
21.2解一元二次方程21.2.2公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程(一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274xx -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭,2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=±,112x =+212x =-2.用配方法解一元二次方程的步骤?(出示课件3)学生口答:化:把原方程化成x 2+px+q =0的形式.移项:把常数项移到方程的右边,如x 2+px =-q.配方:方程两边都加上一次项系数一半的平方.x 2+px+(2p )2=-q+(2p )2开方:根据平方根的意义,方程两边开平方.(x+2p )2=-q+(2p )2求解:解一元一次方程.定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知探究一公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5)学生答:ax 2+bx+c=0(a≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c.二次项系数化为1,得x 2+b a x=-c a .配方,得x 2+b a x+2(2b a =-c a +2()2ba ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.师生共同完善认知:(出示课件7)20,40,≠>a a 当240,-b a c≥.22b x a a +=±x 1=-b+b 2-4ac 2a ,x 2=-b-b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a≠0)的根由方程的系数a,b,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac≥0时,将a,b,c 代入式子x=42b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0;(出示课件9)学生思考后,共同解答如下:解:∵a=1,b=-4,c=-7,∴b 2-4ac=(-4)2-4×1×(-7)=44>0.4.2=x∴12=+x 22=x (2)2x 2x+1=0;(出示课件10)教师问:这里的a、b、c 的值分别是什么?解:2,21.==-=a bc 224(24210.△=-=--⨯⨯=ba c则方程有两个相等的实数根:12.2222-==-=-=⨯b x x a (3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --=1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根(4)46.22510-±--±±===⨯b x a 12464611,.10105+-====-x x (4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=acb△方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac>0时,一元二次方程有两个不相等的实数根;⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根;⑶当∆=b 2-4ac<0时,一元二次方程没有的实数根.教师问:用公式法解一元二次方程的步骤是什么?学生思考后,共同总结如下:(出示课件14)用公式法解一元二次方程的一般步骤:1.将方程化成一般形式,并写出a,b,c 的值.2.求出∆的值.3.(1)当∆>0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答.解:a=3,b=-6,c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.6.23±=⨯x 13,3+=x 2.3=x 探究二一元二次方程的根的情况出示课件16:用公式法解下列方程:(1)x 2+x-1=0;(2)x 2-+3=0;(3)2x 2-2x+1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗?⑴x 2+2x-8=0;⑵x 2=4x-4;⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解.师生共同总结如下:(出示课件18)一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac>0时,有两个不等的实数根:12,;22b b x x a a-+--==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a-==(3)当b 2-4ac<0时,没有实数根.一般的,式子b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1不解方程,判断下列方程根的情况:(1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x²-2mx+4(m-1)=0.师生共同讨论解答如下:解:⑴a=﹣1,b=,c=﹣6,∵△=b 2-4ac=24-4×(﹣1)×(-6)=0.∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3,c=1,∵△=b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m,c=4(m-1),∵△=b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D⑵D出示课件23:例2m为何值时,关于x的一元二次方程2x2-(4m+1)x+2m2-1=0:(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?学生思考后,教师板演解题过程:解:a=2,b=-(4m+1),c=2m2-1,b2-4ac=〔-(4m+1)〕2-4×2(2m2-1)=8m+9.(1)若方程有两个不相等的实数根,则b2-4ac>0,即8m+9>0,∴m>9 8-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=9 8-;(3)若方程没有实数根,则b2-4ac<0即8m+9<0,∴m<9 8-.∴当m>98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m<98-时,方程没有实数根.出示课件24:m为任意实数,试说明关于x的方程x2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b2−4ac=[−(m−1)]2−4[−3(m+3)]=m2+10m+37=m2+10m+52−52+37=(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0,∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根.(三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是()A.m≥1B.m≤1C.m>1D.m<12.解方程x 2﹣2x﹣1=0.3.方程x 2-4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等的实根,则k 的取值范围是()A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠05.已知x 2+2x=m-1没有实数根,求证:x 2+mx=1-2m 必有两个不相等的实数根.参考答案:1.D2.解:a=1,b=﹣2,c=﹣1,△=b 2﹣4ac=4+4=8>0,所以方程有两个不相等的实数根,4222x 122b a -±±===±1211x x =+=-3.B4.B5.证明:∵没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x 2+mx=1-2m ,即2210x mx m ++-=.,∵,∴△>0.∴x 2+mx=1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。
2022年人教版九年级数学上册第二十一章一元二次方程教案 配方法(第1课时)
21.2 解一元二次方程21.2.1 配方法一、教学目标【知识与技能】1.会利用直接开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.3.能根据具体问题的实际意义检验结果的合理性.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度与价值观】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.二、课型新授课三、课时第1课时,共2课时四、教学重难点【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.五、课前准备课件六、教学过程(一)导入新课1.什么是平方根?一个数的平方根怎么样表示?(出示课件2)一个数的平方等于a,这个数就叫做a的平方根..a(a≥0)的平方根记作:.x2=a(a≥0),则根据平方根的定义知,x=.2. 求出下列各式中x的值,并说说你的理由.(出示课件3)⑴x2=9;⑵x2=5.解:⑴x=±3 ;⑵x=.思考:如果方程转化为x2=p,该如何解呢?(二)探索新知探究直接开平方法一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?(出示课件5)教师问:设一个盒子的棱长为xdm,则它的外表面面积为6x2dm2,10个这种盒子的外表面面积的和为10×6x2,由此你可得到方程为10×6x2=1500,你能求出它的解吗?学生思考后,共同解答如下:.解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:10×6x2=1500,由此可得x2=25.开平方得x=±5,即x 1=5,x 2=-5.因棱长不能是负值,所以正方体的棱长为5dm .教师问:解下列方程,并说明你所用的方法,与同伴交流.(出示课件6)(1) x 2=4;(2) x 2=0;(3) x 2+1=0.学生回答:⑴根据平方根的意义,得x 1=2, x 2=-2.⑵根据平方根的意义,得x 1=x 2=0.⑶根据平方根的意义,得x 2=-1,因为负数没有平方根,所以原方程无解.教师归纳:(出示课件7)一般地,对于可化为方程 x 2 = p, (I)(1)当p>0 时,根据平方根的意义,方程(I)有两个不等的实数根1x =,2x =;(2)当p=0时,方程(I)有两个相等的实数根x 1 = x 2 =0;(3)当p<0时,因为任何实数x,都有x 2≥0 ,所以方程(I)无实数根.利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法. 例1 利用直接开平方法解下列方程:(出示课件8)(1) x 2=6;(2) x 2-900=0.师生共同讨论解答如下:解:(1)直接开平方,得x =12,∴==x x(2)移项,得x 2=900.直接开平方,得x=±30,∴x 1=30, x 2=-30.出示课件9:解下列方程: (1) 2280;x -=(2)2953.x -=学生自主思考并解答.解:(1)移项,得228.=x系数化为1,得2 4.=x∴=x即122,2;==-x x(2)移项,得298.=x系数化为1,得28.9=x12,∴==-x x教师问:对照前面方法,你认为怎样解方程(x+3)2=5①?(出示课件10)学生自主讨论后回答:解:把x+3看做一个整体,两边开平方得3x +=33.x x ∴+=+=,或③于是,方程(x+3)2=5的两个根为1233x x ∴=-+=--或教师总结:由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.例2 解下列方程:(1)(x+1)2= 2;(出示课件11)教师分析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.师生共同解答如下:解:(1)∵x+1是2的平方根,∴x+1=即x12=-1-(2)(x-1)2-4 = 0;(出示课件12)教师分析:本题先将-4移到方程的右边,再同第1小题一样地解.师生共同解答如下:解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.即x1=3,x2=-1.(3) 12(3-2x)2-3 = 0.(出示课件13)教师分析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.师生共同解答如下:解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)²=0.25.∵3-2x 是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5,∴ x 1=54 x 2=74.出示课件14,学生自主思考并解答.例3 解下列方程:(出示课件15)(1)2445x x -+=; (2)29614x x ++=. 师生共同解答如下:解:(1)()225,x -=2x ∴-=22x x -=-=方程的两根为12=+x22x =-(2)()2314,x +=312,x ∴+=±312312,x x , +=+=-方程的两根为113,=x 2 1.x =-出示课件16,学生自主思考并解答.(三)课堂练习(出示课件17-21)1. 一元二次方程x 2﹣9=0的解是______________.2.下列解方程的过程中,正确的是( )A. x 2=-2,解方程,得x=B. (x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)= ±3, x 1=14,x 2=74D.(2x+3)2=25,解方程,得2x+3=±5, x 1= 1;x 2=-43. 填空:(1)方程x 2=0.25的根是______________ .(2)方程2x 2=18的根是______________.(3)方程(2x-1)2=9的根是______________ .4.下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:21150,3⎛⎫+-= ⎪⎝⎭y 2115,3⎛⎫+= ⎪⎝⎭y ① 113+=y ② 113=-+y ③1.y =-④5.解方程22(2)(25)x x -=+参考答案:1.x 1=3,x 2=﹣3解析:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.2.D3.⑴x 1=0.5,x 2=-0.5 ⑵x 1=3,x 2=-3 ⑶x 1=2,x 2=-14.解:不对,从②开始错,应改为113y +=123, 3.y y =-=--5.解:()()22225,x x -=+2(25),x x ∴-=±+ 225,22 5.∴-=+-=--x x x x方程的两根为17,=-x 2 1.=-x(四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.1)第2课时的相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.1 解一元二次方程(1)
【教学目标】
知识与技能:1.会用开平方法解形如x 2=p 或(mx+n)2=p(p ≥0)的一元二次方程
2.探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.
过程与方法: 在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。
情感态度价值观:体会由未知向已知转化的思想方法.
【教学重难点】
重点:用直接开平方法和配方法解一元二次方程.
难点:把一元二次方程通过配方转化为(x 十m)2=n(n ≥0)的形式.
【教学过程】
一、复习引入
【问题】
1.求出下列各式中x 的值,并说说你的理由.
(1)x 2=9 (2)x 2=5 (3)x 2=a (a>0).
说明:复习平方根的意义,解形如x 2=n 的方程,为继续学习引入作好铺垫.
2.什么是完全平方式?
3. 填上适当的数,使下列各式成立.
(1)x 2+ 6x+ =(x+3)2 (2) x 2+8x+ =(x+ )2
(3)a 2+2ab+ =(a+ )2 (4)a 2-2ab+ =(a- )2
二、探索新知
【问题】一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部
外表,你能算出盒子的棱长吗?
分析:学生独立分析题意,发现若设正方体的棱长为x dm ,则一个正方体的表面积为6x 2 dm 2,根据一桶油
漆可以刷的面积,列出方程:10×6x 2=1500
整理,得x 2=25
x=±5
x 1=5,x 2=-5
棱长不能为负数,所以盒子的棱长为5 dm
说明:在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.
归纳:一般地,对于方程2x p =
(1)当P >0时,方程有两个不等的实数根
(2)当P=0时,方程有两个相等的实数根
(3)当P <0时,方程没有实数根
【探究】你认为怎样解方程2(3)5x +=?
学生独立分析问题,发现和【问题】中的方程形式类似,可以利用平方根的定义,直接开平方得到
35x +=±,于是得到13x =-23x =-
归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.
说明:在学生讨论方程的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.
【探究】怎样解方程2640x x ++=?
归纳:1.通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;
2.配方的目的是为了降次,把一元二次方程转化为两个一元一次方程
说明:引导学生根据降次的思想,利用配方的方法把一元二次方程转化为两个一元一次方程来解方程.
【例题讲解】
例:解下列方程(1)x 2
-8x + 1 = 0; (2)2213x x +=; (3)23640x x -+=. 学生首先独立思考,自主探索,然后交流配方时的规律.经过分析得到
(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2
=15; (2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416
x -=; (3)按照(2)的方式进行处理.
总结:利用配方法解方程时应该遵循的步骤:
(1)把方程化为一般形式20ax bx c ++=;
(2)把方程的常数项通过移项移到方程的右边;
(3)方程两边同时除以二次项系数a ;
(4)方程两边同时加上一次项系数一半的平方;
(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.
说明:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理等),通过解几个具体的方程,归纳作配方法解题的一般过程.
归纳:一般地,对于方程2()x n p +=
(1)当P >0时,方程有两个不等的实数根,1x n =-,2x n =-
(2)当P=0时,方程有两个相等的实数根12x x n ==-
(3)当P <0时,方程没有实数根
三、巩固练习
教材9页第1、2题.
说明:检查学生对基础知识的掌握情况,进一步掌握配方法
四、小结作业
小结:1. 要熟练直接开平方法和配方法的技巧,来解一元二次方程,
2.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。
3.直接开平方飞=法和配方法解一元二次方程的解题思想:“降次”即由二次降为一次。
作业:
说明:通过归纳总结,课外作业,使学生优化概念,内化知识。